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1Math Modeling Group, LMĨ, Tysons Corner, Virginia 22102, USA

2Department of Physics, The George Washington University, Washington, DC 20052, USA
3Department of Physics, University of Maryland, College Park, Maryland 20742, USA

4Department of Physics, Syracuse University, Syracuse, New York 13244, USA
(Received 4 July 2016; published 25 October 2016)

We study the finite volume effects on the electric polarizability for the neutron, neutral pion, and neutral
kaon using eight dynamically generated two-flavor nHYP-clover ensembles at two different pion masses:
306(1) and 227(2) MeV. An infinite volume extrapolation is performed for each hadron at both pion
masses. For the neutral kaon, finite volume effects are relatively mild. The dependence on the quark mass is
also mild, and a reliable chiral extrapolation can be performed along with the infinite volume extrapolation.
Our result is αphys

K0 ¼ 0.356ð74Þð46Þ × 10−4 fm3. In contrast, for neutron, the electric polarizability depends
strongly on the volume. After removing the finite volume corrections, our neutron polarizability results are
in good agreement with chiral perturbation theory. For the connected part of the neutral pion polarizability,
the negative trend persists, and it is not due to finite volume effects but likely sea quark charging effects.
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I. INTRODUCTION

Hadron electromagnetic polarizabilities encode impor-
tant information about the distribution of charge and
current densities inside the hadrons. Experimentally, these
parameters are extracted using cross sections measured in
Compton scattering reactions with theoretical input from
effective models and dispersion relations. Lattice QCD can
provide first-principles-based results for static polarizabil-
ities directly as predicted by quark-gluon dynamics. This
input is particularly important for unstable hadrons, where
experimental and theoretical uncertainties in the effective
models are large.
At the lowest order, the effects of an electromagnetic

field on hadrons can be parametrized by the effective
Hamiltonian,

Hem ¼ −~p · ~E − ~μ · ~B −
1

2
ðαE2 þ βB2Þ þ � � � ; ð1Þ

where p and μ are the static electric and magnetic dipole
moments, respectively, and α and β are the static electric
and magnetic polarizabilities. Due to time reversal sym-
metry of the strong interaction, the static dipole moment, ~p,
vanishes. In the presence of a constant electric field only,
the leading contribution to the electromagnetic interaction
comes from the electric polarizability term at OðE2Þ.
Lattice QCD calculations of electromagnetic polariz-

abilities are challenging since the electromagnetic effects
are small compared to the natural hadronic scale. A good
understanding of all systematic effects is required to ensure
that the parameters extracted from these calculations are
reliable. To that end, our first goal was to validate our

method by focusing on the neutron electric polarizability.
For neutral hadrons, lattice QCD calculations are more
reliable than for charged hadrons since neutral particles are
not accelerated by the external field. On the experimental
side, results for the neutron are reasonably precise, and
effective model predictions are in good agreement with the
experimental data. This makes the lattice QCD extraction
of the electric polarizability of the neutron a good bench-
mark study.
In a previous study, we computed the electric polar-

izability of the neutron, neutral pion, and neutral kaon for
two different pion masses (306 and 227 MeV) with a fixed
box size of L≃ 3 fm [1]. The results we found were a bit
puzzling: the pion polarizability exhibited the same neg-
ative trend observed in other studies both with dynamical
[2] and quenched ensembles [3], and the neutron polar-
izability was in disagreement with predictions from chiral
perturbation theory [4–7]. We speculated that corrections
due to electrically neutral sea quarks or finite volume
effects could explain these discrepancies. A calculation of
the polarizability, with the inclusion of the charged sea
quarks, was done on the 306 MeV ensemble [8,9]. It was
found that charging the sea quarks does not change the
polarizability significantly, which is aligned with expect-
ations from chiral perturbation theory. Thus, the discrep-
ancy between our lattice calculation of the neutron
polarizability and the calculation from chiral perturbation
theory (χPT) remained. In this paper, we study the finite
volume corrections for this quantity.
The paper is organized as follows. In Sec. II, we present

the method used to extract the polarizability from the lattice
for mesons and baryons. This includes a discussion of our
fitting procedure. In Secs. III we present our results of the
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polarizability for the neutron, pion, and kaon and discuss
the finite volume corrections. In Sec. IV, we discuss the
quark mass dependence for the infinite volume extrapolated
polarizability and compare our results with predictions
from χPT. Lastly, in Sec. V, we summarize our results and
outline our plans for future investigations.

II. METHODOLOGY

A. Background field method

In lattice QCD, polarizabilities can be computed using
the background field method [10]; the energy shift induced
by a constant electric field is directly related to the static
electric polarizability. A static electromagnetic field can be
introduced by coupling the vector potential (Aμ) to the
covariant derivative of the Euclidean QCD Lagrangian,

Dμ ¼ ∂μ − igGμ − iqAμ; ð2Þ

where Gμ is the gluon field. On the lattice, this is
implemented by a multiplicative U(1) phase factor to the
gauge links, i.e.,

Uμ → e−iqaAμUμ: ð3Þ

For a constant electric field, one choice for the vector
potential is Ax ¼ Et, where we have used an imaginary
value for the electric field leading to a U(1) multiplicative
factor that keeps the links unitary. When using an imagi-
nary value of the field, the energy shift due to the polar-
izability acquires an additional negative sign so that a
positive energy shift corresponds to a positive value of the
polarizability [11].
In this study, we use very weak electric fields to extract

the polarizability, so that the energy shift is due to polar-
izabilities rather than higher order terms in the effective
Hamiltonian in Eq. (1). It is possible of course to extract the
polarizability using stronger fields, but this would require
the evaluation of the energy shifts for different electric field
strengths to reliably separate the higher order corrections.
We use Dirichlet boundary conditions for the valence
quarks in both the time direction and the direction of the
electric field. This choice of boundary conditions allows us
to chose an arbitrarily small value of the electric field. In
our analysis, we use a value of

η≡ a2qdE ¼ 10−4; ð4Þ

where a is the lattice spacing and qd is the magnitude of the
electric charge for the down quark. One bound on η is
determined by looking at a �E-symmetrized hadron
correlator (see below) at various time slices and determin-
ing the range of η values which exhibit quadratic scaling
[1]. A more stringent constraint on η appears when we
take into account the effect of the sea-quark charge via

perturbative reweighting [8]. The latter constraint forces us
to use this low η value. In physical terms, this value of η
corresponds to an electric field that an electron would
generate at a distance of 0.5 fm. The value is well within the
quadratic scaling region. Note that the value is about 50
times lower than the lowest quantized value 2π=ðNx × NtÞ
corresponding to one unit of electric flux; thus, the induced
energy shift is thousands of times smaller. In our study, the
energy shift for the neutron is on the order of keV out of
938 MeV.
Due to the boundary conditions, the quark and hadrons’

correlators close to the boundaries will behave differently
than in the bulk. These effect are enhanced when the source
is placed close to the walls (see for example the discussion
about correlators with sources close to discontinuities in the
nonquantized background fields [2,12]). To minimize these
effects, we placed the source for our quark correlators at
maximal distance from the spatial walls and six lattice units
from the temporal wall. In any case, the hadron propagator
will be affected by the walls since the particle in the lowest
momentum state will have a nonzero probability to be
within the distortion region due to the hard walls. Since this
region is expected to have finite range, the corrections will
be proportional with the probability to be in this region,
which is will vanish as we increase the distance L between
the walls as 1=L (recall that we only have hard walls in one
spatial direction.) These corrections will appear as a finite
volume correction.
To determine the energy shift δE on the lattice, we

calculate the zero-field (G0), plus-field (GþE), and minus-
field (G−E) two-point correlation functions for the inter-
polating operators of interest. The combination of the plus
and minus field correlators allows us to remove any OðEÞ
effects, which are statistical artifacts, when the sea quarks
are not charged. For neutral particles in a constant electric
field, the correlation functions still retain their single
exponential decay in the limit t → ∞,

hGEðtÞi ≈
t→∞

AðEÞe−EðEÞt; ð5Þ

where EðEÞ has the perturbative expansion in the electric
field given by

EðEÞ ¼ mþ 1

2
αE2 þ � � � : ð6Þ

By studying the variations of the correlation functions with
and without an electric field, one can isolate the energy shift
to obtain α.
For spin-1=2 hadrons, the energy shift in a constant

electric field receives a contribution due to the magnetic
moment of the hadron at order OðE2Þ. Thus, the static
polarizability α defined by Eq. (6), is not identical to the
Compton polarizabilityα that enters the effective Lagrangian
for spin-1=2 systems [13]. The relation between these
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polarizabilities can be computed [1,2]. For these systems,
the energy expansion reads,

EðEÞ ¼ mþ 1

2
E2

�
α −

μ2

m

�
þ � � � ; ð7Þ

where α is the Compton polarizability that we wish to
compute. To account for the magnetic moment, we use
the same procedure as we used in a previous study [1].
Since we use Dirichlet boundary conditions, the lowest

energy state corresponds to a hadron moving with a
momentum roughly equal to π=L, which vanishes in the
limit L → ∞. When we extract the energy shift from the
hadron, we need to account for the induced momentum
because the energy shift (δE) is not equal to the mass shift
(δm). The two are related via the dispersion relation E ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ p2

p
by

δm ¼ δE
E
m
; ð8Þ

where m is the zero-momentum mass of the particle which
we calculate using periodic boundary conditions. The mass
shift δm is then used in Eq. (6) or Eq. (7), to extract the
polarizability.

B. Fitting method

Since the correlation functions G0, GþE , and G−E are
dominated by a single exponential at large times, we can
use standard spectroscopy techniques to measure the shift
in a hadron’s energy. The only caveat is that the shift is very
small at the field strength used in this study, smaller than
the statistical errors if they were fitted separately. To
overcome the difficulty, we take advantage of the fact that
the three correlators are highly correlated since they are
computed on the same set of gauge configurations. To do
this, we construct the combined residue vector from the
individual residue vectors in each sector,

vi ≡ fðtiÞ − hG0ðtiÞi;
vNþi ≡ fðtiÞ − hGþEðtiÞi;
v2Nþi ≡ fðtiÞ − hG−EðtiÞi; ð9Þ

where i ¼ 1;…; N labels the time slices in the fit window,
fðtÞ ¼ Ae−Et labels the fitting function in the absence of
the field, and fðtÞ ¼ ðAþ δAÞe−ðEþδEÞt labels the fitting
function in the presence of the field. We minimize the χ2

function,

χ2 ¼ vTC−1v; ð10Þ

for four parameters (A, E, δA, δE) in the usual fashion,
where C is the 3N × 3N jackknifed covariance matrix
which takes into account the correlations both in time

and in the electric field. Specifically, the matrix has a 3 × 3
block structure,

C ¼

0
B@

C00 C0þ C0−

Cþ0 Cþþ Cþ−

C−0 C−þ C−−

1
CA;

where 0, þ, and − represent G0, GþE , and G−E , respec-
tively. Each block is an N × N matrix. The correlations
are encoded in the off-diagonal blocks. Note that the
symmetrization in the electric field is done implicitly in
this procedure, since f is the same for GþE and G−E . The
statistical errors on the parameters are derived from the
Hessian of the χ2. This method is used to extract all
parameters presented in this work.
To illustrate the importance of accounting for these

correlations, we consider the energy shift δE for the neutron
for one of the ensembles used in this work. Using the
full covariance matrix, we find aδE ¼ ð4.3� 1.2Þ × 10−7.
If we neglect the correlations, which is equivalent to using
only the diagonal blocks of the covariance matrix, we find
aδE ¼ ð8.15� 150000Þ × 10−7, which has huge errors.

C. Calculation details

We calculate the electric polarizability for the neutron,
neutral pion, and neutral kaon on eight dynamically
generated ensembles using two-flavor nHYP-clover fer-
mions [14]. For the neutral pion polarizability, we are
computing only the connected contribution to the pion
correlation function, as we had also done in Ref. [1]. We
used two quark masses, corresponding to pion masses of
227(2) MeVand 306(1) MeV. For each mass, we performed
simulations on four different volumes, to study finite
volume effects.
To save time, we varied the dimension of the lattice only

along the electric field (x direction). We expect that the
finite volume corrections vanish exponentially in the trans-
verse directions and that our lattice is large enough for these
corrections to be negligible at the current precision level.
On the other hand, the corrections associated with the
direction parallel with the electric field are expected to
vanish only as a power law in 1=L. We will show that our
results agree with these expectations.
Details of the ensembles are given in Table I. The

determination of both the lattice spacing and κs, the
hopping parameter for the strange quark that is required
to compute the kaon polarizability, is discussed in detail
in our previous study [1]. We use the same values here:
κs ¼ 0.1266 for ensembles EN1 to EN4; κs ¼ 0.1255 for
ensembles EN5 to EN8.
To reduce the statistical uncertainties, we computed

quark propagators at multiple point sources for each
configuration. Since the presence of the Dirichlet walls
breaks translational symmetry in the x and t directions, the
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point sources have to be picked carefully; they were
displaced with respect to each other using translations in
the y and z directions, which have periodic boundary
conditions.
To determine the appropriate time window to fit the

correlation functions, we varied the start time, tmin, and kept

the maximum fit time fixed. For each case, we performed a
fit and extracted the hadron’s energy shift, δE, and the
associated χ2=dof. Following the procedure discussed in
Ref. [1], we chose the largest fit window that produces a
good quality fit. The fit windows used for each of the
hadrons studied in this paper are listed in Table II. The
computed values for the polarizability of the three hadrons
are presented in Table VI. In the same table, we include the
energy shifts due to the field, the energies measured in the
absence of the field with Dirichlet boundary conditions,
and the masses as extracted using periodic boundary
conditions.
Since we use dozens of point sources for each ensemble,

and for each point source we need to compute the quark
propagator for five different couplings to the background
electric field, we have to compute hundreds of inversions for
each configuration. To compute these efficiently, we use our
implementation of a multi-graphics processing unit Dslash
operator [15] and an efficient multimass inverter [16].

III. VOLUME DEPENDENCE ANALYSIS

Finite volume corrections have been estimated using
χPT. For periodic boundary conditions, these effects were
calculated for electric polarizabilities [17] and magnetic
polarizabilities [18]. Atmπ around 250MeVand L ¼ 3 fm,
it was estimated that the correction to the neutron

TABLE I. Details of the lattice ensembles used in this work. Nc
and Ns label the number of configurations and number of sources
on each configuration, respectively. The top four ensembles
correspond to mπ ¼ 306ð1Þ MeV, and the bottom four corre-
spond to mπ ¼ 227ð2Þ MeV.

Label Lattice a (fm) κ Nc Ns

EN1 16 × 162 × 32 0.1245 0.12820 230 11
EN2 24 × 242 × 48 0.1245 0.12820 300 25
EN3 30 × 242 × 48 0.1245 0.12820 300 29
EN4 48 × 242 × 48 0.1245 0.12820 270 37
EN5 16 × 162 × 32 0.1215 0.12838 230 16
EN6 24 × 242 × 64 0.1215 0.12838 450 23
EN7 28 × 242 × 64 0.1215 0.12838 670 33
EN8 32 × 242 × 64 0.1215 0.12838 500 37

TABLE II. Fit ranges used in extracting the energy shifts for the
pion, kaon, and neutron.

Ensemble Pion Kaon Neutron

EN1 [10, 19] [10, 19] [8, 21]
EN2 [14, 30] [14, 30] [8, 21]
EN3 [13, 30] [13, 30] [9, 21]
EN4 [14, 30] [14, 30] [8, 21]
EN5 [10, 19] [10, 19] [9, 21]
EN6 [15, 36] [15, 37] [9, 21]
EN7 [15, 37] [15, 37] [10, 21]
EN8 [15, 37] [15, 36] [9, 21]

TABLE III. Infinite volume extrapolation results for the neutron
with three different fit models. The polarizabilities ᾱn are reported
in units of 10−4 fm3.

306 MeV 227 MeV

ᾱn χ2 AIC ᾱn χ2 AIC

Constant 2.18(11) 17.4 19.40 2.77(22) 11.76 13.76
Linear 3.67(38) 0.298 4.30 5.62(91) 1.28 5.28
Quadratic 4.1(1.1) 0.141 6.14 8.9(6.1) 0.99 6.99

Linear fit

Quadratic fit

m 306 MeV

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

1

2

3

4

5

6

a L

n
10

4 fm
3

Linear fit

Quadratic fit

m 227 MeV

0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

2

4

6

8

10

12

14

a L

n
10

4 fm
3

FIG. 1. Infinite volume extrapolation for neutron polarizability. The left panel shows our results for the mπ ¼ 306 MeV ensembles,
and the right panel shows the results for the mπ ¼ 227 MeV ensembles. On each plot, we overlay the infinite volume extrapolations
using a linear (solid line) or quadratic (dashed line) fit.
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polarizability is about 7% [17]. For Dirichlet boundary
conditions used in this work, no direct χPT predictions are
available. The only estimate comes from sigma model
studies of the chiral condensate in the presence of hard
walls [19]. This choice of boundary conditions is expected

to introduce larger finite volume effects that are expected to
vanish algebraically with 1=Lx in the infinite volume limit.
The expectation is based on the idea that the corrections are
mainly driven by the hadron momentum π=Lx. To thor-
oughly analyze the volume dependence, we performed our
calculations on four different lattice sizes for both pion
masses.
Since we do not know the analytical form for the finite

volume effects, we fit the polarizability as a function of 1=L
to three different models: constant, linear, and quadratic.
We cannot go beyond the quadratic since we only have four
different lattice sizes. To determine which model fits the
data best, we compute the χ2 to gauge the overall goodness
of the fit. In conjunction with the goodness of fit criteria,
we use Akaike Information Criterion (AIC) [20], which
measures the relative quality between different statistical
models and helps in determining whether or not a model is
overfitting the data. The AIC value is given by

AIC ¼ 2kþ χ2; ð11Þ

where k is the number of parameters in the model. For a
given fit model, we will sum the values of the AIC for both
pion masses. The model with the smallest AIC value will be
our fit model used subsequently.

EN4 x

EN4 y

EN2

0.00 0.01 0.02 0.03 0.04 0.05
0

1

2

3

4

a L

n
10

4 fm
3

FIG. 2. Comparison of the EN2 spatial lattice (24 × 242) with
the electric field in the x direction to the results of the EN4 spatial
lattice (48 × 242) with the electric field in both the x and y
directions. The results confirm that the finite size effects
associated with the directions transverse to the electric field
are negligible.
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FIG. 3. Infinite volume extrapolation for pion (top) and kaon (bottom) polarizability for mπ ¼ 306 MeV (left) and mπ ¼ 227 MeV
(right). The two lines are infinite volume extrapolations using a constant (solid line) or a linear (dashed line) fit.
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A. Neutron

The extrapolation results for the neutron polarizability
are tabulated in Table III. Figure 1 plots our polarizability
results along with the linear and quadratic fits which had
the smallest values for the AIC and good χ2 values. Both
the linear and quadratic models produced consistent results.
However, the linear model produces a smaller value for the
AIC which indicates that the quadratic model may be
overfitting the data. We will use the linear infinite volume
results when discussing the chiral behavior of the neutron.
The volume dependence analysis assumes that the finite

size effects, due to the electric field, are determined by the
size of the lattice parallel to the applied field (which is in
the x direction for this work). To verify this, we take our

EN4 lattice which has the spatial dimension 48 × 242

and place the electric field along the y direction which
has only 24 lattice units. We choose this ensemble
because the difference in the x and y directions are the
largest which gives us the best comparison. We expect
our results to be comparable to the results of the EN2
ensemble which has the spatial dimension 24 × 242. We
find αn ¼ 2.25ð25Þ × 10−4 fm3, which is statistically
equivalent to the polarizability for the EN2 and signifi-
cantly different from the case where we place the field
along the Nx ¼ 48 direction. Figure 2 displays the com-
parison. We conclude that the finite volume effects asso-
ciated with the directions perpendicular to the field are
negligible.

B. Pion and kaon

The volume dependence analysis for the pion and kaon
proceeds in the same way as the neutron. Figure 3 shows
our extracted polarizabilities as a function of 1=L for the
pion (top plots) and kaon (bottom plots). We also plot the
results of the constant and linear extrapolations which
were the two models with the smallest values for the AIC.
The results of the extrapolation are tabulated in Tables IV
and V. For the pion, we find that the constant fit model
gives the smallest combined AIC values. For the kaon at
mπ ¼ 306 MeV, the constant model gives a smaller value
of the AIC than the linear model. However, the combined
result for both pion masses—the AIC coefficient for the
combined fit is the sum of coefficients for the individual
fits—are smaller for the linear model. We therefore use the
linear model for the kaon.

IV. DISCUSSION

In this section, we discuss our infinite volume results for
the polarizability of the neutral pion and kaon and neutron
in the context of other calculations on the lattice, χPT, and
experiment.

TABLE IV. Infinite volume extrapolation results for the pion
with three different fit models. The polarizabilities απ are reported
in units of 10−4 fm3.

306 MeV 227 MeV

απ χ2 AIC απ χ2 AIC

Constant −0.16ð6Þ 0.27 2.27 −0.486ð94Þ 1.67 3.67
Linear −0.20ð20Þ 0.23 4.23 −0.08ð36Þ 0.29 4.29
Quadratic −0.44ð61Þ 0.06 6.06 −1.1ð2.5Þ 0.12 6.12

TABLE V. Infinite volume extrapolation results for the kaon
with three different fit models. The polarizabilities αK0 are
reported in units of 10−4 fm3.

306 MeV 227 MeV

αK0 χ2 AIC αK0 χ2 AIC

Constant 0.132(15) 3.45 5.45 0.197(14) 4.65 6.65
Linear 0.186(47) 1.98 5.98 0.289(55) 1.71 5.71
Quadratic 0.12(15) 1.80 7.8 0.29(42) 1.71 7.71

TABLE VI. Electric polarizabilities, energy shifts due to the field, energies computed with no external field, and masses extracted from
boxes with periodic boundary conditions for the pion, kaon, and neutron for the eight ensembles used in this study.

Hadron EN1 EN2 EN3 EN4 EN5 EN6 EN7 EN8

α½10−4 fm3� π −0.160ð10Þ −0.15ð11Þ −0.13ð15Þ −0.24ð0.17Þ −0.66ð17Þ −0.43ð18Þ −0.35ð19Þ −0.46ð23Þ
K 0.110(22) 0.176(34) 0.120(33) 0.164(40) 0.164(24) 0.222(29) 0.191(28) 0.256(42)
n 1.66(19) 2.23(18) 2.69(37) 3.05(31) 1.86(38) 3.06(37) 3.00(59) 4.26(65)

aδE ½×10−8� π −3.15ð2.00Þ −3.69ð2.77Þ −3.40ð4.13Þ −7.13ð5.09Þ −11.92ð3.07Þ −10.01ð4.24Þ −9.0ð4.8Þ −12.50ð6.27Þ
K 2.83(57) 5.14(99) 3.47(1.00) 5.22(1.28) 4.84(72) 7.14(94) 6.22(91) 8.82(1.47)
n 33.1(5.0) 53.4(5.4) 72.6(12) 78.9(9.1) 41.65(11.2) 86.2(12.5) 87.8(20.0) 125.3(20.7)

aE π 0.322(35) 0.251(9) 0.2362(9) 0.2084(9) 0.276(6) 0.207(1) 0.184(1) 0.176(1)
K 0.401(2) 0.3515(8) 0.3566(8) 0.3241(7) 0.433(1) 0.3952(6) 0.392(2) 0.3711(10)
n 0.768(16) 0.696(9) 0.658(10) 0.689(2) 0.710(6) 0.634(4) 0.610(4) 0.619(7)

am π 0.1986(22) 0.1932(7) 0.1934(8) 0.1938(8) 0.145(3) 0.140(1) 0.138(1) 0.1391(8)
K 0.3235(15) 0.3220(7) 0.3228(8) 0.3229(7) 0.372(1) 0.3698(6) 0.371(2) 0.372(1)
n 0.642(11) 0.644(6) 0.657(8) 0.647(4) 0.622(20) 0.618(13) 0.620(23) 0.60(3)
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For the neutral pion, the results are summarized in the
top panel of Fig. 4. In addition to our dynamical results, we
also show the infinite volume results from our quenched
study [3]. Since the finite volume corrections are insig-
nificant, the conclusions from our recent study [1] are
unchanged; the polarizability depends very little on the
mass of the sea quarks, but it changes as we vary the
mass of the valence quarks. The puzzling feature persists:
the neutral pion polarizability becomes negative for
mπ ≈ 350 MeV, and its magnitude increases as we
approach the physical point. The negative trend was also
observed by Detmold et al. [2] as indicated by their result
(the blue triangle) at mπ ¼ 400 MeV on the same plot. It
was pointed out in Ref. [2] that the negative value is
inconsistent with expectations from χPT when only the
connected part of the correlator is included, as is the case in
both lattice calculations. It was speculated in Ref. [2] that
the negative value could arise due to finite volume effects.
Our infinite volume results demonstrate that it does not
seem to be the case. Other effects might be at play. One
possible contribution to this discrepancy is the fact that the
sea quarks are electrically neutral in these studies. We have
investigated the effects of charging the sea quarks [8], and
our initial results hint at this scenario; we found that the

neutral pion polarizability changes sign as we charge the
sea quarks, albeit still with large statistical errors. Efforts
are under way to reduce the errors. Note that there remains
a bit of disagreement between the trend suggested by our
results and the data from Ref. [2]. It is not clear whether the
disagreement is due to finite volume effects, discretization
errors (we use different actions), or statistical fluctuations.
Recently, it was suggested that discretization errors present
for Wilson-type fermions used in this study and the other
mentioned above might be responsible for these puzzles
[21]. The background field changes the value of the
additive mass renormalization, and this might lead to
energy shifts in hadron mass unrelated to polarizabilities.
A continuum limit study is required to determine whether
this effect is large enough to explain these puzzles.
Ultimately, the disconnected contribution must also be
included to complete the picture for the neutral pion
polarizability.
For a neutral kaon, our results are presented in the

bottom panel of Fig. 4. In contrast to the pion case, the
neutral kaon has a stronger dependence on the sea quarks.
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FIG. 5. Top: Neutron polarizability as a function of quark mass.
The black empty circles are our finite volume results presented in
Ref. [1], and the full circles are our infinite volume results. The
dashed lines are two different χPT calculations: HBχPT-NNLO
[7] and BχPT-NLO [4]. The uncertainties in the curves are
indicated by the shaded regions. Bottom: Comparison with
the experimental value and two other lattice calculations [23]
and [24].
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In our previous study, we performed a chiral extrapolation,
and we found αK0 ¼ 0.269ð43Þ in units of 10−4 fm3 [1].
We perform the same chiral extrapolation using a linear
ansatz in mπ but now use our infinite volume values. We
include the value determined by Detmold et al. [2] since the
finite volume corrections decrease with increasing mπ

and we expect it to be negligible at 400 MeV. We find
αK0 ¼ 0.356ð74Þ × 10−4 fm3, only slightly higher than the
finite volume value, suggesting that the finite volume
corrections are small for the kaon. The relative smallness
of the neutral kaon polarizability is consistent with χPT
which predicts a vanishing value at the one-loop level, even
with electrically neutral sea quarks [22].
We turn the discussion now to the neutron. In the top panel

of Fig. 5, we display the neutron electric polarizability as a
function ofmπ . We compare our results to two different χPT
curves: a N2LO calculation using a nonrelativistic form for
some of the propagators (HBχPT-NNLO) [7] and a NLO
result that uses relativistic propagators (BχPT-NLO) [4].We
see that the value for mπ ¼ 227 MeV computed on a box
with L ≈ 3 fm disagrees with both curves. After correcting
for the finite volume effects, our results agree very well
with the HBχPT-NNLO curve. In the right panel of Fig. 5,
we show our results together with the experimental value
and compare them with two other lattice results [23,24]
obtained on finite lattices. We see that our results have
significantly smaller statistical errors even though they are
computed using smaller pion masses and they are extrapo-
lated to infinite volume.
This analysis demonstrates that finite volume effects are

very important for neutron polarizability. We expect that
any other systematic effects are small and that the calcu-
lation, for the pion masses used in this study, is nearly
complete. The discretization effects are expected to be of
the order of 1% as experience with similar actions indicates
[25]. The only remaining significant systematic error comes
from neglecting the charge of the sea quarks. For the EN2

ensemble, the correction was already computed [26]. The
effect was found to be small, similar to the size of statistical
errors. This is also supported by a partially quenched χPT
calculation [17]; using the formulas derived in that paper,
we find that for 140 MeV ≤ mπ ≤ 300 MeV neutron
electric polarizability increases by a value of 1.5 to 2 in
units of 10−4 fm3, when the sea quark charges are turned
on. This prediction is shown in Fig. 6. To produce these
curves, we used the parameters suggested in the paper, but
we had to set jgNΔj ¼ 0.25 (a value outside the expected
range) to make the “charged” curve go through the
experimental point. Our results, which were derived using
neutral sea quarks, agree very well with the “neutral” curve.
Before we conclude, we would like to discuss the

systematic error associated with the choice for the fitting
window. To gauge this error, we extract the energy shift
using two other fit windows—one shifted by one unit in the
positive time direction and one shifted in the negative
direction—and repeated the analysis. For the infinite
volume extrapolations, we use a linear fit for neutron
and kaon and a constant fit for the pion. The systematic
error quoted here is the standard deviation of the final
results extracted using our three fit windows. For the
neutron, we have αn ¼ 3.67ð38Þð27Þ and αn ¼
5.62ð91Þð89Þ for mπ ¼ 306 MeV and 227 MeV, respec-
tively. Similarly, for the neutral pion, we have απ ¼
−0.16ð6Þð6Þ and απ ¼ −0.486ð94Þð46Þ, and for neutral
kaon, we have αK0 ¼ 0.186ð47Þð29Þ and αK0 ¼
0.289ð55Þð52Þ. The polarizability for the neutral kaon at
the physical point is αK0 ¼ 0.356ð74Þð46Þ. All the results
here are presented in natural units for hadron polarizabil-
ities of 10−4 fm3, with the first error being stochastic and
the second being the systematic due to the fit window. Note
that this systematic is smaller or comparable with the
stochastic error.

V. CONCLUSION

We have analyzed the volume dependence of the electric
polarizability α for the neutral pion, neutral kaon, and
neutron on four different lattice volumes at two light quark
masses corresponding to pion masses of 306 and 227 MeV,
in the mass region where chiral perturbation theory
predictions are most likely reliable. The novel aspect of
this calculation is that it is the first systematic study of finite
volume effects on polarizability in the presence of Dirichlet
boundaries. These boundary conditions allow for very
weak electric fields in order to avoid a possible vacuum
instability. We also estimate the effects of charging the sea
quarks.
For the neutral pion, our results confirm that the negative

trend in the polarizability is not due to finite volume effects.
Rather, preliminary results indicate that the behavior is
most likely due to the neglecting of the charge in the sea
quarks. To compare with experiment, the disconnected

FIG. 6. Expected sea quark charging effects in the neutron
polarizability. Our infinite volume results are plotted along with
the χPT predictions from Ref. [17] with neutral and charged sea
quarks.
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contribution to the neutral pion polarizability will have to
be included.
For the neutral kaon, we performed a similar chiral

extrapolation to the physical point as was done in Ref. [1]
but used the infinite volume extrapolations for αK0. We find
αK0ðmphys

π Þ ¼ 0.356ð74Þ × 10−4 fm3 which is only slightly
higher than the value determined on box sizes L≃ 3 fm.
This indicates that the volume effects for the kaon polar-
izability are relatively mild.
For the neutron, we find that the finite volume corrections

are important. After removing them, our results are now in
excellent agreement with predictions from chiral perturba-
tion theory.We have not yet performed a chiral extrapolation
for the neutron since we still need to include the corrections
due to the interactions between the sea quarks and the
background field. We are currently investigating the best
method to do the extrapolation using input from χPT.
We are in the process of including the effect of charged

sea quarks in the analysis for all our ensembles. Along with

the infinite volume extrapolation done here, this is part of
our program geared toward determining the polarizabilities
at the physical point.
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