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A new technique is explored for the Monte Carlo sampling of complex-valued distributions. The method
is based on a heat bath approach where the conditional probability is replaced by a positive representation
of it on the complex plane. Efficient ways to construct such representations are also introduced. The
performance of the algorithm is tested on small and large lattices with a λϕ4 theory with quadratic nearest-
neighbor complex coupling. The method works for moderate complex couplings, reproducing reweighting
and complex Langevin results and fulfilling various Schwinger-Dyson relations.
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I. INTRODUCTION

In many physical problems, including statistical
mechanics and field theory on the lattice, one has to deal
with a large number of variables. Simple estimates show
that, when confronted with a generic integral of high
dimensionality, the Monte Carlo method is often the
most efficient strategy [1]. In a typical application the
configurations x of the physical system have a probability
distribution PðxÞ in the form of a Boltzmann weight,
PðxÞ ¼ e−SðxÞ, where SðxÞ is the action (or the
Hamiltonian) of the configuration, and expectation values
of the observables AðxÞ come as averages weighted with
PðxÞ. The standard approach is then to produce a sample of
the distribution PðxÞ, and obtain an estimate of the expect-
ation value of the observables from the arithmetic mean of
that sample. Sampling a distribution means to produce
points x with a frequency that in average equals PðxÞ. In
this sense, when the weights of the distribution are negative
or complex a direct sampling becomes meaningless. Such
complex weights do appear in many instances, e.g., in the
presence of fermions [2], in quantum chromodynamics
with a baryon number chemical potential [3] or in real time
path integral formulations of quantum mechanics (as
opposed to Euclidean time ones). The impossibility of a
direct sampling of the distribution of interest in those
cases constitutes the well known sign (or phase) problem.
To face this situation a number of ideas, specific or generic,
have been proposed in the literature (see for instance
Refs. [4–22]), yet, at present there is no efficient approach
to deal with the problem of sampling generic complex
distributions in a systematic way. Certainly nothing as
universally valid and efficient as, e.g., the Metropolis
algorithm is known for the complex case.
Since a straight sampling of a complex distribution is not

possible some oblique approach is needed. Let us mention
just two techniques. One is to sample a positive auxiliary

probability distribution P0ðxÞ, introducing a compensating
weight PðxÞ=P0ðxÞ in the observables. This is the reweight-
ing technique. This method is very general, but it suffers
from the well known overlap problem for large sys-
tems [10,23].
The other possibility we mention is based on relaxing the

concept of sampling from configurations to observables.
Instead of producing sequences of suitable distributed
points (configurations) and then computing the observables
for them, it is sufficient to have an algorithm producing, for
each observable, a stochastic sequence of values in such a
way that the arithmetic mean of those sequences reproduces
(in average) the correct expectation values. The key point
here is that the random values assigned to the observables
need not, and in general will not, correspond to actual
configurations of the system. Since there is a lot of freedom
to do this (for each observable, many different distributions
can be devised having the same expectation value) a
practical way to proceed is by generating complex con-
figurations (regarded as basic observables), for which the
other observables are computed. This is the representation
technique which is the main focus of this work.
The representation technique relies on constructing a

suitable real and positive distribution, ρðzÞ, defined on
the complex plane Cd, representing the original complex
probability PðxÞ defined on Rd. This means that for any
observable A, the expectation value of AðxÞ with PðxÞ
equals the expectation value of AðzÞ with ρðzÞ, where AðzÞ
stands for the analytic continuation of AðxÞ from the real to
the complex manifold. Standard importance sampling is
then applied to ρðzÞ.
Note that in the representation approach h1i ¼ 1 auto-

matically. This is in contrast to reweighting. There, barring the
rare cases inwhich the normalizations ofP andP0 are known,
the normalization ensuring h1i ¼ 1 has to be enforced
a posteriori, using the very Monte Carlo calculation.
The idea of trading the complex distribution PðxÞ by a

positive representation of it is implicit in the complex*salcedo@ugr.es
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Langevin approach [4,24]. Unfortunately the complex
Langevin approach is not the definitive answer to the
complex sampling problem. For one reason, it is limited to
actions SðxÞ having an analytical extension on the complex
plane, and for another, the algorithm is not always con-
vergent, or even worse, sometimes it converges to wrong
equilibrium solutions, that is, to ρðzÞ which are represen-
tations of complex distributions different from the target
distribution PðxÞ [7,25–29].
As alternatives to the complex Langevin approach,

Söderberg first considered representations not directly
based on a complex Langevin algorithm [30]. An explicit
formulation and discussion of the concept of representa-
tions by themselves was presented in [9]. There, explicit
representations were constructed for many complex prob-
abilities, in particular, Gaussian times polynomial of any
degree and any number of dimensions and arbitrary
complex distributions with support at a single point (these
are the sum of derivatives of Dirac deltas at the same point).
Necessary and sufficient conditions for the existence of
positive representations in Rn were given in [31], as well as
the proof of existence for n ¼ 1. In [32] it was shown that
essentially any complex probability onRn admits a positive
representation, as do complex probabilities defined on
arbitrary compact Lie groups (this covers the case of
periodic distributions) and explicit constructive methods
were presented. Recent work along the same lines of
representations not based on complex Langevin can be
found in [33,34].
Despite the results in [9,32] the practical problem of

representing and sampling complex distributions is not
solved for two reasons related to locality and uniqueness.
As is well known the Monte Carlo approach is more

efficient than other approaches when the number of
variables (degrees of freedom) involved, i.e., the number
of dimensions of the configuration manifold, is large.
However a good performance of the method requires the
action SðxÞ (and by extension, the probability) to be local.
By local it is meant that the action is the sum of terms, each
of them depending on a few variables and each variable
appearing only in a few such terms. The requirement of
locality is often essential to have a numerically efficient
update procedure of the configurations in Monte Carlo
calculations. For example, the coupling between too many
variables is the reason why perfect actions [35] are not
numerically favored in practice.
Therefore a key question to carry out a Monte Carlo

sampling of a complex probability by means of a repre-
sentation is whether ρðzÞ is local or not. The great virtue
of the complex Langevin approach is that the algorithm
retains the locality of the original complex action. On the
contrary, the constructions of representations found in
[9,32] are nonlocal even if the complex action is local.
The second problem is that of uniqueness. The repre-

sentation of a given PðxÞ is not unique. Many different ρðzÞ

produce the same expectation values on the set of hol-
omorphic observables [9]. Most such representations are
useless since they go deeply into the complex plane, where
analytically continued observables behave wildly and
variances become large. This implies that in the represen-
tation technique (including complex Langevin) there is an
analog of the overlap issue existing in the reweighting
approach; a representation may be formally correct yet
produce unacceptable fluctuations in the Monte Carlo
estimates.
In view of these impediments to the direct construction

of a representation for a given complex distribution PðxÞ in
the many-dimensional case, here we explore a heat bath
approach. The update is carried out sequentially for each of
the variables, keeping the remaining variables fixed to their
current value. To do the update of a variable, we replace its
conditional probability, a complex function, by a positive
representation of it on the complex plane. The point of
following this procedure is that, being the conditional
probability a function of a single variable, obtaining a
representation for it is relatively easy and inexpensive. The
locality issue is bypassed since, if the complex action is
local, the representation of the conditional probability will
also depend locally on the remaining variables. The quality
of the representation, regarding variances, can also be
controlled more easily in the one-dimensional case.
Nevertheless, in the complex case we are not protected by

the standard convergence theorems for Markov chains based
on positive probabilities [1], and this can lead to difficulties,
as already found in the complex Langevin approach. That
problems may arise in a complex heat bath approach can
be understood from the following consideration. Assume
Pðx1; x2Þ is the complex probability to be sampled. One
would be safe by constructing the positive two complex-
dimensional representation ρðz1; z2Þ. However, if a Gibbs
approach is used, one needs to represent instead the condi-
tional probability Pðx1jz2Þ ¼ Pðx1; z2Þ=Pðz2Þ, where the
marginal probability Pðz2Þ ¼

R
dx1Pðx1; z2Þ is required at

complex values of z2. The trouble is that, even if Pðx2Þ is
never zero on the real axis, it can have zeros on the
complex plane.
In any case, in our view, presently lacking reliable and

general sampling methods of complex probabilities, it
seems worthwhile to explore and test new approaches to
assess their performance. This work is organized as
follows. In Sec. II we discuss the concept of representation
(Sec. II A) and show that the complexness of PðxÞ puts
restrictions on how localized the representation can be on
the complex plane, i.e., on the quality of the possible
representations (Sec. II B). Also, in Sec. II C constructive
representation techniques are presented, where the quality
of the representations can be optimized, both in one
dimension and in higher dimensions. Section III is devoted
to discuss and analyze the complex heat bath approach. The
method is introduced in Sec. III A and it is applied to a
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quadratic action on a hypercubic lattice in Sec. III B.
A deeper study of the performance of the algorithm is
presented in Sec. III C. There a λϕ4 theory with complex
nearest-neighbor complex coupling is analyzed. The
Monte Carlo results of the complex heat bath algorithm
are compared to those obtained from reweighting and
complex Langevin. Conclusions are presented in Sec. IV.

II. COMPLEX PROBABILITIES
AND REPRESENTATIONS

A. Concept of representation of a
complex probability

We will call complex probability to any normalizable
complex distribution PðxÞ. After normalization, it may take
negative or complex values instead of being real and
positive for all x. The expectation values of observables
AðxÞ are obtained as usual through

hAiP ¼
R
dμðxÞPðxÞAðxÞR
dμðxÞPðxÞ : ð2:1Þ

Here dμðxÞ is the appropriate positive measure in the
x-manifold. In what follows we often assume x ∈ Rn, or a
periodic version of Rn, and dμðxÞ ¼ dnx.
A representation of P is an ordinary probability ρðzÞ

(i.e., a normalizable, real and positive distribution) defined
on the complexified manifold, Cn, and such that it produces
the same expectation values as P upon analytical extension
of the observable, that is,

hAðxÞiP ¼ hAðzÞiρ; ð2:2Þ

where AðzÞ refers to the analytical extension of AðxÞ from
Rn to Cn, and

hAiρ ¼
R
d2nzρðzÞAðzÞR
d2nzρðzÞ : ð2:3Þ

Wewill often refer to the real manifold as the real axis of
Cn. In the periodic case ρðzÞ is normalized as (assuming a
2π period in each direction)

Z
½0;2π�n

dnx
Z
Rn

dnyρðxþ iyÞ ¼ 1; ð2:4Þ

so the complexified manifold is noncompact in the imagi-
nary direction.
Strictly speaking, Eq. (2.2) expresses that ρ is a repre-

sentation of P valid for the observable A. Generically we
will say that ρ is a representation of P when it is valid for a
large set of sufficiently well behaved observables or test
functions. One can specify the set of test functions A as that
of polynomials of z, or that of plane waves, expð−ikzÞ,
k ∈ Rn. Since the plane waves grow exponentially in the

complex plane the latter set is more restrictive in general,
nevertheless, we show below that often the support of ρ can
be chosen to remain within a finite strip along the real axis.
This avoids any problem related to the exponential growth
of AðzÞ. In the case of periodic distributions the set of
Fourier modes expð−ikzÞ, k ∈ Zn is a natural choice.
If the support of a representation fills Cn, observables

with singular points cannot be reproduced by it. However,
representations are constructed below with support smaller
than Cn. In that case some observables with singularities on
the complex plane can also be reproduced. This is guar-
anteed when the singularities lie outside some simply
connected region containing both the support of the
representation and the real axis. A one-dimensional exam-
ple is PðxÞ ¼ expð−ðx − iÞ2=2Þ= ffiffiffiffiffiffi

2π
p

, which can be rep-
resented by ρðx; yÞ ¼ δðy − 1Þ expð−x2=2Þ= ffiffiffiffiffiffi

2π
p

. This
representation correctly reproduces AðxÞ ¼ 1=ðx − z0Þ pro-
vided Imz0 is either negative or larger than one.

B. Conditions on the support of the representations

The application of Monte Carlo sampling to a complex
distribution, by means of a representation of it, differs in an
essential aspect from the standard case of positive distri-
butions. In the standard case, one often makes a direct
sampling of the distribution. Rarely a reweighting method
is used since this tends to increase the variance in the
expectation values (for generic observables). In the com-
plex case one has to somehow construct the representation
and such representation is by no means unique. Any
target complex probability PðxÞ admits many valid repre-
sentations, all of them formally correct but vastly different
as regards to performance. The nonuniqueness implies
in particular that the expectation value of nonholomorphic
observables, Bðz; z�Þ, can be different for different repre-
sentations. An estimate of the variance, e.g., B ¼ jAj2 −
jhAij2 [where AðzÞ is holomorphic], follows this rule and
so, while hAi does not depend on the representation, its
Monte Carlo estimate does.
For instance, if ρðzÞ is a representation, it is easy to show

that the new distribution ρ0ðzÞ obtained by convolution
of ρ with any positive distribution of the type Cðjzj2Þ (i.e.,
rotationally symmetric) provides a new representation [9].1

This new representation will be wider, more spatially
extended, than the previous one, and this is an undesirable
feature. In general one will want a representation ρðzÞ as
localized and close to the real axis as possible. The reason
is that most observables will grow, often exponentially, as
one departs from the real axis, and as a consequence the
statistical fluctuations also grow, rendering a Monte Carlo
approach less efficient.

1Many more new representations can be obtained by adding a
null representation, ρ0, i.e., one with vanishing expectation value
for any holomorphic observable, however, there is no guarantee
that the sum will be positive definite.
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The overlap problem of the reweighting technique for
positive distributions exists, to some extent, also in the
representation technique. In principle, the best representation
is the most localized one, in the sense that variances of
observables will be smaller. Incidentally, one sensible way to
measure the localization is through the (relative) entropy,2

SðρÞ ¼ h− logðρ=ρrefÞiρ; ð2:5Þ
rather than the variance matrix of z. To see this consider a
ρðzÞ composed of two well-separated narrow Gaussian
functions. The quantity hjz − hzij2iρ measures the typical
separation between points in the support of ρðzÞ and this will
be large if the two Gaussian functions are far from each
other. On the other hand the entropy is independent of the
separation (as long as the two Gaussians have a negligible
overlap). One can obtain the expectation values of observ-
ables for each of the Gaussians with small variance (since
they are narrow) and then combine the result with a final
small error. As said, proximity to the real axis is convenient
too, however, for a valid representation this cannot be
controlled since it is dictated by PðxÞ as we argue below.
From the point of view of the localization, the best choice

would be ρðzÞ ¼ PðxÞδðyÞ, where y refers to the imaginary
axis coordinate. Unfortunately such representation is not
positive for complex P. In fact, there is a kind of uncertainty
principle implying that the less positive P is, the wider ρ
should be on the complex plane. The width here refers to the
extension of the support of ρ in the imaginary direction.
To make this principle more precise let us consider the

one-dimensional case, x ∈ R, although similar consider-
ations hold for any number of dimensions. Let P and ρ be
normalized, and

~PðkÞ ≔
Z

dxe−ikxPðxÞ ¼ he−ikxiP ð2:6Þ

then, using z ¼ xþ iy,

j ~PðkÞj ¼ jhe−ikxiPj ¼ jhe−ikziρj ≤ jhje−ikzjiρj ¼ hekyiρ:
ð2:7Þ

Therefore, if the support of ρ lies in the region y ≤ Y1, it
follows that hekyiρ ≤ ekY1 for all positive k, and hence

j ~PðkÞj ≤ ekY1∀k > 0. Likewise, if the support of ρ lies in
y ≥ Y2, necessarily j ~PðkÞj ≤ ekY2 for all negative k. It
follows that

Y1 ≥ Yþ ≡max
k>0

�
1

k
log j ~PðkÞj

�
;

Y2 ≤ Y− ≡min
k<0

�
1

k
log j ~PðkÞj

�
: ð2:8Þ

In other words, any representation ρ must have some
support in the region y ≥ Yþ as well as in the region
y ≤ Y−. If the support of ρ falls in a strip Y2 ≤ y ≤ Y1 the
width of the strip is restricted by the conditions Y1 ≥ Yþ
and Y2 ≤ Y−. These formulas extend immediately to the
case of periodic distributions.
As an example, consider the one-dimensional action

SðxÞ ¼ β

4
x4 þ iqx; β > 0: ð2:9Þ

For β ¼ 0.5 and q ¼ 2 one finds Yþ ¼ 4.29. Thus a proper
representation of this complex action must have some
support above y ¼ 4.29. As it turns out, the complex
Langevin algorithm applied to this action with q positive
will produce an equilibrium distribution entirely located
below the real axis. This is because once the random walk
goes below the real axis it can never get above it.3 Therefore
we know, without doing the actual calculation, that the
complex Langevin algorithm converges to the wrong
equilibrium distribution in this case. Actually, this action
is not at all pathological and it admits a valid representation
of the two-branch type described below, in Sec. II C 3.
These bounds can be easily generalized to other observ-

ables and any number of dimensions as follows: Let PðxÞ
be a complex probability in Rn and ρðzÞ a representation of
P, and let AðzÞ be a test function. Then

jhAðxÞiPj ¼ jhAðzÞiρj ≤ maxfjAðzÞj; z ∈ suppðρÞg:
ð2:10Þ

This inequality puts conditions on the support of ρ. Indeed,
given an observable A, its expectation value a does not
depend on the choice of ρ. Then one can define the setA of
points where jAðzÞj ≥ jaj. The inequality implies that the
support of any proper representation of P must have some
overlap with A, and this for all test functions A.
For instance, again for the action of Eq. (2.9) with

β ¼ 0.5 and q ¼ 2, one finds that h1=ðx − iÞi ¼ −2.82i.
Thus, the set A is the disk of radius 0.35 centered at z ¼ i.
Since the lower half plane has no overlap with this disk, any
representation without some support above the real axis can
automatically be ruled out.4

2In Eq. (2.5), ρref is some fixed reference distribution. ρ and
ρref are positive and normalized.

3We always refer to the standard implementation of the
complex Langevin method which has only horizontal noise
and with no kernel.

4A tricky point is that the argument works because the
singularity at z ¼ i would lie beyond the support of any such
representation and so for them 1=ðx − iÞ would be an acceptable
test function. The two-branch representations (discussed below)
for this action have support above the singularity and so for them
1=ðx − iÞ is not an acceptable test function, and in fact, their
support has no overlap with the disk jz − ij < 0.35.
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C. Construction of explicit representations

Barring those of [9,32], the representations of complex
probabilities existing in the literature are limited to a few
cases: quadratic actions, which can be obtained analyti-
cally, complex Langevin constructions, which have only an
empirical basis, and some representations constructed by
first choosing a suitable ρðzÞ and then finding to which
complex probability it corresponds. This can be done,
e.g., by means of the projection [7]

hAðzÞiρ ¼
Z

dnxdnyρðx; yÞAðxþ iyÞ

¼
Z

dnx

�Z
dnyρðx − iy; yÞ

�
AðxÞ

≕
Z

dnxPðxÞAðxÞ ¼ hAðxÞiP: ð2:11Þ

In this section we discuss some new explicit construc-
tions of representations for generic complex probabilities.
Further constructions, including the case of complex
probabilities defined on a compact Lie group can be found
in [32].
Note that the need of an analytical extension of PðxÞ

itself (in addition to that of the observables) is not a
general requirement to have a representation. It is an
idiosyncracy of the complex Langevin algorithm [which
actually requires a holomorphic logPðxÞ] and of some
other approaches (e.g., the one-branch representations,
and the complex Gibbs sampling discussed below) while
other methods apply to generic normalizable complex
distributions.

1. An explicit representation in one dimension

The one-dimensional distribution

QðxÞ ¼ δðxÞ þ δ0ðxÞ ð2:12Þ

admits the representation

qðzÞ ¼ 1

8π

����1 − z
2

����
2

e−jzj2=4 ð2:13Þ

as is readily verified by checking that hxniQ ¼ hzniq for all
non-negative integers n.
This basic representation can then be used to construct

representations of arbitrary complex probabilities in any
number of dimensions [32]. Here we show this for a one-
dimensional PðxÞ which is assumed to be normalized. Let
us decompose PðxÞ as

PðxÞ ¼ P0ðxÞ þ F0ðxÞ;

P0ðxÞ > 0;
Z

dxP0ðxÞ ¼ 1: ð2:14Þ

P0ðxÞ can be chosen in many ways and this choice fixes
FðxÞ: Since both P and P0 are normalized, the function

FðxÞ ¼
Z

x

−∞
ðPðx0Þ − P0ðx0ÞÞdx0 ð2:15Þ

vanishes for large x. This F can be written as FðxÞ ¼
P0ðxÞhðxÞ where hðxÞ will be a complex function in
general. In this case, a representation of PðxÞ is provided
by

ρðzÞ ¼
Z

dxd2z0P0ðxÞqðz0Þδðz − x − hðxÞz0Þ

¼
Z

dxP0ðxÞ
qððz − xÞ=hðxÞÞ

jhðxÞj2 : ð2:16Þ

[δðz − z0Þ refers to the two-dimensional delta on the
complex plane.] To verify that this ρðzÞ is really a
normalized representation of PðxÞ let us apply it to a
generic observable [using the first form in Eq. (2.16)]

hAiρ ¼
Z

dxd2z0P0ðxÞqðz0ÞAðxþ hðxÞz0Þ: ð2:17Þ

Now, because qðzÞ is a representation of QðxÞ and AðzÞ is
analytical, it follows that

hAiρ ¼
Z

dxdx0P0ðxÞQðx0ÞAðxþ hðxÞx0Þ

¼
Z

dxP0ðxÞðAðxÞ − hðxÞA0ðxÞÞ

¼
Z

dxPðxÞAðxÞ

¼ hAðxÞiP ð2:18Þ

[where A0ðxÞ denotes the derivative of AðxÞ].
The formula in Eq. (2.17) already indicates how to carry

out a sampling of the complex probability PðxÞ, namely,
sample xwith P0ðxÞ and z with qðzÞ and average the values
of the observable computed at xþ hðxÞz.

2. One-branch representations in one dimension

The Monte Carlo method suggested in Eq. (2.17) can
be extended to any number of dimensions, however,

the determination of the function ~hðxÞ (which is far from
unique) is not so straightforward as in the one-dimensional
case [32]. Even in the one-dimensional case the construc-
tion presented above has the problem that the support of
ρðzÞ will be spatially more extended than necessary. This
problem is common to constructive approaches of generic
type. Essentially, the procedure to obtain Eq. (2.16) has
been to rewrite PðxÞ in the form
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PðxÞ ¼ P0ðxÞ þ ðP0ðxÞhðxÞÞ0

¼
Z

dx0P0ðx0Þðδðx0 − xÞ − hðx0Þδ0ðx0 − xÞÞ ð2:19Þ

and proceed to replace δðx0 − xÞ − hðx0Þδ0ðx0 − xÞ by a
representation of it. The width of the representation of
δðxÞ − hδ0ðxÞ on the complex plane increases with jhj, with
a coefficient which depends on the phase of h. In the worst
cases, Y� ¼ �jhj, for h ¼ �ijhj, respectively [Y� were
introduced in Eq. (2.8)].
As a rule, the approaches such as that in Eq. (2.19), based

on writing the target complex probability P as

PðxÞ ¼
X
n

wnpnðxÞ;

ρðzÞ ¼
X
n

wnρnðzÞ; ð2:20Þ

where pnðxÞ is some fixed basis of normalized complex
probabilities with known representations ρnðzÞ and the wn
are some positive weights, allow for an immediate repre-
sentation of PðxÞ but the width of ρðzÞ along the real axis
will be fixed by that of the ρnðzÞ (in fact, by the worst case),
so in general ρðzÞ will be wider than necessary.
As it turns out, better representations, with width closer

to the bounds Y� discussed above, can be obtained by
adapting the representation to the target complex proba-
bility PðxÞ. An obvious example is a probability of the type

PðxÞ ¼ P0ðx − aÞ; ð2:21Þ

where P0ðxÞ is positive (for real x) and the constant
a ¼ aR þ iaI may be complex. In this case ρðzÞ ¼
P0ðx − aRÞδðy − aIÞ (z ¼ xþ iy) is a valid representation,
and in fact the best one. The support lies on a straight
line parallel to the real axis. We will refer to representations
with support on a single line as one-branch
representations.5

Not all complex probabilities admit a one-branch rep-
resentation. For PðxÞ defined on R, this requires the
existence of a path zðtÞ on the complex plane connecting
x ¼ �∞, thus ensuring that integration along the path is
equivalent to integration along the real axis, such that
PðzÞdz stays positive, ensuring a positive weight [30]. In
this case PðxÞ can be sampled by using a standard inversion
method, namely, for u ∼ Uð0; 1Þ, the value of z is deter-
mined by the condition u ¼ R

z
−∞ Pðz0Þdz0. For periodic

PðxÞ, the path must also be periodic. An example is
shown in Fig. 1 for PðϕÞ ¼ Ne−ae

iϕ−be−iϕ with a ¼ 0.5 and
b ¼ 0.15i.

Although one-branch representations do not always exist
for a given PðxÞ a possible device is to split PðxÞ as P ¼
P1 þ P2 with P1 chosen in such a way that a representation
is known for it and P2 ¼ P − P1 admits a one-branch
representation. The idea here is that a common P1 can be
used for a family of P, and only the concrete one-branch
representation of P2 has to be constructed in each case,
e.g., by integration of dz=du ¼ 1=P2ðzÞ.

3. Two-branch representations in one dimension

Representations with support on two lines, called here
two-branch representations, exist quite generally for peri-
odic and nonperiodic complex probabilities. The ones we
consider here are of the type

ρðzÞ ¼ Q1ðxÞδðy − Y1Þ þQ2ðxÞδðy − Y2Þ;
Q1;2ðxÞ ≥ 0 Y1 ≥ Y2; ð2:22Þ
so the support is along the lines y ¼ Y1 and y ¼ Y2 parallel
to the real axis. Here Q1ðxÞ and Q2ðxÞ are two suitable
positive functions. For definiteness we have chosen
Y1 ≥ Y2. Note that requiring this ρðzÞ to be a representation
of PðxÞ is equivalent to imposing the relation

PðxÞ ¼ Q1ðx − iY1Þ þQ2ðx − iY2Þ ð2:23Þ
upon analytical extension of functions Q1;2ðzÞ which are
positive on the real axis. Indeed,

Z
d2zρðzÞAðzÞ

¼
Z

dxðQ1ðxÞAðxþ iY1Þ þQ2ðxÞAðxþ iY2ÞÞ

¼
Z

dxðQ1ðx − iY1Þ þQ2ðx − iY2ÞÞAðxÞ: ð2:24Þ

0 1 2 3 4 5 6
3

2

1

0

1

2

3

FIG. 1. One-branch paths on the complex plane ϕ, parametrized
by 0 ≤ u ≤ 1, for the periodic complex probability with action
SðϕÞ ¼ aeiϕ þ be−iϕ, with a ¼ 0.5 and b ¼ 0.15i. From bottom
to top, the paths start at ϕ ¼ 0.2i; 0.3i; 0.5i; i; 2i. The three
middle paths are periodic and so any of them provides a one-
branch representation of the complex probability.

5Of course, if PðxÞ happens to have the form in Eq. (2.21) the
representation ρðzÞ ¼ P0ðx − aRÞδðy − aIÞ works in any number
of dimensions.
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In fact for two given distinct Y1;2, the real functionsQ1;2

are unique in the noncompact case. For periodic probability
distributions the only ambiguity is an additive constant
which can be moved between the two functions.
Let us first analyze the noncompact case, that is, PðxÞ

defined on R. We further assume PðxÞ to be normalized.
Taking a Fourier transform

~PðkÞ ¼
Z

dxPðxÞe−ikx

¼
Z

d2zρðzÞe−ikz

¼ ~Q1ðkÞekY1 þ ~Q2ðkÞekY2 : ð2:25Þ

Imposing now the condition thatQ1;2ðxÞ are real, and hence
~Q�
1;2ðkÞ ¼ ~Q1;2ð−kÞ, one obtains

~Q1ðkÞ ¼
e−kY2 ~PðkÞ − ekY2 ~P�ð−kÞ

2 sinhðkðY1 − Y2ÞÞ
;

~Q2ðkÞ ¼
e−kY1 ~PðkÞ − ekY1 ~P�ð−kÞ

2 sinhðkðY2 − Y1ÞÞ
: ð2:26Þ

The functions ~Q1;2ðkÞ are well behaved at k ¼ 0 since
~Pð0Þ ¼ 1 (any real normalization would do as well) and

~Q1ð0Þ ¼
Imhxi − Y2

Y1 − Y2

;

~Q2ð0Þ ¼
Imhxi − Y1

Y2 − Y1

: ð2:27Þ

So a real solution exists and is unique. An obvious
necessary condition for Q1;2ðxÞ to be non-negative is
~Q1;2ð0Þ ≥ 0, hence

Y2 ≤ Imhxi ≤ Y1: ð2:28Þ

Once again this relation shows that a complex PðxÞ requires
a representation with a minimum width around the
real axis.6

The formulas of ~Q1;2ðkÞ can be reexpressed as con-
volutions in x-space,

Q1ðxÞ ¼ −
1

2ðY1 − Y2Þ
Im

�
tanh

�
πðxþ iY2Þ
2ðY1 − Y2Þ

�
� PðxÞ

�
;

Q2ðxÞ ¼
1

2ðY1 − Y2Þ
Im

�
tanh

�
πðxþ iY1Þ
2ðY1 − Y2Þ

�
� PðxÞ

�
:

ð2:29Þ

(These formulas rely on the assumption Y1 > Y2.) Note
that, despite the presence of tanh, the functions Q1;2ðxÞ
vanish for large x thanks to the condition

R
dxImPðxÞ ¼ 0.

The construction guarantees that the functions Q1;2ðxÞ
are real. Although lacking a detailed proof (the proof exists
for the compact case, below), one empirically finds that
Y1;2 can be chosen so that these functions become non-
negative. This happens for Y1 and −Y2 sufficiently large.
Obviously, from our discussion in Sec. II B, it follows that
this requires Y1 ≥ Yþ and Y2 ≤ Y− [and hence also the
weaker condition in Eq. (2.28)].
We have not observed a significant improvement by

optimizing Y1;2 separately, so for simplicity we will adopt
the symmetric choice

Y ≡ Y1 ¼ −Y2 > 0: ð2:30Þ

Except in the trivial case of P positive, Q1 and/or Q2 have
negative regions for too small values of Y. What is found is
that as Y grows, the minima ofQ1 andQ2 grow as well until
Y reaches a critical value. From then on Q1;2ðxÞ are non-
negative and the minima jump to x ¼ �∞ where these
functions vanish. So the critical value of Y is such that
Q1;2 ≥ 0 and Q1 or Q2 vanish at some finite point.
From the numerical point of view the critical value of Y

is the optimal one, since, as a rule, the closer the support of
ρ to the real axis the smaller the variance in the observables.
This rule holds in all approaches based on representing
complex probabilities, including complex Langevin. In the
two-branch case, probabilities which require relatively
large values of Y can be considered as numerically hard,
while those admitting small values are soft.
Examples of two-branch representations are displayed in

Fig. 2. One such example is the complex action
SðxÞ ¼ βx2=2 with β ¼ 1þ i using Y ¼ 0.7. Another is
PðxÞ ¼ δðxÞ þ δ0ðxÞ, using the optimal value Y ¼ 1.58. Of
course, in this latter case the convolutions in Eq. (2.29) can
be obtained analytically. The size of the representation qðzÞ
in Eq. (2.13) can be estimated from hjzj2iq ¼ 6. This is
larger than that of the two-branch one hjzj2iρ ≈ 5. Actually
in the two-branch case y is fixed to known values, either Y
or −Y, with equal weight, so this variable does not add to
the variance. In this view, recalling our discussion on the
entropy in Sec. II B, the true uncertainty (understood as
uncontrolled fluctuation) would be better estimated from
hx2iQ1

≈ 2.5. This is particularly clear in the present
example due to Q1 ¼ Q2, because hAi ¼ hAðxþ iYÞþ
Aðx − iYÞiQ1

exactly, with no added fluctuation from y.
Let us turn now to the case of a one-dimensional periodic

complex probability PðxÞ. We assume P to be normalized
and with period 2π,

R
2π
0 PðxÞdx ¼ 1. In order to construct a

two-branch representation, Eqs. (2.22) and (2.23) apply.
Decomposing in Fourier modes

6This relation is just the condition Y1 ≥ logðj ~PðkÞjÞ=k for
small positive k, and similarly for Y2, so it is weaker than
Eq. (2.8).
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PðxÞ ¼ 1

2π

X
k∈Z

eikx ~Pk; ~P0 ¼ 1; ð2:31Þ

and requiring Q1;2ðxÞ to be real periodic functions, one
obtains

~Q1;k ¼
e−kY2 ~Pk − ekY2 ~P�

−k

2 sinhðkðY1 − Y2ÞÞ
;

~Q2;k ¼
e−kY1 ~Pk − ekY1 ~P�

−k

2 sinhðkðY2 − Y1ÞÞ
; k ≠ 0: ð2:32Þ

In the periodic case the zero modes of ~Q1;2 are not
determined by PðxÞ, instead one has only the conditions

~Q1;0 þ ~Q2;0 ¼ 1; ~Q1;0; ~Q2;0 ≥ 0: ð2:33Þ

Let Q̂1;2ðxÞ denote the functions Q1;2ðxÞ (reconstructed
from their Fourier modes) without including the zero mode,
i.e., Q̂r ¼ Qr − ~Qr;0=ð2πÞ, r ¼ 1, 2. It is readily shown that
whenever the following conditions are met

min
x
Q̂1 ≥ −1; min

x
Q̂2 ≥ −1;

min
x
Q̂1 þmin

x
Q̂2 ≥ −1; ð2:34Þ

(by choosing Y1;2 sufficiently large) suitable ~Q1;0, ~Q2;0 can
be added so that Q1;2ðxÞ are non-negative, thus providing a
two-branch representation.
The solutions Q1;2ðxÞ can also be expressed as con-

volutions (for simplicity we take the symmetric case
Y1 ¼ −Y2 ¼ Y)

QrðxÞ¼
1

2π
~Qr;0

þ
Z

dϕ
2π

ðCðϕ;YÞPRðx−ϕÞ−σrSðϕ;YÞPIðx−ϕÞÞ;

r¼ 1;2; σ1;2≡�1: ð2:35Þ

Here PR;IðxÞ stand for the real and imaginary parts of PðxÞ,
and

Cðx; YÞ≡X∞
n¼1

cosðnxÞ
coshðnYÞ ;

Sðx; YÞ≡X∞
n¼1

sinðnxÞ
sinhðnYÞ : ð2:36Þ

Clearly as Y increases the functions C and S go uniformly
to zero. This ensures that eventually the conditions (2.34)
on Q̂1;2ðxÞ are met so that Q1;2ðxÞ ≥ 0. The functions
Cðx; YÞ and Sðx; YÞ are displayed in Fig. 3.
Examples of two-branch representations for the periodic

case are shown in Fig. 4 for the action

SðxÞ ¼ β cosðxÞ þ imx; β ∈ C; m ∈ Z; ð2:37Þ

using optimal values of Y. The numerical solutions have
been obtained from the Fourier modes which are Bessel
functions.
The case m ¼ 0 and β imaginary is particularly interest-

ing, since this is one of the few cases (the other being a
quadratic action, or a real action) in which the equilibrium
Fokker-Planck equation of the complex Langevin algo-
rithm can be solved analytically in ρðzÞ. Unfortunately, that
solution turns out to be wrong, giving he−ikziCL ¼ δk;0,
instead of the correct Fourier modes of P.
The existence of two-branch representations for very

general complex probabilities proves in particular that
representations exist which are valid for observables which

lx x

8 6 4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

x2 2

4 2 0 2 4
0.00

0.05

0.10

0.15

0.20

0.25

FIG. 2. Left: Function Q1ðxÞ ¼ Q2ðxÞ for PðxÞ ¼ δðxÞ þ δ0ðxÞ, using the optimal value Y ¼ 1.58. Right: Functions Q1ðxÞ
(solid line) and Q2ðxÞ ¼ Q1ð−xÞ (dashed line) for the two-branch representation of the action SðxÞ ¼ βx2=2 with β ¼ 1þ i using
the optimal value Y ¼ 0.7.
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are entire functions, no matter how wildly behaved they are
at infinity in the imaginary direction, provided they are
convergent at infinity in the real direction (in the non-
compact case). On the other hand, representations that fill
the complex plane would be problematic for those wild
observables; since the integral of AðzÞρðzÞ would not be
absolutely convergent the variance would diverge, render-
ing a Monte Carlo approach useless.
Another observation is that the use of more than two

branches does not seem to introduce any improvement
regarding localization of the support of the representation.

4. Representations in higher dimensions

The construction of representations by means of con-
volutions, either in the compact or noncompact cases,
expresses that

Qr ¼ Cr � Pþ C�
r � P�; r ¼ 1; 2 ð2:38Þ

involving two known universal functions C1;2ðx; Y1; Y2Þ.
Unfortunately, this simple scheme does not immediately
extend to higher dimensions, although representations
based on the Fourier modes exist in the periodic case
[32]. Counting degrees of freedom one can expect that
regardless the number of dimensions, a complex

distribution can always be traded by two real (and hope-
fully positive) distributions, however unless the construc-
tion of Q1;2 is local, that is, updating one coordinate
depends on only a few other coordinates, the method will
not be useful in the many dimensional case, that is, when a
Monte Carlo approach is needed.
Nevertheless, it is of interest to discuss the construction

of optimal representations in higher dimensions. We con-
sider the two-dimensional case, as the ideas involved can be
extrapolated to the general case. Also we take the periodic
case which is simpler.
Let Pðx1; x2Þ be a periodic two-dimensional normalized

complex probability,ZZ
2π

0

Pðx1; x2Þdx1dx2 ¼ 1: ð2:39Þ

One way to proceed is by reducing the dimension. Let
Pðx2Þ be the marginal distribution of x2, and Pðx1jx2Þ the
conditional probability of x1

Pðx2Þ¼
Z

2π

0

Pðx1;x2Þdx1; Pðx1jx2Þ¼
Pðx1;x2Þ
Pðx2Þ

: ð2:40Þ

Now, let ρðz2Þ be a representation of Pðx2Þ and ρðz1jz2Þ a
representation of Pðx1jz2Þ regarded as a function of x1,

1 i
m 1

0 1 2 3 4 5 6
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FIG. 4. Functions Q1ðxÞ (solid line) and Q2ðxÞ (dashed line) for the two-branch representation of the periodic action
SðxÞ ¼ β cosðxÞ þ imx. Left: β ¼ 1 − i and m ¼ 1, with Y ¼ 1.17. Right: β ¼ i, m ¼ 0, with Y ¼ 0.93.
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FIG. 3. Functions Cðx; YÞ and Sðx; YÞ for Y ¼ 0.5 (larger amplitude), 1 and 2 (smaller amplitude).
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and where Pðx1jz2Þ refers to the analytical extension of
Pðx1jx2Þ. These are regular one-dimensional distributions
that we know how to sample. Then ρðz1; z2Þ≡
ρðz1jz2Þρðz2Þ is a representation of Pðx1; x2Þ. Indeed, for
any observable Aðx1; x2Þ

hAiρ ¼
Z

Aðz1; z2Þρðz1jz2Þρðz2Þd2z1d2z2

¼
Z

Aðx1; z2ÞPðx1jz2Þρðz2Þdx1d2z2

¼
Z

Aðx1; x2ÞPðx1jx2ÞPðx2Þdx1dx2
¼ hAiP: ð2:41Þ

One drawback with the approach just presented is that
the analytical extension of Pðx1; x2Þ is needed, and also
that Pðz2Þ might have zeros on the complex plane. These
problems can be solved by means of the following trick.
Write P as

Pðx1; x2Þ ¼
1

2π
ðPðx2Þ − P0ðx2ÞÞ þ P0ðx1; x2Þ; ð2:42Þ

where P0ðx2Þ is any positive distribution with normalization
less than one. In this case Pðx2Þ − P0ðx2Þ is one dimen-
sional, normalizable and easily representable. Also, the
marginal probability of the remainder P0ðx1; x2Þ is just
P0ðx2Þ. Since this marginal probability is already positive
one can apply the previous method to P0ðx1; x2Þ and a
representation of P0ðx2Þ is not needed. Regarding the
choice of the auxiliary probability P0ðx2Þ, we note that a
nice (i.e., localized) representation of P0ðx1jx2Þ favors a
P0ðx2Þ as large as possible, while the representation of
Pðx2Þ − P0ðx2Þ favors a small P0ðx2Þ, so a compromise has
to be taken.
Another approach mimics the two-branch method dis-

cussed for the one-dimensional case. The natural proposal
is (already taking a symmetric choice, this is unessential)

Pð~xÞ ¼
X
r¼1;2

Qrð~x − iσr ~YÞ; ð2:43Þ

where Qrð~xÞ are positive functions, ~Y ¼ ðY1; Y2Þ and
σr ¼ �1 for r ¼ 1, 2. Introducing Fourier modes

Pð~xÞ ¼ 1

ð2πÞ2
X
~k

ei~k·~x ~P~k; ð2:44Þ

one readily obtains the solution

~Qr;~k ¼ σr
eσr~k·~Y ~P~k − e−σr~k·~Y ~P�

−~k

2 sinhð2~k · ~YÞ
: ð2:45Þ

An obstruction arises here for the modes ~k · ~Y ¼ 0. For
them the formula is only consistent if ~P~k ¼ ~P�

−~k
and in this

case ~Qr;~k ¼ ~P~k=2.

There is no obstruction when ~Y is chosen so that
~k · ~Y ≠ 0 unless ~k ¼ ~0 (similarly to the one-dimensional

case, ~k ¼ ~0 poses no problem due to ~P~0 ¼ 1). For example,
consider the complex distribution

Pð~xÞ ¼ Ngðx1Þgðx2Þgðx1 − x2Þ;
gðxÞ≡ 1þ 2a cosðxÞ; a ∈ C: ð2:46Þ

The only relevant Fourier modes are k1;2 ¼ 0;�1;�2, so

the choice ~Y ¼ ðY; 3YÞ guarantees that ~k · ~Y ¼ 0 only for
~k ¼ ~0. The complex probability proposed in Eq. (2.46) can
be represented with positiveQ1;2ð~xÞ by taking a sufficiently
large value of Y > 0. This is displayed in Fig. 5 for a ¼ i.
There we have taken ~Qr;~0 ¼ 1

2
for r ¼ 1, 2, and automati-

cally Q2ð~xÞ ¼ Q1ð−~xÞ. Similar results are obtained for

Y2=Y1 ¼
ffiffiffi
2

p
, which obviously also guarantees ~k · ~Y ≠ 0. It

is interesting that this probability distribution would be
beyond a complex Langevin approach, as Pðz1; z2Þ has
zeros on C2.
When many Fourier modes are involved it is not possible

to prevent small values of ~k · ~Y and a more direct solution
has to be adopted. Without loss of generality, let us assume

that our choice is ~Y ¼ ðY; 0Þ hence the problematic modes
are those with k1 ¼ 0. This choice implies that only x1 is
moved to the complex plane,

FIG. 5. Representation of P ∝ gðx1Þgðx2Þgðx1 − x2Þ for gðxÞ ¼
1þ 2a cosðxÞ with a ¼ i, using Y2 ¼ 3Y1. The function
Q1ðx1; x2Þ is displayed on ½−π; π� × ½−π; π� for Y2 ¼ 4.43. This
is the optimal value, that is, minQ1 ¼ 0.
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Pðx1; x2Þ ¼
X
r¼1;2

Qrðx1 − iσrY; x2Þ: ð2:47Þ

Clearly, this equation is only consistent when the marginal
probability Pðx2Þ is positive. If this is not the case, the
solution is to use the trick described above, namely, to use
Eq. (2.42) choosing a positive P0ðx2Þ. Now the two-
dimensional version of the two-branch method works for
P0ðx1; x2Þ, and the one-dimensional version works
for Pðx2Þ − P0ðx2Þ. Using this technique for the example
in Eq. (2.46) with a ¼ i, a value Y ¼ 2 suffices for the
two-dimensional representation and Y ¼ 2.45 for the
one-dimensional one. Variances are also smaller than using
~Y ¼ ðY; 3YÞ.
As is well known, the real Langevin approach to

sampling ordinary probability distributions is affected by
the segregation problem: the random walk cannot cross the
submanifold PðxÞ ¼ 0. When PðxÞ is real but with negative
and positive regions, the same problem is inherited by the
complex version of the algorithm, the random walk gets
trapped in one of the positive or negative connected regions
[36]. Such a problem does not exist here. For a ¼ 1,
the probability distribution Pðx1; x2Þ of Eq. (2.46) is real
and changes sign whenever the argument of any of
the factors gðxÞ takes the values x ¼ � arccosð−1=2Þ. In
Fig. 6 a representation of this Pðx1; x2Þ is presented,
using Y2 ¼ 3Y1 ¼ 2.17.

III. COMPLEX HEAT BATH

As already noted the Monte Carlo method is required
when the number of degrees of freedom is large. Further,
the sampling algorithm must be local, in the sense defined
in the Introduction, in order for the implementation not to
be prohibitively expensive. A local implementation can be
done for particular actions or Hamiltonians which admit

some kind of short-cut allowing to turn the complex
probability problem into a standard one. Another local
approach for complex probabilities is that of reweighting,
by sampling a local and positive auxiliary probability
distribution. Often jPðxÞj is used for this purpose. As is
well known, this approach works nicely for small systems
but becomes inefficient for larger ones where the expect-
ation value of the phase of P gets close to zero [6]. Among
the approaches based on constructing a representation of
PðxÞ, only the complex Langevin algorithm preserves
locality. This makes the algorithm very attractive.
Unfortunately, this method lacks a solid mathematical
basis, and in fact it does not always produce correct
results [7,28].

A. Complex Gibbs sampling approach

These limitations make it worthwhile to explore alter-
native approaches. The one we analyze here is to extend the
standard heat bath approach to the case of complex
probabilities. In the standard Gibbs sampling the configu-
ration follows a Markovian walk and each variable is
updated in turn using its conditional probability, keeping
the other variables fixed in that step. In our complex
version, the configuration follows a Markovian walk on the
complex manifold. Each variable is updated in turn using a
representation of its conditional probability, conditional to
the values of the other variables, which in general will be
complex. This relies on the analytical extension of the
complex probability to the complex manifold, in the same
way as in the complex Langevin algorithm.
Let us remark that the need of an analytical extension of

PðxÞ is a limitation of the complex Gibbs sampling
approach. Representations exist for any (or very general)
complex probabilities. Having one such representation,
any standard sampling method could be used, although
the issue of localization on the complex manifold would
still persist. Unfortunately, such representations in high
dimensions are not easy to obtain through any useful (local)
approach. The virtue of a complex Gibbs sampling is that
one does not need to obtain representations of multidi-
mensional complex distributions, since the conditional
probability depends just on the one variable to be updated.
Let us show that this procedure is formally correct. To

make our point it is sufficient to consider just two variables.
Let Pðx1; x2Þ be the complex probability in R2, and let
ρðz1; z2Þ be a representation of it, a positive distribution
on C2. We want to verify that the updated distribution is also
a representation. If the variable z1 is updated to a new value
z01, keeping z2 fixed, the new distribution on C2 will be

ρ0ðz01; z2Þ ¼ ρrepðz01jz2Þρðz2Þ: ð3:1Þ

Here ρðz2Þ is the marginal distribution of z2 and ρrepðz01jz2Þ
is a representation of the conditional probability Pðx01jz2Þ
(regarded as a function of x01 only):FIG. 6. Same as Fig. 5 with a ¼ 1 and Y2 ¼ 3Y1 ¼ 2.17.
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ρðz2Þ ¼
Z

d2z1ρðz1; z2Þ;

Pðx01jz2Þ ¼
Pðx01; z2Þ
Pðz2Þ

: ð3:2Þ

Likewise, Pðz2Þ ¼
R
dx1Pðx1; z2Þ where Pðz1; z2Þ refers to

the complex probability analytically extended to the com-
plex plane. Pðz2Þ can also be regarded as the analytical
extension of the marginal probability Pðx2Þ.
In order to show that ρ0ðz01; z2Þ is also a representation of

P let us consider a generic (holomorphic) observable,
Aðz1; z2Þ, then
Z

d2z01d
2z2ρ0ðz01; z2ÞAðz01; z2Þ

¼
Z

d2z01d
2z2ρrepðz01jz2Þρðz2ÞAðz01; z2Þ

¼
Z

dx01d
2z2Pðx01jz2Þρðz2ÞAðx01; z2Þ

¼
Z

dx01

Z
d2z1d2z2

Pðx01; z2Þ
Pðz2Þ

ρðz1; z2ÞAðx01; z2Þ

¼
Z

dx01

Z
dx1dx2

Pðx01; x2Þ
Pðx2Þ

Pðx1; x2ÞAðx01; x2Þ

¼
Z

dx01dx2Pðx01; x2ÞAðx01; x2Þ: ð3:3Þ

That is, hAiρ0 ¼ hAiP and ρ0 is a representation of P. In the
second equality it has been used that ρrepðz01jz2Þ is a
representation of Pðx01jz2Þ with respect to z01. In the fourth
equality it has been used that ρðz1; z2Þ is a representation of
Pðx1; x2Þ and the other factors depend analytically on z1
and z2.
Note that Eq. (3.1) is not a standard heat bath sampling

of ρðz1; z2Þ: there z1 would be updated using ρðz01jz2Þ ¼
ρðz01; z2Þ=ρðz2Þ instead of ρrepðz01jz2Þ. In the standard
sampling ρðz1; z2Þ is unchanged under updates whereas
in the complex Gibbs sampling all one shows is that the
new distribution is still a representation, but not necessarily
the same as before the update.
Of course, a standard Gibbs sampling of ρðzÞ would be

completely correct (and in fact preferable), but the problem
is that ρðzÞ is not available, we only know how to construct
representations of one-dimensional or (at any rate) low-
dimensional complex distributions such as Pðxijfzj≠igÞ,
and hope that the Markovian chain converges to the correct
result. We have shown that the property of being a
representation is preserved, however, the powerful theo-
rems that apply for Markovian chains of positive proba-
bility distributions are not guaranteed to work in the
complex case. In this sense, the complex Gibbs sampling
lacks a sound mathematical basis, as is also the case for
other approaches, like the complex Langevin algorithm.

An specific way in which our complex heat bath sampling
may find trouble is related to the need of analytical
extension: even if the marginal probability Pðfxj≠igÞ is
never zero on the real manifold, the actual algorithm depends
on the marginal probability on the complex manifold
through analytical extension, Pðfzj≠igÞ. Zeros in this
function are potentially problematic; proximity to a zero
implies a highly nonpositive definite distribution and this
requires going deeply into the complex plane.

B. Complex Gaussian action

Preliminary tests on simple distributions with few
variables indicate that the approach may work, however,
the situation might be different for large systems. In order
to test the complex Gibbs sampling proposal in many-
variable settings, we have studied a d-dimensional
hypercubic lattice of size N in each direction. First we
consider a quadratic action with nearest-neighbor complex
coupling.
The partition function is

ZðβÞ ¼
Z

e−S½ϕ�
Y
x

dϕx: ð3:4Þ

It is defined through integration over the V ¼ Nd variables
ϕx taking real values, although during the Monte Carlo
simulation the ϕx will become complex in general. The
action is given by

S½ϕ� ¼
X
x

�
ϕ2
x þ βϕx

Xd
μ¼1

ϕxþμ̂

�
; β ∈ C; ð3:5Þ

and we adopt periodic boundary conditions. The action is
complex by allowing β to be complex.
This case is simple enough to have analytic expressions

of the expectation values of typical observables. Also,
explicit representations of the V-dimensional distribution
PðxÞ can be obtained in the present case. For this action the
implementation of the complex heat bath algorithm is
straightforward. Indeed, the conditional probability of
the variable ϕx is

Pðϕxjfϕx0≠xgÞ ∝ expð−ϕ2
x − βϕxϕ̂xÞ

∝ exp

�
−
�
ϕx þ

β

2
ϕ̂x

�
2
�
;

ϕ̂x ≡
Xd
μ¼1

ðϕxþμ̂ þ ϕx−μ̂Þ: ð3:6Þ

Thus the update of the variable ϕx takes the simple
form
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ϕx ¼ ξ −
β

2
ϕ̂x; ð3:7Þ

where the random variable ξ is distributed according
to e−ξ

2

.
We have checked through numerical experiments that

whenever this Monte Carlo simulation converges it does so
to the correct expectation values. Clearly, Imβ does not
affect jPðϕÞj, so the action is well behaved, meaning that
the integrals involved are absolutely convergent, provided
Reβ stays within the appropriate limits (for even N this is
simply jReβj < 1=d) regardless of the value of Imβ.
However, in our complex version of the Gibbs sampling,
convergence takes place only for suitably bounded values
of Imβ. This is shown in Table I for a 24 lattice. The lack of
convergence in otherwise well-posed problems reflects the
fact that the standard Markov chain convergence theorems
do not immediately apply to the complex case, and in
particular for our complex Gibbs procedure.

C. Complex λϕ4 action

In order to further check the approach we have consid-
ered a nonlinear version of the previous action, by adding a
λϕ4 term. Specifically, we study the action

S½ϕ� ¼
X
x

�
ϕ4
x þ ϕ2

x þ βϕx

Xd
μ¼1

ϕxþμ̂

�
;

β ∈ C; ð3:8Þ

again with hypercubic geometry V ¼ Nd and periodic
boundary conditions.
The action enjoys some obvious symmetries (trans-

lations, lattice isotropy and spatial reflection, as well as
parity under ϕx → −ϕx). In addition when N is an even
number, a change β → −β can be compensated by the
transformation ϕx → �ϕx, with a plus/minus sign for even/
odd sites. Thus for even values of N, ZðβÞ is an even
function of β. Also ZðβÞ� ¼ Zðβ�Þ, hence, when N is even
Z is real for purely imaginary β.
As observables to be estimated by Monte Carlo we take

the following ones:

O1 ¼
β

V

X
x

ϕxϕ̂x; O0
1 ¼

1

V

X
x

ϕx
~ϕx;

O2 ¼
β

2Vd

X
x

ϕ̂x
2; O0

2 ¼
1

2Vd

X
x

~ϕxϕ̂x; ð3:9Þ

where the auxiliary fields are defined as

ϕ̂x ≡
Xd
μ¼1

ðϕxþμ̂ þ ϕx−μ̂Þ; ~ϕx ≡ 4ϕ3
x þ 2ϕx: ð3:10Þ

The observables O1 and O2 are quadratic while O0
1 and O0

2

are quartic, and so they have larger variance than the
former ones.

1. Strong coupling expansion

In a strong coupling expansion in powers of β, logZðβÞ
comes as a sum over closed paths on the lattice, formed by
consecutive links. Terms of order βn correspond to paths of
length n. For even N all closed paths have even length, so
Zð−βÞ ¼ ZðβÞ. For odd N, contractile closed paths have
even length but homotopically nontrivial paths (winding
through the periodic boundary conditions) can have an odd
length, hence introducing odd powers of β in logZðβÞ.
These start at order βN.
Within the strong coupling expansion, the expectation

values of O1 and O2 come as a series of powers of
β with real coefficients. The leading order contributions
are7

hO1i ¼ −2dβ2hϕ2i20 þOðβ3Þ;
hO2i ¼ βhϕ2i0 þOðβ2Þ;
hϕ2i0 ≡ hϕ2iβ¼0 ¼ 0.234: ð3:11Þ

Actually, O1 relates sites with opposite parity, so for
even (or infinite) N its expectation value has only even
powers of β. In this case hO1i will be real for purely
imaginary β. For oddN, odd powers start at order βN. These
contributions come from noncontractile closed paths.8

Likewise, hO2i has only odd powers of β and it is
imaginary for imaginary β, except for odd N, in which
case even powers start at OðβN−1Þ. Inspection of hO0

1i
shows that in this regard, this quantity behaves as hO1i,
likewise hO0

2i behaves as hO2i. The leading contributions
from topologically nontrivial paths are

hO1itop ¼ −2dð−βÞNhϕ2iN0 þOðβNþ2Þ;
hO2itop ¼ −ð−βÞN−1hϕ2iN−1

0 þOðβNþ1Þ: ð3:12Þ

These are the leading terms in ImhO1i and RehO2i for
imaginary β and odd N.

TABLE I. For a 24 lattice, and for several values of Reβ,
maximum values of jImβj for which the complex bath algorithm
converges, for the Gaussian action of Eq. (3.5).

Reβ 0.0 0.1 0.2 0.3 0.4 0.5
jImβj 0.70 0.65 0.58 0.48 0.35 0.0

7This is for N > 2. For N ¼ 2 the terms in Eq. (3.12) are of the
same order and they have to be added to these.

8Of course, an identical conclusion follows from the relation
hO1i ¼ −2β=V∂ logZ=∂β.
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Since the nonlinear action has no exact solution, we have
monitored the accuracy of the complex Gibbs sampling
algorithm by using different checks. A simple one is the
fulfillment of the reality conditions on hO1i and hO2i as
well as consistency with the strong coupling results for
small β.

2. Transfer matrix

Another check has been made by using a transfer matrix
approach for d ¼ 1 (for d > 1 this technique becomes
prohibitive). In this approach Z ¼ TrðT̂NÞ where the trans-
fer matrix T̂ is an operator in L2ðRÞ with kernel

hϕ0jT̂jϕi ¼ e−
1
2
ðϕ04þϕ4þϕ02þϕ2þ2βϕ0ϕÞ: ð3:13Þ

The expectation value of observables of the type
A ¼ Fðϕxþ1;ϕxÞ, such as O1, O0

1 and O0
2, can then be

obtained as follows:

hAi ¼
P

nλ
N
n hAinP
nλ

N
n

;

hAin ≡ λ−1n

Z
dϕ0dϕψ̄�

nðϕ0ÞψnðϕÞhϕ0jT̂jϕiFðϕ0;ϕÞ:

ð3:14Þ

Here hψ̄nj and jψni are left and right eigenvectors of T̂
with eigenvalue λn and normalized as hψ̄njψmi ¼ δnm.
As it turns out, when β2 is a real number, T̂ is a normal
operator and it admits a real and orthonormal eigenbasis.
The eigenvalues are real for real β. For imaginary β,
half of the eigenvalues are real and the other half are
imaginary.
Using this approach,9 we find perfect agreement with

the complex heat bath results (whenever the latter method
converges) for the cases studied, β ¼ 0.5i, 0.7i and i,
with N ¼ 20. The complex heat bath algorithm crashes
for β ¼ 2i.

3. Virial relations

For higher dimensional lattices, a more useful check
comes from the (generalized) virial relations, also referred
to as Schwinger-Dyson equations or equations of motion.
These exact relations state that for any (regular) observable
A½ϕ�, and any site x,

� ∂A
∂ϕx

�
¼

�
A

∂S
∂ϕx

�
: ð3:15Þ

The observables O1, O2, O0
1 and O0

2 arise naturally by
choosing A ¼ ϕx and A ¼ ϕxþμ̂. For our action, the virial
relations imply that

hI1i ¼ hI2i ¼ 0;

I1 ≡O1 þO0
1 − 1;

I2 ≡O2 þO0
2: ð3:16Þ

4. Complex Gibbs sampling implementation

In addition, we compare the results obtained with
the complex heat bath approach with those obtained
with standard reweighting. We sample e−ReðSÞ using a
Metropolis algorithm and include the phase in the observ-
ables. This technique is practical only for small lattices and/
or small Imβ due to the overlap problem. Also, we compare
with the complex Langevin equation results since this has
become a rather standard practice in the context of complex
probabilities.
In the three types of Monte Carlo calculations, reweight-

ing (RW), complex Langevin (CL), and complex heat bath
(CHB), the expectation values and their error are extracted
from 20 independent runs with cold and hot starts. In RW
and CHB 105 sweeps are applied, arranged in 100 batches
of 1000 iterations each, to monitor the thermalization. In
CL each run has duration 104 (in Langevin time units),
also arranged in 100 batches of duration 102 each. The CL
step size is controlled so that Δt ≤ 0.001 and jΔϕxj ≤
0.001 [37,38]. In all three versions the ten first batches have
been dropped as this was deemed sufficient to reach
thermalization.
Since the CHB approach is new, some relevant details are

in order. The conditional probability needed in the complex
Gibbs sampling takes the following form:

Pðϕxjfϕx0≠xgÞ ∝ expð−ϕ4
x − ϕ2

x − βϕxϕ̂xÞ: ð3:17Þ

For complex β this distribution cannot be sampled directly
and one has to resort to representations with two branches,
as explained in Sec. II C 3. In order to study the perfor-
mance of the method in this exploratory work, we have
given priority to keeping things simple and under control,
leaving improvements in technical details of the imple-
mentation to future work. The actual representation has
been obtained by making use of Eq. (2.26) and relying on a
fast Fourier transform algorithm, applied back and forth,
to carry out the convolutions. To do this, Reϕ is restricted to
a box ½−L=2; L=2� and discretized with a step of size
h ¼ L=2K . Typical values are L ¼ 20, 40, and K ¼ 8, 10,
12. We have checked, by comparing with a standard
Metropolis calculation, that for real β no sizable error is
introduced due to the finiteness of L and K.
A representation, i.e., a pair Q1;2ðxÞ, is obtained for each

site to be updated. The minimal value of the parameter Y

9To do this we have discretized ϕ along the same lines
explained below for constructing representations of the condi-
tional probability.
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[see Eq. (2.30)] is determined by taking stepsΔY starting at
jImhxij þ ΔY. For ΔY ¼ 0.1, this starting value is already
sufficient in more than 99.99% of the cases. In average, 1.4
more steps are needed if ΔY ¼ 0.01, with no noticeable
gain in the accuracy of the expectation values.
During the Monte Carlo simulation one finds conditional

probabilities (controlled by the value of the environmental
parameter ϕ̂x there) with wildly different degrees of
difficulty regarding its representation. For jImβj ≤ 0.5
the soft cases are overwhelmingly predominant and for
these Y remains small. The hard cases are rare but
unavoidable, since the parameter ϕ̂x can approach a zero
of the normalization of the conditional probability. The
closest zero is at ϕ̂x ¼ 4.60i. For these hard cases, Y can
attain huge values which could spoil the simulation or make
it crash. To prevent this we introduce a control parameter Ys
such that the site is not updated when a Y larger that Ys
would be required. Since the decision of skipping the site
(on that sweep only) is taken ex post facto, some bias is
introduced in the simulation.

For a too small value of Ys (i.e., a hard cutoff) the bias
shows as a violation of the virial relations hI1;2i ¼ 0. For too
large values, the variances increase and moreover the
simulation may abort. For β ¼ 0.25i the value of Ys is
not crucial. For β ¼ 0.5i, values of Ys ranging from 2 to 20
allow to fulfill the virial relationswith a controlled noise. For
β ¼ 0.7i, hard events become too frequent, making the
whole approach inviable: a too small Ys would be required,
hence introducing an unacceptable bias in the results, at least
for the observables I1 and I2. The situation resembles that of
an asymptotic expansion, e.g.,

P∞
n¼0ð−1Þnn!xn: the series

must be truncated because at some point the oscillatory
terms start to grow. For small enough x (in our case β) many
terms can be included and a good accuracy can be attained,
but the exact unbiased result is never obtained, unless some
resummation technique is applied.
Besides Ys, a further regulator must be introduced. In

principle the optimal Y is such that minxfQ1ðxÞ;
Q2ðxÞg ¼ 0. In the soft cases this poses no problem,
however, for hard events such a strict requirement would

TABLE II. Expectation values (scaled by 103) of O1;2 and I1;2 for several settings. RW, CL and CHB refer to reweighting, complex
Langevin and complex heat bath methods, respectively. Standard deviations of the means are indicated in parentheses; they affect the last
digits shown. Each value is extracted from 20 runs with hot and cold starts and 105 sweeps (104 time units for CL) of which the last
90000 are used in the averages. Default parameters for CHB are Ys ¼ 5, ΔY ¼ 0.1, and ϵ ¼ 10−6. The mark � indicates that Ys ¼ ∞
there. The mark �� indicates that data lying beyond 8 standard deviations from the mean have been removed (see text).

β Nd L K 103 × hO1i 103 × hO2i 103 × hI1i 103 × hI2i Method

0.25i 33 19.783(28) −i1.134ð33Þ 2.984(12) þi56.017ð19Þ 0.49(33) −i0.07ð9Þ −0.22ð10Þ −i0.05ð8Þ RW
0.25i 33 19.740(21) −i1.120ð99Þ 3.009(17) þi55.978ð51Þ 0.97(73) −i0.09ð8Þ −0.10ð30Þ þi0.02ð4Þ CL
0.25i 33 20 10 19.745(14) −i1.099ð28Þ 2.996(11) þi55.967ð16Þ 3.39(115) þi0.09ð23Þ −0.12ð9Þ −i0.14ð9Þ CHB

0.25i 83 19.985(137) −i0.153ð179Þ −0.074ð47Þ þi55.958ð44Þ 0.59(63) þi1.16ð68Þ −0.55ð53Þ −i0.67ð42Þ RW
0.25i 83 19.746(5) −i0.021ð20Þ 0.004(4) þi55.977ð12Þ 0.29(24) −i0.02ð2Þ −0.03ð7Þ þi0.01ð1Þ CL
0.25i 83 20 10 19.749(4) þi0.001ð8Þ 0.000(2) þi55.969ð5Þ 4.04(28) þi0.04ð5Þ −0.02ð3Þ −i0.13ð2Þ CHB

0.5i 33 71.642(116) −i6.146ð74Þ 8.487(49) þi99.851ð47Þ −0.39ð40Þ þi0.53ð28Þ 0.08(14) −i0.15ð21Þ RW
0.5i 33 71.628(76) −i5.985ð127Þ 8.567(49) þi100.073ð98Þ 0.16(75) −i0.07ð15Þ 0.42(22) þi0.03ð9Þ CL
0.5i 33 20 10 71.578(41) −i6.173ð49Þ 8.510(32) þi99.882ð32Þ 4.70(125) þi2.78ð135Þ 0.45(22) þi0.21ð29Þ CHB

0.5i 83 −3.0ð37Þ þi2.2ð34Þ 1.8(38) þi117.1ð22Þ −03:ð18Þ −i01:ð17Þ 1.1(76) þi118:ð6Þ RW
0.5i 83 71.332(17) þi0.076ð32Þ −0.019ð18Þ þi99.579ð18Þ 0.24(18) þi0.06ð4Þ 0.08(6) −i0.01ð3Þ CL
0.5i 83 20 10 71.330(13) −i0.003ð13Þ 0.006(7) þi99.568ð10Þ 4.59(29) −i0.01ð20Þ −0.01ð5Þ −i0.13ð5Þ CHB
0.5i 83 20 10 71.352(11) þi0.006ð13Þ −0.008ð5Þ þi99.570ð8Þ 6.95(212) −i1.22ð264Þ −0.06ð12Þ −i0.16ð13Þ CHB�

0.5i 83 20 8 71.308(10) þi0.013ð12Þ 0.002(7) þi99.571ð7Þ 4.94(37) −i0.11ð20Þ 0.04(5) −i0.07ð5Þ CHB
0.5i 83 40 8 71.337(13) þi0.011ð14Þ −0.001ð7Þ þi99.572ð7Þ 1.40(66) þi0.08ð16Þ 0.04(6) −i0.03ð4Þ CHB
0.5i 83 40 8 71.337(13) þi0.011ð14Þ 0.000(7) þi99.571ð7Þ 0.10(14) þi0.03ð15Þ 0.02(4) −i0.01ð2Þ CHB��

0.5i 83 40 12 71.305(8) −i0.014ð15Þ 0.004(9) þi99.545ð9Þ 2.44(85) þi0.17ð19Þ 0.00(5) −i0.01ð5Þ CHB
0.5i 83 40 12 71.305(8) −i0.014ð15Þ 0.005(9) þi99.544ð9Þ 0.14(20) þi0.02ð13Þ 0.00(3) þi0.03ð3Þ CHB��

0.5i 163 71.303(7) −i0.014ð18Þ −0.016ð7Þ þi99.569ð7Þ 0.11(7) þi0.02ð2Þ −0.03ð3Þ þi0.03ð1Þ CL
0.5i 163 20 10 71.328(5) −i0.005ð6Þ 0.000(3) þi99.567ð4Þ 5.15(9) −i0.09ð7Þ −0.01ð2Þ −i0.19ð3Þ CHB

0.5i 84 90.652(9) −i0.013ð12Þ 0.000(4) þi94.365ð9Þ 0.06(9) −i0.02ð3Þ 0.00(2) þi0.03ð1Þ CL
0.5i 84 20 10 90.670(5) þi0.005ð8Þ 0.000(3) þi94.369ð5Þ 3.19(20) −i0.16ð16Þ 0.02(2) þi0.14ð3Þ CHB
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result in too large values of Y. In fact, for moderate values
of Y the functions Q1;2ðxÞ are positive where they are
sizable, but may present small negative tails in the region of
large x. Removal of these small tails is what forces Y to be
large. To address this problem we relax the positivity
requirement to minxfQ1ðxÞ; Q2ðxÞg ≥ −ϵ. Values ϵ ≤ 10−8

are too small, but 10−7 or 10−6 already yield good results.
In fact, even the larger value we have tried, ϵ ¼ 10−3,
turned out to be equally acceptable.

5. Monte Carlo estimates

Monte Carlo results for hO1;2i and hI1;2i for purely
imaginary β, obtained through our complex heat bath
(CHB) method, are displayed in Table II. Reweighting
(RW) and complex Langevin (CL) results are shown for
comparison. One can see that CHB and CL produce
consistent results (with exception of RehI1i). RW also
concurs on the same values, when our calculation using
this method can be trusted (three first RW rows in
Table II).
As illustration, results for a 33 lattice with coupling

β ¼ 0.25i are shown in Fig. 7. For the four observables, the
points represent the estimate obtained for each of the 20
independent Monte Carlo runs, for each of the three
versions. To guide the eye, we have analyzed the cloud

of points assuming a Gaussian probability distribution. The
ellipses are scaled to enclose 68% of that Gaussian
probability.
For β ¼ 0.5i and 83, the RW estimates presented in

Table II are not only noisy but also wrong, most clearly for
ImhI2i which ought to be zero. By incorrect we mean that
the cloud of points are well separated from the correct
results (see Fig. 8) and so the deviations cannot be merely
attributed to the dispersion of the points. Remarkably, this
implies that consistent (yet incorrect) results are obtained
starting from quite different initial conditions (cold or
hot), a condition which is often invoked as a check of
convergence of the Markovian chain. That the conver-
gence is actually metastable is signaled however by the
lack of fulfillment of the virial relations. Since such
relations, Eq. (3.15), are always available for continuous
degrees of freedom, they prove to be a rather useful
(necessary although not sufficient) test to check
convergence.
We emphasize that the RW method itself has no bias,

and the trouble comes entirely from using a too
short Markovian chain (in our case 105 sweeps). If a
sufficiently large number of sweeps were used, RW
would yield correct estimates with some noise. The latter
can only be reduced by using even more sweeps.
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FIG. 7. Monte Carlo estimates of O1, O2, I1 and I2 for a 33 lattice with β ¼ 0.25i, from RW (green squares), CL (red rhombuses) and
CHB (blue triangles). Each point represents one of the 20 independent runs. To guide the eye ellipses are extracted from mean values and
variance matrices of each cloud. They are scaled to enclose 68% of the Gaussian probability.
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Essentially10 the problem is that in RW, the sampling points
(i.e., field configurations in our case) follow an auxiliary
distribution P0ðxÞ instead of the target distribution PðxÞ,
and the weight proportional to P=P0 is included in the
observables:

hAiP ¼ hwAiP0

hwiP0

; wðxÞ≡ PðxÞ
P0ðxÞ

: ð3:18Þ

In a proper implementation of RW, with sufficient (inde-
pendent) sampling points, most points lie where P0 is
important, not P. The very few points which lie where P is
important saturate all the weight in the averages, and the
host of P-unimportant points has a negligible relative
weight. This procedure provides an unbiased estimate
but with much noise, since the actual number of important
points employed in the averages is small. However, if not
enough sampling points (sweeps) are used, the Markovian
chain never gets to visit the region where P (but not P0) is

important. In the absence of truly important points, the
relative weight of the P0-distributed points is no longer
small, and one obtains a wrong estimate which is closer to
hAiP0

than to hAiP [assuming the variation of wðxÞ can be
neglected in the region where P0 is important]. Actually,
this expectation is verified by the results displayed in
Table II for β ¼ 0.5i and 83 with 105 sweeps: For the action
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FIG. 8. Metastability of the RW calculation. Monte Carlo estimates of O1, O2, I1 and I2 for an 84 lattice with β ¼ 0.5i, from RW
(green squares), CL (red rhombuses) and CHB (blue triangles). For this lattice and coupling the RWestimate displays a net deviation (as
well as enhanced dispersion). The incorrect RW estimates displayed actually reproduce the expectation values of the auxiliary action
ReS½ϕ� (see text). Correct RW results would follow from using a sufficiently large number of sweeps.
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FIG. 9. Influence of the parameter Ys. The points represent
estimates of I2 from 20 runs with 68% ellipses, for an 83 lattice
with β ¼ 0.5i: CHB with Ys ¼ 2 (green squares), CHB with
Ys ¼ 5 (black disks), CHB with Ys ¼ ∞ (blue triangles), and CL
(red rhombuses).

10The discussion that follows is more literally suited to the case
where the target distribution PðxÞ is positive. When the weight is
a phase, i.e., jP=P0j ¼ 1, one has to rely on cancellation of phases
(i.e., destructive interference) where they change rapidly or
noncancellation (constructive interference) where they change
slowly, as in the stationary phase method.
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in Eq. (3.8), P0 corresponds to retaining only Reβ in the
action. This is zero in our case and the action becomes
ultralocal. An easy calculation then shows that

hO1iP0
¼ hI1iP0

¼ 0;

hO2iP0
¼ hI2iP0

¼ βhϕ2i0 ðReβ ¼ 0Þ: ð3:19Þ

The value βhϕ2i0 ¼ i117 × 10−3 is quite consistent with
the RW results quoted in Table II.
This pathology, i.e., the increasing numerical effort

required in RW to gain an overlap with the target
distribution, worsens for larger lattices and/or couplings
and prevents us from using RW in those cases. One way to
improve the RW calculation would be to take a better
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FIG. 10. Typical runs for L ¼ 20 and L ¼ 40 with β ¼ 0.5i in an 83 lattice. The 105 sweeps are arranged in 100 batches of 1000
sweeps each. The noisy thin solid (blue) line represents RehI1i for each batch. The thick solid (black) line represents the average over all
batches to the right (and so computed at later simulation times). The thick dashed (red) line shows the effect of removing batches which
are off by 4σ (L ¼ 20) or 8σ (L ¼ 40). The high peak in “L ¼ 40” reaches 0.66.
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FIG. 11. Monte Carlo estimates of O1, O2, I1, and I2 for an 83 lattice with β ¼ 0.5i, using L ¼ 40 and K ¼ 12. CL is represented by
red rhombuses, and CHB by black disks. The blue triangles are from CHB upon removal of batches (subsets of 1000 sweeps) lying
beyond 8σ for RehI1i (i.e., CHB�� in Table II). As can be seen, the impact of the removal is small on O1 and O2, while I1 and I2 are
brought closer to zero.
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auxiliary distribution P0ðxÞ, typically, by using effective
values of the couplings of quartic and quadratic operators,
and of β, paralleling the same approach used to study QCD
at finite density [12].
Returning to our main focus, the CHB method, we

observe that the quality of the results remains stable for
larger lattices (163 and 84). Also the parameter K (we have
tried K ¼ 8, 10, 12) does not seem to be crucial. Likely,
this is because the error introduced by a finite step h is
exponentially suppressed for boundaryless integrations of
smooth functions.
The CHB results for the observablesO1 andO2 are quite

stable against changes in the regulators and their standard
deviations are small. On the other hand the fluctuations are
larger in I1 and I2. This follows from the fact that O1;2 are
quadratic while O0

1;2 involve quartic operators. The worst
case displayed in Table II corresponds to removing the
regulator Ys, which results in relatively large fluctuations in
I1;2 (also, one of the 20 runs aborted). The influence of the
value of Ys on hI2i is shown in Fig. 9.
A conspicuous feature in CHB for L ¼ 20 is the small

but systematic violation of hI1i ¼ 0. The real part of this
observable displays a bias at the level of 0.005 that persists
for all lattice sizes.11 Since the bias is largely reduced for
L ¼ 40 (to the level of 0.0014) it would seem that L ¼ 20
is simply too small a box for the action of Eq. (3.8) with
jβj ¼ 0.5, however, no bias exists in similar simulations
when β is real.12 Closer inspection reveals that for L ¼ 20
the various runs have little dispersion around the biased
result. On the contrary, for L ¼ 40 most runs are unbiased
(at the level of 0.0001) but for a few of them RehI1i drifts as
far as 0.010. We show in Fig. 10 a typical run with L ¼ 20
and one of the troubled runs with L ¼ 40. Moderately hard
events are more frequent for the smaller box. For L ¼ 40,
these events become exceptional and far more violent.
Typically, for runs with Ys ¼ 5, the ratio of sites whose
update is skipped drops from 3 × 10−7 for L ¼ 20 to less
than 10−8 for L ¼ 40. As said, in our analysis the runs were
arranged in 100 batches of 1000 sweeps each. For L ¼ 40,
removing batches in which RehI1i is off by 8 standard
deviations introduces a considerable improvement in the
fulfillment of the virial relations without disturbing hO1;2i.
This can be seen in Table II, results marked with CHB��,
and also in Fig. 11, where we display the result of runs with
and without removal of eccentric batches. While no
significant difference is appreciated in O1;2, the estimates
of I1;2 are brought closer to zero after the removal. A quite

noteworthy feature, illustrated in Fig. 10, is that the
Markovian chain quickly recovers after a troubled batch,
leaving no long-lived distortion on the subsequent batches.

IV. SUMMARY AND CONCLUSIONS

In this work we have introduced a new approach aimed at
the importance sampling of complex valued distributions
through the use of representations.
We start by showing that, quite generally, the more

complex (as opposed to positive definite) a distribution is,
the farther into the complex plane must go any representa-
tion of it. Explicit bounds are given on how narrow a strip
parallel to the real axis can be to contain the support of a
representation of a given complex distribution.
Then we develop new techniques to construct represen-

tations of complex probabilities, alternative to the usual
complex Langevin. Since the quality of the representation,
as measured by its distance to the real axis, is essential to
have controlled fluctuations in the Monte Carlo estimates,
the methods presented intend to be optimal in this regard. In
particular, for the purposes of illustration, we show repre-
sentations of complex distributions for which the complex
Langevin approach fails. We also show that the construc-
tions can be extended for manifolds of dimension higher
than one, although with increasing difficulty.
The specific new proposal for the sampling of complex

valued distributions on manifolds of large dimension, i.e.,
with many degrees of freedom, is the heat bath approach. We
have not devised a complex version of the Metropolis
algorithm. In its complex version, the Gibbs sampling is
implemented by using a representation of the conditional
probability. The formal justification of the procedure is given
in Sec. III A. This is formal since it is not guaranteed that the
chain of updates should converge to a correct representation
of the target complex distribution, it is only shown that such
complex distribution is a fixed point of the algorithm.
To assess the performance of the proposal we consider

first a field on a hypercubic lattice with periodic boundary
conditions subjected to a quadratic action. This makes the
update procedure particularly simple. We find that the
method works correctly in this case, provided the imagi-
nary part of the coupling is not too large.
To do a more thorough analysis we have added a λϕ4

term to the previous action, thus transforming the problem
into a nonlinear (interacting) one. The representation of the
conditional probability is no longer straightforward and the
new construction methods developed in previous sections
have to be applied. This is needed to achieve representa-
tions of sufficient quality. We show that a Monte Carlo
calculation is possible and obtain various results for differ-
ent geometries and couplings. Suitable observables are
considered so that generalized virial relations apply. This is
used to check the accuracy of the Monte Carlo results. Also
we have compared with reweighting and with complex
Langevin calculations. Due to overlap problems, our

11A completely similar bias was observed in CL in preliminary
calculations using Δt ≤ 0.01 and jΔϕxj ≤ 0.01, together with a
noticeable shift in O1 and O2. The bias in I1 disappears with the
finer steps, although one of the 163 runs crashed.

12Also, RW calculations putting the system in a similar
discretized box show no bias (for lattices and couplings for
which our RW calculation is reliable).
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reweighting calculation is only reliable for 33 lattices, and
with more noise for 83 with β ¼ 0.25i.
For d ¼ 1 lattices, good results are obtained for β as

large as i. For d ¼ 3, 4, we find that for moderate
couplings, β ¼ 0.25i and 0.5i, the observables O1 and
O2 and I2 are well reproduced, using reweighting and/or
complex Langevin results and the Schwinger-Dyson rela-
tions as benchmarks. The results tend to deteriorate for
larger couplings, as the random walk makes more frequent
visits to regions farther apart from the real axis.
The quantity RehI1i displays a small systematic bias

which depends on the size of the box used to construct
the representations. We have analyzed in some detail how,
for large boxes, this bias is introduced by very specific
contributions which are easy to identify and remove,
without altering the other observables.
Although not free from obstacles, it seems clear that the

approach opens alternative routes for the complex sampling
problem, and at least some of the technical limitations
founds could eventually be overcome, in particular,
allowing to treat harder cases (larger β). In [32] it is shown
that representations exist and can be constructed for
complex distributions defined on compact Lie groups, so
there is no impediment of principle to extend the approach
to gauge models.

On a far more hypothetical note, simple variable count-
ing indicates that a complex distribution can be traded by
two positive distributions. We have illustrated this point
with our two-branch representations. In this view, perhaps
it could be possible to replace the standard lattice QCD
formulation with chemical potential, a complex distribu-
tion, by a two-branch version, modeled to be positive, local
and having the correct symmetries, as well as a parameter
representing the chemical potential, and letting universality
considerations in the continuum limit to identify it with the
standard formulation. Such an approach would avoid
altogether the need to deal with complex distributions
and its sampling.
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