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We study the D̄D (D̄0D0 and D−Dþ) charm meson pair production in antiproton (p̄) induced reactions
on nuclei at beam energies ranging from threshold to several GeV. Our model is based on an effective
Lagrangian approach that has only the baryon-meson degrees of freedom and involves the physical hadron
masses. The reaction proceeds via the t-channel exchanges of Λþ

c , Σþ
c , and Σþþ

c baryons in the initial
collision of the antiproton with one of the protons of the target nucleus. The medium effects on the
exchanged baryons are included by incorporating in the corresponding propagators, the effective charm
baryon masses calculated within a quark-meson coupling (QMC) model. The wave functions of the bound
proton have been determined within the QMC model as well as in a phenomenological model where they
are obtained by solving the Dirac equation with appropriate scalar and vector potentials. The initial- and
final-state distortion effects have been approximated by using an eikonal approximation-based procedure.
Detailed numerical results are presented for total and double differential cross sections for the D̄0D0 and
D−Dþ production reactions on 16O and 90Zr targets. It is noted that at p̄ beam momenta of interest to the
P̄ANDA experiment, medium effects lead to noticeable enhancements in the charm meson production cross
sections.
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I. INTRODUCTION

Several interesting and intriguing questions in hadron
physics can be elucidated by experiments involving
medium-energy antiproton (p̄) beams on fixed targets. The
future P̄ANDA (“antiproton annihilation at Darmstadt”)
experiment at the under-construction antiproton and ion
research facility (FAIR) in Darmstadt, Germany, will
perform such studies at the beam momenta ≤15 GeV=c.
The physics program of P̄ANDA experiment [1] includes
the study of bound states of quantum chromodynamics
(QCD) up to the region of charm quarks. This will mainly
concentrate on experiments on charmonium production,
open charm spectroscopy, the search for charmed
hybrids decaying to D̄D, the rare decays, and the
charge-conjugation-parity (CP) violation in the D-meson
sector. For accurate detection of the charmonium states
above the D̄D threshold, reliable estimations are required
for the production rates of D̄0D0 andD−Dþ meson pairs (to
be together referred to as the D̄D mesons) in p̄-induced
reactions on proton as well as heavier nuclear targets at the
appropriate energies. The P̄ANDA experiment intends to
carry out this task [2].
In a recent publication [3], calculations have been

presented for the cross sections of the p̄þ p → D̄þD
reactions in the beam momentum range of threshold to
20 GeV=c within a single-channel effective Lagrangian
model (ELM) (see, e.g., Refs. [4–6]). In this approach, the
dynamics of the production process is described by the
t-channel Λþ

c , Σþ
c , and Σþþ

c baryon exchange diagrams.

The initial- and final-state interactions have been accounted
for by an eikonal type of phenomenological model. It has
been found that at beam momenta beyond the threshold
region, the total cross sections of the p̄þ p → D̄0 þD0

reaction are dominated by the contributions of the Λþ
c

baryon exchange. These cross sections peak around plab
p̄ of

9 GeV=c (with magnitudes close to 1 μb). At plab
p̄ around

15 GeV=c, which is of interest to the P̄ANDA experiment,
the total cross section of this reaction as obtained in
Ref. [3], is at least 5 times larger than its maximum value
predicted in other studies [7–13]. The large D̄0D0 produc-
tion cross section raises the hope of studying the charm
mixing, and searching for possible new physics contribu-
tions via clean signatures of charm CP violation [14].
On the other hand, in the ELM the p̄þ p → D− þDþ

reaction amplitudes involve only the Σþþ
c baryon exchange

contribution. They have been found to be strongly sup-
pressed compared to those of the D̄0D0 production. This is
attributed to the much smaller coupling constant of the
Σþþ
c -exchange vertex in comparison to that of the Λþ

c -
exchange. However, in the coupled-channels meson
exchange model of Ref. [13], the initial state inelastic
interactions could enhance the D−Dþ production cross
sections significantly.
The studies on the D̄D production in the p̄-nucleus

collisions are expected to explore the properties of the
charm hadrons in nuclear medium and provide information
about their interactions in the nuclear environment (see,
e.g., a recent review [15]). The P̄ANDA experiment, with
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the capability of its detectors and the energy range of the
storage ring, will be able to perform measurements for the
cross sections of such reactions. The threshold momentum
for D̄D production in p̄ induced reaction on proton is
6.40 GeV=c. This will be lowered in the p̄ reaction on
nuclei due to the Fermi motion effects. Over the last years
some efforts have been made to study theoretically the
charm production in p̄-nucleus reactions within a variety
of models (see, e.g., Refs. [16–18]). The latter two studies
concentrate on the calculations of the production of
charmonium states J=Ψ and Ψ0. In Ref. [16], D̄D meson
production in p̄-nucleus reaction was investigated within a
cascade model.
The aim of this paper is to study the D̄0D0 and D−Dþ

meson-pair productions in p̄ induced reactions on nuclei
within an effective Lagrangian model. The basic production
mechanism considered in our work is depicted in Fig. 1,
where the p̄þ A → D̄þDþ Bð¼A − pÞ reactions pro-
ceed via t-channel Λþ

c , Σþ
c and Σþþ

c baryon exchange
diagrams. The exchanges of both Λþ

c and Σþ
c baryons

contribute to the amplitude of the p̄þ A → D̄0 þD0 þ
Bð¼A − pÞ reaction. However, the p̄þ p → D− þDþ þ
B process is mediated only by the exchange of the Σþþ

c
baryon. The t-channel part of our model is similar to that
of the p̄þ p → D̄þD reaction studied in Ref. [3]. It
should be mentioned that the s-channel excitation, propa-
gation and decay into the D̄D channels of the Ψð3770Þ
resonance can also contribute to these reactions. In
Ref. [3], it was shown that the contributions of the
Ψð3770Þ resonance to the total cross sections of the p̄þ
p → D̄0 þD0 reaction are insignificant at beam momenta
away from the threshold region. Since our interest in this
work is to estimate cross section at beam momenta of
interest to the P̄ANDA experiment, we have not included
such diagrams into our calculations.
In the next section, we present our formalism where

details of the ELM are presented and input required for
making calculations within this model are discussed. The
results and discussions of our work are given in Sec. III.
Finally, the summary and conclusions of this study are
presented in Sec. IV.

II. FORMALISM

We have followed the procedure and notations of
Ref. [19] in deriving the formulas for the invariant cross
section of the p̄þ A → D̄þDþ B reaction, which can be
written as (see, e.g., Refs. [4,20]),

dσ ¼ mp̄mAmBffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðpp̄pAÞ2 −m2

p̄m
2
A�

q 1

4ð2πÞ5 δ
4ðPf − PiÞjAfij2

×
d3pD̄

ED̄

d3pD

ED

d3pB

EB
; ð1Þ

where Afi represents the total amplitude, Pi and Pf the sum
of all the momenta in the initial and final states, respec-
tively. mp̄, mA, and mB are the masses of the antiproton
and nuclei A and B, respectively. pp̄ and pA are the
momenta of the antiproton and the target nucleus, respec-
tively. The cross sections in the laboratory or CM systems
can be written from this equation by imposing the relevant
conditions. Summations over final spin states and average
over initial spin states are implied in jAfij2.
To evaluate amplitudes for the processes represented in

Fig. 1, we have used the effective Lagrangians at the charm
baryon-meson-nucleon vertices, which are taken from
Refs. [21–25]. For the vertices involved in the t-channel
diagrams, we have

LNCBD ¼ igNCBDψ̄Niγ5ϕDψCB
þ H:c:; ð2Þ

where ψN and ψCB
are the nucleon (antinucleon) and

charmed baryon (CB) fields, respectively, and ϕD is the
D-meson field. gNCBD in Eq. (2) represents the vertex
coupling constant. For calculating the amplitude of the
processes represented in Fig. 1, we require the in-medium
propagators for the intermediate baryons CB (Λþ

c , Σþ
c , and

Σþþ
c ). We write these propagators as

DCB
ðqCB

Þ ¼ iðγμqμCB
þm�

CB
Þ

q2CB
− ðm�

CB
− iΓCB

=2Þ2 ; ð3Þ

where we have introduced the effective mass of the
charmed baryon, m�

CB
, to take into account the medium

effects on the propagation of the charmed baryon in the
nuclear medium. In Eq. (3), qCB

and ΓCB
are the four-

momentum and width of the exchanged charmed baryon,
respectively. We have calculated m�

CB
within the quark-

meson coupling (QMC) model [26], employing the QMC-I
version of the model [27,28]. The details of this calculation
are given in Sec. II A. In the following, the free-space
(vacuum) mass of the exchanged charmed baryon will be
represented by mCB

. For Λþ
c and Σþ

c charmed baryons, the
values of mCB

are taken to be 2285 and 2452 MeV,

Λ+
c Σ+

c

0
D

D
0

p

A B = A−p

p

FIG. 1. Graphical representation of the model used to describe
the p̄þ A → D̄0 þD0 þ Bð¼ A − pÞ reaction via t-channel ex-
change of charmed baryons Λþ

c and Σþ
c . Similar representation

applies also to the p̄þ A → D− þDþ þ ðA − pÞ reaction, but
the intermediate line, in this case represents the exchange of Σþþ

c
baryon. Arrows indicate the relative directions of momenta.
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respectively. The values ofm�
CB

andmCB
for Σþþ

c have been
taken to be the same as those of Σþ

c .
In Eq. (3), we have taken the latest Particle Data Group

estimates [29] for the width ΓCB
. It should, however, be

noted that the medium effects can also modify the widths of
the exchange baryons (see, e.g., Ref. [30]). Nevertheless,
because making predictions for the modification in the
widths of the charmed baryons is at present out of the scope
of the QMC model, we continue to use on-shell widths for
the exchanged baryons, which are very small in any case.
The amplitude of the process depicted in Fig. 1, is

given by

Afi ¼ i
g2NCBD

q2CB
− ðm�

CB
− iΓCB

=2Þ2
× ψ̄ p̄ðkp̄Þγ5ðγμqμCB

þm�
CB
Þγ5ψAðkpÞ; ð4Þ

where ψAðkpÞ is the spinor for the bound proton in the
initial channel. It is a four component Dirac spinor, which is
the solution of the Dirac equation for a bound state problem
in the presence of external scalar and vector potential fields.
This is written as (see, e.g., Ref. [31])

ψðkpÞ ¼ δðkp0 − EpÞ
 

fðKpÞYmj

l1=2jðk̂pÞ
−igðKpÞYmj

l01=2jðk̂pÞ

!
: ð5Þ

In our notation, kp represents a four momentum, and kp a
three momentum. The magnitude of kp is represented by
Kp, and its directions by k̂p. kp0 represents the timelike
component of momentum kp. In Eq. (5), fðKpÞ and gðKpÞ
are the radial parts of the upper and lower components of
the spinor ψðkpÞ, and Y

mj

l1=2j represent the coupled spheri-
cal harmonics. The latter is given by

Y
mj

l1=2j ¼ hlml1=2μjjmjiYlml
ðk̂pÞχμ; ð6Þ

where Ylml
represents the spherical harmonics, and χμ the

spin-space wave function of a spin-1
2
particle. In Eq. (5),

l0 ¼ 2j − l with l and j being the orbital and total angular
momenta, respectively.
The coupling constants gNCBD are adopted from

Refs. [22,23], as gNΛþ
c D ¼ 13.50, gNΣþ

c D ¼ 2.69 and
gNΣþþ

c D ¼ 2.69. From these values, it is expected that Λþ
c

will dominate the t-channel production amplitudes.
The off-shell behavior of the vertices is regulated by a

monopole form factor (see, e.g., Refs. [4,5]),

FiðqCBi
Þ ¼ λ2i −m�2

CBi

λ2i − q2CBi

; ð7Þ

where index i represents the ith exchanged baryon. λi is the
corresponding cutoff parameter, which governs the range of
suppression of the contributions of high momenta carried
out via the form factor. We chose a value of 3.0 GeV for λi
at all the vertices. The same λi was also used in the
monopole form factor employed in the studies of the Λ̄−

cΛþ
c

and D̄D production in the p̄p collisions in Refs. [21] and
[3], respectively, within a similar type of the effective
Lagrangian model. Since our calculations are carried out
in momentum space, they include all the nonlocalities
in the production amplitudes that arise from the resonance
propagators.
We have used plane waves to describe the motions of

antiproton and D̄ meson in the entrance and outgoing
channels, respectively. However, initial and final state
interactions are approximately accounted for within an
eikonal approximation based procedure (see Sec. II B).

A. Effective charmed baryon mass in nuclear matter
within the quark-meson coupling model

A relativistic effective Lagrangian density in the QMC-I
model for hypernuclei in the mean-field approximation,
which is used for studying the in-medium modifications of
charmed baryons and production of charmed mesons (in a
nucleus), is given by [32–38]

LQMC ¼ LN
QMC þ LY

QMC; ð8Þ

LN
QMC ≡ ψ̄NðrÞ

�
iγ · ∂ −M�

NðσÞ −
�
gωωðrÞ þ gρ

τN3
2
bðrÞ þ e

2
ð1þ τN3 ÞAðrÞ

�
γ0

�
ψNðrÞ

−
1

2
½ð∇σðrÞÞ2 þm2

σσðrÞ2� þ
1

2
½ð∇ωðrÞÞ2 þm2

ωωðrÞ2� þ
1

2
½ð∇bðrÞÞ2 þm2

ρbðrÞ2� þ
1

2
ð∇AðrÞÞ2; ð9Þ

LY
QMC ≡ ψ̄YðrÞ½iγ · ∂ −M�

YðσÞ − ðgYωωðrÞ þ gYρ IY3bðrÞ þ eQYAðrÞÞγ0�ψYðrÞ;
ðY ¼ Λ;Σ0;�;Ξ0;þ;Λþ

c ;Σ0;þ;þþ
c ;Ξ0;þ

c ;ΛbÞ; ð10Þ

where ψNðrÞ and ψYðrÞ are the nucleon and the hyperon (strange, charm or bottom baryon) fields, respectively.
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In an approximation where the σ, ω, and ρ fields couple
only to the u and d light quarks, the coupling constants
for the hyperon Y are obtained as gYω ¼ ðnq=3Þgω and
gYρ ≡ gρ ¼ gqρ , with nq being the total number of valence
light quarks in the hyperon Y. IY3 and QY are the third
component of the hyperon isospin operator and its electric
charge in units of the proton charge, jej, respectively.
The field-dependent σ-N and σ-Y coupling strengths,
gσðσÞ≡gNσ ðσÞ and gYσ ðσÞ, appearing in Eqs. (9) and (10),
are defined by

M�
NðσÞ≡MN − gσðσÞσðrÞ; ð11Þ

M�
YðσÞ≡MY − gYσ ðσÞσðrÞ; ð12Þ

where MN (MY) is the free nucleon (hyperon) mass. Note
that the dependence of these coupling strengths on the
applied scalar field must be calculated self-consistently
within the quark model [26,27,33,34,39,40]. Hence, unlike
the quantum hadrodynamics (QHD) model [41], even
though gYσ ðσÞ=gσðσÞ may be 2=3 or 1=3 depending on
the number of light quarks in the hyperon in free space,
σ ¼ 0 (even this is true only when their bag radii in free
space are exactly the same), this will not necessarily be the
case in a nuclear medium.
In the following, we consider the limit of infinitely large,

uniform (symmetric) nuclear matter, where all scalar and
vector fields become constant. In this limit, we can treat any
single hadron (denoted by h) embedded in the nuclear
medium in the same way as we treated a hyperon. One
simply needs to replace LY

QMC in Eq. (10) by the corre-
sponding Lagrangian density for the hadron h.
The Dirac equations for the quarks and antiquarks

(q ¼ u or d, and Q ¼ s, c or b, hereafter) in the bag of
hadron h in nuclear matter at the position x ¼ ðt; rÞ are
given by [42,43]

�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0
�
Vq
ω þ 1

2
Vq
ρ

���
ψuðxÞ
ψ ūðxÞ

�
¼ 0;

ð13Þ
�
iγ · ∂x − ðmq − Vq

σÞ ∓ γ0
�
Vq
ω −

1

2
Vq
ρ

���
ψdðxÞ
ψ d̄ðxÞ

�
¼ 0;

ð14Þ

½iγ · ∂x −mQ�ψQðxÞðor ψ Q̄ðxÞÞ ¼ 0; ðjrj ≤ bag radiusÞ;
ð15Þ

where we neglect the Coulomb force and assume SU(2)
symmetry for the light quarks (q ¼ u ¼ d). The constant
mean-field potentials in nuclear matter are defined by Vq

ω ≡
gqωω and Vq

ρ ≡ gqρb, with gqσ , g
q
ω, and gqρ the corresponding

quark-meson coupling constants. Note that Vq
ρ ¼ 0 in

symmetric nuclear matter, although this is not true in a
nucleus where the Coulomb force induces the proton
and neutron distribution asymmetry even in a nucleus
with the same numbers of protons and neutrons to
give—Vq

ρ ∝ ðρp − ρnÞ ≠ 0 at a given position in a nucleus.
The normalized, static solution for the ground state

quarks or antiquarks with flavor f in the hadron h may
be written as ψfðxÞ ¼ Nfe−iϵft=R

�
hψfðrÞ, where Nf and

ψfðrÞ are the normalization factor and the corresponding
spin and spatial part of the wave function, respectively. The
bag radius in medium for a hadron h (R�

h) is determined
through the stability condition for the mass of the hadron
against the variation of the bag radius [26,27,40]. The
eigenenergies in units of 1=R�

h are given by

�
ϵu

ϵū

�
¼ Ω�

q � R�
h

�
Vq
ω þ 1

2
Vq
ρ

�
;

�
ϵd

ϵd̄

�
¼ Ω�

q � R�
h

�
Vq
ω −

1

2
Vq
ρ

�
;

ϵQ ¼ ϵQ̄ ¼ ΩQ: ð16Þ

The hadron masses in a nuclear medium m�
h (free mass

mh) are calculated by

m�
h ¼

X
j¼q;q̄;Q;Q̄

njΩ�
j − zh
R�
h

þ 4

3
πR�3

h B;
∂m�

h

∂Rh

����
Rh¼R�

h

¼ 0;

ð17Þ

where Ω�
q ¼ Ω�̄

q ¼ ½x2q þ ðR�
hm

�
qÞ2�1=2, with m�

q¼mq−gqσσ,
Ω�

Q ¼ Ω�̄
Q ¼ ½x2Q þ ðR�

hmQÞ2�1=2, and xq;Q being the lowest
bag eigenfrequencies. nqðnq̄Þ and nQðnQ̄Þ are the quark
(antiquark) numbers for the quark flavors q and Q,
respectively. The MIT bag quantities, zh, B, xq;Q, and
mq;Q are the parameters for the sum of the c.m. and gluon
fluctuation effects, bag constant, lowest eigenvalues
for the quarks q or Q, respectively, and the corresponding
current quark masses. zN and B (zh) are fixed by fitting
the nucleon (the hadron) mass in free space. For the
current quark masses, we use ðmu;d; ms;mc;mbÞ ¼
ð5; 250; 1300; 4200Þ MeV, where the values for mc and
mb are the averaged values from Refs. [44] and [45],
respectively, and these values were used in Refs. [35–38].
Since the effects of the bare quark mass values used are
very small on the results, we use the same values as used in
the past so that we can compare and discuss the results with
those obtained previously [35–38]. This also applies for the
baryon mass values used. The bag constant calculated for
the present study is B ¼ ð170 MeVÞ4. The quark-meson
coupling constants, which are determined so as to repro-
duce the saturation properties of symmetric nuclear matter
(the binding energy per nucleon of 15.7 MeV at
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ρ0 ¼ 0.15 fm−3), are ðgqσ ; gqω; gqρÞ ¼ ð5.69; 2.72; 9.33Þ,
where gσ ≡ gNσ ≡ 3gqσSNð0Þ ¼ 3 × 5.69 × 0.483 ¼ 8.23
[39]. These are summarized in Table I. The parameters
zh, and the bag radii Rh for relevant baryons in free space,
and some quantities calculated at normal nuclear mater
density ρ0 ¼ 0.15 fm−3 are listed in Table II, together with
the free space masses (inputs) [44–47].
In Fig. 2(a), we show the effective masses of the charmed

baryons CB, and in Fig. 2(b) the scalar potentials in
symmetric nuclear matter as a function of nuclear density.
We note that m�

CB
≤ mCB

at finite density as usually
expected. The attractive mass shift that reflects the reduced
light-quark condensates at finite density have been pre-
dicted for vector mesons as well [48,49], although the
issues of in-medium widths related with the collision
broadening must be studied carefully in the experimental
situations. Our calculations predict the similar observation
for the charm baryon sector as those for the strange sector
and the nucleons. We further note that the in-medium mass
shift of charmed baryons leads to an attractive scalar
potential of about 120.00 MeV at normal nuclear matter
density ρ ¼ ρ0.

B. Initial- and final-state interactions

From the studies of the Λ̄−
cΛþ

c and D̄D production
[3,21,50] in the p̄p collisions, it was found that the
magnitudes of the cross sections depend very sensitively

on the initial-state distortion effects. In fact, the p̄p
annihilation channel is almost as strong as the elastic
scattering channel. Consequently, in p̄-nucleus reactions
also these distortion effects are expected to be as signifi-
cant. They can produce both absorptive as well as dis-
persive effects. However, for large incident energies
involved in this study, the absorptive effects are likely to
be most important. We estimate these within an eikonal
approximation, as discussed below.
Within the eikonal approximation, the attenuation factor

for a particle traveling through the nuclear medium can be
written as (see, e.g. Ref. [31])

SðEÞ ¼
Z

dbdz
ρðb; zÞ exp½−kη0ðEÞLðbÞ�R

dbdzρðb; zÞ ; ð18Þ

where η0 is the imaginary part of the refractive index of
the nuclear medium and ρðrÞ½ρð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ z2

p
Þ� is the nuclear

density distribution, with b being the impact parameter. In
Eq. (18), LðbÞ is the length of the path traveled by the
particle in the medium, which is given by

LðbÞ ¼
Z

∞

0

ρðrÞ
ρ0

dz: ð19Þ

If the nuclear density is approximated by a Gaussian
function, ρðrÞ ¼ ρ0 expð−r2=α2Þ, the integration in
Eq. (18) can be done analytically. In this case, the
attenuation factor is given by

SðEÞ ¼ 1 − exp½− ffiffiffi
π

p
αkη0ðEÞ�ffiffiffi

π
p

αkη0ðEÞ
: ð20Þ

The attenuation due to medium can be calculated if the
value of η0ðEÞ is known. This can be obtained from the
imaginary part of the optical potential W0 as

η0ðEÞ ¼
1

ℏ2

E
k2

W0ðEÞ: ð21Þ

One can use the following high-energy relations to relate
W0 to the p̄p total cross section, σT

W0ðEÞ ¼ ℏ2
kσTρ0
2E

: ð22Þ

In order to determine the total reduction factor for the
p̄þ A → D̄0 þD0 þ Bð¼ A − pÞ reaction, the total

TABLE I. Current quark masses (input), coupling constants and
the bag constant.

mu;d 5 MeV gqσ 5.69

ms 250 MeV gqω 2.72

mc 1300 MeV gqρ 9.33

mb 4200 MeV B1=4 170 MeV

TABLE II. The bag parameters, various hadron masses, and the
bag radii in free space (at normal nuclear matter density,
ρ0 ¼ 0.15 fm−3) zh, Rh and Mh [M�

h and R�
h]. Mh and RN ¼

0.8 fm in free space are inputs.

h zh Mh (MeV) Rh (fm) M�
h (MeV) R�

h (fm)

N 3.295 939.0 0.800 754.5 0.786
Λc 1.766 2284.9 0.846 2162.5 0.843
Σc 1.033 2452.0 0.885 2330.2 0.882

TABLE III. Searched depths of vector and scalar potentials and the binding energies of the nucleon bound states.

State Binding Energy (ϵ) (MeV) Vs (MeV) rs (fm) as (fm) Vv (MeV) rv (fm) av (fm)

16O(0p1=2) 12.13 −445.56 0.983 0.606 360.91 0.983 0.606
90Zr(1p1=2) 8.35 −418.55 0.983 0.606 339.03 0.983 0.606
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attenuation due to both the antiproton and D-meson
distortions has been estimated by replacing the factor
kη0 in Eq. (20) by

kη0 → kp̄η0ðEp̄Þ þ kD̄η0ðED̄Þ þ kDη0ðEDÞ: ð23Þ

The information about the p̄-nucleus imaginary potential
is not very firm [51,52] particularly at higher beam mometa
of interest to the P̄ANDA experiment. In our estimation of
the attenuation we have taken the average value of the
imaginary part of the p̄-nucleus optical potential to be
125 MeV, which is in agreement with the values reported in
Refs. [53,54] at higher antiproton momenta. We have made
this value independent of the beam momentum and the
target nucleus. This corresponds to a p̄p σT of about 75 mb
at p̄ momentum of 15 GeV=c2, with a ρ0 of 0.15 fm−3.
This value is somewhat larger than those reported in
Refs. [55] and [56].
At the same time, the knowledge about the D̄- and

D-nucleus potentials is extremely scarce. We have taken a
value of 10 mb for D̄N andDN σT [56,57]. The value of the
parameter α is taken to be 2.73 fm and 4.30 fm for 16C and
90Zr targets, respectively [58].

III. RESULTS AND DISCUSSIONS

The initial bound proton spinors (corresponding to
momenta Kp) are required to perform numerical calcula-
tions of the amplitudes in Eq. (4). To simplify the nuclear
structure problems, we assume the bound proton states to
have a pure single particle-hole configuration (with the
core remaining inert), having quantum numbers of the
outermost proton orbit of the target nucleus, even though it
is straightforward to include also those cases where the
participating proton occupies other orbits. This corresponds
to the 0p1=2 orbit with a binding energy of 12.13 MeV in

case of the 16O target, and the 1p1=2 orbit with a binding
energy of 8.35 MeV for 90Zr target.
The spinors in the momentum space are obtained by

Fourier transformation of the corresponding coordinate
space spinors, which are the solutions of the Dirac equation
with potential fields consisting of an attractive scalar part
and a repulsive vector part having a Woods-Saxon form.
This choice appears to be justified as the Dirac-Hartree-
Fock calculations [59,60] suggest that these potentials tend
to follow the nuclear shape.
In the phenomenological model, the potential fields

were obtained by a well-depth search procedure. In this
method, with fixed geometry parameters (radius and
diffuseness), the depths of the scalar (Vs) and (Vv)
potentials are searched to reproduce the binding energies
of the respective proton bound states with the given choice
of quantum numbers. For the target nuclei, 16O, and 90Zr,
the resulting values are shown in Table III. To show the
momentum spread of the corresponding spinors, we
have displayed in Figs. 3 and 4, the spinors jfðKpÞj and
jgðKpÞj and the momentum distribution ρðKpÞ ¼
jfðKpÞj2 þ jgðKpÞj2 as a function of momentum Kp for
16O and 90Zr targets, respectively. It was shown in Ref. [61]
that spinors calculated in this way provide a good descrip-
tion of the nucleon momentum distribution for the p shell
nucleons. We note that in the region of momentum transfer
pertinent to charm-meson production in p̄-nucleus colli-
sions, the lower components of the spinors are not
negligible as compared to the upper component, which
clearly demonstrates that a fully relativistic approach is
essential for an accurate description of this reaction.
The bound state spinors have also been calculated within

the QMC-I model (see, e.g., Ref. [62]). Even though the
binding energies of the bound proton orbitals predicted by
the QMC model were somewhat different from those used
in the fitting procedure of the phenomenological model, the
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spinors obtained in two models were almost identical to
each other.
Using the formalism, approximations, and input param-

eters given in Sec. II and the bound state spinors described
above, we have investigated the D̄0D0 and D−Dþ pro-
duction in the p̄ collision with a light (A ¼ 16O) and a
medium mass (A ¼ 90Zr) nucleus. We emphasize that
parameters like coupling constants at the vertices and the
shapes of the form factors and the values of the cutoff
parameters involved therein were the same as those used
in the studies of the D̄0D0 and D−Dþ charmed-meson
productions in the p̄p collisions at the beam momenta
ranging from the corresponding threshold to 20 GeV=c in
Refs. [3] and [21], respectively. In each case the effects of
initial- and final-state interactions are included by follow-
ing the procedure described in Sec. II B.
In Fig. 5, we display the beam momentum dependence

of the cross section dσ=dΩD̄0 at θD̄0 ¼ 0° for the
p̄þ 16O → D̄0 þD0þ15N reaction. In this figure, the
arrow shows the threshold for the D̄0D0 production in
p̄p collision, which is 6.4 GeV=c. In contrast, the thresh-
olds of this reaction on 16O and 90Zr targets are 2.89 and
2.68 GeV=c, respectively. The shift in the threshold of p̄-
nucleus reactions is mainly due to Fermi motion effects.
The solid line in Fig. 5 shows the cross section obtained

by using in the reaction amplitudes the in-medium effective
mass (m�

CB
) of the exchanged charmed baryon (ECB) that

are calculated self-consistently within the QMC-I model
as discussed in Sec. II A. The dotted line represents the
results obtained with the free-space (vacuum) mass (mCB
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for ECB. It is clear that at the p̄ beam momenta (pp̄) of
interest to the P̄ANDA experiment (around 15 GeV=c), the
effect of the nuclear medium is noticeable. In this region,
the cross sections calculated with the effective massm�

CB
of

the ECB are about a factor of 2 larger than those obtained
with the vacuum mass mCB

.
In the amplitudes corresponding to the cross sections

shown in Fig. 5, the individual contributions of the Λþ
c and

Σþ
c exchanges have been coherently summed. However,

we have noted that these cross sections are almost solely
governed by the Λþ

c -exchange mechanism in the entire
range of the antiproton beammomentum. The contributions
of Σþ

c -exchange terms are lower by about 3 orders of
magnitude. This reflects the trend seen in the case of D̄0D0

production in p̄p collisions in Ref. [3]. This can be
understood from the fact that the coupling constants of
the vertices involved in the Σþ

c -exchange are much smaller
than those of the Λþ

c -exchange.
In Fig. 6, we show the cross sections dσ=dΩDþ at

θDþ ¼ 0° for the p̄þ 16O → D− þDþþ15N reaction as
a function of p̄ beam momentum. We see that, in this case,
the cross sections are strongly suppressed compared to
those of Fig. 5. The cross sections of the p̄þ p → D− þ
Dþ reaction also were found to be similarly suppressed as
compared to those of the p̄þ p → D̄0 þD0 reaction in
Ref. [3], where calculations were performed within a
similar ELM model. Same trend was also observed in
the calculations presented in Refs. [7–9] within models that
use the idea of the Regge trajectory-exchange. In both the
cases, this effect can be understood from the fact that while
the D̄0D0 production is dominated by the Λþ

c -exchange
mechanism, the D−Dþ production gets contributions only
from the Σþþ

c -exchange terms. The coupling constants in
the latter case have been taken to be equivalent to those of
the Σþ

c -exchange vertices. Therefore, they are much smaller

than those of the Λþ
c -exchange terms. The ratio of the

absolute magnitudes of the D̄0D0 and D−Dþ production
cross sections is roughly proportional to ðgNΛþ

c D=gNΣþþ
c DÞ4,

which leads to a reduction in the D−Dþ production cross
section over that of D̄0D0 by nearly a factor of 650.
However, in the coupled-channels meson-exchange

model of Ref. [13], the p̄þ p → D− þDþ cross sections
are even larger than the p̄þ p → D̄0 þD0 ones. This
results from their coupled-channels treatment of the inci-
dent channel, which accounts effectively for two-step
inelastic processes involving Λþ

c “baryon exchange.”
Such two-step mechanisms are out of the scope of our
ELM as well as of the Regge model [7–9] calculations.
Therefore, in studies within these models the D−Dþ

production is suppressed as compared to the D̄0D0 pro-
duction reaction. It should be mentioned here that the cross
sections for the p̄þ p → D− þDþ reaction from Ref. [13]
were used as input in Ref. [57] in the calculations of the
formation cross sections of theD-mesic nucleus ½11B −D−�
via the reaction p̄þ 12C → ½11B −D−� þDþ within a
Green’s function method. The magnitudes of the formation
cross sections predicted in Ref. [57] will be strongly
suppressed if our cross sections for the p̄þ p → D− þ
Dþ reaction are used as input.
The solid and dashed lines in Fig. 6 correspond to

calculations performed with the effective in-medium mass
m�

CB
and the vacuum mass mCB

, respectively. We see that
for this reaction too, for pp̄ around 15 GeV=c, the cross
section obtained with the in-medium mass m�

CB
are larger

than those obtained with mCB
by about a factor of 2.

In Fig. 7(a) and 7(b), we display the cross sections
dσ=dΩD̄0 at θD̄0 ¼ 0° for the p̄þ 90Zr → D̄0 þD0 þ 89Y
reaction, and dσ=dΩDþ at θDþ ¼ 0° for the p̄þ 90Zr →
D− þDþ þ 89Y reaction, respectively, as a function of pp̄.
The solid and dashed lines have the same meaning as those
in Figs. 5 and 6. We note that all the features of the cross
sections that were observed in case of the reactions on the
lighter 16O target are also present in those on this medium
mass target. There is, however, one difference. While the
cross sections on the 90Zr and 16O targets are approximately
similar for pp̄ ≤ 10 GeV=c, they start differing from each
other for pp̄ ≥ 10 GeV=c. In this region the cross section
on the heavier target becomes gradually larger than those
on the lighter one.
In Figs. 8(a) and 8(b), we present the results for the

double differential cross section d2σ=dΩD̄0dED̄0 at θD̄0 ¼
0° for the D̄0D0 production in p̄ induced reaction on
16O and 90Zr targets at pp̄ of 8 GeV=c and 15 GeV=c,
respectively, as a function of the center-of-mass (c.m.)
energy, Ec:m:

D̄0 , of D̄0 charmed meson. The solid and the
dashed lines represent the results obtained by using masses
m�

CB
and mCB

, respectively, for the ECB in the calculations.
It is seen that these cross sections are peaked very close to
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the maximum allowed values of Ec:m:
D̄0 . (Ec:m:;max

D̄0 ) corre-
sponding to the given target and the beam momentum. This
effect is found for reactions on both the targets. As the
target mass increases, Ec:m:;max

D̄0 shifts to higher values and
so does the peak position in the corresponding cross
section. The widths of the distributions are somewhat
larger for the heavier target.
Although the effect of using the in-medium effective

mass of the exchanged charmed baryon is visible in the
entire D̄0 energy spectrum, this is more prominent in the
region around the peak position, where peak cross sections
obtained by using in-medium mass m�

CB
in the amplitude

are larger by nearly a factor of 2 than those obtained with
the free-space mass mCB

.
Therefore, future measurements of the D̄D production

in p̄ induced reactions on nuclei to be performed with the
P̄ANDA detector at the FAIR facility are expected to
provide a handle to probe the in-medium properties of
the charmed baryons.
Finally we acknowledge that a major source of uncer-

tainty of our results is provided by our treatment of the
initial- and final-state interactions. We account for these
effects within an eikonal-approximation-based phenom-
enological method. Although, the parameters of our
method (p̄N total cross section and the radius parameter

of the target nuclei) can be checked from the independent
sources, they should ideally be constrained by fitting to the
experimental data. Because of the lack of any experimental
information, it is not yet possible to test our model
thoroughly. Thus the absolute magnitudes of our cross
sections may have some uncertainties. Furthermore, in the
present treatment we considered the absorptive distortion
effects only that influence the absolute magnitudes of the
cross sections. In a more rigorous treatment, the inclusion
of dispersive effects may affect the shapes of the cross
sections also.

IV. SUMMARY AND CONCLUSIONS

In Summary, we have studied the production of
charmed-meson pairs D̄0D0 and D−Dþ in antiproton
induced reactions on 16O and 90Zr targets by using a
single-channel effective Lagrangian model that involves
meson-baryon degrees of freedom. The dynamics of the
production process is described by the t-channel diagrams
involving exchanges of charmed baryons Λþ

c , Σþ
c , and Σþþ

c
during the collision between the antiproton and a proton
bound in the target. The initial- and final-state interactions
have been taken into account by an eikonal type of
phenomenological model. The coupling constants at the
charmed-baryon exchange vertices were taken to be the
same as those used in the studies of p̄þ p → D̄þD and
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p̄þ p → Λ̄−
c þ Λþ

c reactions in Refs. [3] and [21], respec-
tively. These coupling constants were deduced in Ref. [23]
from the analysis of the DN and D̄N scatterings. The same
coupling constants were also used for the vertex couplings
involved in theD-meson-nucleon interactions in the studies
reported in Ref. [22]. The off-shell corrections at various
vertices have been accounted for by introducing monopole
form factors with the cutoff parameters having the same
value as those used in our studies reported in Refs. [21] and
[3]. It is a general practice, however, to determine the shape
of the form factors and the cutoff parameters involved
therein by fitting to the experimental data. Because such
data are not yet available for the reactions under study in
this paper, we restricted ourselves to the choice of the form
factor and the cutoff parameter that were used in our
previous study of this reaction on a proton target. The
bound proton spinors have been obtained by solving the
Dirac equation with vector and scalar potential fields
having Woods-Saxon shapes. Their depths are fitted to
the binding energy of the respective state.
We find that the differential cross sections for the

production of the D̄0D0 charmed-meson pair at the D̄0

angle of 0° in the p̄-induced reaction on both the 16O and
90Zr targets are dominated by the contributions of the Λþ

c
baryon exchange—the Σþ

c -exchange contributions are
quite small due to relatively smaller coupling constants.
The cross sections of the D−Dþ production that gets
contributions solely from the Σþþ

c baryon exchange process
are strongly suppressed due the smaller coupling constants
of the corresponding vertices.

The double differential cross sections for the p̄þ A →
D̄0 þD0 reaction for observing D̄0 at 0° have maxima in
the vicinity of the kinematically allowed maximum
values of D̄0 c.m. energies. This feature is independent
of the p̄ beam momentum and the target mass. The widths
of the corresponding spectra are, however, target-mass
dependent.
A significant result of our study is that using in-medium

effective masses in the propagators of the exchanged
charmed baryons leads to about a factor of 2 increase in
the cross sections at most forward angle over those
obtained with the corresponding free-space masses, for
antiproton beam momenta around 8–15 GeV=c, which are
of interest to the P̄ANDA experiment. This result is
independent of the mass of the target nucleus. This
observation suggests that in-medium properties of the
charmed baryon may be experimentally accessible in this
experiment.
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