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The explicit breaking of chiral symmetry of the Wilson fermion action results in additive quark mass
renormalization. Moreover, flavor singlet and nonsinglet scalar currents acquire different renormalization
constants with respect to continuum regularization schemes. This complicates keeping the renormalized
strange quark mass fixed when varying the light quark mass in simulations with Nf ¼ 2þ 1 sea quark
flavors. Here we present and validate our strategy within the CLS (coordinated lattice simulations) effort to
achieve this in simulations with nonperturbatively order-a improved Wilson fermions. We also determine
various combinations of renormalization constants and improvement coefficients.
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I. INTRODUCTION

With the gradual removal and reduction of systematic
sources of error, including finite volume, unphysical quark
mass and lattice spacing effects, lattice QCD simulations
have gained prominence in predicting nonperturbative
matrix elements that are of phenomenological importance.
Present-day large scale simulations employ a multitude of
quark actions, namely, overlap and domain wall actions,
staggered actions, twisted mass Wilson actions at maximal
twist and Wilson actions.
On the one hand overlap and domain wall actions (with a

large extent in the fifth direction) have the theoretically
most desirable properties, including automatic order-a
improvement and an exact chiral symmetry at nonvanishing
values of the lattice spacing a. On the other hand Wilson
fermions are cheaper to simulate in comparison and no
approximations such as the uncontrolled rooting of fer-
mionic determinants are required. Furthermore, unlike in
the staggered or twisted mass formulations, no taste or
unphysical isospin symmetry breaking takes place:
Simulating QCD with Nf ¼ 2þ 1 flavors, where we
assume the light quarks to be mass-degenerate, there is
only one pion mass Mπ and one kaon mass MK .
While in the other fermion formulations mentioned above

lattice effects are of order a2 for most matrix elements, the
naive Wilson action has artefacts of order a that need to
be removed nonperturbatively, in order to improve the
action and operators. Another drawback is additive quark
mass renormalization. While in the continuum only for the

axial-vector current a distinction between flavor singlet and
nonsinglet dimension three quark bilinears needs to be made,
in the Wilson formalism these quark mass combinations
(or, equivalently, scalar currents) renormalize differently. In
simulations with dynamical sea quarks this complicates
parameter tuning within the quark mass plane.
Traditionally, simulations with Nf ¼ 2þ 1 (or Nf ¼

2þ 1þ 1) fermions have been performed, keeping the
strange quark mass approximately fixed while reducing the
light quark mass toward its physical point value. For an
overview of simulation points of many lattice collabora-
tions that were available a few years ago, see Fig. 1, taken
from Ref. [1]. More details can be found in the reviews
[2,3]. For recent simulations see, e.g., Refs. [4–12]
(Nf¼2þ1) and [13–15] (Nf ¼ 2þ 1þ 1). Determining
the point in the quark mass plane where the pion and kaon
masses assume their physical values requires knowledge of
the lattice spacing. This can only be obtained by extrapo-
lating a third dimensionful observable to this physical
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point. Once the scale is known, the initial guesses for the
pion and kaon masses may very well turn out to be
incorrect. Then new points, e.g., with a different strange
quark mass, need to be simulated, or quark mass reweight-
ing becomes necessary.
It was realized by the QCDSF collaboration [4] that

extrapolating along a line where the sum of lattice quark
masses mu þmd þms ¼ 2ml þms is kept constant (the
green outliers in Fig. 1) can be very advantageous, since
gluonic observables or the centers of mass of meson and
baryon multiplets dominantly depend on the trace of the
quark mass matrix but are only mildly affected by the
difference ms −ml. This allows for a better controlled
approach of the physical point along this mass plane
trajectory, with only a small variation of the lattice scale,
minimizing the risk of missing the physical point.
Therefore, only a very moderate subsequent reweighting
of quark masses—if at all—may become necessary. Within
the Nf ¼ 2þ 1 CLS effort [7] we follow this strategy.
At moderately fine lattice spacings, a≳ ð3 GeVÞ−1,

physical point simulations with a spatial extent of the
lattice L > 4=Mπ are possible. However, for complicated
observables or at finer lattice spacings, obtaining mean-
ingful physical point results is still prohibitively expensive.
In this situation it is desirable to have a second line in the
quark mass plane at hand to validate any extrapolation
strategy. This has motivated us within the CLS effort to
generate ensembles not only at fixed values of 2ml þms
but also to set the renormalized strange quark mass (close)
to its physical value while lowering the light quark mass.
This additional trajectory allows us to benefit from SUð2Þ
chiral perturbation theory (ChPT) and to determine the
corresponding low energy constants. SUð2Þ ChPT should
be more reliable than SUð3Þ ChPT as the K and the
(hypothetical) octet η8 mesons are not particularly light in
nature or in the simulations envisaged here. The additional
line in the quark mass plane also provides an alternative to
Gell-Mann–Okubo style expansions in the SUð3Þ flavour
symmetry breaking parameter [5,16,17].
Due to the different renormalization patterns of singlet

and nonsinglet quark mass combinations, it is not straight-
forward to keep the renormalized strangequarkmass fixed in
simulations with Wilson fermions. This is evident from
Fig. 1 where no single group managed to keep the renor-
malized strange quark mass constant, illustrating that even
when employing other fermion actions the correct tuning
may not be entirely trivial. Here we describe how we
achieved an almost constant renormalized strange quark
mass, starting from a few existing simulation points with
2ml þms ¼ 3msymm ¼ const and additional points along
thems ¼ ml line that usuallywill exist, either from searches
for the starting point of the 2ml þms ¼ 3msymm trajectory
or from nonperturbative renormalization efforts.
This article is organized as follows. In Sec. II we

introduce our notations and describe the basic method to

achieve a fixed strange quark mass in our simulations,
including order-a improvement. In Sec. III we give a brief
overview of the action used and ensembles generated. We
then parametrize our quark mass data and also fit pre-
viously undetermined improvement coefficients. In Sec. IV
we describe our determination of the physical quark mass
point. More details on the numerical results and fits are
presented in Sec. V, where we also discuss combinations of
improvement coefficients, before we conclude in the final
section.

II. THE METHOD

We define our notation and derive useful relations, which
enable us to relate the strange quark and light quark
hopping parameters, defining a line of an (almost) constant
renormalized strange quark mass. We then order-a improve
this result and discuss how to keep constant renormalized
masses of additional valence quark flavors.

A. Definitions and useful relations

We closely follow the notation of Ref. [18], however,
substituting TrM ¼ 3m̄, see below. We assume two mass-
degenerate flavors of light sea quarks with masses m1 ¼
m2 ¼ ml and one strange sea quark (m3 ¼ ms). We define
κcrit as the hopping parameter value at which the quark mass
from the axial Ward-Takahashi identity (AWI mass) in the
flavor-symmetric case m1 ¼ m2 ¼ m3 vanishes. Lattice
quark masses are then defined as1

mj ¼
1

2a

�
1

κj
−

1

κcrit

�
: ð1Þ

We introduce the following conventions for averages:

mjk ≡ 1

2
ðmj þmkÞ; ð2Þ

m̄≡ 1

3
ðms þ 2mlÞ; ð3Þ

m2 ≡ 1

3
ðm2

s þ 2m2
lÞ: ð4Þ

We consider flavor nonsinglet (j ≠ k) pseudoscalar
Pjk ¼ q̄jγ5qk and axialvector Ajk;0

μ ¼ q̄jγμγ5qk currents.
The pseudoscalar current is automatically order-a
improved while the improved axial current reads
Ajk
μ ¼ Ajk;0

μ þ acA∂μPjk, where ∂μ is the symmetrized
discrete next neighbor derivative and the improvement
coefficient cA was determined nonperturbatively in
Ref. [19]. We define renormalized, order-a improved
currents

1Note that, away from the ms ¼ ml line, ml defined in this
way can be negative for positive AWI masses. The average mass
m̄ remains positive.
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Âjk
μ ¼ ZAA

jk
μ ½1þ að3b̄Am̄þ bAmjkÞ�; ð5Þ

P̂jk ¼ ZPPjk½1þ að3b̄Pm̄þ bPmjkÞ�: ð6Þ

Note that ZP will depend on the target renormalization
scheme and scale. The factors of 3 are due to the
conventions used for Nf ¼ 3 in Ref. [18]. For the action
we use, ZA was calculated in Ref. [20]. Renormalized
quark masses can be obtained from the axial Ward identity
(AWI)

m̂j þ m̂k ¼ 2m̂jk ¼
∂4h0jÂjk

4 jπjki
h0jP̂jkjπjki ; ð7Þ

where πjk is a pseudoscalar state with quark qj and
antiquark q̄k.
Finally, we define unrenormalized (but improved) non-

singlet AWI masses:

~mjk ¼
∂4h0jAjk

4 jπjki
2h0jPjkjπjki : ð8Þ

These can easily be related to the renormalized quark
masses via Eqs. (5)–(7). The main CLS ensembles [7]
are generated along trajectories of constant average
lattice quark masses m̄ (and therefore ¯̂m is constant up
to OðaÞ corrections). For nonperturbative renormalization
purposes we generated additional ensembles along the
SU(3) flavor symmetric trajectory, i.e. ms ¼ ml. We
now wish to keep m̂s fixed, varying ml and adjusting κs
as required.
The renormalized quark masses can be related to the

lattice quark masses:

m̂j ¼ Zmfmj þ ðrm − 1Þm̄þ a½bmm2
j þ 3b̄mmjm̄

þ3ðrmd̄m − b̄mÞm̄2 þ ðrmdm − bmÞm2�g: ð9Þ

At an average quark mass m̄ > 0 the coupling g2 ¼ 6=β
that corresponds to a given lattice spacing a will undergo
renormalization too, g2↦~g2 ¼ g2ð1þ bgam̄Þ, where bg ¼
0.012000ð2ÞNfg2 þOðg4Þ [21]. This means that ZJ ¼
ZJ½~g2; að~g2Þμ�, where we consider J ∈ fm;P; Ag, and
rm ¼ rm½~g2; að~g2Þμ�. The dependence on the renormaliza-
tion scale μ is absent in the case of ZA, as the nonsinglet
axial current does not carry an anomalous dimension. Also
the order-a improvement coefficients are functions of
~g2, however, in these cases we can neglect the effect of
the difference between g2 and ~g2, which is of a higher order
in a.

Expanding ZJ around g2 gives

ZJ½~g2;að~g2Þμ� ¼ ZJ½g2;aðg2Þμ�
�
1þ

�∂ lnZJðg2;aμÞ
∂g2

þ dlnZJðg2;aμÞ
dlna

∂ lnaðg2Þ
∂g2

�
g2bgam̄þ� � �

�

¼ ZJ½g2;aðg2Þμ�
�
1þ

�∂ lnZJðg2;aμÞ
∂g2

−
γJðg2Þ
4πβðg2Þ

�
g2bgam̄

�
; ð10Þ

and similarly for rm. Note that in this case
d ln rm=d ln a ¼ 0. The same holds for the scale depend-
ence of ZA while Zm carries an anomalous dimension.
Above, we have introduced the β-function

βðg2Þ ¼ −
1

4π

dg2

d ln a
¼ −

g2

2π

�
β0

g2

16π2
þ � � �

�
; ð11Þ

where our normalization convention corresponds to
β0 ¼ 11 − 2

3
Nf, and the anomalous dimension of the

current (or quark mass) J, which reads

γJðg2Þ ¼
d lnZJ

d ln a
: ð12Þ

We can eliminate bg by redefining

~bJðg2Þ≡ b̄Jðg2Þ

þ bgðg2Þ
Nf

�∂ lnZJðg2; aμÞ
∂g2 −

γJðg2Þ
4πβðg2Þ

�
g2: ð13Þ

Analogously, the d̄m improvement coefficient can be
replaced by ~dm to absorb the effect of bg on rm. Note that
the anomalous dimension cancels from the above combi-
nation. Both b̄J and ~bJ are of Oðg4Þ in perturbation theory
and at present unknown. With these substitutions Eq. (9)
becomes

m̂j ¼ Zmfmj þ ðrm − 1Þm̄þ a½bmm2
j þ 3~bmmjm̄

þ3ðrm ~dm − ~bmÞm̄2 þ ðrmdm − bmÞm̄2�g; ð14Þ

where Zm now is a function of g2, rather than of ~g2. The
only other difference between the two equations is the
replacement of the bar-coefficients by tilde-coefficients.
Equation (14) implies that we can reexpress the

(unrenormalized) AWI masses in terms of the lattice
masses, see Eqs. (48)–(53) of Ref. [18]:
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~mjk ¼
ZPZm

ZA
½mjk þ ðrm − 1Þm̄

þ aðAm2
jk þ 3Bmjkm̄þ 9Cm̄2 þ 3Dm2Þ�; ð15Þ

where

A ¼ bP − bA − 2bm; ð16Þ

B ¼ ~bP − ~bA þ ~bm þ 2bm þ 1

3
ðrm − 1ÞðbP − bAÞ; ð17Þ

C ¼ 1

3
½ðrm − 1Þð ~bP − ~bAÞ þ rm ~dm − ~bm� −

bm
2
; ð18Þ

D ¼ 1

3

�
rmdm þ bm

2

�
: ð19Þ

Note that we independently verified these results of
Ref. [18]. However, we replaced b̄J↦ ~bJ and d̄m↦ ~dm,
absorbing the effect of bg into these new coefficients.
The difference between these two sets of improvement
coefficients is of Oðg4Þ and is given in Eq. (13). The

relation betweenNf ¼ 3 quark massesm2
j þm2

k¼−4m2
jkþ

12mjkm̄−9m̄2þ3m2 was used to derive Eq. (15). For
mass-degenerate up and down quarks it will turn out more
convenient to rewrite the order-a corrections in terms of
their functional dependence on ðms −mlÞ2, ðms −mlÞm̄
and m̄2.
Some of the above improvement coefficients as well as

Zm, ZP and ZA have been computed to one-loop order in
perturbation theory [22] for the tree-level Symanzik
improved gauge action that we use in our simulations2:

Z≡ ZmZP

ZA
¼ 1þ ð0.09546 − 0.11058þ 0.06786ÞCFg2

¼ 1þ 0.05274CFg2; ð20Þ

bm ¼ dm ¼ −
1

2
− 0.05722ð5ÞCFg2; ð21Þ

bA ¼ 1þ 0.0881ð1ÞCFg2; ð22Þ

bP ¼ 1þ 0.0890ð1ÞCFg2; ð23Þ

where CF ¼ 4=3 and terms of Oðg4Þ are ignored. This
means the difference bA − bP practically vanishes to Oðg2Þ
while ~bA − ~bP, being a sea quark effect, exactly vanishes to

this order. Therefore, keeping the renormalized strange
quark mass m̂s constant amounts to keeping the AWI mass

~ms ≡ 2 ~m13 − ~m12

¼ m̂s
ZP

ZA
f1þ a½3ð ~bP − ~bAÞm̄þ ðbP − bAÞms�g ð24Þ

fixed, up to Oðg4am̄Þ and Oðg2amsÞ corrections with
small coefficients. It has been confirmed nonperturbatively
]24 ] that the ams term is not unnaturally large. In the

absence of other information from nonperturbative
approaches, in particular on ~bA − ~bP, we will keep ~ms
fixed instead of m̂s.
We remark that for the gauge and fermion action that we

use rm has been computed perturbatively [25], with the
result

rm ¼ 1þ 0.001158ð1ÞCFNfg4: ð25Þ

From our study we will see that the nonperturbative values
are much larger.
Differences of AWI quark masses are related by the

nonsinglet renormalization constant Z of Eq. (20) to
differences of the above lattice quark masses while the
average AWI quark mass ~̄m is related by Zrm to the average
lattice quark mass [18,26–28]. Below we will make use of
the relations

2ðm2
13 −m2

12Þ ¼
1

2
ðms þmlÞ2 − 2m2

l

¼ −
1

6
ðms −mlÞ2 þ 2ðms −mlÞm̄; ð26Þ

m2 ¼ m̄2 þ 2

9
ðms −mlÞ2: ð27Þ

Differences and sums of AWI masses read:

~ms − ~ml ¼ 2ð ~m13 − ~m12Þ

¼ Z

�
ðms −mlÞ þ a

�
−
A
6
ðms −mlÞ2

þ ð2Aþ 3BÞðms −mlÞm̄
��

; ð28Þ

~̄m ¼ 1

3
ð ~m12 þ ~m23 þ ~m31Þ ¼

1

3
ð ~ms þ 2 ~mlÞ

¼ Z
�
rmm̄þ a

�
1

18
ðAþ 12DÞðms −mlÞ2

þ ðAþ 3B þ 9C þ 3DÞm̄2

��
; ð29Þ

where ~ml ≡ ~m12, assuming κ1 ¼ κ2. Having rewritten
everything in terms of differences of quark masses and

2For the ZJ we quote the more precise values given in Ref. [23],
using cSW ¼ 1, which is consistent to this order. The ordering of
the numerical values in the first line corresponds to Zm ¼ Z−1

S , ZP
and Z−1

A , where Zm and ZP are the conversions to the M̄S scheme
at the scale μ ¼ a−1. The scale and scheme dependence cancels
from the combination Z.
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average quark masses, we can reexpress the improvement
terms through AWI masses, which will allow us to
eliminate κcrit from most equations:

~ms − ~ml ¼ Zðms −mlÞ −
a
Z

�
A
6
ð ~ms − ~mlÞ2

þ B0

rm
~̄mð ~ms − ~mlÞ

�
; ð30Þ

~̄m ¼ Zrmm̄ −
a
Z

�
C0rm
9

ð ~ms − ~mlÞ2 þ
D0

2rm
~̄m2

�
;

ð31Þ

where we substituted the combinations B;… by B0;…, that
are normalized such that A ¼ B0 ¼ C0 ¼ D0 ¼ 1 at tree-
level:

B0 ¼ −2A − 3B

¼ −ðrm þ 1ÞðbP − bAÞ − 2bm − 3ð ~bP − ~bA þ ~bmÞ;
ð32Þ

C0 ¼ −
1

2rm
ðAþ 12DÞ

¼ −
1

2rm
ðbP − bAÞ − 2dm; ð33Þ

D0 ¼ −
2

rm
ðAþ 3B þ 9C þ 3DÞ

¼ −2ðbP − bA þ dmÞ − 6ð ~bP − ~bA þ ~dmÞ: ð34Þ

We also made the rm-dependence explicit since this, though
formally 1þOðg4Þ [see Eq. (25)], will turn out signifi-
cantly larger than one. Note that dm ¼ bm þOðg4Þ ¼
−1=2þOðg2Þ and bP ¼ bA þOðg2Þ ¼ 1þOðg2Þ [see
Eqs. (20)–(23)] while all improvement coefficients ~dJ
and ~bJ only receive contributions at Oðg4Þ.
Although not needed here, for completeness we also

express lattice quark mass combinations through AWI
masses:

ms −ml ¼ 1

2a

�
1

κs
−

1

κl

�

¼ ~ms − ~ml

Z

�
1þ a

�
A
6Z

ð ~ms − ~mlÞ þ
B0

Zrm
~̄m

��
;

ð35Þ

m̄ ¼ 1

6a

�
1

κs
þ 2

κl
−

3

κcrit

�

¼ ~̄m
Zrm

�
1þ a

�
C0Zrm
9Z2

ð ~ms − ~mlÞ2
~̄m

þ D0

2Zrm
~̄m

��
:

ð36Þ

B. Leading order determination
of the target κs and κl parameters

We need to predict how we have to adjust κs as a function
of κl < κl;ph to keep ~ms ¼ ~ms;ph fixed (and therefore the
renormalized strange quark mass m̂s approximately con-
stant). We assume that the parameters κl;ph and κs;ph that
correspond to the physical point have already been deter-
mined, see Sec. IV. Neglecting OðamÞ terms, we can write

3 ~ms ¼ 2ð ~ms − ~mlÞ þ 3 ~̄m

¼ Z
2a

�
2

�
1

κs
−

1

κl

�
þ rm

�
1

κs
þ 2

κl
−

3

κcrit

��
; ð37Þ

where we keep the left-hand side constant. Solving ~ms ¼
~ms;ph for 1=κs gives

1

κs
¼ 2

2þ rm

�
3a
Z

~ms;ph þ ð1 − rmÞ
1

κl
þ 3rm

2

1

κcrit

�
: ð38Þ

κcrit and ~ms;ph can be eliminated by subtracting the result at
the physical point from both sides of this equation:

1

κs
¼ 1

κs;ph
þ 2ð1 − rmÞ

2þ rm

�
1

κl
−

1

κl;ph

�
; ð39Þ

i.e. for predicting the target κs as a function of κl, up to
OðaÞ corrections, we only need to know the value of the
parameter rm, in addition to determining the physical point.
Note that rm > 1, which means that as we decrease κl away
from the physical point, we have to increase κs.
The equality 3 ~ml ¼ ð ~ml − ~msÞ þ 3 ~̄m results in the

relation

3 ~ml ¼ Z
2a

�
rm − 1

κs
þ 2rm þ 1

κl
−
3rm
κcrit

�
; ð40Þ

in analogy to Eq. (37). We can again eliminate κcrit, by
subtracting the result at the physical point. Furthermore, we
substitute the difference κ−1s − κ−1s;ph of Eq. (39), giving

að ~ml − ~ml;phÞ ¼
Z
2

3rm
2þ rm

�
1

κl
−

1

κl;ph

�
: ð41Þ

If we are now targeting a value ~ml ≠ ~ml;ph, we can extract
the corresponding shift in κ−1l relative to the physical point
from the above equation.

C. Order-a improvement

Here we show how to order-a improve Eq. (39).
However, we refrain from working out the equivalent
expression for the light quark mass shift Eq. (41) as for
our purposes an approximate determination of the target κl
value is sufficient. Above we have not only related AWI

LATTICE SIMULATIONS WITH Nf ¼ 2þ 1 IMPROVED … PHYSICAL REVIEW D 94, 074501 (2016)

074501-5



masses to lattice masses, introducing Z and rm, but also
improvement terms with coefficientsA, B0, C0 andD0 have
been worked out.
Multiplying Eq. (30) by two and Eq. (31) by three, it is

easy to derive an order-a improved version of Eq. (37):

3 ~ms ¼
Z
a

�
2þ rm
2κs

þ rm − 1

κl
−

3rm
2κcrit

�

−
a
3Z

�
ðAþ C0rmÞð ~ms − ~mlÞ2

þ 6B0

rm
ð ~ms − ~mlÞ ~̄mþ 9D0

2rm
~̄m2

�
: ð42Þ

Next we keep ~ms ≡ ~msðκl; κsÞ ¼ ~ms;ph fixed and compute
differences between simulated and physical mass values:

ð ~ms − ~mlÞ2 − ð ~ms − ~ml;phÞ2

¼ Z
2a

�
1

κl
−

1

κl;ph

�
ð ~ml þ ~ml;ph − 2 ~msÞ; ð43Þ

ð ~ms − ~mlÞ ~̄m − ð ~ms − ~ml;phÞ ~̄mph

¼ Z
6a

�
1

κl
−

1

κl;ph

�
½ ~ms − 2ð ~ml þ ~ml;phÞ�; ð44Þ

~̄m2 − ~̄m2
ph ¼

2Z
9a

�
1

κl
−

1

κl;ph

�
ð ~ms þ ~ml þ ~ml;phÞ: ð45Þ

Above we have reexpressed the nonsinglet combination
~ml − ~ml;ph through differences of inverse hopping param-
eters. We now isolate 1=κs in Eq. (42) and subtract the
physical point values from both sides of the resulting
equation:

1

κs
−

1

κs;ph
¼ 2

2þ rm

�
1

κl
−

1

κl;ph

��
1 − rm

þ a
6Z

�
ðAþ C0rmÞð−2 ~ms;ph þ ~ml;ph þ ~mlÞ

þ 2B0

rm
ð ~ms;ph − 2ð ~ml;ph þ ~mlÞÞ

þ 2D0

rm
ð ~ms;ph þ ~ml;ph þ ~mlÞ

��
: ð46Þ

Using Eq. (41), we can reexpress ~ml above in terms of κl,
κl;ph and ~ml;ph. This gives

1

κs
¼ 1

κs;ph
þ 2

3
x

�
1 − rm þ 1

3

�
B0 þD0

rm
− ðAþ C0rmÞ

�

×
a ~ms;ph

Z
þ 1

3

�
Aþ C0rm þ 2D0 − 4B0

rm

�

×

�
a ~ml;ph

Z
þ rm

4
x

��
; ð47Þ

where

x ¼ 3

2þ rm

�
1

κl
−

1

κl;ph

�
: ð48Þ

We employ Eq. (47) to determine the order-a improved
value of κs. The last term of this equation is numerically
subleading since ~ml;ph ≈ 0 and terms quadratic in x can be
neglected too as long as ~ml ≪ ~ms. Therefore, the dominant
order-a correction amounts to a constant shift of κ−1s ,
relative to Eq. (39). Note that at tree-level rm ¼ A ¼ B0 ¼
C0 ¼ D0 ¼ 1 and therefore, κs ¼ const., as it should be in
the noninteracting case.

D. Comment on additional valence quark flavors

We now consider the partially quenched situation,
introducing additional “charm” valence quarks of the lattice
mass

mc ¼ m4 ¼ m5 ¼
1

2a

�
1

κc
−

1

κcrit

�
; ð49Þ

where κcrit is still the hopping parameter for the Nf ¼ 3
case at vanishing quark masses. Again, one can obtain the
AWI charm quark mass from Eq. (7). As the charm quark is
quenched, rather than using the currents Â4j

μ and P̂4j with
j ∈ f1; 2; 3g, we can also just compute Â45

μ and P̂45,
pretending we have two distinct (but mass-degenerate)
charm quark flavors. In this partially quenched situation,
rather than working with the flavor symmetry group SU(3),
we have to work with the graded group SUð5j2Þ, replacing
mass traces in Eq. (14) by supertraces. The changes can be
worked out easily and reduce to the preceding formulas
when replacing the flavor combination 45 by 12 and mc by
ml. In particular we have

~mc ¼
ZP

ZA
m̂cf1þ a½ðbP − bAÞmc þ 3ð ~bP − ~bAÞm̄�g; ð50Þ

where

m̂c ¼
∂4h0jÂ45

4 jπ45i
2h0jP̂45jπ45i : ð51Þ

Note that m̄ above still denotes the mass average over the
three sea quark flavors only.
Expressing the renormalized charm quark mass through

lattice quark masses, we obtain the following relation
between the AWI charm mass and partially quenched
lattice quark masses:
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~mc ¼ Zfmc þ ðrm − 1Þm̄þ a½ðAþ 3bmÞm2
c

− ðB0 þ 2Aþ 6bmÞm̄mc

−
1

18
ð2rmC0 þAþ 6bmÞðms −mlÞ2

−
1

2
ðrmD0 − 2A − 2B0 − 6bmÞm̄2�g: ð52Þ

In spite of the fact that the charm quark is quenched, rm still
appears in the above equation since we defined the lattice
quark mass relative to the inverse sea quark critical hopping
parameter.3

It is now clear how to keep the AWI (or the renormal-
ized) charm quark mass approximately constant:

~mc − ~̄m ¼ Zðmc − m̄Þ½1þOðaÞ�: ð53Þ

In the situation m̄ ¼ msymm, unsurprisingly, at least up to
order-a effects, mc (and therefore κc) should be kept
constant. One may wonder if, owing to the heavy charm
quark mass, discretization effects may be substantial.
Examining Eq. (59) we notice that as long as m̄ is kept
constant only the parametrically small second last term
(ms −ml ≪ mc;ph) changes. Therefore, along the m̄ ¼
msymm trajectory, also keeping track of the dominant
order-a effects, mc, i.e. κc, should remain constant.
In Secs. II B and II C we worked out how κs has to be

varied to keep ~ms ¼ ~ms;ph constant. What happens along
this line? In this case

~mc;ph − ~ms;ph ¼ Zðmc −msÞ½1þOðaÞ� ð54Þ

should remain constant. This means that in this situation the
difference between 1=κc and 1=κs should be kept approx-
imately fixed, too:

1

κc
¼ 1

κs
þ 1

κc;ph
−

1

κs;ph
: ð55Þ

The order-a contributions are again captured by Eq. (59)
and the compensation term can be worked out if needed, in
analogy to the discussion of Sec. II C above.

III. SIMULATION PARAMETERS
AND FIT PROCEDURE

In this article we present results obtained at two β values:
β ¼ 3.4, corresponding to a ≈ 0.085 fm, and β ¼ 3.55
(a ≈ 0.064 fm). Investigations at further lattice spacings
are in progress. At each lattice spacing the simulations
cover four mass points ranging from a pion mass

Mπ ≈ 200 MeV up to Mπ ≈ 420 MeV along the m̄ ¼
msymm ¼ const line with MπL > 4 (3.9 in one case). At
β ¼ 3.4 one additional point exists along this line at Mπ ≈
129 MeV (D100). However, as in this case we have only
limited statistics and MπL < 4, we will discard this
ensemble from any fit. For an overview of the analyzed
ensembles, see Table I. The lattice spacing and meson mass
estimates are based on the continuum limit value of the
scale [29]

ffiffiffiffiffiffi
8t0

p ¼ 0.4144ð59Þð37Þ fm that was obtained by
the BMW Collaboration [30]. We utilize open boundary
conditions in time [31], with the exception of the rqcd017,
rqcd019, rqcd021, B250, X250 and X251 ensembles,
which are periodic in time for gauge fields and antiperiodic
for fermions. Note that the ensembles under investigation
correspond to lattice spacings at which topological freezing
is not yet a major problem [7], enabling us to use (anti)
periodic boundary conditions. We remark that at β ¼ 3.55
and κl ¼ κs ¼ 0.137 there exist two ensembles, H200 and
N202, both with LMπ > 4. However, in the first case L ≈
2 fm is rather small in physical units. While this does not
appear to affect the AWI mass, the measured pion mass on
the larger volume comes out somewhat lighter. Therefore,
we discard H200 from further analysis.
In addition to the already existing m̄ ¼ msymm point at

ms ¼ ml, we first generated three other points along the
flavor symmetric line for both lattice spacings, one at a
bigger and two at smaller values of the quark mass. The
data along these two lines in the quark mass plane enabled
us to estimate Z, rm and κcrit from fits of the form [see
Eqs. (30) and (31)]:

a ~ms − a ~ml ¼ Z
2

�
1

κs
−

1

κl

�

×

�
1 −

A
12

�
1

κs
−

1

κl

�
− B0am̄

�
; ð56Þ

a ~̄m ¼ Zrm

�
am̄ −

C0
36

�
1

κs
−

1

κl

�
2

−
D0

2
ðam̄Þ2

�
:

ð57Þ
The combination am̄ ¼ ð2κ−1l þ κ−1s − 3κ−1critÞ=6 above
depends on κcrit. To this order in a this parameter can in
principle be substituted by the measured value of
a ~̄m=ðZrmÞ if desired. This is possible because we will
neither need the value of κcrit for our determination of the
physical point nor for predicting the κs trajectory (as a
function of κl) along which ~ms ≈ ðZP=ZAÞm̂s is kept fixed,
see Eqs. (39) and (47).
We were unable to reliably fit seven (or six) parameters

to data from seven ensembles, covering just the m̄ ¼ msymm
and ms ¼ ml lines. Moreover, D0 is insensitive to the m̄ ¼
msymm points, A does not depend on the ms ¼ ml points
and a determination of B0 requires points at additional
positions in the quark mass plane. Therefore, we initially
made use of the one-loop estimates

3Note that when setting ~mc ¼ ~ml and mc ¼ ml, substituting
m2

l ¼ m̄2 − 2
3
m̄ðms −mlÞ þ 1

9
ðms −mlÞ2 and m̄ml ¼ m̄2−

1
3
m̄ðms −mlÞ, Eq. (59) reduces to the unquenched case discussed

previously, as it should.
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A ¼ 1þ 0.1153ð2ÞCFg2; ð58Þ

B0 ¼ D0 ¼ 1þ 0.1126ð3ÞCFg2; ð59Þ

C0 ¼ 1þ 0.1140ð1ÞCFg2; ð60Þ

see Eqs. (16), (21)–(23) and (32)–(34). After investigating
various fits with different combinations of A, C0 and D0 as
free parameters, we found that fixing A, B0 and D0 to the
above one-loop estimates but allowing C0 to float gave a
good and stable description of the data. Note that the
nonperturbatively determined values of A [24] were not
available at the beginning of this study. This then enabled
us to predict the κs values that corresponded to our target
AWI strange quark mass (see Sec. IV below), using
Eq. (47). Table I demonstrates that indeed we managed
to keep the AWI strange quark mass ~ms constant in
simulations with Wilson fermions within statistical errors
of 0.3% and 0.1% at β ¼ 3.4 and β ¼ 3.55, respectively,
see also Fig. 5 below.

After simulating three additional points along the
~ms ¼ ~ms;ph ¼ const trajectory for each lattice spacing, we
used the nonperturbative values A ¼ 2.91ð33Þ and A ¼
2.27ð14Þ for β ¼ 3.4 and β ¼ 3.55, respectively, that were
obtained employing coordinate space methods [24], to
determine the remaining six parameters from a combined
correlated fit to all data. Varying A within its uncertainty
[24] had only a very insignificant impact on the remaining
six fit parameters. After excluding the rather heavy (in
lattice units) β ¼ 3.4 rqcd019 point from the fit, we have
nine and ten ensembles with 15 and 16 different quark mass
values at our disposal at β ¼ 3.4 and β ¼ 3.55, respectively.
The resulting fit parameters are shown in Table II. The

data only mildly constrain the parameter D0, which comes
out to be compatible with zero within large errors. rm, B0

and C0 deviate substantially from the perturbative expect-
ations and B0 even comes out negative. However, as one
would expect, rm as well as the improvement parameters
are closer to unity at the larger β value. The fits are
discussed in more detail in Secs. VA and V B below.

TABLE I. Analyzed CLS (and RQCD) ensembles at β ¼ 3.4 and β ¼ 3.55: mass plane trajectory (m̄ ¼ msymm, ms ¼ ml or
~ms ¼ ~ms;ph), ensemble name, hopping parameter values, linear extent in terms of the inverse pion mass, number of lattice points,ffiffiffiffiffiffi
8t0

p
=a, estimates of pion and kaon masses from assigning

ffiffiffiffiffiffiffiffiffiffiffi
8t0;ph

p ¼ 0.4144ð70Þ fm [30] (also the lattice spacings a are estimated in
this way), the AWI quark masses in lattice units and the number of molecular dynamics units NMD. In most cases the trajectory length is
two and measurements are taken every four units. We complement the

ffiffiffiffiffiffi
8t0

p
=a values determined in Ref. [7] by preliminary estimates

obtained on the newly generated ensembles. Note that the ensembles H101, H200 and N202 are at the same time on the m̄ ¼ msymm and
ms ¼ ml lines. All D100 results are very preliminary due to insufficient statistics. We exclude D100, H200 and rqcd019 from further
analysis. Preliminary results are typeset in Italics.

Trajectory Ensemble κl κs LMπ Nt N3
s

ffiffiffiffiffiffi
8t0

p
=a Mπ

MeV
MK
MeV

a ~ml a ~ms NMD

β ¼ 3.4 [a ¼ 0.0854ð15Þ fm]

m̄ ¼ msymm

H101 0.13675962 0.13675962 5.8 96 323 4.772(5) 422 422 0.009201(39) 0.009201(39) 8000
H102 0.136865 0.136549339 4.9 96 323 4.800(6) 356 442 0.006502(46) 0.013836(43) 7988
H105 0.13697 0.13634079 3.9 96 323 4.819(6) 282 467 0.003951(52) 0.018672(52) 11332
C101 0.13703 0.136222041 4.6 96 483 4.824(4) 223 476 0.002466(32) 0.021242(34) 6208
D100 0.13709 0.136103607 3.2 128 643 4.860(4) 129 482 0.000801(30) 0.023552(43) 492

ms ¼ ml

rqcd019 0.1366 0.1366 8.4 32 323 4.454(5) 607 607 0.018094(77) 0.018094(77) 1686
rqcd021 0.136813 0.136813 4.7 32 323 4.925(12) 340 340 0.005983(63) 0.005983(63) 1541
rqcd017 0.136865 0.136865 3.3 32 323 5.100(7) 238 238 0.002799(92) 0.002799(92) 1849

~ms ¼ ~ms;ph

H107 0.136945665908 0.136203165143 5.1 96 323 4.665(6) 368 549 0.006662(50) 0.023981(60) 6256
H106 0.137015570024 0.136148704478 3.8 96 323 4.751(6) 272 519 0.003775(70) 0.024029(68) 6212
C102 0.1370508458 0.136129062556 4.6 96 483 4.790(4) 223 504 0.002467(34) 0.023956(54) 6000

β ¼ 3.55 [a ¼ 0.0644ð11Þ fm]

m̄ ¼ msymm

H200 0.137 0.137 4.4 96 323 6.419(14) 418 418 0.006865(22) 0.006865(22) 8000
N202 0.137 0.137 6.4 128 483 6.427(6) 410 410 0.006854(16) 0.006854(16) 3536
N203 0.13708 0.136840284 5.4 128 483 6.416(4) 345 441 0.004738(15) 0.011047(12) 6172
N200 0.13714 0.13672086 4.4 128 483 6.424(5) 283 461 0.003164(12) 0.014132(11) 6800
D200 0.1372 0.136601748 4.2 128 643 6.430(4) 199 479 0.001538(10) 0.017229(12) 4000

ms ¼ ml

B250 0.1367 0.1367 7.4 64 323 5.873(8) 706 706 0.018772(39) 0.018772(39) 1776
X250 0.13705 0.13705 5.4 64 483 6.500(8) 347 347 0.004899(21) 0.004899(21) 1380
X251 0.1371 0.1371 4.2 64 483 6.623(9) 268 268 0.002895(25) 0.002895(25) 1384

~ms ¼ ~ms;ph

N204 0.137112 0.136575049 5.5 128 483 6.290(5) 352 545 0.004822(14) 0.018927(15) 3692
N201 0.13715968 0.136561319 4.5 128 483 6.351(4) 284 522 0.003146(14) 0.018849(15) 6000
D201 0.137207 0.136546436 4.1 128 643 6.409(4) 198 499 0.001552(16) 0.018874(17) 4312
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Repeating the β ¼ 3.4 fit, excluding the lightest ms ¼ ml
data point (rqcd017) as this was obtained on a small volume
LMπ ¼ 3.2 < 4, did not significantly impact on any of the
fit parameters but resulted in increased errors in some cases:
rm ¼ 2.50ð20Þ, κcrit ¼ 0.1369159ð66Þ and D0 ¼ −0.7�
17.0. Note that the central value of D0 moved down by
one standard deviation while the errors on rm and κcrit
approximately doubled. Including the heavy rqcd019 point
hardly affected any of the fit parameters, with the exception
ofD0 ¼ 16.5� 4.4, indicating a large positive value of this
parameter. However, in view of the rather large improve-
ment coefficients at β ¼ 3.4, the rqcd019 results may very
well be polluted by significant Oða2Þ effects, which is why
we chose to discard this point from further analysis.

IV. DETERMINATION OF THE PHYSICAL
QUARK MASS VALUES

At each lattice spacing the average lattice quark mass
msymm for the m̄ ¼ msymm trajectory is fixed by imposing a
target value for the combination [7]

ϕ4 ≡ 8t0

�
M2

K þ 1

2
M2

π

�
∝ ¯̂m

∝ m̄þ a

�
2dm
9

ðms −mlÞ2 þ ðdm þ 3~dmÞm̄2

�

þOða2Þ ð61Þ

at κl ¼ κs ¼ κsymm, where t0 is the gluonic scale defined in
Ref. [29] and we have made use of the Gell-Mann–Oakes–
Renner relation as well as of Eqs. (14) and (27). At the
physical point the numerical value

ϕ4;ph ¼ 1.117ð38Þ ð62Þ

can be obtained from the pion and kaon masses
in the electrically neutral isospin symmetric limit,
Mπ ¼ 134.8ð3Þ MeV and MK ¼ 494.2ð4Þ MeV [32], and
the result

ffiffiffiffiffiffi
8t0

p ¼ 0.4144ð59Þð37Þ fm of the BMW
Collaboration [30] for the continuum limit Nf ¼ 2þ 1

theory. In the future we will independently determine a
lattice scale and at that stage the value Eq. (62) may change.
The combination ϕ4 will not vary strongly along the m̄ ¼

msymm trajectory: At fixed renormalized quark masses ϕ4

(and ϕ2 defined below) can only be subject toOða2Þ lattice
artefacts. This also holds when ¯̂m is varied as the effect of

the renormalization of the charge through bg cancels from
this combination. However, the proportionality of ϕ4 to the
average lattice quark mass m̄ is subject to order-a correc-
tions, see Eqs. (14) and (61). The latter of the correction
terms in Eq. (61) does not change along the m̄ ¼ msymm

line. The remainingOðaÞ correction term is proportional to
ðms −mlÞ2. On the continuum side, generalizing the
Ademollo–Gatto theorem [33] and also as a consequence
of the Gell-Mann–Okubo expansion [5,16,17], ϕ4 cannot
depend linearly on the symmetry breaking parameter
ms −ml, i.e. it can only depend on ðM2

K −M2
πÞ2 and

higher powers. Indeed, to next-to-leading order SUð3Þ
ChPT [34,35] ϕ4 is constant as long as ¯̂m is constant
and it will only receive corrections at next-to-next-to-
leading order [36]. Therefore, the m̄ ¼ msymm line with
ϕ4;symm ¼ ϕ4;ph, where ϕ4;symm refers to the ϕ4 value at the
pointms ¼ ml, should go through the physical point, up to
continuum and lattice effects that are both quartic in the
pseudoscalar meson masses in units of the chiral symmetry
breaking scale 4πF0 ∼ 1 GeV. In view of these corrections
that depend on ðM2

K −M2
πÞ2 and ϕ4 itself, we targeted a

slightly larger value ϕ4;symm ≈ 1.15 > ϕ4;ph, see Ref. [7].
In the overview plot Fig. 2 the positions of our analyzed

ensembles in the ϕ4 vs.

ϕ2 ≡ 8t0M2
π ∝ m̂l ð63Þ

plane are shown, where at the physical point:

ϕ2;ph ¼ 0.0801ð28Þ; ð64Þ

using again the physical values for t0 and Mπ from above.
Abscissa and ordinate are approximately proportional
to the light and average lattice quark masses, respectively.
The physical target ranges ϕ4;ph and ϕ2;ph are shown as
horizontal and vertical error bands. The line for ms ¼ ml
corresponds to ϕ4 ¼ 3ϕ2=2, for ~ms ¼ ~ms;ph we show a
linear fit to the data while for m̄ ¼ msymm we plot a constant
plus quadratic function of ϕ2;symm − ϕ2 ∝ t0ðM2

K −M2
πÞ.

Indeed, the ϕ4 combination only mildly varies between the
m̄ ¼ msymm simulation points but changes significantly
along the other two mass plane trajectories. The orange
point at β ¼ 3.4 corresponds to the ensemble D100 (see
Table I) that does not enter any of our fits.
Along the m̄ ¼ msymm trajectory order-a lattice artefacts

as well as the leading continuum chiral correction both are

TABLE II. Results of global fits to our AWI quark mass data according to Eqs. (56) and (57). The A values were determined in
Ref. [24]. In the cases where varying A within its uncertainty had an effect, a second error is given to reflect the associated systematics.

β χ2=NDF Z rm κcrit A (no fit) B0 C0 D0

3.4 32.1=9 0.8710(30)(10) 2.635(94)(5) 0.1369115(27)(1) 2.91(33) −1.55ð76Þð1Þ 3.43(30) 10.0(9.1)(0.3)
3.55 26.2=10 0.9841(25)(3) 1.530(14)(1) 0.1371718(10) 2.27(14) −0.81ð45Þð1Þ 1.89(25)(1) 1.2(1.2)
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proportional to ðms −mlÞ2. Because of this variation the
target value at the SUð3Þ symmetric point was deliberately
chosen larger than its physical point estimate Eq. (62).
At both couplings we have somewhat undershot this target
value ϕ4;symm ¼ 1.15: For our β ¼ 3.4 and β ¼ 3.55 data
we obtain ϕ4;symm ¼ 1.139ð6Þ and ϕ4;symm ¼ 1.111ð4Þ,
respectively. This then results in smaller than physical
central ϕ4;ph values. From the fit to the m̄ ¼ msymm points
we find

ϕ4;ph

ϕ4;symm
¼ 0.945ð9Þ; ϕ4;ph ¼ 1.076ð8Þ; ð65Þ

ϕ4;ph

ϕ4;symm
¼ 0.985ð6Þ; ϕ4;ph ¼ 1.094ð5Þ; ð66Þ

at β ¼ 3.4 and β ¼ 3.55, respectively. In both cases the
slope of ϕ4 as a function of ðϕ2;symm − ϕ2Þ2 is small but
significant. It decreases toward the smaller lattice
spacing, indicating that the main effect may be due to
lattice artefacts. In hindsight, if we would have chosen

ϕ4;symm ≈ 1.18 and ϕ4;symm ≈ 1.13 at β ¼ 3.4 and β ¼ 3.55,
respectively, we would have hit the central physical target
value for ϕ4 at ϕ2 ¼ ϕ2;ph along our m̄ ¼ msymm line.
Nevertheless, both extrapolated ϕ4;ph values agree with the
physical value ϕ4;ph ¼ 1.117ð38Þ within errors. We remark
that also this value is not final but depends on a future
independent determination of the scale parameter t0.
In Fig. 3 we plot the ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0=t0;ph

p
as a function of the

light AWI quark mass ratio ~ml= ~ml;ph where we normalize
with respect to the corresponding physical mean values (see
below). At both lattice spacings

ffiffiffiffi
t0

p
along the m̄ ¼ msymm

line depends only mildly on ml but—as expected—it
changes considerably along the other lines, and in particu-
lar along ms ¼ ml. The dependence on the quark masses
can be parametrized in terms of lattice spacing and
continuum effects [35]. The latter are to leading order
linear functions of ~̄m ∝ ¯̂m and ð ~ms − ~mlÞ2 ∝ ðm̂s − m̂lÞ2,
where the proportionalities hold up to tiny residual OðaÞ
effects (see above). Extrapolating the m̄ ¼ msymm data
quadratically in ~ms − ~ml ∝ ~̄m − ~ml, we obtain the physical
point values

FIG. 2. Our simulation points in the ϕ4 ∼ m̄ [see Eq. (61)] vs. ϕ2 ∼ml [see Eq. (63)] plane. The bands correspond to the uncertainties
of the physical point values Eqs. (62) and (64). ϕ4 ¼ ð3=2Þϕ2 along the ms ¼ ml line and the other curves represent fits to the data,
including (tiny) error bands. Orange point: ensemble D100. The data points corresponding to ensembles rqcd019 and B250 are outside
of the plotted range. Left: β ¼ 3.4. Right: β ¼ 3.55.

FIG. 3.
ffiffiffiffi
t0

p
as a function of the AWI quark mass ~ml, normalized with respect to the extrapolated physical point values

ffiffiffiffiffiffiffiffi
t0;ph

p
and

~ml;ph, for our three quark mass plane trajectories. The lines are fits to the data. Orange point: ensemble D100. The data points
corresponding to ensembles rqcd019 and B250 are outside of the plotted range. Left: β ¼ 3.4. Right: β ¼ 3.55.
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ffiffiffiffiffiffiffiffi
t0;ph

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0;symm

p ¼ 1.0167ð18Þ;
ffiffiffiffiffiffiffiffiffiffiffi
8t0;ph

p
a

¼ 4.852ð7Þ; ð67Þ

ffiffiffiffiffiffiffiffi
t0;ph

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0;symm

p ¼ 1.0009ð13Þ;
ffiffiffiffiffiffiffiffiffiffiffi
8t0;ph

p
a

¼ 6.433ð6Þ; ð68Þ

for β ¼ 3.4 and β ¼ 3.55, respectively.Note that someof the
t0 values shown in the figure are preliminary, see Table I, and
may have underestimated errors, due to very large autocor-
relations times for this observable, that we may not yet have
taken fully into account. Therefore, the

ffiffiffiffiffiffiffiffiffiffiffi
8t0;ph

p
=a values

quoted above should also be considered as preliminary. The
curves shown in the figure are linear fits to the ~ms ¼ ~ms;ph

andms ¼ ml data and the constant plus quadratic fit in ~̄m −
~ml to the m̄ ¼ msymm data described above.
Note that linear lattice artefacts along the m ¼ ms ¼

ml ¼ m̄ line are due to the change of the coupling
~g2 ¼ ð1þ bgamÞg2. This means that in this case the
dependence on the lattice spacing a of the linear slope
of

ffiffiffiffiffiffiffiffiffiffiffi
t0ðm̂Þp

as a function of m could serve to isolate the
effect of bg, when compared to the continuum limit mass
dependence t0;cðm̂Þ along this line: From

að~g2Þ ¼ Λ−1 exp

�
−

8π2

β0 ~g2
þ � � �

�

¼ aðg2Þð1þ baamþ � � �Þ ð69Þ

it follows that ba ¼ 8π2bg=β0 ¼ 8π2bg=9 for Nf ¼ 3. This
coefficient is related to the change of the slope

ffiffiffiffiffiffiffiffiffiffiffi
t0ðm̂Þp
ffiffiffiffiffiffiffiffiffiffi
t0ð0Þ

p ¼ aðg2Þ
að~g2Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0;cðm̂Þp
ffiffiffiffiffiffiffiffiffiffiffiffi
t0;cð0Þ

p

¼ ð1 − baamÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t0;cðm̂Þp
ffiffiffiffiffiffiffiffiffiffiffiffi
t0;cð0Þ

p : ð70Þ

Note that dm þ 3~dm and Zmrm are required to relateffiffiffiffiffiffiffiffiffiffiffi
t0ðmÞp

to
ffiffiffiffiffiffiffiffiffiffiffi
t0ðm̂Þp

. As the slope becomes more negative
for the coarser lattice spacing, bg must be positive, in
agreement with the one-loop perturbative expectation [21]:
A larger average quark mass results in a coarser effective
lattice spacing.
As AWI masses can be determined more precisely than

pseudoscalar masses and are less susceptible to finite
volume effects, we will use these to set the physical quark
masses, by imposing the FLAG value [32],

~ml;ph

~̄mph
≈
m̂l;ph

¯̂mph
¼ 0.1018ð15Þ; ð71Þ

to define the physical quark mass point. Also this target
value may undergo a slight change in the future, once we
have independently extrapolated the combination

3M2
π

2M2
K þM2

π
¼ 0.1076ð5Þ ð72Þ

to the continuum limit.
We remark that there are slight differences between

ratios of renormalized and AWI quark masses m̂ and ~m, see
Eq. (24). Since we keep m̄ fixed along our main mass plane
trajectory, the dependence on ~bP − ~bA cancels from the
ratio Eq. (71). However, a correction term

a
bP − bA

3
ðml;ph −ms;phÞ

¼ a
bP − bA

3Z
ð ~ml;ph − ~ms;phÞ ð73Þ

survives, see Eq. (24). Nonperturbatively, one finds [24]
bP − bA ¼ 0.90ð32Þ and bP − bA ¼ 0.59ð14Þ, respectively,
at β ¼ 3.4 and β ¼ 3.55. At β ¼ 3.4, where the above
order-a correction is largest, using Z−1 ≈ 1.15 and
að ~ms;ph − ~ml;phÞ ≈ 0.023 [see Table II and Eq. (75)], we
obtain a change of about 0.8% from substituting the ratio of
renormalized quark masses Eq. (71) by the ratio of AWI
masses. This effect, that reduces to 0.4% at β ¼ 3.55, is
well below the 1.5% relative error of the FLAG average
[32] that we use.
The global fit of Eqs. (56) and (57) to our mass data

provides a parametrization of the AWI masses as functions
of κl and κs. The fit parameters can be found in Table II and
the fit is discussed in detail in Secs. VA and V B below.
At each lattice spacing we then determine the physical
hopping parameter values κl;ph and κs;ph as well as the
corresponding AWI masses ~ml;ph and ~ms;ph that satisfy
Eq. (71) along the chiral trajectory m̄ ¼ msymm. Note that
since we have a parametrization of light and strange AWI
masses as functions of the hopping parameters, we can also
determine the physical point along any other chiral trajec-
tory that incorporates it.4 Our procedure of finding the
physical point is illustrated in Fig 4, where we plot this ratio
as a function of κ−1l . In addition to the m̄ ¼ msymm points
(blue) that follow lines with little curvature, as expected
from Eqs. (56) and (57), we also show the results of our
subsequent measurements along the ~ms ¼ ~ms;ph trajectory
(green), which nicely coincide with the parametrization,
thereby validating our strategy. Note that the ms ¼ ml
points (with the exception of the symmetric point on the
m̄ ¼ msymm line) are not shown as the ratio displayed is
trivial in this case. The error band of the target value is
dominated by the uncertainty of Eq. (71).

4In the absence of an independent determination of the
scale parameter t0, for the moment being we fix 1

3

P
iκ

−1
i ¼

0.13675962 and 1
3

P
iκ

−1
i ¼ 0.137 at β ¼ 3.4 and β ¼ 3.55,

respectively, i.e. we assume that our m̄ ¼ msymm curves go
exactly through the physical point. As can be seen in Fig. 2
this assumption is justified. Along this line the physical point is
then defined by Eq. (71).
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The physical point values, postdicted including more
statistics and the newly generated fixed AWI strange quark
mass ensembles, read:

κl;ph ¼ 0.1370906ð13Þ; κs;ph ¼ 0.1361024ð25Þ; ð74Þ

a ~ml;ph ¼ 0.000866ð48Þ; a ~ms;ph ¼ 0.023780ð65Þ; ð75Þ

and

κl;ph ¼ 0.1372326ð5Þ; κs;ph ¼ 0.1365373ð10Þ; ð76Þ

a ~ml;ph ¼ 0.000688ð17Þ; a ~ms;ph ¼ 0.018887ð28Þ; ð77Þ

at β ¼ 3.4 and β ¼ 3.55, respectively. Our original targets
had been a ~ms;ph ¼ 0.0240 at β ¼ 3.4 and a ~ms;ph ¼ 0.0189
at β ¼ 3.55. In the latter case this agrees with the
corresponding value above. At β ¼ 3.4, however, we
mistuned by 1% since the estimate of cA [19,37] changed
during our study.

In Fig. 5 we plot our measured AWI strange quark
masses determined on the newly generated ensembles
along the predicted ~ms ¼ ~ms;ph trajectory, normalized with
respect to the postdicted values from the global fit shown in
Eqs. (75) and (77) above as a function of the light quark
AWI mass. Indeed, the two sets of AWI strange quark
masses are constant within errors. The β ¼ 3.55 data
perfectly coincide with the expectation (see also the
N204, N201 and D201 entries of Table I). The β ¼ 3.4
data agree reasonably well with the original target value
(see ensembles H107, H106 and C102 of Table I) but they
are off by almost 3 standard deviations, corresponding to
1%, from the postdiction Eq. (75), that was obtained using
an altered value of cA [19].
Neglecting any uncertainty on 2ml þms ¼ 3msymm, the

1.5% error of the target range Eq. (71) translates into a
small error on ~ms;ph and a larger relative error on ~ml;ph.
These uncertainties contribute to the horizontal and vertical
error bands shown in the figure. Note that these would be
wider if we could include a realistic error estimate for
msymm. The figure demonstrates that it is possible to tune
the AWI strange quark mass to the desired value within a
few per mille and even in the case where, due to the
incomplete information on cA, we mistuned to an incorrect
target value the difference is extremely small.

V. DISCUSSION OF THE FITS AND THE
RESULTING PARAMETERS

We will first investigate in more detail lattice spacing
effects for the m̄ ¼ msymm and ms ¼ ml data, before
presenting an overview of all AWI mass data, and discus-
sing combinations of improvement coefficients.

A. m̄=msymm and ms =ml data
and improvement coefficients

Here we compare different projections of our quark mass
data to the global fits Eqs. (56) and (57) with the parameter
values shown in Table II.
In Fig. 6 we show the ratio of the AWI over the lattice

quark mass ~̄m=m̄ ¼ ~m=m as a function of m̄ for our

FIG. 4. Extrapolation of the AWI mass ratio ~ml= ~̄m of Eq. (71) to the physical point (horizontal and vertical bands). The curves
correspond to Eqs. (56) and (57) with the parameter values of Table II. Orange point: ensemble D100. Left: β ¼ 3.4. Right: β ¼ 3.55.

FIG. 5. The strange quark AWI masses along the ~ms ¼ ~ms;ph
curves, normalized with respect to the (postdicted) central
physical point values Eqs. (75) and (77), as a function of the
corresponding light quark mass ratios. The error bands are
dominated by the uncertainty of the target value Eq. (71), where
we neglected the uncertainty of msymm. Orange point: β ¼ 3.4
ensemble D100.
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ms ¼ ml ¼ m ¼ m̄ data. Note that the right-most orange
β ¼ 3.4 point (rqcd019) did not enter the fit as we suspect
this may be polluted by significantOða2Þ effects. To enable
a direct comparison between different lattice spacings, the
x-axis is normalized with respect to msymm, the average
lattice quark mass used along our m̄ ¼ msymm trajectory.
From Eq. (57) we can see that

~̄m
m̄

¼ Zrm

�
1 − a

�
C0
9

ðms −mlÞ2
m̄

þD0

2
m̄

��
: ð78Þ

Therefore, we can directly read off the combination Zrm at
m̄ ¼ 0 from the figure (as well as from Table II). Since the
difference ms −ml vanishes for the data shown, the slope
corresponds to the combination −ZrmD0amsymm=2. This
becomes better constrained toward the larger β value but—
as its effect is small—the deviation of this parameter from
the tree-level expectation D0 ¼ 1 is hard to extract. This
also means that our results are quite insensitive regarding
the value of D0.
In Fig. 7 we show a combination that isolates the effect of

C0: ~̄m over ~msymm as a function of ðms −mlÞ2, normalized to
the corresponding physical point value, for the constant
average lattice quark mass data m̄ ¼ msymm. As the light
quarkmass decreases the ratio showndeviates fromone. The
parametrization can be read off from Eq. (78):

~̄m
~msymm

¼ 1 −
C0aðms;ph −ml;phÞ2

9msymm

�
ms −ml

ms;ph −ml;ph

�
2

:

ð79Þ

This means the negative slope is proportional to C0, which
decreases considerably, increasing β from 3.4 to 3.55, see
also Table II. For β ¼ 3.4 we show the preliminary D100

physical point result (orange) that did not enter our global fit.
The left-most point at β ¼ 3.4 (corresponding to the H102
ensemble of Table I) exhibits the largest deviation of our data
from the two global fits to data from 9 and 10 ensembles (15
and 16 quark mass values), respectively. Since am is
constant for all the β ¼ 3.4 data shown in the figure and
aðms −mlÞ is larger for the other points, we would not
expect the average AWI quarkmass on ensemble H102 to be
particularly sensitive to higher order discretization effects.
Therefore, we assume the deviation seen is a statistical
fluctuation.
Finally, in Fig. 8 we show the ratio of AWI and lattice

quark mass differences as a function of ms −ml for the
m̄ ¼ msymm data. We normalize the ordinate with respect to
its physical point value, to enable comparison between
different lattice spacings. We also display the global fits.
Note that the right-most orange β ¼ 3.4 point (D100) did
not enter the fit as we regard its error as unreliable, due to
limited statistics. From Eq. (56) we see that

~ms − ~ml

ms −ml
¼ Z

�
1 − a

�
A
6
ðms −mlÞ þ B0m̄

��
: ð80Þ

Therefore, at ms ¼ ml we can read off the combination
Zð1 − B0amsymmÞ. This is somewhat larger than the Z
parameters that are listed in Table II because B0 is negative
in both cases. The slope corresponds to −ZAaðms;ph−
ml;phÞ=6. Note that the value of the parameter A that was
obtained independently [24] is consistent with our data.
We have demonstrated that A, C0 and D0 can be

constrained from data along the m̄ ¼ msymm and ms ¼
ml lines. While the sensitivity to D0 is small, B0 cannot be
constrained at all from data points along these two lines.
Obviously, m̄ needs to be varied forms ≠ ml for the results

FIG. 6. The ratio of the AWI over the lattice quark mass along
the ms ¼ ml trajectory, as a function of m̄ ¼ ms ¼ ml, normal-
ized to the mass msymm ≈ m̄ph. The value of ~̄m=m̄ at m̄ ¼ 0

corresponds to the combination of renormalization constants
Zrm. Orange point: ensemble rqcd019 (excluded from the global
fit). The curves correspond to Eq. (78), with the parameter values
of Table II.

FIG. 7. The dependence of the average AWI quark mass on the
difference of the lattice quark masses squared, along the m̄ ¼
msymm trajectory. Orange point: ensemble D100. Both mass
combinations are normalized with respect to their ms ¼ ml
value ~msymm and their physical point value, respectively. The
curves correspond to Eq. (79) with the parameter values of
Table II.
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to become sensitive to B0. Unfortunately, to enable a
precise determination of Z [and of rm ¼ ðZrmÞ=Z] some
knowledge of B0 is required but we were only able to
constrain B0, once data points from other regions of the
quark mass plane were added, in our case along the ~ms ¼
~ms;ph line. Another possibility of achieving this would have
been to follow a partially quenched strategy, computing
valence quark AWI masses along the sea quark symmetric
linems ¼ ml. Nevertheless, in order to determine the ~ms ¼
~ms;ph line from the two chiral trajectories m̄ ¼ msymm and
ms ¼ ml there is no need for a very accurate value of B0

since the B0amsymm contribution to Z only amounts to a
0.6% correction, even on the coarser β ¼ 3.4 ensemble.

B. AWI and pseudoscalar mass data

In Fig. 9 we plot the average AWI mass in lattice units as
a function of κ−1l for our three quark mass plane trajectories:
m̄ ¼ msymm, ~ms ¼ ~ms;ph and ms ¼ ml. The curves corre-
spond to our fit according to Eq. (57) with parameters as

shown in Table II. The m̄ ¼ msymm curve is almost constant
as along this line ~̄m only changes due to an OðaÞ term that
is parametrized by C0, see Fig. 7. The curvature is not
visible on the scale of Fig. 9.
In Fig. 10 a comparison is shown between strange and

light AWI mass differences ~ms − ~ml and the fit Eq. (56). In
this representation the ms ¼ ml points obviously coincide
with zero and are therefore not shown. Overall, we have
good coverage of the quark mass plane and the data are
described reasonably well by the fit. Like in Fig. 9, at both
lattice spacings that we investigated, the m̄ ¼ msymm and
~ms − ~ms;ph curves intersect very close to (and in statistical
agreement with) the preferred position of the physi-
cal point.
Finally, in Fig. 11 we display the ratio 3M2

π=ð2M2
K þ

M2
πÞ as a function of 8t0;phM2

π for the m̄ ¼ msymm and ~ms ¼
~ms;ph trajectories. Again, t0;ph denotes the value of this
parameter at the physical point, which is somewhat larger
than its value t0;symm at the SUð3Þ flavor symmetric point,
see Fig. 3 and Eqs. (67) and (68). The curves shown
correspond to the parametrizations

3M2
π

2M2
K þM2

π
¼ 3M2

π

αM2
π þ ð3 − αÞM2

π;symm
; ð81Þ

3M2
π

2M2
K þM2

π
¼ 3M2

π

γ=ð8t0;phÞ þ 2M2
π
; ð82Þ

for m̄ ¼ msymm and ~ms ¼ ~ms;ph, respectively. The func-
tional dependencies enforce the first curve to take the value
one at the symmetric point and both curves to go through
zero for Mπ ¼ 0. For the above ratio of pseudoscalar
masses we expect to find the value 0.1076(5) [the hori-
zontal band, see Eq. (72)] at the physical point, which is
defined through 8t0;phM2

π;ph ¼ ϕ2;ph ¼ 0.0801ð28Þ [the ver-
tical band, see Eq. (64)].
The dimensionless fit parameters can be related to meson

masses at the symmetric and physical points:

FIG. 8. The ratio between AWI and lattice quark mass
differences along the m̄ ¼ msymm trajectory, as a function of
ms −ml, normalized to this mass difference at the physical point.
Orange point: ensemble D100. Up to an order-a term, the value of
the ratio at ms −ml ¼ 0 corresponds to the renormalization
constant combination Z. The curves correspond to Eq. (80) with
the parameter values of Table II.

FIG. 9. The average AWI quark mass along our three trajectories, together with the fit according to Eq. (57) with the parameter values
of Table II vs. κ−1l . Orange point: ensemble D100. Left: β ¼ 3.4. Right: β ¼ 3.55.
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α ¼ 2M2
K;ph þM2

π;ph − 3M2
π;symm

M2
π;ph −M2

π;symm
; ð83Þ

γ ¼ 8t0;phð2M2
K;ph −M2

π;phÞ ¼ 2ðϕ4;ph − ϕ2;phÞ: ð84Þ

The fitted parameter values read

α ¼ 0.235ð19Þ; γ ¼ 2.054ð12Þ; ð85Þ

α ¼ −0.025ð15Þ; γ ¼ 2.062ð6Þ; ð86Þ

for β ¼ 3.4 and β ¼ 3.55, respectively. Both γ values agree
well with the physical point expectation 2ðϕ4;ph − ϕ2;phÞ ¼
2.075ð70Þ. The curvature of the m̄ ¼ msymm line is of a
higher order in ChPT and also subject to an OðaÞ lattice
effect. The change of the parameter α with β indicates that
the latter dominates.
At the physical point we obtain the following values

for the ratio Eq. (72) from the fits Eqs. (81)–(82):
0.1087(6)(37) and 0.1086(6)(35) for the m̄ ¼ msymm and
~ms ¼ ~ms;ph data, respectively, at β ¼ 3.4 and 0.1074(4)(37)
and 0.1082(3)(35) at β ¼ 3.55. The first errors are stat-
istical only while the second errors given include the
propagation of the uncertainty of ϕ2;ph that defines the

physical point, which is dominated by the scale uncertainty
of t0. Just considering the statistical errors and taking the
central value of ϕ2;ph for granted, all ratios agree reasonably
well with the “experimental” value 0.1076(5) quoted in
Eq. (72): Imposing the continuum FLAG ratio [32] Eq. (71)
of renormalized quark masses gives the expected result for
this ratio of experimental pseudoscalar masses, also at our
two finite lattice spacings. It is particularly reassuring that
this is the case independent of the quark mass trajectory.
This should allow us to improve on the precision of present
quark mass determinations, once more lattice spacings are
analysed and the continuum limit has been taken.

C. Further combinations of improvement coefficients

We have determined the combinations of improvement
coefficients Eqs. (32)–(34) as well as rm, the ratio of
the singlet over nonsinglet quark mass renormalization
constants, see Table II. Additional information on A ¼
bP − bA − 2bm, bP − bA and bm exists from Ref. [24].
Using these results, we can estimate other improvement
coefficients: From Eq. (33) we infer that

dm ¼ −
1

4

�
2C0 þ

bP − bA
rm

�
: ð87Þ

FIG. 10. Differences between AWI quark masses, together with the fit according to Eq. (56) with the parameter values of Table II vs.
κ−1l . Orange point: ensemble D100. Left: β ¼ 3.4. Right: β ¼ 3.55.

FIG. 11. The ratio 3M2
π=ð2M2

K þM2
πÞ as a function of 8t0;phM2

π along the m̄ ¼ msymm and ~ms ¼ ~ms;ph mass plane trajectories for our
two lattice spacings. The vertical and horizontal bands correspond to the physical point. The parametrization of the fit curves is given in
Eqs. (81) and (82). Orange point: ensemble D100. Left: β ¼ 3.4. Right: β ¼ 3.55.
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Equation (32) gives

~bm þ ~bP − ~bA ¼ −
1

3
½B0 þ ðrm þ 1ÞðbP − bAÞ þ 2bm�:

ð88Þ
Then from the above and Eq. (34) we obtain

~dm − ~bm ¼ 1

12

�
4B0 þ 2C0 − 2D0

þ 1þ 4r2m
rm

ðbP − bAÞ þ 8bm

�
: ð89Þ

We collect the resulting estimates in Table III. Like A, B0,
C0, D0 and rm displayed in Table II, also these parameters
appear to converge toward the perturbative expectations as
the lattice spacing is reduced. In particular dm ≈ bm holds
at β ¼ 3.55.

VI. SUMMARY AND OUTLOOK

We outlined a strategy to keep the strange quark mass,
determined through the axial Ward identity, constant in
simulations with Nf ¼ 2þ 1 flavors of Wilson fermions,
implementing full order-a improvement, see Eqs. (39), (41)
and (47). This was successfully tested to very high precision
at two lattice spacings, a ≈ 0.085 fm and a ≈ 0.064 fm, see
Fig. 5. We estimated this procedure to differ, due to as yet
only partially known flavor singlet OðaÞ effects, from
keeping the renormalized strange quark mass constant by
less than one percent, even at the coarser lattice spacing.
Furthermore, we worked out how valence quark hopping
parameters need to be adjusted, see Sec. II D. This will be
used in future studies of charm physics.
We computed several combinations of renormalization

constants and order-a improvement coefficients, see
Tables II and III. We observed that the parameters that
are either related to flavor singlet quark mass combinations
( ~bm, ~bP, ~bA), flavor singlet currents (rm, dm) or both ( ~dm)
come out very different from the corresponding perturba-
tive expectations. However, these seem to converge rapidly
in the direction of the tree-level results when increasing
β ¼ 6=g2 from 3.4 to 3.55. Nonperturbative order-a
improvement of all currents of interest is ongoing, see,
e.g., Refs. [19,24].

In order to set the physical strange quark mass we also
determined the physical point in the κ−1s vs. κ−1l plane. Its
position may still undergo changes in the future, once the
continuum limit has been taken independently, which then
might necessitate a slight reweighting [38,39] of the strange
quarkmass. Having ensembles along three lines in the quark
mass plane (2mlþms¼3msymm, ~ms ¼ ~ms;ph andms ¼ ml)
enables tests of the convergence of SUð2Þ and SUð3Þ ChPT
and of expansions in the SUð3Þ symmetry breaking param-
eter [5] as well as highly constrained physical point
extrapolations. It also allows us to pursue a nonperturbative
renormalization and order-a improvement program.
Results on baryon distribution amplitudes along the

2ml þms ¼ const trajectory at one lattice spacing have
already been published [40]. Further results on distribution
amplitudes, also utilizing the constant strange quark mass
points, are in preparation and an article on light hadron
spectroscopy is forthcoming.
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TABLE III. Various improvement coefficient (combinations).
A, B0, C0 andD0 are listed in Table II. The bm and bP − bA values
below have been obtained in Ref. [24].

Coefficient Perturbation theory β ¼ 3.4 β ¼ 3.55

bm −1=2 − 0.0703g2 −1.04ð31Þ −0.85ð14Þ
dm −1=2 − 0.0703g2 −1.80ð16Þ −1.04ð13Þ
bP − bA 0.0012g2 0.90(32) 0.59(14)
~bm þ ~bP − ~bA Oðg4Þ 0.12(51) 0.34(21)
~dm − ~bm Oðg4Þ −1.5ð1.5Þ −0.39ð27Þ
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