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We have analyzed the singularities of a triangle loop integral in detail and derived a formula for an easy
evaluation of the triangle singularity on the physical boundary. It is applied to the Λb → J=ψK−p process
via Λ�-charmonium-proton intermediate states. Although the evaluation of absolute rates is not possible,
we identify the χc1 and the ψð2SÞ as the relatively most relevant states among all possible charmonia up to
the ψð2SÞ. The Λð1890Þχc1p loop is very special, as its normal threshold and triangle singularities merge at
about 4.45 GeV, generating a narrow and prominent peak in the amplitude in the case that the χc1p is in an S
wave. We also see that loops with the same charmonium and other Λ� hyperons produce less dramatic
peaks from the threshold singularity alone. For the case of χc1p → J=ψp and quantum numbers 3=2− or
5=2þ, one needs P and D waves, respectively, in the χc1p, which drastically reduce the strength of the
contribution and smooth the threshold peak. In this case, we conclude that the singularities cannot account
for the observed narrow peak. In the case of 1=2þ, 3=2þ quantum numbers, where χc1p → J=ψp can
proceed in an S wave, the Λð1890Þχc1p triangle diagram could play an important role, though neither can
assert their strength without further input from experiments and lattice QCD calculations.
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I. INTRODUCTION

Triangle singularities in physical processes were intro-
duced by Landau [1] and stem from Feynman diagrams
involving three intermediate particles when the three
particles can be placed simultaneously on shell and the
momenta of these particles are collinear (parallel or anti-
parallel) in the frame of an external decaying particle at rest.
In one of the cases (we call it parallel), two of the particles
in the loop will go in the same direction and might fuse into
other external outgoing particle(s) [2], so that the rescatter-
ing process can even happen as a classical process. In this
case, the decay amplitude has a singularity close to the
physical region1 and, thus, can produce an enhancement.
One of the classical cases would be given when the two on-
shell particles move in the same direction and with similar
velocities. In the center-of-mass frame of the rescattering
particles, these two particles would also be at rest and the
triangle singularity is then located around the threshold.
One very successful example of effects of the triangle

singularity was shown in the decay of ηð1405Þ → πa0ð980Þ
and ηð1405Þ → πf0ð980Þ in Refs. [3,4]. The second
reaction breaks isospin symmetry. However, the process
ηð1405Þ → K�K followed by K� → Kπ and the fusion
of KK → f0ð980Þ enhances drastically the rate of

ηð1405Þ → πf0ð980Þ relative to other isospin-violating
processes. Experimentally, the ratio of rates for ηð1405Þ →
π0f0ð980Þ → π0πþπ− and ηð1405Þ → π0a0ð980Þ → π0π0η
is measured to be ð17.9� 4.2Þ% [5], a huge number for an
isospin-breaking magnitude. The work of [3,4] was con-
tinued in [6], where the precise rates, as well as the shapes
of the two reactions, are well described.
Another striking example of triangle singularities is the

one discussed in Refs. [7,8], where an interpretation for the
“a1ð1420Þ” peak seen by the COMPASS Collaboration [9]
is given in terms of a decay of the a1ð1260Þ into K�K,
followed by K� → πK and the fusion of KK → f0ð980Þ,
with πf0ð980Þ being the decay channel where the a1ð1420Þ
peak is observed. A recent discussion of the effects of
triangle singularities on other reactions in hadron physics
can be found in Refs. [10–15].
With the discovery of the hidden charm pentaquarklike

structures in the Λb → J=ψK−p reaction in the J=ψp
spectrum [16,17], the possibility that the narrow peak
observed at 4.45 GeV might be due to a triangle singularity
was immediately noted [18,19]. Recently, the LHCb
Collaboration has reanalyzed [20] the data of the Λb →
J=ψπ−p decay [21] and found them consistent with the
states reported in [16,17]. The possibility that this is due to
another triangle singularity is discussed in Ref. [22].
In Ref. [18], it is pointed out that the location of the

Pcð4450Þ structure coincides with the χc1p threshold and,
more importantly, with the leading Landau singularity of
the triangle diagram with the Λ�ð1890Þ, χc1, and proton in

1It is in fact located away from the real energy axis, which
prevents the physical amplitude from diverging, when a finite
width is considered for the decaying particle in the triangle loop.
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the intermediate state. Such a diagram represents the
following processes: the Λb → Λ�ð1890Þχc1 is followed
by the decay of Λ�ð1890Þ → K−p and the proton and then
rescatters with the χc1 into the J=ψp in the region where the
invariant mass distribution shows up as a narrow sharp
peak, which might cause a resonancelike structure as the
Pcð4450Þ. However, the fact that one finds a singularity at a
certain energy does not mean that one should see a peak in
the reaction. The location of a triangle singularity is purely
kinematic, yet the strength is controlled by dynamics as
reflected by the coupling strengths of all of the three
vertices involved. In this sense, the cases in the light meson
sector discussed in Refs. [3,4,6–8] are nice examples of
clearly showing the enhancement due to triangle singular-
ities, since all involved couplings are relatively well known.
In the case of the Pc, neither the weak decay rate of Λb →
Λ�χc1 nor the rescattering strength for χc1p → J=ψp is
known, and, thus, it is difficult to assert the importance of
the triangle singularities. However, it is also obvious that
triangle singularities need to be taken into account, unless
the strength is so small that they can be safely neglected.
At this point, we want to emphasize that the purpose of
Refs. [18,22] is not to show that the Pcð4450Þ structure is
due to triangle singularities instead of hadronic resonances
but to show that there exist such singularities around
mJ=ψp ¼ 4.45 GeV, and their consequences need to be
carefully explored.
In the present paper, we shall make an exhaustive study

of possible triangle singularities involving various Λ� and
charmonium intermediate states in the range of the J=ψp
invariant mass in the Λb → J=ψK−p reaction. There can
be many combinations of a Λ� hyperon and a charmonium
in the triangle diagram. However, as we shall see, since
the condition for a triangle singularity to show up as a

prominent enhancement in the relevant invariant mass
distribution is rather strict (for recent discussions, see
Refs. [13,15,18]), only a few of them deserve special
attention, and the one discussed in Ref. [18] is the most
special one. We will show them in this paper and discuss
their possible repercussion in the J=ψp spectrum of the
LHCb experiment.

II. DETAILED ANALYSIS OF THE
TRIANGLE SINGULARITY

We are going to study the singularities that emerge from
the diagram of Fig. 1. As in Refs. [18,19], we assume that
Λb decays first to a Λ� and a charmonium state, the Λ�
decays into K−p, and then the charmonium state and the p
react to give the J=ψp. Thus, we have J=ψK−p in the final
state as in the experiment of Ref. [16].
The triangle singularities can be easily obtained by

solving the Landau equation [1], as done in, e.g.,
Ref. [18]. Whether the solutions are located on the physical
boundary, i.e., whether they can produce a prominent effect
on the amplitude in the physically allowed region, is
determined by the Coleman-Norton theorem [2]. It turns
out that, after fixing the masses of the proton and
charmonium in the cases under consideration, only when
the Λ� mass is located in a small range is there a triangle
singularity on the physical boundary. Since the mass region
is small, the singularity is also close to the Λ�-charmonium
threshold (see, e.g., Refs. [13,15,18,22]). Rather than using
the Landau equation to get the singularities of the ampli-
tude for the diagram of Fig. 1, we find it instructive to
perform the loop integration of the three propagators
explicitly. Let us consider the scalar three-point loop
integral

I1 ¼ i
Z

d4q
ð2πÞ4

1

ðq2 −m2
cc þ iϵÞ½ðP − qÞ2 −m2

Λ� þ iϵ�½ðP − q − kÞ2 −m2
p þ iϵ� : ð1Þ

Since we are interested in the region where the Λ� may be treated nonrelativistically, we can safely neglect the negative
energy pole from the Λ� propagator. We then perform the integral over q0 analytically using the residue theorem and get, by
taking the Λb at rest,2

I1 ¼
Z

d3q
ð2πÞ3

1

8ωXð~qÞEΛð~qÞEpð~kþ ~qÞ
1

k0 − Epð~kþ ~qÞ − EΛð~qÞ
1

P0 þ ωXð~qÞ þ Epð~kþ ~qÞ − k0

×
2P0ωXð~qÞ þ 2k0Epð~kþ ~qÞ − 2½ωXð~qÞ þ Epð~kþ ~qÞ�½ωXð~qÞ þ Epð~kþ ~qÞ þ EΛð~qÞ�

½P0 − ωXð~qÞ − Epð~kþ ~qÞ − k0 þ iϵ�½P0 − EΛð~qÞ − ωXð~qÞ þ iϵ�
; ð2Þ

where ωXð~qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

cc þ ~q2
q

, EΛð~qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

Λ� þ ~q2
q

, Epð~kþ ~qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ ð~kþ ~qÞ2
q

, P0 ¼ MΛb
, and k0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

K þ ~k2
q

.

2The expression can also be found in Eq. (19) of Ref. [23]. A simpler expression can be obtained if we neglect the negative energy
poles for the cc̄ and proton as well, which still retains the two relevant poles.
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We immediately observe that the poles of the propa-
gators correspond to having pairs of intermediate particles
on shell. The conditions for all three intermediate particles
to be on shell are

P0 − EΛð~qÞ − ωXð~qÞ ¼ 0; ð3Þ

P0 − k0 − ωXð~qÞ − Epð~kþ ~qÞ ¼ 0: ð4Þ

The other propagators do not lead to singularities, since a
K− cannot decay into a p and a Λ� and P0 þ ωX þ Ep is
always larger than k0, and we thus have dropped the
corresponding iϵ.
From Eqs. (3) and (4), we obtain

qon ¼
λ1=2ðM2

Λb
; m2

Λ� ; m2
XÞ

2MΛb

; ð5Þ

ωXðqonÞ ¼
M2

Λb
þm2

X −m2
Λ�

2MΛb

; ð6Þ

EΛðqonÞ ¼
M2

Λb
þm2

Λ� −m2
X

2MΛb

; ð7Þ

where we have defined λðx; y; zÞ ¼ x2 þ y2 þ z2 − 2xy−
2yz − 2xz.
In addition, we have, from energy conservation

for the process Λb → J=ψK−pwith J=ψpwith an invariant
mass m23,

k0 ¼ M2
Λb

þm2
K −m2

23

2MΛb

;

k ¼ λ1=2ðM2
Λb
; m2

K;m
2
23Þ

2MΛb

: ð8Þ

Then Eq. (4) leads immediately to

m2
23 þm2

Λ� −m2
K −m2

X

2MΛb

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

p þ ð~kþ ~qÞ2
q

¼ 0; ð9Þ

which is the equation providing the singularities of the
integrand of the loop integral in Eq. (3). However, a
singularity of the integrand is not necessarily the singularity
of the integral. If we can deform the integration contour in
the complex plane to avoid the singularity, the integral
would be regular. In the following two cases, one cannot
deform the contour and a singularity develops: when the
singularity of the integrand is located at the end point of
the integration and when two or more singularities of the
integrand pinch the contour. They correspond to the cases
of end point and pinch singularities, respectively. We now
apply this knowledge to the problem at hand.
We notice that, in order to analyze the singularity

structure, it is sufficient to focus on the following integral:

Iðm23Þ¼
Z

d3q
1

½P0−ω1ð~qÞ−ω2ð~qÞþ iϵ�½E23−ω2ð~qÞ−ω3ð~kþ ~qÞþ iϵ�
¼2π

Z
∞

0

dq
q2

P0−ω1ðqÞ−ω2ðqÞþ iϵ
fðqÞ; ð10Þ

where ~k≡ ~p13, j~p13j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðM2; m2

13; m
2
23Þ

p
=ð2MÞ, with

M ¼
ffiffiffiffiffiffi
P2

p
and m13;23 ¼

ffiffiffiffiffiffiffiffiffiffiffi
p2
13;23

q
, and q ¼ j~qj. In the rest

frame of the decaying particle and with the more general

notation as labeled in Fig. 2, ω1;2ðqÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1;2 þ q2
q

,

ω3ð~kþ ~qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ ð~kþ ~qÞ2
q

, E23 ¼ P0 − k0, and

fðqÞ¼
Z

1

−1
dz

1

E23−ω2ðqÞ−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3þq2þk2þ2qkz
p

þ iϵ
:

ð11Þ
The integral Iðm23Þ is in fact a function of all involved
masses and external momenta, and here we show only m23,

since we will discuss the singularities in this variable. It
becomes clear that we need to analyze the singularity
structure of a double integration: one over q and one
angular integration over z. The two factors in the denom-
inator of the integrand of Iðm23Þ correspond to the two cuts
depicted in Fig. 2. The cut crossing particles 1 and 2
provides a pole of the integrand of Iðm23Þ given by

P0 − ω1ð~qÞ − ω2ð~qÞ þ iϵ ¼ 0; ð12Þ
which is just Eq. (3) by identifying m1 ¼ mΛ� and
m2 ¼ mcc. However, we have kept the iϵ here explicitly,
which is important to determine the singularity locations in
the complex-q plane. The pertinent solution is

FIG. 1. Triangle diagram for Λb → J=ψK−p decay, where Λ�
stands for the different Λ� considered in the analysis of
Refs. [16,21] and cc̄ stands for different charmonium states.
In brackets, the momenta of the corresponding lines are given.
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qonþ ¼ qon þ iϵ with qon ¼
1

2M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðM2; m2

1; m
2
2Þ

q
:

ð13Þ

The function fðqÞ has end point singularities, which are
logarithmic branch points, given when the denominator of
the integrand vanishes for z taking the end point values�1,
i.e., the solutions of

E23 − ω2ðqÞ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ q2 þ k2 � 2qk
q

þ iϵ ¼ 0; ð14Þ

which is just Eq. (4) by identifying m2 ¼ mcc and
m3 ¼ mp. The þ and − signs correspond to z ¼ þ1 and
−1, i.e., the situations for the momentum of particle 2 to be
antiparallel and parallel to the momentum of the (2,3)

system in the frame with ~P ¼ 0, respectively. These end
point singularities of fðqÞ provide logarithmic branch point
singularities to the integrand of Iðm23Þ, in addition to the
pole given by the first cut. Whether they induce singular-
ities in Iðm23Þ needs to be further analyzed, and we do it in
the following.
For z ¼ −1, Eq. (14) has two solutions:

qaþ ¼ γðvE�
2 þ p�

2Þ þ iϵ;

qa− ¼ γðvE�
2 − p�

2Þ − iϵ; ð15Þ

where we have defined

v ¼ k
E23

;

γ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p ¼ E23

m23

;

E�
2 ¼

1

2m23

ðm2
23 þm2

2 −m2
3Þ;

p�
2 ¼

1

2m23

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λðm2

23; m
2
2; m

2
3Þ

q
: ð16Þ

It is easy to realize that E�
2 and p�

2 are the energy and
the magnitude of the 3-momentum of particle 2 in the
center-of-mass frame of the (2,3) system, v is the magni-
tude of the velocity of the (2,3) system in the rest frame of
the decaying particle, and γ is the Lorentz boost factor.
Therefore, the two solutions given above correspond to the
momentum of particle 2 in the rest frame of the decaying
particle in different kinematic regions, which will be
discussed later.
For z ¼ 1, the two solutions of Eq. (14) are

qbþ ¼ γð−vE�
2 þ p�

2Þ þ iϵ;

qb− ¼ −γðvE�
2 þ p�

2Þ − iϵ: ð17Þ

The second one, qb−, is irrelevant, since it is always
negative when ϵ ¼ 0 and is never realized in the integral
on the momentum modulus in Eq. (10). It might be
worthwhile to emphasize that all of qa� and qb� are
singularities of the integrand of Iðm23Þ simultaneously.
However, depending on the value of m23 (for real m23),
either limϵ→0ðqa−Þ or limϵ→0ðqbþÞ, but not both, is positive
and appears in the relevant integration range of q from
0 to þ∞. These two cases are shown in Figs. 3 and 4,
respectively.
Let us discuss Fig. 3 first. In the integration range of q,

the integrand has three relevant singularities: a pole qonþ
and two logarithmic branch points qa�. Their locations are
determined by kinematics. It can happen that all of them
are located at different positions, and one can deform the
integration path freely as long as it does not hit any

FIG. 2. A triangle diagram showing the notations used in the
general discussion of triangle singularities, where mi’s denote
the masses of the intermediate particles and P, p13, and p23

correspond to the four-momenta of the external particles. In the

text, we have defined ~k≡ ~p13 for simplicity. The two dashed
vertical lines correspond to the two relevant cuts.

(a) (c)(b)

FIG. 3. Pertinent singularities of the integrand of Iðm23Þ when limϵ→0ðqa−Þ is positive. (a) is for the case without any pinching,
(b) shows the case when the integration path is pinched between qaþ and qa−, which gives the two-body threshold singularity, and (c) is
for the case when the pinching happens between qonþ and qa−, which gives the triangle singularity. The dashed lines correspond to
possible integration paths.
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singularity of the integrand. One such path is shown as the
dashed line segments in Fig. 3(a). In such a kinematic
region, Iðm23Þ is analytic. Since qa− is in the lower half of
the complex-q plane while qonþ and qaþ are in the upper
half plane, it could happen that the integration path is
pinched between qa− and one of qonþ and qaþ or even both
of them. Then one cannot deform the integration path away
from the singularities of the integrand, and Iðm23Þ will be
nonanalytic as well. If the integration path is pinched
between qa− and qaþ, as shown in Fig. 3(b), which happens
when m23 ¼ m2 þm3 or p�

2 ¼ 0, one gets the normal two-
body threshold singularity, which is a square-root branch
point. If the integration path is pinched between qa− and
qonþ, as shown in Fig. 3(c), one gets the triangle singularity
or anomalous threshold, which is a logarithmic branch
point. Therefore, the condition for a triangle singularity to
emerge is given mathematically by

lim
ϵ→0

ðqonþ − qa−Þ ¼ 0: ð18Þ

This is possible only when all three intermediate particles
are on shell and meanwhile z ¼ −1, ω1ðqonÞ − p0

13 −ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

3 þ ðqon − kÞ2
p

¼ 0 (it has another solution qaþ). The
location of the triangle singularity in the variable m23 is
found by solving the above equation. It could also happen
that both qonþ and qaþ pinch the integration path with qa−
at the same time, and then the triangle singularity coincides
with the normal threshold atm23 ¼ m2 þm3. Yet, although
this requires a very special kinematic configuration, it does
happen at MJ=ψp ≃ 4.45 GeV for the Λ�ð1890Þ − χc1-
proton diagram contribution to the Λb → KJ=ψp as dis-
cussed in Ref. [18].
It is important to understand the kinematic region where

the triangle singularity can occur. Since qa− is the singu-
larity of fðqÞ at the end point z ¼ −1, the momentum of
particle 3 in the rest frame of the decaying particle is thus
~p3 ¼ −~q − ~p13 ¼ ðk − qÞq̂, where q̂ stands for the unit
vector along the direction of ~q. From Eqs. (15) and (16), it
is easy to see that k > limϵ→0ðqa−Þ for m23 ≥ m2 þm3.
Thus, particles 2 and 3 move in the same direction in this
reference frame. Another condition for qa− to be relevant
becomes clear by checking the expression of qa− in
Eq. (15), which is the Lorentz boost of the momentum
of particle 2 from the center-of-mass frame of the (2,3)
system to the rest frame of the decaying particle. The
negative sign in front of p�

2 in Eq. (15) means that the
direction of motion of particle 2 in the center-of-mass frame
of the (2,3) system is opposite to the one in the rest frame of
the decaying particle, while the direction of motion of
particle 3 is the same in both reference frames. This implies
that particle 3 moves faster than particle 2 in the latter
reference frame. Therefore, the triangle singularity happens
only when particle 3 moves along the same direction as
particle 2 and has a larger velocity in the rest frame of the

decaying particle. This, together with having all intermedi-
ate particles on their mass shells, gives the condition for
having a triangle singularity. One can realize that this is in
fact the Coleman-Norton theorem [2]: the singularity is on
the physical boundary if and only if the diagram can be
interpreted as a classical process in space-time.
For given m2, m3, and invariant masses for external

particles, one can also work out the range of m1 where the
triangle singularity shows up as well as the range of the
triangle singularity in m23. For qon and qa− (taking ϵ ¼ 0)
taking values in their physical regions, one needs to have
m1 ≤ M −m2 andm23 ≥ m2 þm3. Using Eq. (18), we find
that, when

m2
1 ∈

�
M2m3 þm2

13m2

m2 þm3

−m2m3; ðM −m2Þ2
�
; ð19Þ

Iðm23Þ has a triangle singularity, and it is within the range

m2
23 ∈

�
ðm2 þm3Þ2;

Mm2
3 −m2

13m2

M −m2

þMm2

�
: ð20Þ

These are in fact the ranges discussed in Refs. [18,22]
derived from the point of view of the Coleman-Norton
theorem.
The kinematic region where particle 2 moves faster than

particle 3 but in the same direction corresponds to the case
that the three-momentum of the on-shell particle 2 takes
the value of qaþ. One then has limϵ→0ðqaþ − qa−Þ > 0 (it
would be equal to 0 if the two particles move with the same
speed in the rest frame of the decaying particle), and Iðm23Þ
has no singularity. From the point of view of the Coleman-
Norton theorem [2], particle 3 emitted from the decay of
particle 1 cannot catch up with particle 2, so that the
rescattering between them in the triangle diagram cannot be
interpreted as a classical process. This case corresponds to
Fig. 3(a).
There is the possibility that qa− < 0 (here and in the

following, when we talk about the sign or relative size of
qa� and qb�, ϵ takes the value of 0), and, thus, this solution
is unphysical for on-shell intermediate particles. In this

case, solving numerically Eq. (9) with ~q and ~k in opposite
directions will give only one positive q solution, which,
by necessity, is qaþ. Note that qa− < 0 means
qbþ ¼ −qa− > 0, so that qbþ is in the physical range of
q. We show this case in Fig. 4, where only the positive
singularities of the integrand, which are the ones in the
physical range of q for on-shell intermediate particles, are
depicted. Since qa− < 0 in this case, and qb− < 0, and
furthermore qonþ, qaþ, and qbþ are on the same side of the
Req axis, no pinching can occur, and, hence, none of these
singularities of the integrand turns into a singularity of the
integral Iðm23Þ. The condition for qa− < 0 is p�

2 > vE�
2;

i.e., the magnitude of velocity of particle 2 in the (2,3)
center-of-mass frame (which is equal to the one for particle
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3) is larger than the velocity of the (2,3) system in the rest
frame of the initial particle. It implies that particle 2 and
particle 3 move in opposite directions in the latter frame,
and thus particle 3, emitted from the decay of particle 1,
which moves also opposite to particle 2 in the rest frame of
the initial particle, cannot rescatter with particle 2 in a
classical picture with energy-momentum conservation, in
accordance with the conclusion of Ref. [2].

III. RESULTS

Now let us turn to the problem of possible triangle
singularities contributing to the Λb → K−J=ψp from tri-
angle diagrams with a Λ� hyperon, a charmonium, and a
proton as the intermediate states. The Λ� states considered
in the fit of data by the LHCb Collaboration include [16]
Λð1405Þ, Λð1520Þ, Λð1600Þ, Λð1670Þ, Λð1690Þ, Λð1800Þ,
Λð1810Þ, Λð1820Þ, Λð1830Þ, Λð1890Þ, Λð2100Þ, Λð2110Þ,
Λð2350Þ, andΛð2585Þ, which as seen in Ref. [24] couple to
K−p. As to the charmonium states, we take ηcð1SÞ, J=ψ ,
χcJð1PÞ (J ¼ 0, 1, 2), hcð1PÞ, ηcð2SÞ, and ψð2SÞ. From the
discussion in the preceding section and Eqs. (19) and (20),
we can see which is the mass range allowed for the Λ�
particles, for a certain charmonium state, in order to have a
triangle singularity. In Table I, we give these values as well

as the range of the corresponding invariant mass of the (2,3)
system (J=ψp) at which the triangle singularity appears.
We can then select the Λ�’s fulfilling these requirements,
that will be shown later after the following discussions on
the experimental production rates and the relevance of these
different charmonia.
As discussed in the preceding section, we expect to have

contributions from the triangle singularity, which is a
logarithmic branch point, and from the two-body threshold,
which is a square-root branch point. While the first one
does indeed lead to an infinite contribution if all of the
involved masses take real values, the second one gives a
finite contribution. Yet, the triangle singularity turns into a
finite contribution, because particle 1 necessarily decays
into particle 3 and the external (1,3) particle(s) (the K− in
the problem at hand), providing a width to particle 1 and,
hence, replacing the iϵ by iΓ=2 (iΓΛ�=2 in the present case).
Of course, the Λ� has more decay channels than just the one
into particle 3 plus the (1,3) system, and the full width
needs to be used for Γ. Now the two singularities of
the integrand qonþ and qa− that were pinching before in
Fig. 3(c) are separated such that we obtain a finite result for
the integral Iðm23Þ, and for the decay amplitude involving
the triangle loop as well, which has a memory of the
singularity and produces an enhancement in this integral.
In what follows, we discuss which charmonium states

are relevant from a physical point of view.
We can have an idea of the strength of the Λb → Λcc for

the different charmonium states by looking at the related
rates of B → ccK. In Table II, we collect the rates given by
the Particle Data Group in all these cases. This means that
one can neglect the χc2 and hc1 cases. The χc0 has also a
factor of 3 smaller rate. On the other hand, the χc0p →
J=ψp amplitude is of the same order of magnitude as the
χc1p → J=ψp [18]. Altogether, we have about a factor of 3
reduction in the triangle diagram, and we can dismiss this
term as subdominant. The ηcð2SÞ has JP ¼ 0− and the cc
with 0− has to be converted into 1− for the J=ψ in the
ηcð2SÞp → J=ψp reaction, and this implies a spin flip of
the charmed quarks. This should be much suppressed by
heavy quark spin symmetry.

FIG. 4. Pertinent singularities of the integrand of Iðm23Þ when
limϵ→0ðqbþÞ is positive.

TABLE I. For each charmonium, the triangle singularity
produces prominent effects if the Λ� mass takes a value within
the range given in the second column, and the singularity range is
shown in the last column correspondingly. As seen from Eq. (20),
the first number in each row of the last column corresponds to the
threshold of the proton and the corresponding charmonium.

cc̄
Most relevant range

of MΛ� (MeV)
Range of triangle
singularity (MeV)

ηc [2226, 2639] [3919, 4283]
J=ψ [2151, 2523] [4035, 4366]
χc0 [1949, 2205] [4353, 4588]
χc1 [1887, 2109] [4449, 4654]
χc2 [1858, 2063] [4494, 4686]
hc1 [1878, 2094] [4464, 4664]
ηcð2SÞ [1806, 1983] [4575, 4741]
ψð2SÞ [1774, 1933] [4624, 4775]

TABLE II. Branching ratios for B → cc̄ K̄ [24]. Here we quote
only the central values.

cc̄ BRðB → cc̄ K̄Þ
χc0 1.5 × 10−4 (neutral B)

1.3 × 10−4 (charged B)
χc1 4.0 × 10−4 (neutral B)

4.6 × 10−4 (charged B)
χc2 <1.5 × 10−5

hc1 <3.8 × 10−5

ηcð2SÞ 3.4 × 10−4

ψð2SÞ 6.26 × 10−4
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Finally, the ψð2SÞ has a B → ccK branching fraction
about 1.5 times bigger than the χc1. The ψð2SÞp → J=ψp
amplitude has two sources: one from soft gluon exchange,
that would be suppressed for the ψð2SÞp → J=ψp with
respect to the χc1p → J=ψp, because of the smaller overlap
between the radial wave functions, and another source is
given by the subsequent exchange of D� or D as done in
Refs. [25,26]. In this latter case, we do not find a strong
reason why the latter mechanism should be much reduced
with respect to the case of χc1p → J=ψp.
We also admit that all the ccp → J=ψp amplitudes are

Okubo-Zweig-Iizuka (OZI) suppressed and that, at this
moment, we have no elements to evaluate the strength of
these amplitudes nor the Λb → Λ�cc ones. Hence, the
global strength of these singularities is unknown at present.
Let us first discuss the χc1 intermediate charmonium and

assume the χc1p in the χc1p → J=ψp amplitude to be in an
S wave, and, similarly, we do not pay attention to the
particular structure of the other vertices (this will be done in
the next section). We plot the contribution to jI1j2 from a
selected choice of the Λ� states discussed above in Fig. 5.
We can see that all of them peak aroundm23 ¼ 4450 MeV,
which is the χc1p threshold. The largest strength, with the
sharpest shape, comes from the Λð1890Þ, which is the one
discussed in Ref. [18]. We should note that in this case the
threshold and the triangle singularities merge, and we
attribute the prominent role of this Λ� state to this feature.
The cusp structure in the curve for the Λð1670Þ comes

from the threshold singularity (see in the second column of
Table I that this mass is far outside the range of the Λ� mass
for having a triangle singularity). The peak of the Λð1810Þ
is sharper. In this case, the Λ� mass is outside the range of
the triangle singularity (see Table I), but it is not too far
away. However, now the most relevant factor in the
structure is the threshold singularity.
The case of the Λð2100Þ is special: indeed, as seen in

Table I, this mass is inside the range of the triangle
singularities, and we can easily see, using Eq. (18), that
it appears at 4592 MeV. Hence, the structure of I1 for this
Λ� state shows a bump, in addition to the normal threshold

cusp, around that energy, as a consequence of the smearing
of the triangle singularity by the width of the Λ�, as
discussed before.
For the ψð2SÞ case, one finds a similar pattern, but we

shall discuss in more detail this case, by comparing it to the
χc1 case, in the next section.

IV. DETAILED ANALYSIS OF THE
S- AND P-WAVE AMPLITUDES FOR χ c1

AND ψð2SÞ AND Λð1890Þ
In this section, we will discuss the structure of triangle

loops involving the Λð1890Þ and the χc1 or ψð2SÞ, taking
into account the necessary operator structures.
Let us look at Fig. 1. Since the spin of the Λð1890Þ is

3=2, the Λb → Λð1890Þcc vertex can be accommodated

with the operator ~S† · ~ϵ, with ~S† the spin transition operator
from a spin-1=2 to spin-3=2 state and ~ϵ the polarization of
the spin-1 charmonium. The Λð1890Þ → K−p vertex is of

the type ~S · ~k. Finally, in the ccp → J=ψp, we have several
situations.

1. The quantum numbers of the J=ψp, those for the
Pcð4450Þ, are JP ¼ 3=2−.
(a) cc ¼ χc1.—This requires a P wave in the χc1p

system which can be accommodated with the
operator ð~σ · ~q�~ϵ · ~ϵ0Þ=mp, where ~σ are the Pauli
matrices, ~q� is the momentum of χc1 in the loop
in the χc1p center-of-mass frame, and ~ϵ and ~ϵ0
are the polarization vectors of the χc1 and J=ψ ,
respectively.

(b) cc ¼ ψð2SÞ.—This requires an S wave in both
the ψð2SÞp and J=ψp channels. We thus take a
constant, which is normalized to the former
amplitude at a scale of the q� momentum equal
to the mass of the proton.

2. The quantum numbers of the J=ψp are JP ¼ 1=2þ
or 3=2þ.
(a) cc ¼ χc1.—In this case, the χc1p system is in an

S wave and the J=ψp in a P wave. The roles of
the χc1 and J=ψ are reverted with respect to case
(1a), and we then have the same amplitude as in
the case of (1a), interchanging the momenta of
the χc1 and the J=ψ , and hence ð~σ · ~p�~ϵ · ~ϵ0Þ=mp,
with ~p� the momentum of the J=ψ in the J=ψp
center-of-mass frame.

(b) cc ¼ ψð2SÞ.—This requires a P wave in both
the ψð2SÞp and J=ψp systems and will not play
a role in the discussion.

In case (1a), the spin-momentum structure of the
integrand of the triangle diagram is then

~S · ~k~S† · ~ϵ ~σ ·~q�~ϵ · ~ϵ0: ð21Þ

Using the Lorentz boost formula in the compact form as
given in Ref. [27], we can express ~q� in the center-of-mass

FIG. 5. The value of jI1j2 [Eq. (3)] for Λ�χc1 with a width
Γ ¼ 100 MeV for the hyperon.
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frame of the J=ψp (or χc1p) in terms of the quantities in the
rest frame of the Λb, where the loop integral was evaluated
in the former sections. Noticing that the former frame is

moving with a momentum −~k in the latter frame, we get

~q� ¼
��

ER

m23

− 1

�
~q · ~k
~k2

þ q0

m23

�
~kþ ~q; ð22Þ

where m23 is the invariant mass of the J=ψp system,

ER ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

23 þ ~k2
q

, and q0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

χc1 þ ~q2
q

, with ~k the mo-

mentum of the kaon and ~q the momentum of the χc1 in the

loop. Next we take into account that, since ~k is the only
vector not integrated out in the integral of I1, we can write

Z
d3qAð~qÞqi ¼ ki

Z
d3~qAð~qÞ

~k · ~q
~k2

; ð23Þ

where Að~qÞ stands for the rest part of the loop integrand.
This means that, because of the Pwave between the χc1 and
proton, ~q� in Eq. (21) in the integrand of the triangle loop
can be replaced by the following factor:

~k

�
ER~q · ~k

m23
~k2

þ q0

m23

�
: ð24Þ

With the following integral:

I2¼
Z

d3~q
ð2πÞ3

�
ER~q ·~k

m23
~k2

þ q0

m23

�
×ðintegrand of I1Þ; ð25Þ

we can get the amplitude T for the Λb → K−J=ψp
decay process via the pertinent triangle diagram. After
carrying the sum and average of the polarizations given in

Eq. (21), we obtain the factor 2~k4=ð3m2
pÞ. Hence, we obtain

for case (1a)

jTð1.aÞj2 ¼
2~k4

3m2
p
jI2j2: ð26Þ

In case (2a), we have the same spin-momentum factor as
Eq. (21) substituting ~σ · ~q� by ~σ · ~p�, and the final result is

jTð2.aÞj2 ¼
2~k2~p�2

3m2
p

jI1j2: ð27Þ

In case (1b), the expression of Eq. (21) is substituted by
~S · ~k~S† · ~ϵ ~ϵ ·~ϵ0, and we obtain

jTð1.bÞj2 ¼
2~k2

3
jI1j2: ð28Þ

The prefactors of momentum are numerically very similar,
and we may eliminate them for the discussion and hence
use only the jI1;2j2 part. The results for cases (1a) and (1b)
are shown in Figs. 6 and 7, respectively; the result for case
(2a) has already been given as the solid curve in Fig. 5.
We can see that, in case (1a), of 3=2− for the J=ψp final

states and χc1p, which requires a P wave, the amplitude
is very much suppressed compared to the case where one
has the ccp in S wave, (1b). This is natural, since the
singularity appears when putting the χc1p on shell and at
threshold, where the P-wave factor vanishes. We can see
that the strength at the peak is about 20 times smaller than
the one in the S-wave case. We also see that the S-wave
structure is very much peaked and narrow, while the one of
the P wave has a “background” below the peak, accumu-
lating more strength than the peak. Also, the shape is too
broad to associate it to the observed narrow pentaquark in
the experiment.
There is another factor to take into account. In this case,

the contribution of the ψð2SÞp, which proceeds via an S
wave, would give us a narrow peak around 4624 MeV,
much stronger than the one provided by the P wave χc1p,
assuming the rescattering strengths are comparable. An
inspection of the experimental data shows that the J=ψp

FIG. 6. The value of jI1j2 for P wave Λð1890Þχc1. A constant
width of Γ ¼ 100 MeV is used for the Λð1890Þ.

FIG. 7. The value of jI1j2 for S wave Λð1890Þψð2SÞ. A
constant width of Γ ¼ 100 MeV is used for the Λð1890Þ.
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invariant mass distribution in this region is flat. These
arguments lead to the conclusion that, if the narrow J=ψp
structure has quantum numbers 3=2−, one of the choices in
the experimental analysis, the triangle singularities due to
Λ�ccp intermediate states, cannot play an important role in
the decay Λb → K−J=ψp.
The other quantum numbers preferred in the current

experimental analysis for the narrow state are 5=2þ. In this
case, one needs a D wave in χc1p, and the situation is
worse. We have checked that numerically, but there is no
need to discuss it.
We pass now to discuss the possibility that the J=ψp

system in the narrow structure takes the quantum numbers
1=2þ or 3=2þ, case (2a). In this case, the χc1p amplitude
proceeds via an S wave, and we would have the situation
shown as the solid curve in Fig. 5. The peak is narrow
enough and located at the right position. Furthermore, the
Λð1890Þχc1p triangle diagram reinforces by merging the
triangle singularity with the normal χc1p threshold at
4.45 GeV, which makes the peak more prominent than
in the other cases. This was pointed out in Ref. [18], which
tried to draw attention to the complications of interpreting
the Pcð4450Þ.3 In this case, the contribution from the ψð2SÞ
intermediate state would proceed with ψð2SÞp in a Pwave,
case (2b), and would be drastically reduced with respect to
the one shown in Fig. 7.

V. CONCLUSIONS

We have analyzed in detail when the singularities of the
triangle amplitude appear with a different formalism than
the one normally used, which allows for a complementary
understanding of their origin as well as for an easy
evaluation of the singularities. They are generated by a
genuine triangle singularity or from threshold effects. We
applied the method to the Λb → J=ψK−p decay and
discussed all possible triangle singularities that might
affect the J=ψp mass distribution from a triangle diagram
involving a charmonium, a proton, and a Λ� hyperon. We
stressed that, should the χc1p in the χc1p → J=ψp ampli-
tude be in an S wave, the intermediate χc1Λð1890Þ pair
plays a very special role, since the threshold and triangle
singularities merge. In many of the other cases, we see that
they do not develop a triangle singularity, but the threshold
cusp is always present as it should be.
We also made a study of the different cases using

dynamical features and some phenomenology and con-
cluded that the relevant singularities, if strong enough to be
observable, should develop from χc1p and ψð2SÞp inter-
mediate states. Then we saw that in the case of JP ¼ 3

2
−, 5

2
þ

for the narrow Pc, as presently favored by the experiment,

the χc1p → J=ψp transition requires L ¼ 1 in χc1p in the
first case and L ¼ 2 in the second. This feature smoothens
very much the peak to the point that the interpretation of the
experimental peak on this singularity runs into obvious
inconsistencies. In this case, a singularity stemming from
the ψð2SÞp intermediate state proceeds with ψð2SÞp in an
S wave, located at around 4624 MeV in the J=ψp invariant
mass. The flat distribution in the experimental data would
mean that the ψð2SÞp → J=ψp is not strong enough to
make the triangle singularity observable. These consider-
ations lead us to conclude that if the narrow Pcð4450Þ has
quantum numbers JP ¼ 3

2
−; 5

2
þ, reported as the preferable

quantum numbers in the LHCb analysis of their data, it
would have an origin other than a triangle singularity from
the Λ�-charmonium-proton intermediate states.
Should this narrow peak correspond to JP ¼ 1

2
þ or 3

2
þ, the

χc1p can proceed in anSwave. In such a case, we could show
that the χc1p intermediate state and the Λð1890Þ would be
favored over the other possible Λ�ccp intermediate states.
This was because themass of theΛð1890Þmakes the triangle
and threshold singularitiesmerge at the same energy.We also
saw that in this case the contribution of the other Λ� states
could provide a relevant contribution due to the threshold
singularity. We admit that the χc1p → J=ψp amplitude is
OZI suppressed, and we do not know its strength. However,
we also notice that the NPLQCD Collaboration recently
reported the possible existence of charmonium-nucleus
bound states in their lattice QCD calculation even when
extrapolated to the physical pion mass [28].
The spin and parity assignment to the two Pc structures

reported in Ref. [16] is not fully settled, and further work
continues in the collaboration to be more assertive in the
near future [29]. Further stimulus for this task stems from
the recent work [30], which shows that from the K−p and
J=ψp invariant mass distributions alone, one cannot asset
the spin and parity of the two Pc structures nor the need for
the broad Pcð4380Þ state. The work also shows that contact
terms, that turn out to be negligible in the experimental
analysis, can make up for the effect of the Pcð4380Þ in the
invariant mass distributions. Of course, the experiment
contains and analyzed far more data than the invariant mass
distributions, and, in particular, angular correlations are
essential to determine the spin parity of the structures. Yet,
whether or not and how possible triangle singularities
discussed in Ref. [18,19] might affect the experimental
fits and the determination of quantum numbers are still
open questions. An important step towards revealing the
exotic nature of the Pcð4450Þ can be made once they are
answered.4 At last, it is worthwhile to mention that, even if
it will be shown experimentally that there is a pentaquark

3In Ref. [18], the authors did not claim that the Pcð4450Þ is due
to the triangle singularity. On the contrary, a method discrimi-
nating the true resonance explanation from the Λð1890Þχc1p
triangle singularity was proposed.

4One possibility would be to analyze the data by replacing the
resonance parameterization for the Pcð4450Þ by the amplitudes
for the Λ�χc1p triangle diagram as well as other possible triangle
singularities discussed in Ref. [19].
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state at around 4.45 GeV, the triangle singularity could play
a role of enhancing the peak signal.
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