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After the discovery of the Higgs boson, understanding the nature of electroweak symmetry breaking and
the associated electroweak phase transition has become the most pressing question in particle physics.
Answering this question is a priority for experimental studies. Data from the LHC and future lepton
collider-based Higgs factories may uncover new physics coupled to the Higgs boson, which can induce the
electroweak phase transition to become first order. Such a phase transition generates a stochastic
background of gravitational waves, which could potentially be detected by a space-based gravitational
wave interferometer. In this paper, we survey a few classes of models in which the electroweak phase
transition is strongly first order. We identify the observables that would provide evidence of these models at
the LHC and next-generation lepton colliders, and we assess whether the corresponding gravitational wave
signal could be detected by eLISA. We find that most of the models with first-order electroweak phase
transition can be covered by the precise measurements of Higgs couplings at the proposed Higgs factories.
We also map out the model space that can be probed with gravitational wave detection by eLISA.
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I. INTRODUCTION

The discovery of the Higgs boson completes the list of
particles of the Standard Model. However, there are many
open questions regarding the dynamics of electroweak
symmetry breaking. Addressing these questions has been
a driving force in both theoretical and experimental
explorations of the energy frontier.
One of the most outstanding problem is the nature of the

electroweak phase transition. Currently, we have measured
with precision the size of the Higgs vacuum expectation
value (VEV) and the mass of the Higgs boson. However,
we know very little about the shape of the Higgs potential
beyond that. The Standard Model defines its Higgs poten-
tial with only renormalizable terms—the so-called
“Mexican” hat form. In this case the electroweak symmetry
is smoothly restored via a continuous crossover as the
temperature is raised above the electroweak scale [1].
However, new physics can modify the nature of the phase
transition, possibly turning it into an abrupt first-order
phase transition. On the one hand, such new physics can be
searched for directly at current and future colliders. On the
other hand, a first-order electroweak phase transition in the
early Universe would generate a stochastic background
of gravitational waves that can be searched for with
interferometers [2]. Discovering such a gravitational wave
signal would establish the electroweak phase transition as a

new milestone in our understanding of the early Universe.
It will advance our knowledge into an epoch significantly
earlier than nucleosynthesis.
A first-order electroweak phase transition requires a

significant deviation away from the renormalizable
Higgs potential, which implies the presence of new physics
close to the weak scale. We can look for such new particles
directly, such as at the LHC. Even though it can be
powerful in certain cases, the reach of this approach is
limited. The new physics can be weakly coupled, and the
searches at the LHC suffer from large background. At the
same time, the most model-independent effect of such new
physics is the induced deviation in the Higgs couplings
[3,4]. Measuring such couplings precisely, and uncovering
potential new physics, is a major physics goal of proposed
Higgs factories. In this paper, we will focus on the potential
of probing new physics associated with electroweak
symmetry breaking at these facilities.
If a first-order electroweak phase transition occurred in

the early Universe, the collision of bubbles and damping of
plasma inhomogeneities would have generated a stochastic
background of gravitational waves. The frequency of these
waves is relatively model independent, being related to the
scale of the cosmological horizon at the time of the
phase transition. Therefore today we expect the waves to
have redshifted into the millihertz range. This potential
signal is impossible to probe with ground-based gravita-
tional wave interferometers like AdvLIGO due to seismic
noise. However, the signal is ideal for a space-based
interferometer like eLISA [2] with arm lengths of order
millions of kilometers. In this paper, we assess the
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possibility of using gravitational waves as probes of a first-
order electroweak phase transition and the complementarity
of this technique with the collider searches.
There are a number of ways in which new particles may

cause the electroweak phase transition to become first
order. In general a first-order phase transition can occur if
the Higgs effective potential is modified from its Standard
Model form so as to develop a potential energy barrier
separating the phases of broken and unbroken electroweak
symmetry. As discussed in [5], there are three general
model classes in which the barrier can arise. First, if the
new degrees of freedom are scalar fields that participate
in the electroweak phase transition (their VEV changes at
the same time as the Higgs), then tree-level interactions
with the Higgs field can make some regions of field space
energetically disfavorable and lead to a barrier. Second, the
presence of new particles coupled to the Higgs boson
affects the running of the Higgs mass parameter and self-
coupling. Then the barrier can arise by virtue of quantum
effects. Third, if the new particles are present in the early
Universe plasma and acquire their mass (at least partially)
from the Higgs field, then a barrier can arise via thermal
effects. This can be understood as a trade-off between
minimizing the energy, represented by the tree-level Higgs
potential, and maximizing the entropy, which prefers the
Higgs field to take on values where particles in the plasma
are light. Then, this third case can be further divided into
two categories: a barrier arising from light scalars via the
thermal cubic term ∼ðm2Þ3=2T and a barrier arising from
heavy particles that get their mass predominantly from a
large coupling with the Higgs field.
In this paper, we survey a number of simplified models

that demonstrate the basic ingredients necessary for a
first-order electroweak phase transition. We focus on four
models in which the Standard Model (SM) is extended,
respectively, to include a real scalar singlet, a scalar
doublet, heavy chiral fermions, and varying Yukawa
couplings. This set of models exemplifies all of the
different phase transition model classes, enumerated above.

II. MODELS

In each of the models discussed here, the Higgs field is
represented by ΦðxÞ, and the Standard Model Lagrangian
contains

LSM ⊃ ðDμΦÞ†ðDμΦÞ −m2
0Φ

†Φ − λhðΦ†ΦÞ2: ð2:1Þ

In calculating the scalar effective potential we write
hΦðxÞi ¼ ð0;ϕh=

ffiffiffi
2

p Þ with ϕh real. The vacuum sponta-
neously breaks the electroweak symmetry, ϕh ¼ v with
v≃ 246 GeV. The Higgs mass is denoted as Mh, and it
takes the value Mh ≃ 125 GeV.

A. Real scalar singlet

First, we add to the SM a real scalar field SðxÞ, which is a
singlet under the SM gauge group. This is probably the
simplest extension of the Higgs sector of the SM. At the
same time, due the lack of other interactions, it gives rise to
the most independent signal.
The most general renormalizable Lagrangian is

written as

L ¼ LSM þ 1

2
ð∂μSÞð∂μSÞ − tsS −

m2
s

2
S2 −

as
3
S3 −

λs
4
S4

− λhsΦ†ΦS2 − 2ahsΦ†ΦS: ð2:2Þ

Without loss of generality, we can set ts ¼ 0. Since the new
scalar is a singlet, it only interacts with the Standard Model
via the Higgs portal, Φ†ΦS2 and Φ†ΦS. The electroweak
phase transition and collider phenomenology in this model,
sometimes called the xSM, have been studied extensively;
see e.g. [6] and references therein. The gravitational wave
signal in related models has been studied recently by
Refs. [7–13].
There is no single reason why this model admits a first-

order electroweak phase transition. In fact different limits
of this simple model exhibit each of the phase transition
model classes that were identified in [5]. Most notably, the
tree-level interactions play a significant role in most of the
parameter space. During the electroweak phase transition,
the singlet vs need not remain fixed. If vs changes along
with v, then the Higgs portal terms λhsΦ†ΦS2 and ahsΦ†ΦS
can give rise to a barrier in the effective potential, and the
phase transition is first order.
After electroweak symmetry breaking hΦi ¼ ð0; v= ffiffiffi

2
p Þ,

and generically we expect the singlet field to acquire a
vacuum expectation value as well, hSi ¼ vs. Then, the
Higgs portal operators allow the Higgs and singlet fields to
mix. The mixing angle −π=4 ≤ θ ≤ π=4 satisfies

sin 2θ ¼ 4vðahs þ λhsvsÞ
M2

h −M2
s

; ð2:3Þ

where Mh ≃ 125 GeV is the physical Higgs boson mass
and Ms is the physical mass of the singlet.
Interactions between the Higgs boson and the singlet

scalar affect the coupling of the Higgs to the Z boson.
Writing the effective hZZ coupling as ghZZ, we define the
fractional deviation from the SM value as

δZh ≡ 1 −
ghZZ

ghZZ;SM

����
s¼ð250 GeVÞ2

; ð2:4Þ

where the couplings are evaluated at a center of mass
energy s ¼ ð250 GeVÞ2. We calculate δZh as
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δZh ≈ ð1 − cos θÞ − 1

2

jahs þ λhsvsj2
16π2

IBðM2
h;M

2
h;M

2
sÞ

−
1

2

jλhsj2v2
16π2

IBðM2
h;M

2
s ;M2

sÞ − 0.006
�

λ3
λ3;SM

− 1

�
:

ð2:5Þ

The first term arises from the tree-level Higgs-singlet
mixing (2.3). This is typically the dominant contribution
to δZh. At the one-loop order, the singlet contributes to the
wave function renormalization of the Higgs. This gives rise
to the second and third terms in (2.5). We have generalized
the calculation in Refs. [14,15], to allow for the cases
without a Z2 symmetry. The bosonic loop function is given
by [16]

IBðp2;m2
1; m

2
2Þ ¼

Z
1

0

dx
xð1 − xÞ

xð1 − xÞp2 − xm2
1 − ð1 − xÞm2

2

:

ð2:6Þ

The wave function renormalization terms are typically
subdominant, except for the Z2 limit (discussed in
II A 1) where θ ¼ ahs ¼ vs ¼ 0 and the jλhsj2v2 term is
dominant.
The fourth term in (2.4) also arises at the one-loop order.

As recognized in [17] this term appears when the Higgs
trilinear coupling λ3 deviates from its SM value λ3;SM. The
effect on δZh depends on the center of mass energy, and forffiffiffi
s

p ¼ 250 GeV the prefactor evaluates to 0.006 [17]. The
cubic self-coupling of the mass eigenstate Higgs (hhh) is
calculated as

λ3 ¼ ð6λhvÞ cos3 θ þ ð6ahs þ 6λhsvsÞ sin θ cos2 θ
þ ð6λhsvÞ sin2 θ cos θ þ ð2as þ 6λsvsÞ sin3 θ: ð2:7Þ

In the Standard Model we have λ3 ¼ λ3;SM ≡ 3M2
h=v≃

191 GeV. The last term in λ3 arises from a three-vertex,
one-loop graph. As we will see, models exhibiting a
strongly first-order phase transition typically have an
Oð1Þ deviation in λ3, and, therefore, this effect on δZh
can be sizable.
If the singlet is sufficiently light,Ms<Mh=2≃62.5GeV,

the Higgs decay channel h → SS opens. This decay con-
tributes to the Higgs invisible width. The invisible width is
calculated as [18]

Γinv ¼ Γðh → SSÞ ¼ λ2211
32πMh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4M2
s

M2
h

s
; ð2:8Þ

where

λ211 ¼ ð2ahs þ 2λhsvsÞ cos3 θ þ ð4λhsv − 6λhvÞ sin θ cos2 θ
þ ð6λsvs þ 2as − 4λhsvs − 4ahsÞ sin2 θ cos θ
þ ð−2λhsvÞ sin3 θ ð2:9Þ

is the effective trilinear coupling of the mass eigenstates. If
the invisible channel is open, the branching fraction is
typically so large as to be excluded already by LHC limits,
BRinv ≲ 30% [19,20]. Therefore we require Ms > Mh=2.
In general the model has seven parameters corresponding

to the potential terms in (2.2) with ts ¼ 0. Two parameters
can be exchanged for the Higgs mass and VEV, leaving five
free parameters. In IV we present the main result for this
model, which entails a scan over the five-dimensional
parameter space. In the following subsections we discuss
a couple of special limiting cases of this model. Even
though they do not represent generic models with first-
order electroweak phase transition, they give rise to differ-
ent predictions. We include them in our discussion for
completeness.

1. Z2-symmetric limit

We impose the Z2 discrete symmetry under which the
singlet is odd, ϕs → −ϕs, and the StandardModel fields are
even. In terms of the singlet Lagrangian (2.2) the symmetry
enforces

ts ¼ 0; as ¼ 0; and ahs ¼ 0: ð2:10Þ

We also require that the Z2 symmetry is not broken
spontaneously, and thus vs ¼ 0. The only interaction
between the Standard Model and the singlet is through
the Higgs portal λhsΦ†ΦS2.
The Z2 symmetry forbids a mixing between the Higgs

and singlet fields. In the absence of mixing, modifications
to the hZZ coupling (2.5) first arise at the one-loop level.
The tree-level modifications to the trilinear coupling (2.7)
are also suppressed in this limit, and, therefore, only the
jλhsj2 term contributes to δZh. Thus we expect that this
corner of parameter space can evade constraints on δZh
from future colliders as discussed later. As such, this model
has been identified as a “worst-case scenario” for finding
evidence of a first-order electroweak phase transition at
colliders [15,21].
Despite the vanishing mixing, the electroweak phase

transition may still be first order. Morally speaking, the
Higgs-singlet mixing is a “local” property of the theory,
related to the behavior of small fluctuations about the
vacuum, but the nature of the phase transition depends also
upon “global” properties of the theory, e.g. whether the
theory admits other metastable vacua. The presence or
absence of such metastable vacua is not directly related
to the mixing at the true vacuum. Two specific scenarios
have been studied. If the Higgs portal coupling is suffi-
ciently large, the singlet can affect the running of the Higgs
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self-coupling, which may induce a barrier in the effective
potential [22]. Alternatively, the Higgs portal interaction,
λhsϕ

2
hϕ

2
s with λhs > 0, may give rise to a barrier in the

effective potential at tree level when the phase transition
passes from a vacuum with ϕh ¼ 0 and ϕs ¼ vsðTÞ to a
vacuum with ϕh ¼ vðTÞ and ϕs ¼ 0.

2. Unmixed limit

The tree-level Higgs-singlet mixing (2.3) vanishes when
we take

ahs þ λhsvs ¼ 0: ð2:11Þ

Unlike the Z2 symmetric limit of (2.10), the choice of
parameters in (2.11) is not associated with any enhanced
symmetry. Significant fine-tuning among tree-level param-
eters is necessary to reach this limit. Furthermore, such a
tuning is not technically natural; the mixing is induced
radiatively. At the one-loop order, the induced mixing is
∝ λhsvðas þ λhsvsÞ. Otherwise, the first-order electroweak
phase transition and collider phenomenology is similar to
the Z2 case.
In the unmixed limit, the singlet can be pair produced

through an off-shell Higgs via the hSS coupling λhsv and
can decay to hh,WW, and ZZ final states via the radiatively
generated mixing. Then by the Goldstone equivalence
theorem, the singlet decay branching ratios for the hh,
WW, and ZZ channels are 25%, 50%, and 25%, respec-
tively. Those final states contribute to a multilepton,
multijet signature, which can be probed at the LHC.
With a large WW branching ratio, the 4W channel leads
to a same-sign dilepton with multiple jets (zero b-jet) final
state. The background processes for this channel include tt̄,
tt̄W, tt̄Z, WZ, and same sign WW plus jets. All back-
grounds except same sign WW plus jets can be estimated
from the tt̄h searches in the same sign dilepton with at least
two b-jets channel, by replacing the b tagging with a b-jet
veto [23]. We assume the b-tagging efficiency is 70%.
For the same sign WW plus jets, we include both single
parton scattering and double parton scattering [24] and
assume a 90% acceptance to account for the lepton
efficiency and kinematics. We assume the same 90%
acceptance for signal as well. Then at the high-luminosity
Large Hadron Collider (HL LHC), we expect a 2σ
significance for σðpp → SSÞ ∼ 1.8 fb, which corresponds
to λhs ∼ 1, and MS ∼ 200 GeV [25].

B. Scalar doublet (top-squark-like)

In this section, we go beyond the singlet to consider
new particles in nontrivial representations of the SM gauge
group. Some of the simplest cases are obtained by
introducing SU2L scalar doublets and singlets with U1Y
charge. Perhaps the most well-known example is the
Minimal Supersymmetric Standard Model (MSSM) top
squark. However, the light top squark scenario is very

restricted and, at least in simple cases, it cannot give rise to
a first-order electroweak phase transition without running
afoul of collider constraints [26–28]; see also [29]. Many of
these constraints are a consequence of the supersymmetry
(SUSY). For example, the scalar top partner must to be
colored and hence the top squark is subject to stringent
limits from collider searches. To avoid the collider con-
straints, models like folded SUSY have been proposed
[30], in which the top squarks can still solve the hierarchy
problem but are not colored. In the following, we consider
a similar top-squark-like model. The new particles are
taken to have the same electroweak gauge quantum
numbers as the top squark, but they are not colored. In
addition, their couplings are not subject to the constraints of
supersymmetry.
We extend the SM to include nf ¼ 3 copies (flavors) of

scalar doublets and complex scalar singlets. We will denote
the doublets and singlets as ~Qi ¼ ð ~ui; ~diÞT and ~Ui, where
the index i runs from 1 to nf. In order to mimic the
interactions of colored squarks, we require the Lagrangian
to respect the global SUnf symmetry, under which the ~Qi

and ~Ui transform in the fundamental representation, and the
SM fields are invariant. Notice that we have used a SUSY-
like notation to indicate the electroweak gauge quantum
numbers, but no SUSY relations are implied.
With the new top-squark-like particle content, the scalar

potential can be written as

V ¼ 1

2
m2

0ϕ
2
h þ

λh
4
ϕ4
h þm2

Qðj ~uj2 þ j ~dj2Þ þm2
Uj ~Uj2

þ λQðj ~uj2 þ j ~dj2Þ2 þ λUðj ~Uj2Þ2

þ λQUðj ~uj2 þ j ~dj2Þj ~Uj2 þ λhU
2

ϕ2
hj ~Uj2

þ λhQ
2

ðj ~uj2 þ j ~dj2Þϕ2
h þ

λ0hQ
2

j ~uj2ϕ2
h þ

λ00hQ
2

j ~dj2ϕ2
h

þ
�
ahQUffiffiffi

2
p ~uϕh

~U� þ H:c:

�
: ð2:12Þ

The sum over i ¼ 1;…; nf flavors has been suppressed. In
general the model has 12 parameters, but two of these can
be exchanged for the Higgs mass and VEV, leaving ten free
parameters. Additionally, we will later assume a universal
dimensionless coupling, λQ ¼ λU ¼ λUQ ¼ � � �≡ λ, which
reduces the free parameters to four: fm2

Q;m
2
U; λ; ahQUg. We

present the results of a parameter-space scan in IV.
In the well-known light top squark scenario of the

MSSM [31], the electroweak phase transition can become
first order due to the presence of these scalar particles in the
plasma. Their contribution to the Higgs thermal effective
potential (background-dependent free energy density) goes
as Veff ∼ −Nc½m~tðϕh; TÞ2�3=2T, where Nc ¼ 3 is the num-
ber of colors and the effective top squark mass m~tðϕh; TÞ
depends on the background Higgs field ϕh and the plasma
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temperature T (daisy correction). This nonanalytic term in
Veff arises only for relativistic bosonic fields, due to the
nonanalyticity of the Bose-Einstein distribution function at
E=T ¼ 0. In a regime where the top squark mass can be
approximated as m~tðϕhÞ2 ≈ y2tϕ2

h, the effective potential
acquires a cubic term Veff ∼ Ncy3tϕ3

hT, which can provide
the requisite barrier for a first-order phase transition. In our
top-squark-like model, the same thermal effects can give
rise to a first-order electroweak phase transition. However,
since we do not impose the SUSY relations, yt is replaced
by some combination of the quartic couplings λ in (2.12).
In principle, λ can be larger than yt, which increases the
height of the potential energy barrier and strengthens
the first-order phase transition. For simplicity, we neglect
the daisy resummation, i.e. the one-loop temperature-
dependent mass correction, which plays an important role
in the MSSM’s light top squark scenario [31]. We expect
that this effect will weaken the PT strength on a parameter
point-by-point basis without affecting our broader con-
clusions regarding testability of models with a first-order
electroweak phase transition.
We assume that the new scalar fields do not acquire

VEVs, h ~ui ¼ h ~di ¼ h ~Ui ¼ 0. Thus, the flavor symmetry
prevents the Higgs from mixing with the squark-like fields.
Nevertheless, the trilinear interactions allows the top-
squark-like fields to mix after electroweak symmetry
breaking. The mixing angle satisfies

tan 2θ ¼
ffiffiffi
2

p
ahQUv

m2
Q −m2

U þ 1
2
ðλhQ þ λ0hQ − λhUÞv2

: ð2:13Þ

The spectrum consists of two “top squarks” and one
“sbottom,” and we denote their mass eigenvalues by M~t1,
M~t2 , and M ~b. Their couplings to the Higgs are given by

gh~t1~t1 ¼ −cos2θðλhQ þ λ0hQÞv − sin2θλhUvþ
ahQU sin 2θffiffiffi

2
p ;

ð2:14aÞ

gh~t2~t2 ¼ −sin2θðλhQ þ λ0hQÞv − cos2θλhUv −
ahQU sin 2θffiffiffi

2
p ;

ð2:14bÞ

gh~t1~t2 ¼−
sin2θ
2

ðλhQþ λ0hQÞvþ
sin2θ
2

λhUv−
ahQU cos2θffiffiffi

2
p ;

ð2:14cÞ

gh ~b ~b ¼ −ðλhQ þ λ00hQÞv: ð2:14dÞ

These dimensionful couplings can be read off of (2.12)
upon diagonalizing the top squark mass matrix.
Since the top-squark- and sbottom-like particles are not

actually colored, they do not affect the Higgs coupling to

gluons. However, the new charged scalar particles do
increase the strength of the Higgs-photon coupling radia-
tively. This increases the Higgs diphoton decay rate [32,33]

Γh→γγ ¼
1

64π

α2M3
h

16π2
jĀW þ Āt þ Ā~t þ Ā ~bj2; ð2:15Þ

where α≃ 1=137 is the electromagnetic fine structure
constant and

ĀW ¼ ghWW

M2
W

F1ðM2
h=4M

2
WÞ; ð2:16aÞ

Āt ¼ 2NcQ2
t
ghtt
Mt

F1=2ðM2
h=4M

2
t Þ; ð2:16bÞ

Ā~t ¼
X2
i¼1

nfQ2
~t

gh~ti~ti
M2

~ti

F0ðM2
h=4M

2
~ti
Þ; ð2:16cÞ

Ā ~b ¼ nfQ2
~b

gh ~b ~b

M2
~b

F0ðM2
h=4M

2
~b
Þ ð2:16dÞ

with ghWW ¼ g2v=2 ¼ 2M2
W=v and ghtt ¼ yt=

ffiffiffi
2

p ¼ Mt=v.
We take the electromagnetic charges of the top-squark- and
sbottom-like particles to beQ~t ¼ 2=3 andQ ~b ¼ −1=3. The
functions FðτÞ are defined in [32]. To compare with the
SM contribution ðΓh→γγÞSM, we drop the Ā~t and Ā ~b terms
from (2.15).
The new charged scalars also affect the Higgs coupling

to Z bosons. At one-loop order the dominant effect
typically comes from a wave function renormalization
on the Higgs leg. This graphs brings two factors of the
quartic couplings λ, which appear in (2.12). The other one-
loop graphs, i.e. the vertex renormalization and the Z-boson
wave function renormalization, are suppressed compared to
the Higgs wave function renormalization by factors of
e=λ, where e is the electromagnetic coupling. As long as
λ≳ e ∼ 0.1 the Higgs wave function renormalization is the
dominant effect on the hZZ coupling. Consequently the
hZZ coupling deviates from its SM value by [16]

δZh ¼ −nf
X2
i;j¼1

jgh~ti~tj j2
32π2

IBðM2
h;M

2
~ti
; M2

~tj
Þ

− nf
jgh ~b ~bj2
32π2

IBðM2
h;M

2
~b
;M2

~b
Þ; ð2:17Þ

where the loop function is defined in (2.6).

C. Heavy fermions

In the previous sections we have discussed how new
scalar states can lead to a first-order electroweak phase
transition. Here we investigate models in which the first-
order transition derives from new fermions. The key
ingredient is that the fermions have a large coupling to
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the Higgs, which gives them a large mass during the
electroweak phase transition. Prior to the phase transition
the fermions were lighter, since the Higgs VEV does not
contribute to their mass. Since it is energetically unfav-
orable for the fermion masses to grow, the effective
potential develops a barrier, which leads to a first-order
phase transition. We discuss two implementations of
this idea.

1. Heavy chiral fermions

Extend the SM to include the left-chiral fermions ~H1,
~H2, ~B, and ~Wa. They have the same gauge charge assign-
ments as Higgsinos and gauginos in the MSSM. Two
doublets ~H1;2 are required for anomaly cancellation, and
either the singlet ~B or the triplet ~Wa is required to allow
a Yukawa coupling with the Standard Model Higgs.
Working in the two-component Weyl spinor notation, the
Lagrangian is

L ¼ LSM þ ~H†
1iσ̄

μDμ
~H1 þ ~H†

2iσ̄
μDμ

~H2 þ ~B†iσ̄μ∂μ
~B

þ ~Wa†iσ̄μ∂μ
~Wa −

1

2
M1½ ~B ~BþH:c:�

−
1

2
M2½ ~Wa ~Wa þ H:c:� − μ½ ~H2 · ~H1 þ H:c:�

− ½Φ†ðh2σa ~Wa þ h02 ~BÞ ~H2 þ H:c:�
− ½Φ · ð−h1σa ~Wa þ h01 ~BÞ ~H1 þ H:c:�: ð2:18Þ

We have again used a SUSY-like notation for the fields so
as to easily identify their gauge quantum numbers.
Reference [34] studied the phenomenology in this

model and identified a region of parameter space in which
the electroweak phase transition can be first order. In
general, the model has seven free parameters: three
mass parameters fM1;M2; μg and four couplings
fh1; h2; h01; h02g. Reference [34] suggests to focus on the
restricted parameter space

M1 ¼ M2 ¼ −μ; h1 ¼ h2 ≡ h; and h01 ¼ h02 ≡ h0:

ð2:19Þ

This reduces the free parameters to three: one mass
parameter μ and two couplings h and h0. In this restricted
parameter space, the spectrum consists of two degenerate
“charginos,” two degenerate lighter “neutralinos,” and two
degenerate heavier “neutralinos”:

M2
~C1

¼ M2
~C2

¼ μ2 þ h2v2; ð2:20aÞ

M2
~N1

¼ M2
~N2

¼ μ2; ð2:20bÞ

M2
~N3

¼ M2
~N4

¼ μ2 þ ðh2 þ h02Þv2: ð2:20cÞ

The mass eigenstates have couplings with the Higgs
given by

gh ~Ni
~Nj
¼ 1ffiffiffi

2
p fðh0Ni1 − hNi2ÞðNj3 − Nj4Þ þ i ↔ jg;

ð2:21aÞ

gh ~Ci
~Cj
¼ 1ffiffiffi

2
p hδij; ð2:21bÞ

where the neutralino ~Ni can be decomposed into
Ni1

~Bþ Ni2
~W þ Ni3

~H2 þ Ni4
~H1. We only consider

μ > Mh=2 to avoid the Higgs and Z invisible decays.
Reference [34] identified that the phase transition can be

strongly first order in the limit μ ≪ hv; h0v with h or
h0 ¼ Oð1Þ. In this case, the charginos and neutralinos are
light near the symmetric phase [v → 0 in (2.20)] but
heavy in the broken phase. This makes it energetically
preferable for the system to remain in the symmetric
phase, and the phase transition is delayed until a lower
temperature thereby becoming more strongly first order.
Since we will be interested in a region of parameter space
with large couplings, there is a threat that the new fermions
will exacerbate the electroweak vacuum instability.
Following [34] we counter this problem by introducing
new scalar particles that have field-dependent masses μ2sþ
ðh2 þ h02Þϕ2

h, where μ2s ¼ expð8π2M2
h=ð4ðh2þh02Þ2v2ÞÞ

M2
~N3

−ðh2þh02Þv2. We do not expect these particles to

play any significant role in the phenomenology or phase
transition dynamics.
The presence of new charged fermions tends to suppress

the Higgs diphoton decay rate. We calculate Γh→γγ by
generalizing the MSSM chargino calculation in [32]:

Γh→γγ ¼
1

64π

α2M3
h

16π2
jĀW þ Āt þ Ā ~Cj2; ð2:22Þ

where ĀW and Āt appear in (2.16) and the chargino
contribution is given by

Ā ~C ¼
X2
i¼1

2
gh ~Ci

~Ci

M ~Ci

F1=2ðM2
h=4M

2
~Ci
Þ: ð2:23Þ

We will see that if h ¼ Oð1Þ the model is already strongly
constrained by LHC limits on the Higgs diphoton decay
width. Therefore we also consider the case h ¼ 0where the
charginos do not contribute to the Higgs diphoton decay
rate at one-loop order.
Both the charginos and neutralinos affect the Higgs

coupling to Z bosons. As argued above (2.17), the
dominant effect comes from the Higgs wave function
renormalization provided that h; h0 ≳ e ∼ 0.1. Thus we
calculate the deviation to the hZZ coupling as
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δZh ¼
X4
i;j¼1

jgh ~Ni
~Nj
j2v2

32π2
IFðM2

h;M
2
~Ni
;M2

~Nj
Þ þ 2

X2
i;j¼1

jgh ~Ci
~Cj
j2v2

32π2
IFðM2

h;M
2
~Ci
;M2

~Cj
Þ; ð2:24Þ

where the fermion loop integral is given by

IFðp2;m2
1; m

2
2Þ ¼ 4

Z
1

0

dx

0
B@1

6
þ
ð1 − xÞxðm1m2 − 2m2

1x − 2m2
2 þ p2ð1 − xÞx

�
m2

2ð1 − xÞ þm2
1x − p2ð1 − xÞx

− ð1 − xÞx logm
2
2ð1 − xÞ þm2

1x − p2ð1 − xÞx
M2

h

1
CA; ð2:25Þ

where M2
h appears as the M̄S renormalization scale.

Since the hZZ coupling arises already at tree level,
ghZZ ¼ ðg2 þ g02Þv=2, there can be another one-loop cor-
rection1 when the M̄S parameters g and g0 are matched onto
physical quantities such as the Z boson mass and GF [35].
In this model, we expect a large contribution from the
matching because the custodial symmetry is broken. Using
Ref. [35] we estimate that this matching effect can
contribute to δZh with a magnitude that is comparable to
(2.24), but a more precise calculation of δZh is beyond the
scope of our work. Since we are primarily interested in
establishing that models with a first-order phase transition
are testable at future colliders, we are satisfied that the
predicted value of δZh in this model is comparable to, or
larger than,2 the value given by (2.24).
As discussed previously, the custodial symmetry is

broken in this model, and therefore, we expect a large
contribution to the electroweak precision parameter T [36].
To avoid the constraints, we can introduce new particles to
the theory to cancel the contribution. A heavy Higgs can
generate a negative contribution to the T parameter and
compensate the contribution to the T parameters from the
neutralinos and the charginos.

2. Varying Yukawa couplings

References [37,38] recently studied the electroweak
phase transition in an electroweak-scale implementation
of the Froggatt-Nielsen mechanism. We investigate their
model in this section.
Extend the Standard Model to include a real scalar

field χ, which is a singlet under the Standard Model
gauge group. We call χ the flavon field. By enforcing an
appropriately chosen flavor symmetry, the Standard Model

Yukawa interactions can be forbidden. Instead, the Yukawa
interactions are generated from dimension-five operators
after the flavon gets a VEV. These dimension-five operators
are written schematically as

Lint ¼ −
�
χ

M

�
qi−qH−qj

f̄iLΦf
j
R; ð2:26Þ

where the q’s are flavor charges of the fermions and
the Higgs. The associated Yukawa matrix is yij ¼
ðhχi=MÞqi−qH−qj .
In [37] it is assumed that the expectation value of χ

changes during the electroweak phase transition. (It
need not be zero before the transition.) Across the two-
dimensional field space, the fermion masses vary due to the
explicit dependence on the Higgs field and the implicit
dependence on the flavon field, via the Yukawa coupling.
For fermion species f ∈ fe; μ; τ; u; d; c; s; t; bg we can
write the field-dependent mass as

Mfðϕh; χÞ ¼
yfðχÞϕhffiffiffi

2
p : ð2:27Þ

The electroweak phase transition can be strongly first order
if yf ∼Oð1Þ in the symmetric phase and yf ≪ 1 in the
broken phase [37]. In this case the fermion is light in both
the symmetric and broken phases but heavy at intermediate
field values. As a result, intermediate field values are
energetically disfavored, and the corresponding potential
energy barrier induces the phase transition to become first
order. One can view this scenario as a different implemen-
tation of the heavy fermion model of II C 1.
One could study the electroweak phase transition in this

model by specifying a potential for χ and tracking the
evolution of both χ and the Higgs ϕh through the two-
dimensional field space [38]. For simplicity, we follow [37]
in assuming that χ can be parametrized in terms of ϕh along
the phase transition trajectory. Then the model is specified
by writing yfðϕhÞ. Taking a phenomenological perspective,
we consider three models for the Yukawa couplings:

1While a large wall velocity is favorable for a strong gravi-
tational wave signal, it leads to some tension with the viability of
electroweak baryogenesis [65–67].

2We neglect the unnatural possibility that there is a tuning
between these two independent contributions to δZh.
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ðAÞ yfðϕhÞ ¼
8<
:

y1
�
1 − ϕ2

h
v2

	
þ ffiffiffi

2
p

Mf=v; for f a quark;ffiffiffi
2

p
Mf=v; for f a lepton;

ðBÞ yfðϕhÞ ¼
8<
:

ffiffiffi
2

p
Mf=v; for f a quark;

y1
�
1 − ϕ2

h
v2

	
þ ffiffiffi

2
p

Mf=v; for f a lepton;

ðCÞ yfðϕhÞ ¼
8<
:

ffiffiffi
2

p
Mf=v; for f a quark;h

100y1
�
1 − ϕ2

h
v2

	
þ 1

i
×

ffiffiffi
2

p
Mf=v; for f a lepton;

ð2:28Þ

where Mf is the mass of fermion f. In each case, the
Yukawa coupling is fixed to

ffiffiffi
2

p
Mf=v for ϕh ≥ v.

The first two models are chosen to match the para-
metrization studied in [37]. Here, the varying flavon field
leads to a universal (flavor-independent) shift in the
Yukawa couplings for either the quarks or the leptons.
The third model is chosen to avoid possible constraints
from flavor-changing neutral currents. Here, the flavon
leads to a flavor-independent rescaling of the lepton
Yukawa couplings while leaving the quark Yukawa cou-
plings unaffected. The factor of 100 is introduced to
balance the τ Yukawa coupling

ffiffiffi
2

p
Mτ=v≃ 0.01; then,

yτð0Þ≃ y1 and ye;μð0Þ≃ y1Me;μ=Mτ ≪ y1. Whereas the
first two models can be thought to arise from the operator in
(2.26), the third model would arise from the operator Lint ¼
−ðχ=MÞnyijf̄iLΦfjR where the VEVof the flavon field sets
the scale of the Yukawa matrix but not the flavor-dependent
mixings and splittings.
Since we have not specified an explicit interaction

between the flavon and Standard Model fields, it is difficult
to assess collider constraints on this model. In general, we
expect that the model can be constrained via Higgs-flavon
mixing and flavor-changing neutral currents (FCNC).
Generally, the physical Higgs boson and the singlet flavon
will mix, unless a symmetry forbids it. As we discussed in
II A, this mixing leads to a number of potential constraints.
Second, if the flavon’s interactions are not flavor diagonal,
then it may contribute to FCNC, which are strongly
constrained. For instance, as discussed in [38], the scenario
with one Froggatt-Nielsen flavon is ruled out, and the
scenario with two Froggatt-Nielsen flavons is constrained
from Higgs and top exotic decays, and other flavor
constraints.

III. PROBES OF THE ELECTROWEAK
PHASE TRANSITION

A. Collider probes

In the models we consider, the Higgs boson couples
to new states that are typically below the TeV scale, and,
therefore, the models are subject to collider tests.

The new states we consider can contribute to the wave
function renormalization of the Higgs. This affects the
Higgs couplings universally. Among all the Higgs cou-
plings, a lepton collider can measure the Higgs coupling
to Z bosons very well. This is accomplished in
“Higgs factory” mode by running the lepton collider at
240–250 GeV where the Higgs-strahlung cross section is
maximized and the threshold for lþl− → Z� → hZ just
opens up. Deviations in the hZZ coupling from the SM
expectation are parametrized by δZh, which was defined in
(2.4). The current LHC limit [39] and improved sensitiv-
ities with future colliders are summarized below:

ΔðδZhÞ ¼ 27% ðcurrentÞ; 7% ðHLLHCÞ;
0.25% ðCEPC; ILC-500Þ; 0.15% ðFCC-eeÞ: ð3:1Þ

Here we show sensitivities for the HL LHC [40], Circular
Electron Positron Collider (CEPC) [25], International
Linear Collider at

ffiffiffi
s

p ¼ 500 GeV (ILC-500) [41], and
Future Circular Collider study with both 240 and 350 GeV
measurements (FCC-ee) [42].
New charged states coupled to the Higgs will radiatively

affect the Higgs decay rate into a pair of photons. Both
current and future colliders can constrain a deviation
from the SM prediction in this channel. We summarize
below the current sensitivity of the ATLAS experiment
[39], the projected sensitivity of the CMS experiment at the
HL LHC [40], and the expected sensitivity of future lepton
colliders [25,42]:

Δ
�

Γh→γγ

ðΓh→γγÞSM

�
¼ 20% ðcurrentÞ; 8% ðHLLHCÞ;

4% ðCEPCÞ; 1.5% ðFCC-eeÞ: ð3:2Þ

The cubic self-coupling of the Higgs boson λ3 is
currently unconstrained by the LHC. The 500 GeV and
the 1 TeV options for ILC can also measure λ3 from the
Higgs-strahlung, WW fusion, and the ZZ fusion processes
[41]. Future hadron colliders with higher center of mass
energy, for example, SppC and FCC-hh, are expected to
increase the sensitivity in λ3 significantly [43–47] to the
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ballpark of 10%. At the same time, much more detailed
studies are needed to produce a more solid estimate by
carefully taking into all possible channels and systematics.
These sensitivities are summarized as follows:

Δ
�

λ3
λ3;SM

�
¼ 27% ðILC-500Þ;

10% ðSppC=FCC-hh=ILC-1000Þ: ð3:3Þ

B. Strongly first-order phase transition
and baryogenesis

The matter-antimatter asymmetry of the Universe may
have been generated at the electroweak phase transition;
this scenario is known as electroweak baryogenesis. (For a
review, see [48].) In this framework, the electroweak
phase transition needs to be first order, such that phase
coexistence occurs during the transition. At the boundary
between phases, i.e. the bubble wall, the properties of
particles and their interactions can vary rapidly.
Specifically, thermal diffusion of SU2L Chern-Simons
number leads to efficient violation of the baryon number
outside of the bubbles (symmetric phase), but inside of
the bubbles the weak gauge fields become massive,
MWðTÞ ≈ gvðTÞ=2, and these processes (electroweak
sphalerons) acquire a Boltzmann suppression. Thus, a
baryon asymmetry can be generated outside of the bubble
and diffuse into the bubble, where it is approximately
conserved. To avoid washout of the baryon asymmetry in
the Higgs phase, the electroweak order parameter must
satisfy [49] (see also [50,51])

vðTÞ
T

����
T¼TPT

≳ 1.3 ð3:4Þ

at the temperature of the phase transition, TPT. If (3.4) is
satisfied, the phase transition is said to be “strongly” first
order. For our numerical results, we evaluate the washout
criterion at the bubble nucleation temperature Tn; see
Appendix A.
Although (3.4) is a necessary condition for electroweak

baryogenesis, it is not a sufficient condition. Successful
generation of the baryon asymmetry also requires a source
of CP violation, which is model dependent. Additionally
it requires that the bubble walls are not expanding too
quickly [52]. These details are beyond the scope of our
work. Therefore, we do not consider electroweak baryo-
genesis explicitly, and we do not calculate the relic baryon
asymmetry. Rather, we assess whether the phase transition
is strongly first order depending on whether it satisfies
(3.4); if the phase transition is not strongly first order,
electroweak baryogenesis is not viable.

C. Gravitational waves

A first-order cosmological phase transition is expected to
generate a stochastic background of gravitational waves
[53,54]. In general, the gravitational waves arise from
several sources. When bubbles of the Higgs phase meet one
another and collide, the localized energy density generates
a quadrupole contribution to the stress-energy tensor, which
sources gravitational waves. Additionally, the passage of
bubbles through the plasma creates magnetohydrodynamic
turbulence and sound waves. Decay of the turbulence and
damping of the sound waves can continue for multiple
Hubble times, even after the phase transition is completed,
providing additional sources of gravitational waves.
The spectrum of stochastic gravitational waves is very

model dependent. (We provide additional details in
Appendix B.) A key parameter is the ratio α ¼ Δρvac=ρrad,
which compares the vacuum energy density liberated in the
phase transition with the energy density of the relativistic
plasma. The gravitational wave spectrum is proportional to
α2, up to some efficiency factor. Writing the phase transition
temperature as TPT we have α2 ∝ ρ−2rad ∝ T−8

PT. In the Standard
ModelTPT ≃ 160 GeV, but a first-order phase transition [due
to beyond Standard Model (BSM) physics] can have appre-
ciable supercooling, typically TPT ≳ 50 GeV. Thus the
amplitude of the stochastic gravitational wave spectrum
varies by many orders of magnitude across the parameter
space.
Conversely, the peak frequency of the gravitational wave

spectrum is less model sensitive. The frequency of these
gravitational waves today is related to the size of the
Higgs phase bubbles at the time of collision. Typically, this
is some (model-dependent) fraction of the cosmological
horizon at the time of the phase transition. (The complete
formulas appear in Appendix B.) For an electroweak-scale
phase transition, the spectrum typically peaks in the range
f ∼ ð10−4–10−2Þ Hz. Such a signal is potentially within
reach of future space-based gravitational wave interferom-
eters, such as eLISA.
The geometry of eLISA has not been finalized, and a

number of designs are under investigation. Configurations
differ in regard to number of links (four or six), arm length
(1, 2, or 5 million kilometers), duration (2 or 6 years),
and noise level (comparable to Pathfinder or greater). The
corresponding sensitivities to a stochastic gravitational
wave background are calculated in [2] for four configura-
tions. In its more optimistic configurations, the sensitivity
of eLISA could reach

ΔðΩgwh2Þ ∼ 10−14 to 10−12 at f ¼ 5 × 10−3 Hz:

ð3:5Þ

In the next section, we compare the predicted gravitational
wave signals in our models against these projected
sensitivities.
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IV. RESULTS

For each of the models we scan approximately 5000
points in the parameter space. The parameter ranges vary
from model to model, but unless otherwise specified we
generally allow the dimensionless couplings to vary
between −2 and 2. At each parameter point, we calculate
the relevant collider observables (δZh, δΓhγγ , λ3), the phase
transition order parameter (v=T), and the gravitational
wave spectrum. Throughout this section, the scatter plots
are color coded: an orange point indicates a first-order
phase transition, a blue point indicates a strongly first-order
phase transition (3.4), and a green point indicates a very
strong first-order phase transition with potentially detect-
able gravitational wave signal at eLISA.

A. Real scalar singlet

In II A we extended the Standard Model by a real scalar
singlet, which is able to mix with the Standard Model
Higgs. This mixing (in addition to radiative effects) leads to
a modification of the hZZ and hhh couplings, parametrized
by δZh and λ3. In Fig. 1 we show the distribution of models
over this parameter space. Models with a first-order phase
transition (orange, blue, or green points) tend to predict a
large suppression of the hZZ coupling, ranging from ∼1%
to as much as 30%. For the vast majority of the models in
the scan, this suppression is detectable at Higgs factories
such as the CEPC, which has an expected sensitivity of
ΔðδZhÞ ¼ 0.25% (3.1). Focusing on the models with a
gravitational wave signal that is potentially detectable by
eLISA (green points), the suppression of hZZ is larger still,
typically ≳10%. Therefore if the Higgs factory measures a
significant suppression of the hZZ coupling, it would
motivate a search for relic gravitational waves with
space-based interferometers.
In the Z2-symmetric limit of II A 1, the only free

parameters are Ms, λhs, and λs. The discrete symmetry

forbids a mixing between the Higgs and singlet fields,
and deviations in the hZZ and hhh couplings arise first at
one-loop order. The loop-induced contribution to δZh
typically falls below the projected sensitivity of future
Higgs factories. The region with a viable first-order phase
transition are shown in Fig. 2. This limit of the singlet
model admits strongly first-order, two-step phase tran-
sitions in which the singlet field acquires a VEV prior to
electroweak symmetry breaking. The density of very
strong phase transitions (green points) is higher, in part,
because of a sampling effect; here we scan three model
parameters whereas we scan five in Fig. 1. Our results
broadly agree with more detailed analyses in the liter-
ature, e.g. [15].
In II A 2 we discussed a limit of the scalar singlet model

in which the mixing is tuned to zero. Then the hZZ
coupling is only modified at one-loop order, as seen in
(2.5). This region of parameter space is identified on Fig. 1
as the “funnel” region where λ3=λ3;SM → 1 and δZh → 0.
We have performed a parameter scan focusing on this
region, and we show the results in Fig. 3. Most of the
parameter space corresponds to a weakly first-order phase
transition (orange points). In this limit, the phase transition
occurs in two steps with the singlet first acquiring a
negative VEV at T ≳ 200 GeV, and the electroweak
symmetry is broken later T ≲ 100 GeV when the singlet
VEV becomes positive. Due to the large field excursion and
the barrier provided by tree-level potential terms (ahsϕ2

hϕs

and λhsϕ2
hϕ

2
s) there is a significant amount of supercooling,

and the phase transition is very strongly first order.
However, at the zero-temperature vacuum, the model is
very SM-like, and the deviation in the hZZ coupling is too
small to probe with future Higgs factories. Since the model
admits a strongly first-order phase transition but is inac-
cessible to collider probes, this limit can be viewed as a new
class of “nightmare scenario.”

FIG. 1. Parameter space scan for the singlet model of II A. An orange point indicates a first-order phase transition, a blue point
indicates a strongly first-order phase transition (3.4), and a green point indicates a very strong first-order phase transition with potentially
detectable gravitational wave signal at eLISA. The right panels shows the predicted gravitational wave spectrum today along with the
projected sensitivity of eLISA [2].
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B. Top-squark-like scenario

In II B we extend the SM by three scalar doublets and
complex scalar singlets, which can be viewed as colorless
top squarks and sbottoms. As the text discusses below
(2.12), we restrict to a four-dimensional parameter space by

assuming a common quartic coupling λ. The new charged
scalars contribute to the Higgs diphoton decay width Γh→γγ

and lead to a deviation in the hZZ coupling, parametrized
by δZh. Figure 4 shows the result of a scan over the four-
dimensional parameter space. In the region of parameter

FIG. 2. Parameter space scan for the singlet model of II A 1 where a discrete Z2 symmetry forbids the Higgs-singlet mixing and
suppresses the BSM modification to the hZZ coupling.

FIG. 3. Parameter space scan for the singlet model of II A 2 where the Higgs-singlet mixing is tuned to zero.

FIG. 4. Parameter space scan for the top-squark-like model of II B. The projected sensitivity of figure Higgs factories (CEPC, ILC-
500, FCC-ee) is sufficient to test the entire region of parameter space where the phase transition is first order (orange, blue, and green
points).
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space with a first-order phase transition (orange, blue,
and green points), the Higgs diphoton decay width is
enhanced by more than 10%, and it is enhanced by more
than 20% in the region with a potentially detectable
gravitational wave signal (green). Given current LHC limits
(3.2) some of this parameter space is already at tension with
the data. More importantly, the projected sensitivity of
figure Higgs factories (CEPC, ILC-500, FCC-ee) is suffi-
cient to test the entire region of parameter space where the
phase transition is first order.

C. Heavy chiral fermions

In II C 1 we extend the SM by four chiral fermions: a pair
of doublets (“Higgsinos”), a triplet (“wino”), and a singlet
(“bino”). We vary the mass parameter μ, the wino Yukawa
coupling h, and the bino Yukawa coupling h0. For sim-
plicity we focus on the two cases h0 ¼ 0, h ≠ 0 and
h ¼ 0, h0 ≠ 0.
Nonzero h allows the charginos to suppress the Higgs

decay rate into photons (2.22). As seen in the left panel of
Fig. 5 for h ¼ Oð1Þ and h0 ¼ 0 this suppression is already
at tension with current limits on Γh→γγ from the LHC (3.2).
A large Yukawa coupling h≳ 2 is required to achieve a
first-order phase transition (indicated by the dashed
curves), and an even larger coupling h≳ 2.5 is required
for a strongly first-order phase transition (thick solid
curve). Although the phase transition is strongly first order
in this region, the electroweak order parameter only gets as
large as vðTÞ=T ≃ 2.1, and the corresponding gravitational
wave signal is not within reach of eLISA.
Taking instead the wino Yukawa coupling to vanish

(h ¼ 0) removes the tree-level interaction between Higgs

and charginos, and the constraint from Higgs diphoton
decay is avoided. We find that a first-order phase transition
is possible provided that the coupling is sufficiently large,
h0 ≳ 2. However, this model is ruled out by a large
deviation in the Peskin-Takeuchi T parameter. As we
discuss at the end of II C 1, it may be possible to avoid
constraints on T by adding new particles to restore the
custodial SU(2) symmetry. Then the model can still be
tested through precision measurements of the hZZ cou-
pling. Using (2.24) we estimate the modification to
hZZ to be at the level of Oð10%Þ if h ¼ 0 and
h0 ¼ Oð1Þ. Such a large deviation can potentially be probed
by the high-luminosity LHC or certainly by a future Higgs
factory (3.1).
Finally let us comment on the size of the Yukawa

couplings considered here. If h and h0 are as large as 2
or 3, as shown in Fig. 5, then the model has a Landau pole
not far above the electroweak scale. In principle new
particles can be added to cancel the radiative corrections
from the heavy chiral fermions and raise the cutoff. The
new particles may enter Higgs physics, possibly making
them testable at the LHC but certainly testable at a future
pp collider.

D. Varying Yukawa couplings

In II C 2 we allowed the Yukawa couplings of the
Standard Model fermions to depend on the vacuum expect-
ation value of a scalar flavon field. Provided that the flavon
VEV changes during the electroweak phase transition, the
Yukawa couplings acquire an implicit dependence on the
VEV of the Higgs field. In (2.28) we discussed three
phenomenological models: (A) quark Yukawa couplings
receive a universal (flavor-independent) shift and lepton
Yukawa couplings are fixed, (B) lepton couplings are
shifted and quark couplings are fixed, and (C) lepton
couplings receive a universal rescaling and quark couplings
are fixed.
Results of the phase transition analysis appear in Fig. 6

where we show the electroweak order parameter v=T in
terms of the universal Yukawa parameter y1. For cases (A)
and (B) above, the electroweak phase transition is strongly
first order for y1 ≳ 0.4 for varying quark Yukawas and
y1 ≳ 0.7 for varying lepton Yukawas. For the same value of
y1 the phase transition is stronger in case (A), because more
degrees of freedom have the anomalous field dependence.
For case (C), the phase transition only becomes strongly
first order for y1 ≳ 1.3. In this model, all the lepton Yukawa
couplings are enhanced by the same factor, and conse-
quently the electron and muon remain negligible compared
to the tau. Effectively, only the one degree of freedom (τ) is
playing any role in making the phase transition first order.
We focus on y1 ≲ 2.0 to avoid issues associated with loss of
perturbatively. In this parameter regime, the predicted
stochastic gravitational wave background is not within
the reach of eLISA’s most optimistic design sensitivity.

FIG. 5. Results for the heavy chiral fermion model of II C. The
Higgs-to-diphoton decay rate is shown as a function of the
chargino mass. We fix the Higgs-bino-Higgsino Yukawa
coupling h0 ¼ 0 and we show various values of the Higgs-
wino-Higgsino Yukawa coupling h. Thick lines indicates para-
meters with a strongly first-order phase transition (3.4), dashed
lines indicate a weakly first-order transition, and thin lines
indicate a crossover or second-order transition.
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V. CONCLUSION

In this paper we have explored a few minimal extensions
of the Standard Model in which new particles below the
TeV scale cause the electroweak phase transition to become
first order. Although the new particle content is motivated
from a bottom-up and minimalist perspective, this new
physics can easily be embedded in a broader UV theory

such as supersymmetry. Despite their simplicity, our
models exhibit various different mechanisms giving rise
to a first-order phase transition [5]. For instance, the value
of the scalar singlet field can change along with the Higgs
field thereby inducing a first-order phase transition through
tree-level interactions, or the presence of top-squark-like
scalar particles in the electroweak plasma can lead to a

FIG. 6. Results for the varying Yukawas model of II C 2. In the top row, the quark Yukawa couplings are allowed to vary with lepton
couplings fixed to their SM values. In the middle and bottom rows, the lepton couplings vary, and the quark couplings are fixed. In the
first two rows, the Yukawa coupling changes by a flavor-independent shift, and in the bottom row it is a flavor-independent rescaling
instead.
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first-order transition via thermal effects. Despite this
diversity of particle content, phenomenology, and phase
transition dynamics, we find a generic relationship
between models with a first-order electroweak phase
transition and those that are testable at colliders.
Namely, in the region of parameter space where the
electroweak phase transition becomes first order, we
typically find such a large deviation in the Higgs coupling
with Z bosons (hZZ) that it should be discovered by a
future Higgs factory.3 It generically predicts a large, Oð1Þ,
deviation in the triple Higgs coupling, which can be
measured well by next-generation hadron collider and
high-energy lepton collider, such as the 1 TeV version of
the ILC. The models can also be probed by the Higgs
diphoton decay rate and other methods.
While future colliders may shed light on the dynamics

behind electroweak symmetry breaking, the most direct
probe of a cosmological first-order phase transition is the
associated stochastic background of gravitational waves.
We have calculated the spectrum of gravitational waves
that would have been produced during a first-order
electroweak phase transition in the early Universe. We
find that only models with especially strong first-order
phase transitions, typically vðTÞ=T ≳ 3, are within reach
of a future space-based gravitational wave interferometer
experiment like eLISA. Nevertheless, models with weaker
first-order transitions can still be probed by future col-
liders. This provides the exciting opportunity to make
complementary measurements of the electroweak phase
transition using a combination of next-generation col-
liders and interferometers. Detecting signals of first-order
electroweak phase transition in both cosmological obser-
vation and collider experiments would be an achievement,
which can rival that of the big-bang nucleosynthesis,
and open a new page in our understanding of the early
Universe.
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APPENDIX A: PHASE TRANSITION
CALCULATION

For each of the models, we use the thermal effective
potential to calculate the parameters of the phase transition.
For a pedagogical approach to this calculation, see the
lectures in [55]. For additional details see Appendixes F
and G of [56]. Here we enumerate the various assumptions
and approximations.
We calculate the thermal effective potential in the

one-loop approximation. The zero-temperature quantum
contribution takes the form of the well-known Coleman-
Weinberg potential. The Coleman-Weinberg potential is
dominated by the particles with largest coupling to the
Higgs. Thus we include the top and antitop quarks, the
weak gauge bosons, the Higgs boson, and model-
dependent new physics. We neglect the contributions from
leptons and lighter quarks, while photons and gluons
do not contribute at one-loop order. We work in the
Landau gauge where the ghosts are massless and do not
contribute to the effective potential.4 We regulate the
one-loop ultraviolet divergences in the dimensional
regularization scheme. We renormalize at the scale μ ¼
MZ ≃ 91.2 GeV by requiring all possible derivatives
of the one-loop correction to vanish at the vacuum.
That is, we determine the counterterms by imposing
∂ΔV0

1=∂ϕhjϕh¼v;ϕs¼vs ¼0, ∂3ΔV0
1=∂ϕh∂ϕ2

s jϕh¼v;ϕs¼vs ¼0,
and so on. (See also Appendix F of [56].) In this way,
the zero-temperature correction to the one-loop thermal
effective potential is determined. The finite-temperature
correction is evaluated from the bosonic and fermionic
thermal functions using their representation as a sum
over Bessel functions. We truncate the sums at n ¼ 5,
which is a good approximation to the full result. We
neglect the daisy resummation. For the models in which
the effective potential has a barrier already at T ¼ 0,
such as the singlet models, we expect this to be a good
approximation.
The phase transition is studied by varying the thermal

effective potential with respect to temperature. For some
range of temperatures (possibly including T ¼ 0) the
potential displays a barrier separating a local minimum
with ϕh ¼ 0 (symmetric phase) from a local minimum
with ϕh ≠ 0 (broken or Higgs phase). We construct an
interpolating trajectory between these local minima (see
Appendix G of [56]) and calculate the SO3-symmetric
bounce solution and its action S3ðTÞ along the one-
dimensional trajectory.

3The authors of [4] have reached similar conclusions.

4It is well known that the effective potential is gauge dependent
[57,58] and care must be taken to extract gauge-invariant
observables from it [59,60]. Since we are not interested in
numerically precise results, we instead follow the naive approach
outlined in the text. For a quantitative comparison with the gauge-
invariant approach, see e.g. Refs. [61,62].
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The phase transition is said to begin when the bubble
nucleation rate Γn exceeds the Hubble expansion rate H.
The condition Γn > H evaluates to

S3ðTÞ=T ≲ 142; ðA1Þ

and we define the bubble nucleation temperature Tn such
that S3ðTnÞ=Tn ¼ 142. The phase transition continues until
an Oð1Þ fraction of the Universe is in the Higgs phase, and
we identify this as the percolation temperature Tp. After
percolation completes, the energy stored in the bubble walls
is transferred back to the plasma as heat, and the temper-
ature increases to Treh > Tp. For simplicity, we will
evaluate Tn and assume Treh ≈ Tp ≈ Tn ≡ TPT. For a more
sophisticated approach, see [7].
The phase transition is characterized by two parameters:

α and β=H. In the broken phase at temperature TPT, the
vacuum energy ρvac;b is calculated as the value of the zero-
temperature effective potential at the location of the
minimum of the thermal effective potential. The vacuum
energy in the unbroken phase ρvac;u follows from a similar
calculation. Then the dimensionless parameter

α ¼ ρvac;u − ρvac;b
ρrad;b

����
T¼TPT

ðA2Þ

quantifies the energy liberated (latent heat). Here, ρrad;b ¼
ðπ2=30Þg�;PTT4

PT is the radiation energy density in the
broken phase at the temperature of the phase transition.
If reheating is negligible, as we have assumed, then
0 < α≲ 1, and larger α corresponds to a stronger phase
transition with greater supercooling. The second parameter
β=H quantifies the duration of the phase transition. During
the phase transition, the bubble nucleation rate has an
exponential time dependence Γn ∝ eβðt−t0Þ, where β−1 is the
phase transition duration. The exponent is calculated as

β

HPT
≈ T

dðS3=TÞ
dT

����
T¼TPT

: ðA3Þ

This affects the size of bubbles at the time of collision,
and therefore it factors into the gravitational wave spec-
trum. We must have 1≲ β=H; otherwise, the phase
transition would not occur.

APPENDIX B: GRAVITATIONAL
WAVE SPECTRUM

We calculate the spectrum of gravitational waves gen-
erated at the electroweak phase transition by following [2],
which summarizes the results of various original sources,
for example [63,64].
Gravitational waves at a first-order phase transition

are produced in three ways: from the collision of bubbles,
from the decay of magnetohydrodynamic turbulence, and

from the propagation of sound waves. The spectrum of
gravitational waves produced by bubble collisions is given
by the envelope approximation to be

Ωϕh2 ¼ ð1.67 × 10−5Þ
�

β

HPT

�
−2
�

κϕα

1þ α

�
2
�
g�;PT
100

�
−1=3

×

�
0.11v3w

0.42þ v2w

�
3.8ðf=fϕÞ2.8

1þ 2.8ðf=fϕÞ3.8
; ðB1Þ

where κ is the fraction of the liberated vacuum energy
transferred into motion of the bubble wall and vw is the
speed of the wall. The spectrum peaks at a frequency fϕ
given by

fϕ ¼ ð1.65 × 10−5 HzÞ
�

0.62
1.8 − 0.1vw þ v2w

��
β

HPT

�

×

�
TPT

100 GeV

��
g�;PT
100

�
1=6

: ðB2Þ

The decay of magnetohydrodynamic turbulence contrib-
utes to the gravitational wave spectrum as

Ωturbh2 ¼ ð3.35 × 10−4Þ
�

β

HPT

�
−1
�
κturbα

1þ α

�
3=2

×

�
g�
100

�
−1=3

vw
ðf=fturbÞ3

ð1þ f=fturbÞ11=3ð1þ 8πf=h�Þ
;

ðB3Þ

where κturb is the fraction of energy transferred to turbulent
motions of the plasma and

h� ¼ ð1.65 × 10−5 HzÞ
�

TPT

100 GeV

��
g�;PT
100

�
1=6

: ðB4Þ

This spectrum peaks at a frequency fturb given by

fturb ¼ ð2.7× 10−5 HzÞ 1

vw

�
β

HPT

��
TPT

100 GeV

��
g�;PT
100

�
1=6

:

ðB5Þ

Finally, sound waves contribute to the gravitational wave
spectrum as

Ωswh2 ¼ ð2.65 × 10−6Þ
�

β

HPT

�
−1
�

κvα

1þ α

�
2
�

g�
100

�
−1=3

vw

×
77=2ðf=fswÞ3

½4þ 3ðf=fswÞ2�7=2
; ðB6Þ

where κv is the fraction of energy transferred to bulk
motions of the fluid. The spectrum peaks at
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fsw ¼ ð1.9× 10−5 HzÞ 1

vw

�
β

HPT

��
TPT

100 GeV

��
g�;PT
100

�
1=6

:

ðB7Þ

Note that Ωturbh2 and Ωswh2 are larger than Ωϕh2 by a
factor of ðβ=HPTÞ. This is because gravitational wave
production from plasma effects can continue even after
bubble collisions have completed.
The efficiency factors (κ’s) are model dependent and

vary with the strength of the phase transition. If the phase
transition is weakly first order, the energy in the scalar field
is depleted by interactions with the plasma, and it reaches a
terminal velocity (possibly relativistic). Then the energy
transferred to the plasma (κturb and κv) is limited by the
vacuum energy that was initially available in the field,
which is parametrized by α. On other hand, for a strongly
first-order transition the pressure gradient drives the
bubble wall to expand and “run away” with vw → 1. In
this regime, the amount of energy transferred to the plasma
saturates, and the surplus energy causes the bubble wall to
accelerate. Consequently, for large α we have κϕ → 1

and κturb; κsw ∼ 1=α → 0.
Since only the strongest phase transitions will be

detectable by eLISA, we can simplify by assuming that
all models lead to runaway phase transitions. In this way,
we accurately assess the gravitational wave signal for the
strongest phase transitions. Following [2], the following

expressions parametrize the fraction of energy that is
carried by the bubble wall, that is carried by the bulk
motion of the plasma, and that is lost as heat:

κϕ¼1−
α∞
α
; κv¼

α∞
α
κ∞; κtherm¼1−κϕ−κv: ðB8Þ

A fraction ϵ of the energy carried by bulk motions is
transferred to magnetohydrodynamics turbulence, κturb¼
ϵκv. Simulations motivate

κ∞ ¼ α∞

0.73þ 0.083α1=2∞ þ α∞
ðB9Þ

and ϵ ≈ 5%. We also take5 vw ¼ 0.95. These expressions
are valid for sufficiently strong phase transitions, α > α∞,
where

α∞ ≃ ð4.9 × 10−3Þ
�
vðTPTÞ
TPT

�
2

: ðB10Þ

We calculate TPT, vðTPTÞ, α, g�:PT, and β=HPT from the
one-loop thermal effective potential, as described in
Appendix A.
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