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We report on a two-flavor lattice QCD study of the axial, charge, and matter distributions of the Bmeson
and its first radial excitation. As our framework is the static limit of heavy quark effective theory (HQET),
taking their Fourier transform gives access to several form factors at the kinematical point q2 ¼ 0 while our
previous computations in that framework were performed at q2max. Moreover, they provide some useful
information on the nature of an excited state, i.e., a radial excitation of a quark-antiquark bound state or a
multihadron state.
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I. INTRODUCTION

In experiments a significant amount of events are
produced with excited hadronic states that decay strongly
into ground states. They complicate the data analysis, cuts
are introduced on invariant masses, and the tails of
distributions are sometimes modeled using empirical rec-
ipes: one may wonder whether the theory can provide any
help. Form factors fB→πþ and fD→πþ of the semileptonic
decays B → πlν and D → πlν have received a lot of
attention as these processes are used to extract the
Cabibbo-Kobayashi-Maskawa matrix elements Vub and
Vcd. The most popular parametrizations in the literature
[1–5] are based on the scaling laws of heavy quark effective
theory (HQET) and a unitarity argument. More recently, a
three-pole parametrization of fD→πþ was found to match
well with data [6]: fD→πþ ðq2Þ ¼ γ0

m2
0
−q2 þ γ1

m2
1
−q2 þ γeff

m2
eff−q

2,

where γ0 and γ1 are proportional to the couplings gD�Dπ

and gD�0Dπ , respectively, in addition to a “superconver-
gence” constraint

P
nγn ¼ 0. Assuming the smoothness of

results in 1=mb, 1=mc, it is tempting to test the hypothesis
of a negative gD�0Dπ versus its counterpart in the B sector,
gB�0Bπ . In a previous paper [7] a first step was followed in
that direction, in the static limit of HQET. But our
computation was done at the kinematical point q2max: the
final target is at q2 ¼ 0. To do this, an elegant technique is
to measure the density distributions fBB

�0
Γ ðrÞ [8], where

r is the distance between the light-light current and
the static quark, as sketched in Fig. 1. Their Fourier
transform gives the corresponding form factors at every

q2, which is the subject of our present work. The plan of the
paper is the following: in Sec. II we describe our analysis
method, our results are presented in Sec. III, and in Sec. IV
we explain how an unexpected coupling of a q̄b interpolat-
ing field to a multihadron state is presumably observed in
distributions.

II. EXTRACTION OF THE PION
COUPLINGS AT q2 = 0

The gH�nHmπ coupling is defined by the following matrix
element:

hHmðpÞπðqÞjH�nðp0; λÞi ¼ gH�nHmπq · ϵðp0; λÞ; ð1Þ

where ϵðp0; λÞ is the polarization vector of the vector
meson, q ¼ p0 − p is the transferred momentum, and
Hm is the mth radially excited state of a pseudoscalar
heavy-light meson, while H�n is the nth radially excited
state of the vector heavy-light meson. The transition
amplitude of interest is parametrized by

FIG. 1. Three-point correlation function computed to extract
the density distribution fΓð~rÞ.
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hHmðpÞjAμjH�nðp0; λÞi

¼ 2mH�nA
mn
0 ðq2Þ

ϵðp0; λÞ · q
q2

qμ

þ ðmHm
þmH�nÞAmn

1 ðq2Þ
�
ϵμðp0; λÞ − ϵðp0; λÞ · q

q2
qμ
�

þ Amn
2 ðq2Þ

ϵðp0; λÞ · q
mHm

þmH�n

�
ðpþ p0Þμ þm2

Hm
−m2

H�n

q2
qμ
�
;

ð2Þ

with AμðxÞ ¼ d̄ðxÞγμγ5uðxÞ. Taking the divergence of the
current qμAμ, we are left with

hHmðpÞjqμAμjH�nðp0; λÞi ¼ 2mH�nA
mn
0 ðq2Þq · ϵðp0; λÞ: ð3Þ

Then, using the partially conserved axial current relation
and the Lehmann-Symanzik-Zimmermann reduction for-
mula, the gH�nHmπ coupling is obtained from the form factor
Amn
0 at q2 ¼ 0,

gH�nHmπ ¼
2mH�nA

mn
0 ð0Þ

fπ
; ð4Þ

where fπ ¼ 130.4 MeV is the pion decay constant. Finally,
in the vector-meson rest frame, the form factor is given by
the matrix element1

Amn
0 ðq2Þ ¼ −

X
λ

hHmðpÞjqμAμjH�nðp0; λÞi
2mH�nqi

ϵ�i ðp0; λÞ

ðno sum over iÞ: ð5Þ

However, in lattice simulations with static heavy quarks,
only the kinematical point q2 ¼ q2max ¼ Δ2, where
Δ ¼ mH�n −mHm

, is directly accessible. To extract the form
factor at q2 ¼ 0 we follow the ideas presented in Ref. [8]

and compute the axial density distributions fðmnÞ
γiγ5 ð~rÞ where

the axial current, acting like a probe, is inserted at a distance
r from the static heavy quark. Within our conventions,
distributions are written using covariant indices and their
exact definition is given in the following lines. Finally, in
the static limit of HQET, the form factor of interest at
q2 ¼ 0 is obtained by taking the Fourier transform of the
axial density distributions with a spatial momentum
jqij ¼ Δ in the direction i,

Amn
0 ð0Þ ¼ −

q0
qi

Z
d3rfðmnÞ

γ0γ5 ð~rÞei~q·~r þ
Z

d3rfðmnÞ
γiγ5 ð~rÞei~q·~r

ðno sum over iÞ: ð6Þ

On the lattice of spatial volume V, we are interested in
theN × N matrices of two-point and three-point correlation
functions

Cð2ÞP;ijðtÞ ¼
1

V

�X
~x;~y

PðiÞð~x; tÞPðjÞ†ð~y; 0Þ
�
; ð7Þ

Cð2ÞV;ijðtÞ ¼
1

3V

X3
k¼1

�X
~x;~y

VðiÞk ð~x; tÞVðjÞ†k ð~y; 0Þ
�
; ð8Þ

Cð3Þγμγ5;ij
ðt; t1; ~rÞ

¼
X
~y

hPðiÞð~y; tÞAμð~xþ ~r; t1ÞVðjÞ†k ð~x; 0Þi~x fixed; ð9Þ

where the interpolating operators for the pseudoscalar and
vector static-light mesons are defined by

PðiÞðxÞ ¼ h̄ðxÞγ5dðiÞðxÞ; VðiÞk ðxÞ ¼ h̄ðxÞΓkuðiÞðxÞ;
Γk ¼ γk;∇k:

Here, ∇i is the symmetrized covariant derivative and uðiÞ

and dðiÞ are smeared light quark fields. Since it is important
to keep the trace of the distance r between the current
insertion and the heavy quark line, smearing is only applied
in contractions with the heavy quark propagator. Finally, as
a consequence of the heavy quark symmetry, the two-point
correlation functions (7) and (8) are equal for Γk ¼ γk.
Using the spectral decomposition and the normalization
of states hHnjHmi ¼ δnm, the asymptotic behavior of the
two-point correlation functions is

Cð2ÞP;ijðtÞ !t≫a
ZðiÞH1

ZðjÞH1
e−EH1

t;

Cð2ÞV;ijðtÞ !t≫a
ZðiÞH�

1
ZðjÞH�

1
e
−EH�

1
t
:

The overlap factors ZðiÞ
Hð�Þ

1

are defined by ZðiÞP ¼
h0jPðiÞjPðpÞi and ZðiÞV ϵkðp; λÞ ¼ h0jVðiÞk jVðp; λÞi, where
P is a pseudoscalar meson and V is a vector meson with
polarization λ. Similarly, for the three-point correlation
function (9), one has

X
~r

Cð3Þγμγ5;ij
ðt; t1; ~rÞ

⟶
t≫t1≫a

X
λ

ZðiÞH ZðjÞH�hHjAμjH�ðλÞiϵkðλÞe−EH1
ðt−t1Þe−EH�

1
t1 ;

and

Cð3Þγμγ5;ij
ðt; t1; ~rÞ ¼

X
n;m

ZðiÞHm
ZðjÞH�nf

ðmnÞ
γμγ5 ð~rÞe−EHm ðt−t1Þe−EH�n t1 ;

1We use the relation
P

λϵμðk; λÞϵ�νðk; λÞ ¼ −gμν þ kμkν
m2 .
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where fðmnÞ
γiγ5 ð~rÞ are the axial density distributions.

Therefore, the radial distributions of the axial densities
for the ground-state pseudoscalar and vector mesons can be
extracted from the asymptotic behavior of the ratio,

Rγμγ5ðt; t1; ~rÞ ¼
Cð3Þγμγ5;ij

ðt; t1; ~rÞ
ðCð2ÞP;iiðtÞCð2ÞV;jjðtÞÞ1=2

⟶
t≫t1≫a

a3fð11Þγμγ5ð~rÞ:

ð10Þ

Solving the generalized eigenvalue problems (GEVP)
[9–11]

Cð2ÞP ðtÞvnðt; t0Þ ¼ λnðt; t0ÞCð2ÞP ðt0Þvnðt; t0Þ; ð11Þ
Cð2ÞV ðtÞwnðt; t0Þ ¼ ~λnðt; t0ÞCð2ÞV ðt0Þwnðt; t0Þ; ð12Þ

where vnðt; t0Þ, wnðt; t0Þ, and λnðt; t0Þ, ~λnðt; t0Þ are respec-
tively, the generalized eigenvectors2 and eigenvalues of the
pseudoscalar and vector correlators, and following the
method used in Ref. [7], we define the GEVP ratio

RGEVP
mn ðt; t1; ~rÞ ¼

ðvmðt2Þ; Cð3Þγμγ5ðt1 þ t2; t1; ~rÞwnðt1ÞÞλmðt2 þ aÞ−t2=ð2aÞ ~λnðt1 þ aÞ−t1=ð2aÞ
ðvmðt2Þ; Cð2ÞP ðt2Þvmðt2ÞÞ1=2ðwnðt1Þ; Cð2ÞV ðt1Þwnðt1ÞÞ1=2

; ð13Þ

where t ¼ t1 þ t2 and the shorthand notations vnðtÞ ¼ vnðtþ a; tÞ and λnðtÞ ¼ λnðtþ a; tÞ are used. For n ¼ m ¼ 1, this
ratio converges to a3fð11Þγμγ5 at large time but with a reduced contribution from excited states compared to the previous ratio
method. More generally, this method also allows us to extract the radial distributions involving excited states:

RGEVP
mn ðt; t1; ~rÞ ¼ a3fðmnÞ

γμγ5 ð~rÞ þOðe−ΔNþ1;mt2 ; e−ΔNþ1;nt1Þ;

where Δnm ¼ En − Em is the energy difference between the nth and mth excited states. All these estimators can be further
improved by using the sGEVP method [12] where the three-point correlation function is summed over the insertion time t1,

RsGEVP
mn ðt; t0; ~rÞ ¼ −∂t

� jðvmðt; t0Þ; ½Kðt; t0; ~rÞ=~λnðt; t0Þ − Kðt0; t0; ~rÞ�wnðt; t0ÞÞj
ðvmðt; t0Þ; Cð2ÞP ðt0Þvmðt; t0ÞÞ1=2ðwnðt; t0Þ; Cð2ÞV ðt0Þwnðt; t0ÞÞ1=2

eΣmnðt0;t0Þt0=2
�
; ð14Þ

with ∂tfðtÞ ¼ ðfðtþ aÞ − fðtÞÞ=a. Here, Σmnðt; t0Þ ¼
Enðt; t0Þ − Emðt; t0Þ is the effective energy difference
computed at each time t between the mth and nth radially
excited states and

Kijðt; t0; ~rÞ ¼ a
X
t1

e−ðt−t1ÞΣmnðt;t0ÞCð3Þij ðt; t1; ~rÞ

is the summed three-point correlation function. We recall
that the advantage of this estimator is the faster suppression
of higher excited-state contributions when t0 > t=2 [7],

RsGEVP
mn ðt; t0; ~rÞ ¼ a3fðmnÞ

γμγ5 ð~rÞ þOðte−ΔNþ1;ntÞ n > m;

¼ a3fðmnÞ
γμγ5 ð~rÞ þOðe−ΔNþ1;mtÞ n < m;

where t ¼ t1 þ t2. Moreover, the estimator RsGEVP
mn ðt; t0; ~rÞ

only requires the knowledge of both three- and two-point
correlation functions up to time t, whereas the estimator
RGEVP

mn ðt; t0; ~rÞ involves the three-point correlation function

at twice the time of the two-point correlation functions and
is therefore statistically noisier at large t.

III. LATTICE COMPUTATION

This work is based on a subset of the Coordinated Lattice
Simulations (CLS) ensembles, which are made of Nf ¼ 2

nonperturbatively OðaÞ-improved Wilson-clover fermions
[13,14] and the plaquette gauge action [15] for gluon fields,
and generated using either the DD-HMC algorithm [16–19]
or the MP-HMC algorithm [20]. The static quark is
discretized through HYP2 [21,22]. We have also simulated
two quenched ensembles (Q) to study the influence of the
sea quarks. We collect in Table I our simulation parameters.
Three lattice spacings (0.05 fm≲ a≲ 0.08 fm) are con-
sidered with pion masses in the range [280, 440] MeV.
Finally, the statistical error is estimated from the jackknife
procedure. We denote by Ghðx; yÞ the static quark propa-
gator and by Gij

l ðx; yÞ the light quark propagator with j
iterations of Gaussian smearing applied at the source and i
iterations of Gaussian smearing applied at the sink;
smearing parameters are collected in Table I. The static
quark propagator is explicitly given (in lattice units) by

Ghðx; yÞ ¼ θðx0 − y0Þδ~x;~yPðy; xÞ†Pþ;

2The global phase of the eigenvectors is fixed by imposing the
positivity of the decay constants f

Hð�Þn
¼ h0jOLjHð�Þn i, whereO ¼

P;Vk and L refers to the local interpolating field.
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where Pðx; xÞ ¼ 1, Pðx; yþ a0̂Þ ¼ Pðx; yÞUHYP
0 ðyÞ is a

HYP-smeared Wilson line and Pþ ¼ ð1=2Þð1þ γ0Þ. To
take advantage of translational invariance, the light quark
propagators in two-point correlation functions are com-
puted usingUð1Þ stochastic sources with full-time dilution,

Cð2ÞP;ijðtÞ¼
1

V

X
~x;~y

hTr½Gij
l ðx;yÞγ5Ghðy;xÞγ5�ijx0¼t;y0¼0;

Cð2ÞV;ijðtÞ¼
1

3V

X3
k¼1

X
~x;~y

hTr½Gij
l ðx;yÞΓkGhðy;xÞΓk�ijx0¼t;y0¼0;

where h� � �i stands for the average over gauge field
configurations and stochastic sources. We also average
the results over k ¼ 1, 2, 3 for the vector correlation
functions. In the case of the three-point correlation func-
tion, we use Ns point sources ηs, located at ðt1 þ tx; ~xþ ~rÞ,
and compute the light quark propagator by inverting the
Dirac operator on both sources ηs and γμηs. Denoting,
respectively, the solution vectors by ψ s and ~ψ s, we obtain

Cð3Þγμγ5;ij
ðt;t1;~rÞ

¼ a
T

X
tx

hPðjÞðtþ tx;~xÞAμðt1þ tx;~xþ~rÞVðiÞ†k ðtx;~xÞi

¼ a
T

X
tx

hTr½Gj0
l ðz;yÞγμγ5G0i

l ðy;xÞγkGhðx;zÞγ5�ij~y¼~xþ~r;~z¼~x

¼−
a

TNs

X
tx;s

hTr½ψ ðiÞ†s ðxÞPþP†ðz;xÞγk ~ψ ðjÞs ðzÞ�ij~y¼~xþ~r;~z¼~x:

A usual point source of the form δabδαβδxy (a, b color
indices, α, β spinor indices) would require 12 inversions of
the Dirac operator per light quark propagator. Moreover,
such sources do not take advantage of the full gauge
information unless different positions of the source are
used. Instead, we consider Ns stochastic point sources

which have nonzero values at a single spacetime site x and
at every color-spin component (a, α) [ηaαðyÞs ¼ 0 if y ≠ x]
and that satisfy the condition

lim
Ns→∞

1

Ns

XNs

s¼1
ηaαðxÞs½ηbβðyÞs�� ¼ δabδαβδxy; ð15Þ

where each component is normalized to one, ηaαðxÞ�½s� ×
ηaαðxÞ½s� ¼ 1 (no summation). This can be implemented by
using Uð1Þ noise for each color and spinor index at site x.
Therefore, only one inversion per light propagator is
required, which allows us to perform the computation with
different point-source positions at a reasonably small
computational cost. Having different spatial positions of
the probe is expected to decrease the gauge noise while the
stochastic noise is kept under control by using a sufficient
number of stochastic point sources. In practice, this number
can be small since the stochastic average commutes with
the gauge average and we have taken Ns ¼ T=a.

A. Energy levels from the two-point
correlation functions

To compute the axial density distribution from the
sGEVP method using Eq. (14), we need to evaluate
Σ12 ¼ E2 − E1, the mass splitting between the first radial
excitation of the vector meson (H�0) and the ground-state
pseudoscalar meson (H). We solve a 3 × 3 GEVP given by
Eq. (12) and the effective masses of the ground state
(n ¼ 1) and first excited state (n ¼ 2) are estimated from
the generalized eigenvalues λnðt; t0Þ according to

aEeff
n ðt; t0Þ ¼ log

λnðt; t0Þ
λnðtþ a; t0Þ

; t0 > t=2;

and fitted to a plateau at large t where the contribution of
higher excited states has been shown analytically and
numerically to be negligible [23]. Results for the lattice

TABLE I. Parameters of the simulations: bare coupling β ¼ 6=g20, lattice resolution, hopping parameter κ, lattice
spacing a in physical units, pion mass, and number of gauge configurations. The smeared quark fields are defined as

ψ ðiÞl ðxÞ ¼ ð1þ κGa2ΔÞRiψ lðxÞ, where κG ¼ 0.1 and Δ is the covariant Laplacian made with APE-blocked links.
Sets D5, Q1, and Q2 are not used to extrapolate our results at the physical point: they are used to study finite-volume
and quenching effects. The quark mass for Q1 and Q2 is tuned to the strange-quark mass.

id β ðL=aÞ3 × ðT=aÞ κ a (fm) mπ (MeV) Lmπ # cfgs κG fR1; R2; R3g
A5 5.2 323 × 64 0.135 94 0.075 330 4 200 0.1 f15; 60; 155g
B6 483 × 96 0.135 97 280 5.2 200
D5 5.3 243 × 48 0.136 25 0.065 450 3.6 150 0.1 f22; 90; 225g
E5 323 × 64 0.136 25 440 4.7 200
F6 483 × 96 0.136 35 310 5 200
N6 5.5 483 × 96 0.136 67 0.048 340 4 200 0.1 f33; 135; 338g
Q1 6.2885 243 × 48 0.134 98 0.06 × × 100
Q2 323 × 64 0.134 98 × × 100
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ensemble E5 are depicted in Fig. 2 and values of Σ12 for
each lattice ensemble are collected in Table IV.

B. Spatial component of the axial density distribution

The axial density distributions are estimated using the
sGEVP method [Eq. (14)] with t0 > t=2. Since the spatial
component of the distributions depends only on r, we have
averaged the raw data over the cubic isometry group H(3)
but not over the symmetry group SO(3) of the continuum
theory. Therefore, we have ðN þ 1ÞðN þ 2ÞðN þ 3Þ=6
independent points where N ¼ L=ð2aÞ. Results for the
ground state and first excited state are depicted in Fig. 3.
We have checked that compatible results, within statistical
error bars, are obtained using the GEVP method [Eq. (13)]
or the ratio method [Eq. (10)], which is applicable only for
the ground-state radial distribution. From these plots, two
main observations can be made. First, the spatial compo-

nents of the distributions r2fðnmÞγiγ5 ðrÞ do not converge to zero
at large values of r. Second, a fishbone structure is
observed; it appears also at the finest lattice spacing.
Several possible explanations are as follows:

FIG. 2. Left: Effective mass plot extracted from a 3 × 3 GEVP for the lattice ensemble E5. Right: Energy difference Σ12 ¼ E2 − E1

between the first radial excitation and the ground state. The value of t0 is chosen such that t > t0=2 to reduce the contamination of higher
excited states. We also plot the plateau in the chosen fit interval.

FIG. 3. Spatial component of the radial distributions of the axial density ar2fð11Þγiγ5 ðr=aÞ, ar2fð12Þγiγ5 ðr=aÞ, and ar2fð22Þγiγ5 ðr=aÞ for the lattice
ensemble F6.

FIG. 4. Spatial component of the radial distribution

ar2fð11Þγiγ5 ðr=aÞ obtained using the ratio method [Eq. (10)] for
different numbers of Gaussian smearing iterations Rn, for the
lattice ensemble N6. For each curve, t is chosen such that the
radial distribution has reached a plateau (t=a ¼ 17, 14, 10 for
Rn ¼ 0, 135, 338, respectively).
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(i) The GEVP incorrectly isolates the ground state and
the first excited state. This may affect the shape
of the radial distributions. However, similar results
are obtained for the ground-state distributions using
the ratio method and for all choices of interpolating
operators as discussed in Sec. III C. Moreover, as
shown in Appendix A, results for the charge (vector)
distributions are in perfect agreement with the value
of ZV determined using a completely different
method [24,25].

(ii) The shift from zero at large r could also be a sign
that our interpolating operators couple to a two-body
system. This is very unlikely since the shift is also
visible for the ground state. Within our lattice setup,
we are near the B�1π threshold (see Table VIII) which
has the same quantum numbers as the vector meson.
This issue is discussed in Sec. IV.

(iii) The lattices used to extrapolate our results at the
physical point all satisfy the condition Lmπ > 4 and
volume effects are expected to be small. However, the
fishbone structure at large r could also be explained by
volume effects: assuming that the static source is at

~x ¼ 0, lattice points ðx1; x2; x3Þ with small r½4� ≡P
3
i¼1 x

4
i are more affected by volume effects, com-

pared to other points belonging to the same orbit
r2 ≡P

3
i¼1 x

2
i , since they are closer to their periodic

images. Indeed, from previous plots, the radial dis-
tribution, multiplied by r2, does not vanish at r ¼ L=2
and the overlap of the tails of the distributions cannot
be neglected. We also observe that maxima of the
fishbone structure appear first at r ¼ L=2 and then at
r ¼ L=2 ×

ffiffiffi
2
p

, where the overlap is expected to be
large. In Ref. [26], the radial distribution of the axial
density was computed for the ground state, yet at a
coarse lattice and far from the chiral limit
(mπ ∼ 750 MeV); however, their results showed that
the tail of the distribution is still sizable at r ≈ 1 fm.
This issue was discussed in Ref. [27] in the case of
hadron correlation functions. This point is discussed in
Sec. III D.

(iv) In lattice QCD, lattice artifacts may appear at finite
lattice spacing due to the breaking of the continuum
O(3) symmetry group down to the subgroup H(3).

FIG. 5. Curing of volume effects on the axial spatial density distributions for the lattice ensemble E5. Raw data are in black, results of
the fit are in blue, and results after image corrections are in red.

FIG. 6. Left: Results of the fit for the lattice ensemble E5 (L=a ¼ 32) using the method described in Sec. III D. Raw data are in black,
results of the fit are in blue, and results after image corrections are in red. Right: Results obtained for the lattice ensemble D5 (L=a ¼ 24)
using the fit parameters of the ensemble E5 that has the same value of β and a similar pion mass. It means that the blue and red points of
the right panel are not obtained by a fit of the black points.
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Cubic artifacts are seen in momentum space (for
instance, in Ref. [28]) and show a similar fishbone
structure at large p. However, in the latter case,
artifacts are of the form a2p½4�=p2, a2p½6�=p4,
a2p½8�=p6 and are enhanced at large momenta.
Using the same argument as in Ref. [29] and based
on dimensional analysis, we can show that in
our case we expect lattice artifacts for a3fmn

γiγ5 of the
forma2r½4�=r6 anda2r½6�=r8which are not enhanced at
large radii; more details are given in Appendix B.

C. Excited states contribution

Gaussian smearing is used to reduce the contamination
from excited states to the correlators we analyze. It is
applied on the heavy-quark propagator entering the con-
tractions but not on the probe which must stay local. We
have checked that our results are indeed independent of the
number of iterations in the procedure to obtain a Gaussian
smearing. In Fig. 4, the ground-state radial distributions
computed by the ratio method [Eq. (10)] are plotted for the
local interpolating fields and for two nonlocal interpolating
fields with different levels of Gaussian smearing, that
correspond to Rn ¼ 135 and 338 iterations, respectively,
on the ensemble N6. The time t is chosen such that the

radial distribution has reached a plateau (t=a ¼ 17, 14, 10
for Rn ¼ 0, 135, 338, respectively). In particular, for the
local interpolating field where the contribution from excited
states is important, t has to be chosen large, increasing the
statistical error. For the smeared interpolating fields, we
obtain compatible results but the contribution of excited
states is significantly reduced and the plateau is reached
earlier where statistical errors are still small.

D. Treatment of volume effects

On the lattice with periodic boundary conditions in space
directions, one expects to compute [27]

a3flatγiγ5ð~rÞ ¼
X
~n

a3 ~fγiγ5ð~rþ ~nLÞ; ni ∈ Z; ð16Þ

where ~fγiγ5ð~rÞ can still differ from the infinite-volume
distribution due to interactions with periodic images
(ni ≠ 0Þ. If the lattice is sufficiently large such that the
overlap of the tail of the distribution with its periodic
images is small, interactions between periodic images can
be neglected and ~fγiγ5ð~rÞ ≈ fγiγ5ð~rÞ, even in the overlap
region. In what follows this is assumed to be a good
approximation and only the nearest image contribution is
considered: the tails just add together without deformation
and this assumption is discussed later. From the plots
shown in Fig. 3, we see that radial distributions differ
significantly from zero at r ¼ L=2: the overlap of the tails
cannot be neglected. Then, we can remove the contribution
of periodic images by fitting our raw data with some given
function using Eq. (16) to reproduce the fishbone structure.
The following fit ansatz has been considered:

fðmnÞ
γiγ5 ð~rÞ ¼ PmnðrÞ exp ð−ðr=r0ÞαÞ; ð17Þ

where Pmn is a polynomial function and where only the
nearest image contributions (ni ∈ f0; 1g) are considered.
In practice, P11, P12, and P22 are of degree 2, 3, and 4,
respectively. This form is motivated by quark models [26]
and the small number of parameters. It also reproduces
results for the scalar and vector densities (discussed in

TABLE II. Fit parameters r0 and α of Eq. (17) for each lattice

ensemble and each axial distribution fðmnÞ
γiγ5 (mn ¼ 11, 12).

ðmnÞ A5 B6 D5 E5 F6 N6

(11) r0 [fm] 0.26(1) 0.21(1) 0.27(2) 0.26(1) 0.24(2) 0.27(2)
α 1.09(3) 0.97(3) 1.21(7) 1.10(4) 1.03(4) 1.10(3)

(12) r0 [fm] 0.30(1) 0.28(1) 0.29(3) 0.33(2) 0.28(1) 0.31(1)
α 1.28(2) 1.22(3) 1.35(3) 1.35(3) 1.19(2) 1.36(2)

TABLE III. Light axial-vector current renormalization constant
ZA for each value of β [25,30].

β 5.2 5.3 5.5

ZA 0.7703 0.7784 0.7932

FIG. 7. Plateaus of the axial density summations over r for the lattice ensemble N6 using the GEVP method [grey points, Eq. (13)] and
the sGEVP method [black points, Eq. (14)]: g11 (left), g12 (center), and g22 (right).
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Appendix A) where volume effects are negligible, and the
fishbone structure of our quenched results where the data
are more precise (see Sec. III G). Results for the lattice
ensemble E5 are depicted in Fig. 5 and the corresponding
χ2 are, respectively, χ211=d:o:f ¼ 1.07, χ212=d:o:f ¼ 1.27,
and χ222=d:o:f ¼ 4.2. The quality of the fit is good,
especially for f11γiγ5 and f12γiγ5 and the radial distributions
indeed converge to zero at large radii after image
corrections.
As explained before, two kinds of volume effects are

expected: the overlap of the tails of the distribution with
periodic images, and a deformation of the distribution when
the overlap is too large. This second effect was neglected
since the overlap of the tails of the distributions is small
(Fig. 5) and because all our ensembles satisfy the condition
Lmπ > 4. In particular, the fact that the images correction
procedure works well is an indication that this second
source of volume effects is indeed small. However, to
check the validity of this assertion, we have performed an
analysis on the CLS ensemble D5, which is close to E5
(mπ ¼ 450 MeV and a ¼ 0.065 fm) but with a smaller
lattice (L=a ¼ 24). Since the volume is smaller, the overlap
of the tails is more important and more subject to
deformation. We have checked that by using the fit
parameters of E5 we can reproduce the radial distribution
for D5 to a good precision (see Fig. 6): it makes us
confident that our assumption is indeed correct within our
statistical accuracy. In particular, as can be seen in Table II,
the best-fit values of r0 for the ensembles D5 and E5 are
perfectly compatible.

Finally, it is important to notice that the first kind of
volume effect is irrelevant in the computation of gnm or any
form factor at discrete lattice momenta, as long as the
distribution vanishes before r ¼ L. Indeed, the contribution
coming from periodic images—which leads to the fishbone
structure—compensates exactly the missing part of the tail
of the distribution for r > L=2. For example, in one space
dimension (this is easily generalized to three dimensions)
and using Eq. (16), one has

Z
L=2

0

flatγiγ5ðrÞeiqrdr

¼
Z

L=2

0

ðfγiγ5ðrÞ þ fγiγ5ðr − LÞÞeiqrdr

¼
Z

L=2

0

fγiγ5ðrÞeiqrdrþ
Z

L=2

0

fγiγ5ðr − LÞeiqðr−LÞdr

¼
Z

L=2

0

fγiγ5ðrÞeiqrdrþ
Z

L=2

0

fγiγ5ðL − rÞeiqðL−rÞdr

¼
Z

L

0

fγiγ5ðrÞeiqrdr ¼
Z

∞

0

fγiγ5ðrÞeiqrdr;

where in the second line we use the fact that lattice
momenta are discrete on the lattice, q ¼ 2π

L n, with
n ∈ Z, and in the third line we use the parity properties
of the integrand and we integrate up to infinity since the
distribution is assumed to vanish for r > L. However, it
should be noted that it affects the computation of the
moments of the distribution or form factors at nonlattice

TABLE IV. Mass splitting Σ12 ¼ E2 − E1, bare couplings g11, g12, g22 obtained using the sGEVP method and renormalized couplings
ḡ11, ḡ12, ḡ22 for each lattice ensemble.

id aΣ12 Σ12 [GeV] g11 g12 g22 ḡ11 ḡ12 ḡ22

A5 0.253(7) 675(15) 0.692(13) −0.232ð19Þ 0.583(18) 0.533(10) −0.179ð15Þ 0.449(14)
B6 0.235(8) 632(18) 0.683(17) −0.216ð11Þ 0.555(17) 0.526(13) −0.166ð9Þ 0.428(13)
E5 0.225(10) 679(26) 0.690(6) −0.232ð11Þ 0.587(16) 0.537(5) −0.181ð9Þ 0.457(12)
F6 0.213(11) 648(27) 0.688(14) −0.264ð14Þ 0.598(15) 0.536(11) −0.206ð11Þ 0.465(12)
N6 0.166(9) 681(33) 0.658(10) −0.209ð12Þ 0.532(15) 0.522(7) −0.166ð9Þ 0.422(12)
Q2 0.195(5) 641(16) 0.732(10) −0.217ð14Þ 0.598(20) 0.596(8) −0.177ð12Þ 0.488(16)

FIG. 8. Extrapolations of ḡ11, ḡ22, and ḡ12 to the chiral and continuum limits using the fit function (18).
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discrete momenta, as discussed later. In this case, one needs
to use the fitted function extracted from Eq. (16).

E. Summation over r: The couplings g11, g12, and g22
The bare couplings gmn are computed by summing the

densities fmn
γiγ5ðrÞ over radii r and the renormalized cou-

plings in the OðaÞ-improved theory are given by3

ḡmn ¼ ZAð1þ bAamqÞgmn, where ZA is the light axial-
vector current renormalization constant computed in
Refs. [25,30] and bA is an improvement coefficient com-
puted in Ref. [31] at one-loop order in perturbation theory.
Values of ZA for each β used in this work are given in
Table III and the associated error has been checked to be
completely negligible at our level of precision. In the static
limit of HQET, the renormalized couplings ḡ11 and ḡ22 are
related to the gB�Bπ and gB�0B0π couplings. On the other
hand, ḡ12 is related to the form factor A1ðq2Þ at
q2 ¼ q2max ≠ 0, whereas the gB�0Bπ coupling is defined at
q2 ¼ 0. Results for the bare couplings, obtained using the
sGEVP method with t0 > t=2 for the lattice ensemble N6,
are depicted in Fig. 7 where a comparison with the GEVP
method result is also given. In the plateau region, where the
contamination by higher excited states is negligible, data
are fitted to a constant and results are given in Table IV. We
have also checked that the results obtained using the GEVP
method [Eq. (13)] are in agreement within statistical error
bars but with noisier plateaus, especially for g12 and g22
which involve the radial excitations. As the ensemble B6
has been added since our previous study, we have per-
formed new extrapolations to the physical points using the
fit ansatz

ḡnmða;mπÞ ¼ ḡnm þ C1a2 þ C2 ~y; ð18Þ

where ~y ¼ m2
π=ð8π2f2πÞ and fπ is the pion decay constant

[32] (the physical value is fπ ¼ 130.4 MeV within our
conventions). Since the fit parameter C2 is compatible with
zero we also tried the following fit function to estimate the
systematic error in the quark mass extrapolation:

ḡnmða;mπÞ ¼ ḡnm þ ~C1a2: ð19Þ

In the case of ḡ11, the next-to-leading-order formula of
heavy meson chiral perturbation theory (HMχPT) is known
[33,34]. Therefore we also tried the following fit ansatz
which includes the contribution from both positive- and
negative-parity states:

ḡ11ða;mπÞ ¼ ḡ11

�
1 − ð1þ 2ḡ211Þ~y log ~y

−
h2m2

π

16δ2

�
3þ ~g

ḡ11

�
~y log ~y

�
þ C̄1a2 þ C̄2 ~y:

ð20Þ
Here, the coupling ~g plays a role similar to g but within the
positive-parity doublet ðB�0; B�1Þ and the coupling h is
related to the transition between a scalar (B�0) and a
pseudoscalar B meson. The values of these couplings
and of the mass difference δ ¼ mB�

0
−mB between the

scalar and pseudoscalar B mesons are extracted from
Ref. [35]. Extrapolations are shown in Fig. 8 and the
results read

ḡ11 ¼ 0.502ð20Þstatð þ8−45Þχ ;
ḡ12 ¼ −0.164ð28Þstatð6Þχ ;
ḡ22 ¼ 0.387ð33Þstatð20Þχ ;

where the first error is statistical and the second error
includes the systematic error from the chiral extrapolation,
estimated as half the difference between fit results using
Eq. (18) and Eq. (19). For ḡ11, we also used Eq. (20) to
estimate the systematic error. Results are in perfect agree-
ment with those obtained in our previous paper [7] (that had
been obtained without the large volume set B6, and using
time-diluted stochastic sources) and with Ref. [36] which
focused on g11 and g22 concerning the results obtained at
Nf ¼ 2 and the physical point.

F. Discussions

The behavior of the densities helps us to understand the
small value of the coupling g12 compared to the ground-
state coupling g11. In particular, the presence of the node
significantly reduces the value of the off-diagonal coupling.
In the case of g22, the densities fall slower than for g11 and

TABLE V. Square radius of the ground-state radial distribution fð11Þγiγ5 ðrÞ and position of the node rn of the radial

distribution fð12Þγiγ5 ðrÞ for each lattice ensemble.

a ¼ 0.075 fm a ¼ 0.065 fm a ¼ 0.048 fm

mπ 330 MeV 280 MeV 440 MeV 310 MeV 340 MeV

hr2iA [fm2] 0.398(38) 0.455(49) 0.358(15) 0.390(26) 0.297(14)
rn [fm] 0.369(13) 0.374(12) 0.369(11) 0.379(20) 0.365(12)

3The renormalized OðaÞ-improved axial current reads Āi ¼
ZAð1þ bAamqÞðAi þ acA∂iPÞ but the last term does not con-
tribute at vanishing spatial momentum.
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this coupling is not significantly suppressed. We have
computed the first moment of the spatial component of
the ground-state radial distribution defined by

hr2iA ¼
R
∞
0 drr4fð11Þγiγ5 ðrÞR
∞
0 drr2fð11Þγiγ5 ðrÞ

;

and results are given in Table V. We observe a clear
dependence on both the pion mass and lattice spacing.

Therefore, we have tried a linear extrapolation to the
physical point and obtained hr2iA ¼ 0.251ð41Þ fm2. The
first moment probes the large-r region where the overlap of
the tails is significant. In particular, the results are sensitive
to the order of the polynomial function used to fit the data,
explaining the large error in the determination of hr2iA. We

have also determined the position of the node rn of f
ð12Þ
γiγ5 ðrÞ

involving the radial excitation: results are collected in
Table V. At our level of precision, rn is remarkably stable

FIG. 9. Density distributions ar2fð11Þγiγ5 ðr=aÞ, ar2fð12Þγiγ5 ðr=aÞ, and ar2fð22Þγiγ5 ðr=aÞ for our quenched lattice ensemble Q2. The blue curves
correspond to results after a fit and the red curves to the distributions after removing volume effects.

FIG. 10. Plateaus for the summation over r of the axial densities computed in Sec. III E for our quenched lattice ensemble Q2: g11, g12,
and g22.

FIG. 11. Comparison of the renormalized distributions r2fðmnÞ
γiγ5 ðrÞ in physical units. The quenched result (ensemble Q1) is plotted in

red and the dynamical case (ensemble D5) is plotted in black.

BENOÎT BLOSSIER and ANTOINE GÉRARDIN PHYSICAL REVIEW D 94, 074504 (2016)

074504-10



and we do not see any dependence on the lattice spacing or
pion mass.

G. Comparison with quenched results

We have repeated the same analysis for the quenched
lattice ensembles Q1 and Q2, at the strange-quark mass
determined in Ref. [37]. Results are plotted in Fig. 9 where
the volume effects are taken into account using the method

presented in Sec. III D. Our results read α ¼ 1.40ð1Þ,
r0 ¼ 0.32ð1Þ fm, and hr2iA ¼ 0.319ð8Þ fm2. The position

of the node of fð12Þγiγ5 is rn ¼ 0.390ð9Þ fm. Concerning the
summation over r, results for Σ12 and the couplings gmn are
given in Table IV. In particular, the value of the renormal-
ized coupling ḡ11 is in perfect agreement with Ref. [36].
Here, we used the value ZA ¼ 0.81517 from Ref. [38] and
the plateaus are depicted in Fig. 10.

FIG. 12. Imaginary part of the time component fð12Þγ0γ5ðrÞ of the axial density distribution for the lattice ensembles E5 and N6. Choosing

i ¼ z, we define r∥ ¼ rz and r⊥ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2x þ r2y

q
.

FIG. 13. The integrand in Eqs. (22) and (23) to obtain the form factor at q2 ¼ 0. The red curve is the product of the blue and dark
curves and the normalization of the blue curve is arbitrary. For the time component (right plot), we plot the imaginary part and only
points with jr⊥j ≤ 1 are shown.

FIG. 14. q2 dependence of the spatial (left) and time (middle) contributions to the form factor A12
0 ðq2Þ for the lattice ensemble E5. It

should be stressed that the form factor A0 is interesting per se only at q2 ¼ 0, where it is related to the gB�0Bπ coupling.
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To compare quenched results with the Nf ¼ 2 case, we
have plotted in Fig. 11 the axial distributions for two sets that
are close to each other in parameter space, except in Nf.

For the ground-state distribution fð11Þγiγ5 , one notices a faster
falloff in the quenched case (αnf¼0 ¼ 1.40 > αnf¼2 ¼ 1).
However, in that case, the distribution is more spread out,
and of a larger magnitude: it explains the larger value of the
quenched coupling g11. Concerning the axial distribution

fð12Þγiγ5 , the position of the node is slightly higher in the
quenched case without being able to provide any explan-
ation of that observation.

H. Time component of the axial radial
density distributions

The time component of the axial radial density distri-
bution is odd with respect to the projection ri along the
vector meson polarization (see Sec. II). Therefore, we have
only averaged the raw data over equivalent points in the
plane orthogonal to direction i, which corresponds to ðN þ
1Þ2ðN þ 2Þ=2 independent points where N ¼ L=ð2aÞ.
Results of the axial density distribution fð12Þγ0γ5 are depicted
in Fig. 12 for the lattice ensembles E5 and N6.

I. The gB�0Bπ coupling

To compute the form factors associated to hBjAμjB�0i at
every q2 from q2 ¼ q2max, and especially at the kinematical
point q2 ¼ 0, we consider the Fourier transform of the
radial density distributions at a momentum ~q aligned with
the polarization vector ~ϵ, namely,

Mμðq2max − ~q2Þ ¼
Z

d~rfð12Þγμγ5ð~rÞei~q·~r: ð21Þ

For the spatial component of the distribution, using the
radial symmetry, one obtains

Miðq2max − ~q2Þ ¼ 4π

Z
∞

0

drr2
sinðj~qjrÞ
j~qjr fð12Þγiγ5 ð~rÞ; ð22Þ

and the special case q2 ¼ 0 corresponds to j~qj ¼ Δ ¼
mB�0 −mB. Concerning the time component of the distri-
bution, the radial symmetry is lost but we still have a

TABLE VI. Time and spatial contributions to the form factor A12
0 , at two different values of q2, for each lattice

ensemble.

A5 B6 E5 F6 N6 Q2

q0M0ðq2Þ=qi q2 ¼ q2max 0.669(33) 0.675(45) 0.546(24) 0.559(30) 0.487(31) 0.253(18)
q2 ¼ 0 0.347(17) 0.301(15) 0.308(13) 0.282(13) 0.266(16) 0.196(14)

Miðq2Þ q2 ¼ q2max −0.172ð11Þ −0.161ð12Þ −0.180ð8Þ −0.184ð12Þ −0.166ð9Þ −0.154ð8Þ
q2 ¼ 0 0.072(4) 0.065(8) 0.076(4) 0.063(6) 0.065(5) 0.053(4)

TABLE VII. Lattice and quark model results for the spatial and time contributions to A12
0 ðq2Þ at the kinematical

points q2max and 0 [39] Second column: Extrapolated lattice results using the fit formula (19): the first error is
statistical and the second error includes the systematics from the chiral extrapolation. Third column: The Bakamjian-
Thomas model with the Godfrey-Isgur potential, obtaining q0 ¼ 0.538 GeV. Fourth column: The Dirac model,
obtaining q0 ¼ 0.576 GeV. In the case of the Dirac quark model, the global sign of hadronic matrix elements cannot
be known independently of the states’ phases: the convention is such that the discrepancy between the Dirac and
Bakamjian-Thomas model is minimal, fB > 0 and fB�0 > 0.

q2
Lattice Bakamjian-Thomas Dirac

q2max 0 q2max 0 q2max 0

q0M0ðq2Þ=qi 0.402ð54Þstatð27Þχ 0.237ð27Þstatð28Þχ 0.252 0.173 0.219 0.164
Miðq2Þ −0.172ð16Þstatð6Þχ 0.064ð9Þstatð13Þχ −0.103 0.05 −0.223 −0.056

FIG. 15. Extrapolations of the form factor A12
0 at q2 ¼ 0 to the

chiral and continuum limits.
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cylindrical symmetry with respect to the axis r∥ (r∥ refers to
the direction given by ~q), which leads to4

q0
qi

M0ðq2max − ~q2Þ

¼ −q04iπ
Z

∞

0

dr∥

Z
∞

0

dr⊥r⊥f
ð12Þ
γ0γ5ðr∥; r⊥Þ

sinðj~qjr∥Þ
j~qj :

ð23Þ

Here, we cannot use the method described in previous
sections to cure finite-volume effects and the sum (21) is
simply replaced by a discrete sum. However, this approxi-
mation is expected to be good since Fourier transforms
lower the contribution from large radii at q2 ¼ 0, as can be
seen in Fig. 13 where we plot the integrand of Eqs. (22) and
(23). At q2 ¼ 0 the small-r region is enhanced, whereas the
large-r region contribution is reduced. In particular, results
are not affected by the large-radii behavior of the function
used to fit the data in Eq. (22).

1. Lattice results

In Eq. (5), there is no sum over i but we average the data
over equivalent directions on the lattice. Results for the
spatial and time components of distributions are depicted
in Fig. 14 for q2 in the range ½0; q2max� and the lattice
set E5. All results are collected in Table VI: we observe a
large variation of the spatial component between q2 ¼ 0

and q2max and even a change of sign, whereas the time
component is slowly varying: it dominates in magnitude
over the spatial component. Finally, we have performed
chiral and continuum extrapolations using the same fit
formulas as ḡ11. Findings for each component at both
q2 ¼ 0 and q2 ¼ q2max are given in Table VII and the

extrapolations of the form factor A12
0 at q2 ¼ 0 are depicted

in Fig. 15. The small difference between ḡ12 computed in
Sec. III E andMiðq2maxÞ can be explained by the use of the
fitted densities in the latter case. However, both results are
perfectly compatible within error bars. Our final results
read

A12
0 ð0Þ ¼ −0.173ð31Þstatð16Þsyst;
gB�0Bπ ¼ −15.9ð2.8Þstatð1.4Þsyst;

where the first error is statistical and the second error
includes the systematics coming from the chiral extrapo-
lation and the uncertainty associated toΔ ¼ 701ð65Þ MeV,
the mass difference between the ground state and the first
radial excitation of the B meson. It is useful to remember
that the sign of the form factor corresponds to the
convention where all decay constants are positive.
Rigorously, OðaÞ improvement is only partially imple-
mented for off-shell form factors. Therefore, we also tried a
linear fit in the lattice spacing but it failed to reproduce the
data, which strongly suggests that OðaÞ artifacts are small.

2. Comparison with quenched data

We have repeated the same analysis for the quenched
ensemble Q2. The spatial and time components of the form
factor are depicted in Fig. 16 and the results are

FIG. 16. q2 dependence of the spatial and time contributions to the form factor A12
0 ðq2Þ for the quenched lattice ensemble Q2.

TABLE VIII. Mass splittings Σ12¼mB�0 −mB and δ¼mB�
1
−mB

[35] for each lattice ensemble.

id aΣ12 aδ amπ aδþ amπ

A5 0.253(7) 0.155(4) 0.12625 0.281(4)
B6 0.235(8) 0.141(4) 0.10732 0.248(4)
E5 0.225(10) 0.133(6) 0.14543 0.278(6)
F6 0.213(11) 0.129(3) 0.10362 0.233(3)
N6 0.166(9) 0.092(3) 0.08371 0.176(3)4With a covariant index, qi ≡ −j~qj.
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summarized in Table VI. Finally, we obtain for the form
factor at q2 ¼ 0

A12
0 ð0Þ ¼ −0.143ð14Þ;

where the error is only statistical since only a single pion
mass and lattice spacing has been studied.

3. Comparison with quark models

Heavy-light mesons are systems for which quark models
are particularly well suited, especially in the infinite-mass
limit of the heavy quark, to make predictions or to confront
with experimental data in order to better understand the
dynamics at work in the nonperturbative regime of strong
interaction. As a comparison with lattice data, density
distributions have been computed with two different quark
models. The first one, à la Bakamjian-Thomas model
[40–42], is a relativistic quark model with a fixed number
of constituents that has the benefits that wave functions are
representations of the Poincaré group, currents are covariant
in the heavy-quark limit and the rest-frame Hamiltonian
contains the interaction potential, here the very fruitful
Godfrey-Isgur potential [43]. The second quark model is

based on solving the Dirac equation with a central potential
having a confining term, with a scalar Lorentz structure, and
a Coulombian part [44,45]. We collect in Table VII the
values of A12

0 ðq2Þ obtained with the two models [39]. Quite
interestingly, quark models and our lattice study agree in the
fact that the time contribution to A12

0 dominates over the
spatial one and explains why the form factor is negative
at q2 ¼ 0.

IV. MULTIHADRON THRESHOLDS AND
EXCITED STATES

In many lattice studies, the radial or orbital excitations of
mesons lie near the multihadron threshold, making the
extraction of excited-state properties more challenging.
Usually, interpolating operators having a large overlap
with a two-body system [46] are used but they require
more computer time and it is argued that bilinear inter-
polating operators are coupled only weakly with those
states [47]. Here we propose to study this problem from our
results on radial distributions.
Within our lattice setup, the radial excitation of the

vector meson (B�0) lies near the multiparticle threshold B�1π
in the S wave, where B�1 represents the axial B meson (see
Table VIII). Its mass, in the static limit of HQET, is
extracted from Ref. [35]. Assuming that the energy of
the two-particle state is simply given by E ¼ mB�

1
þmπ, we

conclude that for all lattice ensembles we are below (but
near) threshold. Since our interpolating operators are
coupled, in principle, to all states with the same quantum
numbers, it means that we could be sensitive to the B�1 state.
However, if the coupling were not small, it would be
difficult to interpret our GEVP results: we extract a clear
signal for the third excitation and it is far above the second
energy level. We do not see near-degenerate states.
Moreover, the position of the node of the density distri-

bution fð12Þγiγ5 is remarkably stable and does not depend on

FIG. 17. Left: Effective mass plot extracted from a 3 × 3 GEVP for the lattice ensemble E5 using γk interpolating operators. Right:
Effective mass plot extracted from a 4 × 4 GEVP for the lattice ensemble E5 using q̄γkb and q̄∇kb interpolating operators.

TABLE IX. Energy levels extracted from the GEVP (ensemble

E5). In the first row only Gaussian smeared operators VðiÞk ðxÞ ¼
ūðiÞðxÞγkhðxÞ are used. In the second row, both interpolating

operators of the form VðiÞk ðxÞ ¼ ūðiÞðxÞγkhðxÞ and VðiÞk ðxÞ ¼
ūðiÞðxÞ∇ khðxÞ are used.

aΣ12 aΣ13 aΣ14

E5 γk 0.225(8) 0.417(21) ×
γk;∇k 0.218(12) 0.278(17) 0.422(12)

A5 γk 0.257(6) 0.467(23) ×
γk;∇k 0.254(7) 0.315(11) 0.459(24)
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the pion mass, contrary to what would be expected in the
case of a mixing with multiparticle states. Also, the
qualitative agreement with quark models makes us con-
fident that our measurement of the density distributions

fð12ÞΓ ðrÞ probes transition amplitudes among q̄b bound
states: in the quark model language they correspond to
overlaps between wave functions.

A. Multihadron analysis

In addition to the Gaussian smearing operators VðiÞk ðxÞ ¼
ūðiÞðxÞγkhðxÞ used in the previous analysis, we have
inserted a second kind of interpolating operators which

could couple to the two-particle state: VðiÞk ðxÞ ¼
ūðiÞðxÞ∇ khðxÞ. As can be seen in Fig. 17, the GEVP

FIG. 18. Ratio ZniðE5Þ=ZniðD5Þ for the first three levels. The two plain dark lines correspond to ratios of 1 and 4=3.

FIG. 19. Effective energies of the two-point correlation function (26) obtained by solving a 4 × 4 GEVP for different values of x.

FIG. 20. Unrenormalized vector charge obtained from fðnnÞγ0 ðrÞ on the lattice ensemble E5, using q̄γkh and q̄∇kh interpolating
operators. The blue line corresponds to the expected plateau using the nonperturbative estimate ZV ¼ 0.750ð5Þ extracted from Ref. [25].
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indeed isolates a new state, slightly above the radial
excitation of the vector meson, whose interpretation can
be guessed from Table VIII. The effective masses of the
ground state and first excited state remain unchanged, as we
indicate in Table IX.
Eigenvectors for single-particle and multiparticle states

are expected to have different volume dependences: the
former are expected to be almost volume independent,
whereas the latter should not be [48,49]. Then, if any
excited state was interpreted as a multihadron state, one
would expect that the overlap Z to a given interpolating
field depends on the volume. We have performed the check
on lattice ensembles E5 and D5, which have two different
volumes. Using the notations of Ref. [11], the two-point
correlation function can be written as

CijðtÞ ¼
a6

V

X
~x;~y

hOið~x; tÞO†
jð~y; 0Þi ¼

X∞
n¼1

ZniZ�mje
−Ent;

i; j ¼ 1;…; N;

where Zni corresponds to the overlap between the inter-
polating field Oi and the nth excited state. An estimator for
the overlaps Zni is given by

Zni ¼
CijðtÞvnjðt; t0Þ

ðvnðt; t0Þ; CðtÞvnðt; t0ÞÞ1=ð2
�

λnðtÞ
λnðtþ aÞ

�
t=ð2aÞ

:

ð24Þ
Results are depicted in Fig. 18. For the ground state, the
overlaps are compatible for the two lattice ensembles as

expected for a single hadron state. We do not observe any
volume dependence for either the first or the second excited
state, whereas for a multihadron states a volume depend-
ence ZniðD5Þ=ZniðE5Þ ¼ ð32=24Þ3=2 ≈ 1.33 is expected.
Therefore, our analysis suggests that this criterion is not
satisfied in our case, at least in the time interval considered
here; similar conclusions were drawn in Ref. [50].

B. A toy model

To understand this fact further, we have performed a test
on a toy model. The spectrum contains five states, with
energies EðiÞ ¼ f0.3; 0.6; 0.63; 0.8; 0.95g. The first and
second excited states are almost degenerate. Taking a basis
of five interpolating fields, the matrix of couplings has the
following structure:

Mx ¼

2
6666664

0.60 0.25 x × 0.40 0.10 0.50

0.61 0.27 x × 0.39 0.11 0.51

0.58 0.24 x × 0.42 0.12 0.52

0.57 0.25 x × 0.41 0.10 0.49

0.56 0.26 x × 0.36 0.08 0.48

3
7777775
; ð25Þ

where x can be varied from 10−3 (third interpolating field
almost not coupled to the spectrum under investigation) to
1 (third interpolating field as strongly coupled to the
spectrum as the other operators). We solve a GEVP on
the 4 × 4 matrix of correlators Cx

ij defined by

FIG. 21. Density distributions ar2fðnnÞγ0 ðr=aÞ, n ¼ 1, 2, 3 (top) and n ¼ 1, 2, 4 (bottom) on the lattice ensemble E5, using only q̄γkh
(top) and including q̄∇kh interpolating fields (bottom) in the analysis.
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Cx
ijðtÞ ¼

X5
n¼1

Mx
niM

x
nje

−Ent: ð26Þ

In Fig. 19 we show the effective masses obtained from the
generalized eigenvalues, when x is growing. We clearly see
the transition: the GEVP isolates the states 1, 2, 4, and 5 at
very small x and then, as x is made larger, the states 1, 2, 3,
and 4. Our conclusion is that a GEVP can “miss” an
intermediate state of the spectrum if, by accident, the
coupling of the interpolating fields to that state is sup-
pressed. Our claim is that, using interpolating fields q̄γih,
we have no chance to couple to multihadron states, while
inserting an operator q̄∇ih could isolate the B�1π two-
particle state.

C. Density distributions with an enlarged basis
of interpolating fields

To further investigate this issue, we have computed the
radial distributions of the vector density, because the
conservation of the vector charge is a precious indicator
of a possible source of uncontrolled systematics if it is
strongly violated. They are defined similarly to the axial
density distribution by replacing the axial density with
OΓ ¼ ψ̄ l1ψ l and OΓ ¼ ψ̄ lγ0ψ l, respectively. With the
interpolating field q̄∇kh included in the basis, together
with q̄γkh, we show in Fig. 20 the “effective” charge

density distributions fðnnÞγ0 ðrÞ integrated over r, as a
function of the time t entering the sGEVP. In the cases

of fð11Þγ0 ðrÞ and fð22Þγ0 ðrÞ, plateaus are clearly compatible

with 1=ZV , while for f
ð33Þ
γ0 ðrÞ we observe a divergence with

time. Concerning fð44Þγ0 ðrÞ, a (very short) plateau shows up
again around 1=ZV . Once more, the main lesson is that the
second excited state isolated by the GEVP is hard to
interpret as a q̄b bound state, whereas the first excited state
is interpreted as a bound state. Density distributions
themselves are showed in Fig. 21. Plots on the top
correspond to the basis with only q̄γih-type interpolating
fields of the B� meson and those on the bottom are obtained
after incorporating q̄∇kh-type fields in the analysis. We

note similar facts as for the spectrum: fð11Þγ0 ðrÞ and f22γ0 ðrÞ
are almost the same, and fð33Þγ0 ðrÞ on the top looks like

fð44Þγ0 ðrÞ on the bottom. Finally, we see that it is impossible

to obtain a stable density for fð33Þγ0 ðrÞ when we include
q̄∇kh operators in the analysis. Actually, it is just a
rephrasing of the observation made at the beginning of
the subsection.

V. CONCLUSION

In this paper we have reported on a lattice estimate
of the form factor A12

0 ðq2 ¼ 0Þ associated with the matrix
element hBjAμjB�0i and gB�0Bπ coupling. We have measured

axial density distributions whose Fourier transforms were
used to extrapolate at q2 ¼ 0 and we obtained A12

0 ð0Þ ¼
−0.173ð31Þð16Þ and gB�0Bπ ¼ −15.9ð2.8Þð1.4Þ. We have
confirmed a phenomenological finding that gB�0Bπ is neg-
ative, with a magnitude accidentally similar to what was
computed for the form factor A12

1 ðq2maxÞ, i.e., the coupling
ḡ12. We have checked several sources of systematics: cutoff
effects, finite-size effects, and a possible mixing between
radial excitations and multihadron states. In particular,
we have found clues that interpolating fields of the
type q̄∇kh have a strong coupling to a state that is difficult
to interpret as a q̄b bound state because, in that case,
density distributions are impossible to extract from
our data.
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APPENDIX A: CHARGE AND MATTER
DISTRIBUTIONS

In this appendix, we discuss the charge (vector) and
matter (scalar) radial distributions. They are defined
similarly to the axial density distributions by replacing
the axial density OΓ ¼ ψ̄ lγμγ5ψ l with OΓ ¼ ψ̄ l1ψ l and
OΓ ¼ ψ̄ lγ0ψ l, respectively. They have been computed for
lattice ensembles E5 and D5.

1. Correlation functions

Using the notation Γ ¼ γ0; 1, the three-point correlation
functions associated to the charge and matter distributions
are

FIG. 22. Disconnected contribution to the three-point correla-
tion function in the case Γ ¼ 1.
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Cð3ÞΓ;ijðt; t1; ~rÞ ¼ hPðjÞð~x; tÞOΓð~xþ ~r; t1ÞPðiÞ†ð~x; 0Þi;

Cð3ÞΓ;ijðt; t1; ~rÞ ¼
1

3

X3
k¼1
hVðjÞk ð~x; tÞOΓð~xþ ~r; t1ÞVðiÞ†k ð~x; 0Þi:

In Sec. III, we have chosen the isospin combination which
excludes the neutral pion, in order to avoid the computation
of disconnected diagrams. For the charge distribution,where
Γ ¼ γ0, one can show that disconnected contributions vanish
exactly [51], but this is not true for the matter distribution
where Γ ¼ 1. In the latter case, one should also consider the
disconnected contributions (see Fig. 22) which are more
difficult to estimate numerically andhavenot beencomputed
in this study.

2. Summation over r

Taking the sum over all values of ~r ¼ ðx; y; zÞ of the
charge and matter radial distributions, one should obtain
the (bare) couplings

cmn ¼ a3
X
~r

fðmnÞ
γ0 ð~rÞ; mmn ¼ a3

X
~r

fðmnÞ
1 ð~rÞ:

For charge distributions one expects, in the continuum limit
and after renormalization, ZVðg20Þc11 ¼ ZVðg20Þc22 ¼ 1 for
the diagonal couplings and c12 ¼ 0 for the off-diagonal
coupling. Plateaus are depicted in Fig. 23 and results are
collected in Table X. The total charges c̄11 and c̄22 are close
to unity and deviations from unity are probably due to
lattice artifacts. Moreover, c12 is compatible with zero,
which confirms that c11 can be interpreted as a wave
function of the ground state. For matter distributions, one
would also expect, in the continuum limit and after
renormalization (including also the renormalization con-
stant of the quark mass), Zðg20Þm11 ¼ Zðg20Þm22 ¼ 1 for
the diagonal couplings and m12 ¼ 0 for the off-diagonal
couplings. However, our computation does not take into
account disconnected contributions and the interpretation
of results is not clear. In particular, m12 ≠ 0 indicates that

FIG. 23. Plateaus of total vector charges c11, c12, and c22 (top) and scalar charges m11, m12, and m22 (bottom) for the lattice
ensemble E5.

TABLE X. Bare and renormalized couplings associated to the charge and matter densities for the CLS ensemble
E5. We use the nonperturbative estimate ZV ¼ 0.750ð5Þ extracted from Refs. [24,25].

ij 11 22 33 12 13 23

cij 1.311(17) 1.212(38) 1.153(33) 0.015(32) −0.062ð49Þ −0.010ð35Þ
c̄ij 0.983(13) 0.909(29) 0.865(25) 0.011(24) −0.047ð37Þ −0.008ð26Þ
mij 1.177(55) 0.602(88) 0.249(57) −0.833ð67Þ 0.318(40) −0.338ð29Þ
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the disconnected diagram probably has a significant
contribution.

3. Radial distributions

The radial distributions obtained using the sGEVP
method are plotted in Fig. 24. Matter distributions decrease
faster than charge distributions and are compatible with
zero at r ≈ L=2. This explains the absence of any fishbone
structure due to overlap of the tail with periodic images.
We used the same method as for the axial density radial
distribution to remove volume and cubic lattice artifacts.
Using the fit formula (17), we obtain for the matter density
α ¼ 1.3ð1Þ, r0 ¼ 0.23ð1Þ fm and for the charge density
α ¼ 1.32ð5Þ, r0 ¼ 0.34ð1Þ fm. Similarly to the axial dis-
tributions, we define the matter and charge square radii by

hr2iM ¼
R
∞
0 drr4fð11Þ1 ðrÞR
∞
0 drr2fð11Þ1 ðrÞ

;

hr2iC ¼
R
∞
0 drr4fð11Þγ0 ðrÞR
∞
0 drr2fð11Þγ0 ðrÞ

;

and results are given in Table XI, as well as the position of
the node of the various distributions. We observe that
hr2iM < hr2iA < hr2iC but that the axial distribution

FIG. 24. Top: Charge densities ar2fð11Þγ0 ðr=aÞ, ar2fð12Þγ0 ðr=aÞ, and ar2fð22Þγ0 ðr=aÞ for the CLS ensemble E5. Bottom: Matter densities

ar2fð11Þ1 ðr=aÞ, ar2fð12Þ1 ðr=aÞ, and ar2fð22Þ1 ðr=aÞ for the CLS ensemble E5.

TABLE XI. Left: Square radius of the ground-state radial

distributions fð11Þγ0 ðrÞ, fð11Þ1 ðrÞ, and fð11Þγiγ5 ðrÞ and for the lattice
ensemble E5. Right: Position of the node rn of the radial

distributions r2fð12Þγ0 ðrÞ, r2fð12Þ1 ðrÞ, and r2fð12Þγiγ5 ðrÞ for the lattice
ensemble E5.

hr2iM [fm2] hr2iC [fm2] hr2iA [fm2]

0.213(10) 0.380(8) 0.358(15)

ðrnÞM [fm] ðrnÞC [fm] ðrnÞA [fm]

0.311(3) 0.484(6) 0.369(4)

FIG. 25. Axial, matter, and charge densities ar2fð11Þα ðr=aÞ
obtained after the subtraction of volume effects for the CLS
ensemble E5. The normalization is such that the area below the
curve is one.
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decreases more slowly at large r, as can been seen in
Fig. 25. This explains why volume artifacts are almost
absent for the matter density but are large in the case of the
axial density. It is interesting to note that the hierarchy
hr2iM < hr2iC has been observed in light bound systems,
like the pion and the proton [52].

APPENDIX B: CUBIC LATTICE ARTIFACTS

On hypercubic lattices, the SO(3) rotational symmetry is
explicitly broken down to the isometry group Hð3Þ.
Therefore, a function which depends only on r in the
continuum can, on the lattice, take different values if sites
are related by an SO(3) symmetry (same r) but are not
invariant under H(3) (or, equivalently, if they belong to
different orbits). These differences should vanish as the
lattice spacing goes to zero. We follow the method
presented in Refs. [29,53] to subtract such lattice artifacts.
Of course, other lattice artifacts are still present after this
procedure (in particular, lattice artifacts that depend only on
r2) and they are removed by taking the continuum limit.
The time component of the axial density distribution is odd
in the direction i and therefore is not a function of r only. In
this case, the value of the function is not expected to be the
same for different radii belonging to the same orbit, even in
the continuum limit. Therefore, the technique presented
here can be applied to the spatial component only.

Starting with the dimensionless distribution a3fðnmÞγiγ5 ðrÞ
computed on the lattice by the sGEVP method and
assuming that, at fixed r, the lattice artifacts vanish
smoothly to zero when the continuum limit is taken, one
can write the following Taylor expansion (valid near
a ¼ 0):

a3fαðr2; r½4�; r½6�Þ

¼ a3fαðr2; 0; 0Þ þ
X
n

r½2i�r½2j�…|fflfflfflfflfflffl{zfflfflfflfflfflffl}
n

×
∂nða3fαÞ

∂r½2i�∂r½2j�…





ðr2;0;0Þ

;

ðB1Þ

where r½2k� ¼P
3
i¼1 r

2k
i is the index for the set of orbits [it

can be shown that any polynomial function invariant under
the isometry group H(3) is a function of the three invariants
r½n�, n ¼ 2, 4, 6]. Here, a3fαðr2; 0; 0Þ corresponds to the
radial distribution free of cubic artifacts. Neglecting for the
moment volume effects, the only dimensionless quantities
are r=a, r½2i�=a2i, and r½2i�=r2i, and any (dimensionless)
polynomial function in r½2i� can be written in terms of the
monomials �

r½2n�a2k

r2nþ2k

�m

;

where n ¼ 1, 2, 3 and k > 0 since we want lattice artifacts
to vanish in the continuum limit. Thanks to OðaÞ

improvement, one expects first lattice artifacts to be
proportional to a2 and there are only two dimensionless
terms:

a2r½4�

r6
;

a2r½6�

r8
: ðB2Þ

At order a4, the new terms would be

a4r½4�

r8
;

a4r½6�

r10
;

�
a2r½4�

r6

�
2

;

�
a2r½6�

r8

�
2

: ðB3Þ

Therefore, based on Eqs. (B1) and (B2), and considering
only a2 artifacts for the moment, we expect

a3fαðr2; r½4�; r½6�Þ ¼ a3fαðr2; 0; 0Þ þ r½4�
∂ða3fαÞ
∂r½4�






ðr2;0;0Þ

þ r½6�
∂ða3fαÞ
∂r½6�






ðr2;0;0Þ

;

where, based on the previous dimensional analysis,

∂ða3fαÞ
∂r½4�






ðr2;0;0Þ

∼
a2

r6
;

∂ða3fαÞ
∂r½6�






ðr2;0;0Þ

∼
a2

r8
:

When different orbits exist with the same value of r, the
previous derivatives can be estimated numerically by
making a linear regression. Then, based on dimensional
arguments, the derivative is extended to all values of r by
fitting the result in b=rα, where b is a constant and α ¼ 6, 8,
respectively, for r½4;6� cubic artifacts. However, since only a
small subset of our r2 orbits contain more than three points,
the numerical estimation of the derivatives is difficult. This
difficulty is even worse since artifacts r½6� already appear at
leading order in a compared to what happens in momentum
space [53] where p½6� and p½8� artifacts appear only at order
a4 and a6, respectively. To circumvent this problem, a more
powerful method was proposed in Ref. [53]: the idea is to
fit the full data sample by a function with the form

TABLE XII. Number of independent radii #r ¼ ðN þ 1ÞðN þ
2ÞðN þ 3Þ=6 (where N ¼ L=2), the number of H(3) orbits, the
number of H(3) orbits which contain more than one point and
contribute to the fit formula given by Eq. (B4), and the number of
data points used in the fit.

#r # Orbits # Fitted orbits # Data

L ¼ 32 969 464 284 789
L ¼ 48 2925 1057 768 2636
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a3fαðr2; r½4�; r½6�Þ

¼ a3fαðr2; 0; 0Þ þ A ×
a2r½4�

r6
þ B ×

a2r½6�

r8
; ðB4Þ

where a3fαðr2; 0; 0Þ is taken as a free parameter which is
fitted with the other dimensionless coefficients A and B. In
particular, no assumption is made on the functional form of
fαðr2; 0; 0Þ. Of course, when only one point belongs to an
orbit, it does not contribute to the fit since, in this case,

fαðr2; 0; 0Þ can always be adjusted freely. In Table XII, the
number of fit parameters and the amount of data available
in the fit is given for each lattice resolution used here.
This analysis holds as long as periodic images do not

contribute: if this is not the case the assumption that the
function is in r only breaks down. However, it is still
acceptable if the deformation of the tail due to interaction
with periodic images is negligible, which is the case at
small r in the case of density distributions.
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