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In a series of papers, we have investigated the compatibility of the Kimber-Martin-Ryskin (KMR) and
Martin-Ryskin-Watt (MRW) unintegrated parton distribution functions (UPDFs) as well as the description
of the experimental data on the proton structure functions. The present work is a sequel to that survey, via
calculation of the transverse-momentum distribution of the electroweak gauge vector bosons in the
kt-factorization scheme, by the means of the KMR, the leading-order (LO) MRW, and the next-to-leading-
order (NLO) MRW UPDF, in the NLO. To this end, we have calculated and aggregated the invariant
amplitudes of the corresponding involved diagrams in the NLO and counted the individual contributions
in different frameworks. The preparation process for the UPDF utilizes the parton distribution functions
of Martin et al., MSTW2008-LO, MSTW2008-NLO, MMHT2014-LO, and MMHT2014-NLO, as the
inputs. Afterward, the results have been analyzed against each other as well as the existing experimental
data, i.e., D0, CDF, ATLAS, and CMS collaborations. Our calculations show excellent agreement with
the experiment data. It is, however, interesting to point out that the calculation using the KMR
framework illustrates a stronger agreement with the experimental data, despite the fact that the
LO MRW and the NLO MRW formalisms employ a better theoretical description of the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi evolution equation. This is of course due to the use of the different
implementation of the angular ordering constraint in the KMR approach, which automatically includes the
resummation of lnð1=xÞ, Balitski-Fadin-Kuraev-Lipatov logarithms, in the LO Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi evolution equation.

DOI: 10.1103/PhysRevD.94.074035

I. INTRODUCTION

In recent years, new discoveries have been made at many
high-energy particle physics laboratories, including the
LHC, concerning physics within the boundaries of the
Standard Model and beyond, as the consequence of
pushing the maximum energy of the experiments to new

limits. Today, many of these laboratories use parton
distribution functions (PDFs) to describe and analyze their
extracted data from the deep inelastic QCD collisions.
These scale-dependent functions are the solutions of the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) evo-
lution equations [1–4],
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where aðx;Q2Þ can be either the distribution function of the
quarks, xqðx;Q2Þ, or that of the gluons, xgðx;Q2Þ, with x
being the fraction of the longitudinal momentum of the

parent hadron (the Bjorken variable). The terms on the right-
hand side of the equation (1) correspond to the real emission
and the virtual contributions, respectively. The scaleQ2 is an
ultraviolet cutoff, related to the virtuality of the exchanged
particle during the deep inelastic scattering (DIS).PabðzÞ are
the splitting functions of the respective partons which
account for the probability of a parton aðx00; Q2Þ emerging
from a parent parton bðx0; Q2Þ through z ¼ x00=x0.
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The DGLAP evolution equation, however, is based on
the strong ordering assumption, which systematically
neglects the transverse momentum of the emitted partons
along the evolution ladder. It has been repeatedly hinted
that undermining the contributions coming from the trans-
verse momentum of the partons may severely harm the

precision of the calculations, especially in the high-energy
processes in the small-x region; see, for example,
Refs. [5–9]. This signaled the necessity of introducing
some transverse momentum-dependent (TMD) PDF, ini-
tially through the Ciafaloni-Catani-Fiorani-Marchesini
(CCFM) equation [10–14],

fðx; k2t ; Q2Þ ¼ f0ðx; k2t ; Q2Þ þ
Z
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The ΘðQ − zqÞ implies a physical condition, enforcing the
increase of the angle of the emission of the gluons in
successive radiations along the evolution chain. This
condition which is usually referred to as the angular
ordering constraint (AOC), is due to the coherent radiation
of the gluons. The Sudakov form factor,ΔSðQ; qÞ, gives the
probability of evolving from a scale q to a scale Q, without
any partons emission, and can be defined as
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with ᾱs ¼ 3αs=π. In Eq. (2), fðx; k2t ; μ2Þ is the double-
scaled CCFM TMD PDF, which in addition to the x and Q
depends on the transverse momentum of the incoming
partons, kt. It has been shown (see Ref. [15]) that in the
proper boundaries, the CCFM equation will reduced to the
conventional DGLAP and Balitski-Fadin-Kuraev-Lipatov
(BFKL) equations, [16–20].
The procedure of solving the CCFM equation is math-

ematically involved and unrealistically time consuming,
since it includes contemplating iterative integral equations
with many terms. On the other hand, the main feature of the
CCFM equation, i.e., the AOC, can be exclusively used for
the gluon evolution, and therefore this process is incapable
of producing a convincing quark contribution. To overcome
these obstacles, Martin et al. have introduced the kt-
factorization framework and developed the Kimber-
Martin-Ryskin (KMR) and the Martin-Ryskin-Watt
(MRW) approaches [5,6], both of which are constructed
around the LO DGLAP evolution equations and modified
with the different visualizations of the angular ordering
constraint. The frameworks of KMR and MRW in the
leading order (LO) and next-to-leading order (NLO) have
been investigated intensely in the recent years; see
Refs. [21–28].
Although Martin et al. have developed the MRW

formalism as an improvement to the KMR approach, by
correcting the use of the AOC, limiting its effect only on the
diagonal splitting functions and extending the range of their

calculations into the NLO via introducing the NLO MRW
scheme, it appears that the KMR approach, as an effective
model, is more successful in producing a realistic theory in
order to describe the experiment. We are therefore eager to
expand our investigation regarding the merits and short-
comings of these frameworks into the calculation of the
inclusive cross sections of production of the electroweak
gauge bosons in high-energy hadronic collisions.
The process of the production of the massive gauge

vector bosons, W� and Z0, has always been of extreme
theoretical and experimental interest, since it can provide
invaluable information about the nature of both the electro-
weak and the strong interactions, setting a benchmark for
testing the validity of the experiments and establishing a
firm base for testing new theoretical frameworks; see
Refs. [29–42]. It is not, however, straightforward to
describe the transverse-momentum distributions of the
electroweak bosons produced in hadron-hadron collisions,
since the usual collinear factorization approach in the LO
neglects the transverse-momentum dependency of the
incoming partons and therefore predicts a vanishing trans-
verse momentum for the product. Consequently, initial-
state QCD radiation is necessary to generate the kt
distributions. On the other hand, in this approximation,
calculations for differential cross sections of theW� and Z0

production diverge logarithmically in the NLO limit for the
kt ≪ MW;Z (which is the main region of interest), due to the
soft gluon emission. So, one requires a resummation to
obtain a finite kt distribution.
In the present work, we tend to calculate the kt

distributions of the cross section of production of the
W� and Z0 using the NLO level diagrams and the LO
and NLO unintegrated PDF (UPDF) of the KMR and the
MRW frameworks. The UPDF will be prepared in their
proper kt-factorization schemes using the PDF of
MSTW2008-LO, MSTW2008-NLO, MMHT2014-LO,
and MMHT2014-NLO [43–46]. Such calculations have
been previously carried out using LO matrix elements of
quark-antiquark annihilation cross section and doubly
unintegrated parton distribution functions (DUPDFs) in
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the framework of ðkt; zÞ factorization [9] and in a semi-
NLO approach, using a mixture of LO and NLO
matrix elements for the involved processes in addition to
a variety of TMD PDF; see Ref. [40]. To improve
these approximations and at the same time test the
functionality of the KMR and the MRW UPDF, we
have calculated the NLO ladder diagrams for
gþ g → W�=Z0 þ qþ q0, qþ g → W�=Z0 þ q0 þ g, and
qþ q0 → W�=Z0 þ gþ g, utilizing a physical gauge for
the gluons. In this way, at the price performing long and
complicated calculations, we will demonstrate that
with the use of the UPDF in the NLO calculations one
can extract an excellent description of the experimental
data of the D0, CDF, ATLAS, and CMS collaborations
[29–39], as well as other works given here, regarding the
transverse-momentum distributions of the W� and Z0

boson [40–42].
In what follows, first, a brief introduction to the concept

of kt factorization will be presented, and the respective
formalisms for the KMR and the MRW frameworks
will be derived in Sec. II. Section III contains a compre-
hensive description over the utilities and means for the
calculation of the kt-dependent cross section of the pro-
duction of theW� and Z0 gauge vector bosons in a hadron-
hadron (or hadron-antihadron) deep inelastic collision.
The necessary numerical analysis will be presented in
Sec. IV, after which a thoroughgoing conclusion will follow
in Sec. V.

II. kt-FACTORIZATION SCHEME

A parton entering the subprocess at the top of the
evolution ladder has non-negligible transverse momentum.
However, it is customary to use the PDF of the DGLAP or
the BFKL evolution equations to describe such partons,
despite the fact that these density functions intrinsically
carry no kt dependency. To include the contributions
coming from the transverse-momentum distributions of
the partons, one can either use the solutions of the CCFM
evolution equation or unify the BFKL and the DGLAP

evolution equations to form a properly tuned kt-dependent
framework [47,48]. Nevertheless, given the mathematical
complexity of these schemes, it is not desirable to use them
in the task of computing the DIS cross sections. Another
way is to convolute the single-scaled solutions of the
DGLAP evolution equation and insert the required kt
dependency via the process of kt factorization (for a
complete description, see Ref. [8]).
Thus, one may define the UPDF, faðx; k2t ; μ2Þ, in the

kt-factorization scheme, through the normalization
relation

aðx; μ2Þ ¼
Z

μ2 dk2t
k2t

faðx; k2t ; μ2Þ; ð4Þ

where aðx; μ2Þ are the solutions of the DGLAP equation
and stand for either xqðx; μ2Þ or xgðx; μ2Þ. The procedure of
deriving a direct expansion for faðx; k2t ; μ2Þ, in terms of the
PDF is straightforward. Yet, exposing the resulting pre-
scriptions to the different visualizations of the AOC will
produce different UPDF, namely, the KMR, the LO MRW,
and the NLO MRW frameworks. In what follows, we will
describe these frameworks in detail.

A. KMR framework

Starting form the DGLAP equation in the leading order,
Eq. (1), and using the unregulated LO DGLAP splitting
kernels, PabðzÞ [49], Kimber et al. introduced an infrared
cutoff, Δ, as a visualization of the AOC [50],

Θðθ − θ0Þ ⇒ μ >
zkt

ð1 − zÞ ⇒ Δ ¼ kt
μþ kt

:

Limiting the upper boundary on z integration byΔ excludes
z ¼ 1 form the integral equation and automatically
prevents facing the soft gluon singularities arising from
the 1=ð1 − zÞ terms in the splitting functions. Additionally,
they factorized the virtual contributions from the
DGLAP equations, by defining a virtual (loop) contribu-
tion as

Taðk2t ; μ2Þ ¼ exp

�
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μ2
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αSðk2Þ
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�
; ð5Þ

with

Taðμ2; μ2Þ ¼ 1

as an appropriated form of the Sudakov form factor (3). Afterward, the double-scaled KMR UPDF are defined as follows:

faðx; k2t ; μ2Þ ¼ Taðk2t ; μ2Þ
X

b¼q;g

�
αSðk2t Þ
2π

Z
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x
dzPðLOÞ

ab ðzÞb
�
x
z
; k2t

��
: ð6Þ
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According to the above formulation, only at the last step of
the evolution does the dependence on the second scale, μ,
get introduced into the UPDF. The required PDF is
provided as input, using the libraries MSTW2008 [43–
45] and MMHT2014 [46], where the calculation of the
single-scaled functions have been carried out using the DIS
data on the F2 structure function of the proton. Ta are
considered to be unity for kt > μ. This constraint and its
interpretation in terms of the strong ordering condi-
tion gives the KMR approach a smooth behavior over

the small-x region, which is generally governed by the
BFKL evolution equation.

B. LO MRW framework

In coordination with the theory of gluonic coherent
radiation, it has been pointed out that the AOC in the KMR
formalism should only act on the terms including the on-
shell gluon emissions, i.e., the diagonal splitting functions
PqqðzÞ and PggðzÞ. Therefore, Martin et al. defined the LO
MRW UPDF as the correction to the KMR framework [6],

fLOq ðx; k2t ; μ2Þ ¼ Tqðk2t ; μ2Þ
αSðk2t Þ
2π
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�
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z
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�
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with

Tqðk2t ; μ2Þ ¼ exp
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for the quarks and

fLOg ðx; k2t ; μ2Þ ¼ Tgðk2t ; μ2Þ
αSðk2t Þ
2π

Z
1

x
dz

�
PðLOÞ
gq ðzÞ

X

q

x
z
q

�
x
z
; k2t

�
þ PðLOÞ

gg ðzÞ x
z
g

�
x
z
; k2t

�
Θ
�

μ

μþ kt
− z

��
; ð9Þ

with

Tgðk2t ; μ2Þ ¼ exp
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for the gluons. In Eqs. (8) and (10), zmax ¼ 1 − zmin ¼ μ=ðμþ ktÞ [49]. The UPDF of KMR and MRW to a good
approximation include the main kinematical effects involved in the DIS processes. One should note that the particular form
of the AOC in the KMR formalism, despite being of the LO, includes some contributions from the NLO sector, whereas in
the case of the MRW framework, these contributions must be inserted separately.

C. NLO MRW framework

The expansions of the LO MRW formalism into the NLO region can be achieved through the definitions

fNLOa ðx; k2t ; μ2Þ ¼
Z

1

x
dzTa

�
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with the NLO splitting functions being defined as

~PðLOþNLOÞ
ab ðzÞ ¼ ~PðLOÞ

ab ðzÞ þ αS
2π

~PðNLOÞ
ab ðzÞ; ð12Þ

and

~PðiÞ
abðzÞ ¼ Pi

abðzÞ − Θðz − ð1 − ΔÞÞδabFi
abPabðzÞ; ð13Þ

where i ¼ 0, 1 stand for LO and NLO, respectively. The reader can find a comprehensive description of
the NLO splitting functions in Refs. [6,51]. We must, however, emphasize that, contrary to the KMR and
the LO MRW frameworks, the AOC is being introduced into the NLO MRW formalism via the Θðz − ð1 − ΔÞÞ
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constraint, in the “extended” splitting function. Now, Δ can
be defined as

Δ ¼ k
ffiffiffiffiffiffiffiffiffiffi
1 − z

p

k
ffiffiffiffiffiffiffiffiffiffi
1 − z

p þ μ
:

The NLO corrections introduced into this framework are
the collection of the NLO PDF, the NLO splitting functions

and the constraint Θð1 − z − k2t =μ2Þ. Nevertheless, it
has been shown that using only the LO part of the
extended splitting function, instead of the complete defi-
nition of Eq. (12), would result in reasonable accuracy in
computation of the NLO MRW UPDF [6]. Additionally,
the Sudakov form factors in this framework are
defined as

Tqðk2; μ2Þ ¼ exp

�
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Z
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αSðq2Þ
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dq2
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Each of these UPDFs, the KMR, LO, and NLO MRW, can
be used to identify the probability of finding a parton of a
given flavor, with the fraction x of longitudinal momentum
of the parent hadron, the transverse momentum kt in the
scale μ at the semihard level of a particular DIS process. In
the following section, we will describe the cross section of
the production of the W� and Z0 bosons with the help of
our UPDF.

III. PRODUCTION OF W� AND Z0

IN THE kt FACTORIZATION

By definition, the total cross section for a deep hadronic
collision, σHadron−Hadron, can be written in terms of its
possible partonic constituents. Utilizing the UPDF as
density functions for the involved partons, one may write
σHadron−Hadron in the form

σHadron−Hadron ¼
X

a1;a2¼q;g

Z
1

0

dx1
x1

Z
1

0

dx2
x2

Z
∞

0

dk21;t
k21;t

Z
∞

0

dk22;t
k22;t

fa1ðx1; k21;t; μ21Þfa2ðx2; k22;t; μ22Þσ̂a1a2ðx1; k21;t; μ21; x2; k22;t; μ22Þ;

ð16Þ

where a1 and a2 are the incoming partons into the semihard
process from the first and the second hadrons, respectively.
σ̂a1a2 are the corresponding partonic cross sections, which
can be defined separately as

dσ̂a1a2 ¼
dϕa1a2

Fa1a2

jMa1a2 j2: ð17Þ

dϕa1a2 and Fa1a2 are the multiparticle phase space and the
flux factor, respectively, and can be defined according to
the specifications of the partonic process,

dϕa1a2 ¼
Y

i

d3pi

2Ei
δð4Þ

�X
pin −

X
pout

�
; ð18Þ

Fa1a2 ¼ x1x2s; ð19Þ

with the s being the center-of-mass energy squared,

s ¼ ðP1 þ P2Þ2 ¼ 2P1:P2:

P1 and P2 are the 4-momenta of the incoming protons, and
since we are working in the infinite-momentum frame, it is
safe to neglect their masses. dϕa1a2 can be characterized in
terms of transverse momenta of the product particles, pi;t;
their rapidities, yi; and the azimuthal angles of the
emissions, φi:

d3pi

2Ei
¼ π

2
dp2

i;tdyi
dφi

2π
: ð20Þ

In Eq. (17), Ma1a2 are the matrix elements of the
partonic diagrams which are involved in the production
of the final results. To calculate these quantities, one must
first understand the exact kinematics that rule over the
corresponding partonic processes.
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Figure 1 illustrates the ladder-type NLO diagrams that
one has to consider, counting the contributions coming
from gþg→W�=Z0þqþq0, qþ g → W�=Z0 þ q0 þ g,
and qþ q0 → W�=Z0 þ gþ g as shown in Fig. 1, panels
(a), (b), and (c), respectively. The kinematics and calcu-
lations of this type of invariant amplitudes have been
discussed extensively in Refs. [9,40,41]. We have followed
the same approach, obtaining the dk2i;t=k

2
i;t terms only from

the ladder-type diagrams and not from the interference
(i.e., the nonladder) diagrams, using a physical gauge for
the gluons, where only the two transverse polarizations
propagate,

dμνðkÞ ¼ −gμν þ
kμnν þ nμkν

k:n
: ð21Þ

n ¼ x1P1 þ x2P2 is the gauge-fixing vector. Choosing such
a gauge condition ensures that the dk2i;t=k

2
i;t terms are being

obtained from the ladder-type diagrams on both sides of the
subprocesses. In the case of hadron-hadron collisions, one
might expect that neglecting the contributions coming from
the nonladder diagrams, i.e., the diagrams where the
production of the electroweak bosons is a byproduct of
the hadronic collision (see Ref. [41]), would have a
numerical effect on the results. Nevertheless, employing
the gauge choice (21), one finds out that the contribution
from the “unfactorizable” nonladder diagrams vanishes.

In the proton-antiproton center-of-mass frame, we can
write the kinematics

P1 ¼
ffiffiffi
s

p
2

ð1; 0; 0; 1Þ; P2 ¼
ffiffiffi
s

p
2

ð1; 0; 0;−1Þ;
ki ¼ xiPi þ ki;⊥; k2i;⊥ ¼ −k2i;t; i ¼ 1; 2; ð22Þ

where the ki; i ¼ 1, 2 are the 4-momenta of the partons that
enter the semihard process. Afterward, it is possible to write
the law of the transverse-momentum conservation for the
partonic process,

k1;⊥ þ k2;⊥ ¼ p1;⊥ þ p2;⊥ þ p⊥; ð23Þ

with p⊥ being the transverse momentum of the produced
vector boson. Additionally, defining the transverse mass of
the produced virtual partons, mi;t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

i þ p2
i

p
, we can

write

x1 ¼ ðm1;tey1 þm2;tey2 þmW=Z;teyW=ZÞ= ffiffiffi
s

p
;

x2 ¼ ðm1;te−y1 þm2;te−y2 þmW=Z;te−yW=ZÞ= ffiffiffi
s

p
: ð24Þ

Now, using the above equations, one can derive the
following equation for the total cross section of the
production of the W� and Z0 bosons in the framework
of kt factorization,

FIG. 1. The NLO ladder-type diagrams for the production of W� and Z0 in the kt-factorization framework. The fgðx; k2t ; μ2Þ and
fqðx; k2t ; μ2Þ represent the corresponding UPDF in the KMR, the LO-MRW, or the NLO-MRW framework, i.e.,
Eqs. (6), (7), (9), and (11).
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σðPþ P̄ → W�=Z0 þ XÞ ¼
X

ai;bi¼q;g

Z
dk2a1;t
k2a1;t

dk2a2;t
k2a2;t

dp2
b1;t

dp2
b2;t

dy1dy2dyW=Z
dφa1

2π

dφa2

2π

dφb1

2π

dφb2

2π

×
jMða1 þ a2 → W�=Z0 þ b1 þ b2Þj2

256π3ðx1x2sÞ2
fa1ðx1; k2a1;t; μ2Þfa2ðx2; k2a2;t; μ2Þ: ð25Þ

Note that the integration boundaries for dk2i;t=k
2
i;t are

ð0;∞Þ. One may introduce an upper limit for these, say
ki;max, several times larger than the scale μ, without any
noticeable consequences. Yet, for kt < μ0 with
μ0 ¼ 1 GeV, i.e., for the nonperturbative region, it is
imperative to decide how to validate our UPDF. A natural
choice would be to fulfill the requirement that

lim
k2ai;t→0

faiðxi; k2ai;t; μ2Þ ∼ k2ai;t;

and therefore we can safely choose the following approxi-
mation for the nonperturbative region:

faiðxi; k2ai;t < μ20; μ
2Þ ¼ k2ai;t

μ20
aiðxi; μ20ÞTaiðμ20; μ2Þ: ð26Þ

In the next section, we will introduce some of the
numerical methods that have been used for the calculation
of the σðPþ P̄ → W�=Z0 þ XÞ (25) using the UPDF of
KMR and MRW. It is expected that through considering

NLO processes for this computation the results will have a
better agreement with the existing experimental data, in
comparison with the previous calculations.

IV. NUMERICAL ANALYSIS

The main challenge one must face, in the computations
of the total cross section of a hadron-hadron collision
in the NLO, is the extremely complex calculations required
for extracting the invariant amplitudes in a set of
2 → 3 NLO Feynman diagrams. Each of our processes,
gþ g → W�=Z0 þ qþ q0, qþ g → W�=Z0 þ q0 þ g, and
qþ q0 → W�=Z0 þ gþ g, includes a number of different
configurations; see Fig. 2. This is when we filter out the
nonladder diagrams, with our choice of the gauge condition
on the gluon polarization (21). Writing the analytic
expressions of the Mab for theses diagrams is rather
straightforward; see Appendix A.
However, since the incoming and the outgoing quarks

are off shell, and we do not neglect their transverse
momenta, their on-shell spin density matrices have to be

FIG. 2. The individual contributions into the matrix elements of the partonic scattering. The diagrams in the panel (a) correspond to the
qþ q̄0 → W�=Z0 þ gþ g subprocess, panel (b) corresponds to the qþ g → W�=Z0 þ qþ g subprocess, and panel (c) corresponds to
the gþ g → W�=Z0 þ qþ q̄0 subprocess. It should be pointed out that one may find additional non-ladder-type diagrams which
contribute to these matrix elements. We have eliminated these undesirable contributions using our choice of the gluon gauge,
Eq. (21).
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replaced with a more complicated expression. To do this,
one can extend the original expressions, according to an
approximation proposed in Refs. [52,53], through con-
verting the off-shell quark lines to the internal lines via
replacing the spinorial elements of the incoming and the
outgoing partons. Following this idea, we replace the
incoming proton with a quark with the momentum p
and the mass m which radiates a photon or a gluon and
turns into an off-shell quark with the momentum k.
Therefore, the corresponding matrix element for such
quarks can be written as

jMj2 ∼ Tr

�
Γμ

k̂þm
k2 −m2

γνuðpÞūðpÞγν
k̂þm
k2 −m2

Γμ

�
;

where Γμ represents the rest of the original matrix element.
Now, the expression presented between Γμ and Γμ is
considered to be the off-shell quark spin density matrix.
Using the on-shell identity

X
uðpÞūðpÞ ¼ p̂þm;

and after performing some Dirac algebra at the m → 0
limit, one simply arrives at the following expression:

jMj2 ∼ 2

k4
TrðΓμ½k2p̂ − 2ðp · kÞk̂�ΓμÞ:

Afterward, imposing the Sudakov decomposition k ¼
xpþ kt with k2 ¼ k2t ¼ −k2

t , one derives

jMj2 ∼ 2

xk2t
TrðΓμxp̂ΓμÞ: ð27Þ

Thus, with the above replacement, the negative light-cone
momentum fractions of the incoming partons have been
neglected. xp̂ in this equation represents the properly
normalized off-shell spin density matrix. Additionally,
the coupling vertices of the off-shell gluons to quarks
must be modified with the eikonal vertex (i.e., the BFKL
prescription; see Ref. [41]). Therefore, in the case of initial
off-shell gluons, we impose the so-called nonsense polari-
zation condition, i.e.,

ϵμðkiÞ ¼
2ki;μffiffiffi

s
p ;

which results into the following normalization identity:

X
ϵμðkiÞϵ�νðkiÞ ¼

ki;μki;ν
k2i;t

:

We can calculate the evolution of the traces of the matrix
elements with the help of the algebraic manipulation
system FORM [54]. Also, the method of orthogonal

amplitudes, see Ref. [41], can be used to further simplify
the results.
The numerical computation of Eq. (25) has been carried

out using the VEGAS algorithm in the Monte Carlo
integration. To do this, we have selected the hard scale
of the UPDF to be equal to the transverse mass of the
produced gauge vector boson:

μ ¼ ðm2
W=Z þ p2

W=Z;tÞ
1
2:

Mathematically speaking, the upper bound on the trans-
verse-momentum integrations of the master equation (25)
should be infinity. However, since the UPDFs of KMR and
MRW tend to quickly vanish in the kt ≫ μ domain, one can
safely introduce an ultraviolet cutoff for these integrations.
By convention, this cutoff is considered to be at
ki;max ¼ pi;max ¼ 4μ. Nevertheless, given that μ depends
on the transverse momentum of the produced boson
(pW=Z;t) and its mass, it would be sufficient to set
ki;max ¼ pi;max ¼ 4μmax, with

μmax ¼ ðm2
W=Z þ p2

t;maxÞ12:

One can easily confirm that further domains have no
contribution to our results. Also, it is satisfactory to bound
the rapidity integrations to ½−10; 10�, since 0 ≤ x ≤ 1 and
according to Eq. (24) a further domain has no contribution
into our results. The choice of the above hard scale is
reasonable for the production of W and Z bosons, as has
been discussed in Ref. [41].
As a final note, we should make it clear that in Ref. [40]

the calculation of the transverse-momentum distribution for
the production of theW and Z bosons has been carried out,
using the aggregated contributions of the following
subprocesses:
(a) The NLO gþ g → W=Z þ qþ q̄ partonic process,

using the unintegrated gluon distributions of the
CCFM and the LO MRW formalisms, accounting
for the production of the bosons accompanied by (at
least) two distinct jets.

(b) The LO qþ g → W=Z þ q̄ partonic process, with the
density function of the incoming quarks and gluons
being defined in the collinear [Glück-Reya-Vogt (GRV)
or MSTW] and the kt-factorization (the CCFM and the
LO MRW) formalisms, respectively. This corresponds
to the pþ p̄ → W=Z þ jetþ X cross section.

(c) The LO qþ q̄ → W=Z partonic process, from the
collinear approximation, assuming that the incoming
particles are valence quarks (or valence antiquarks).

The above partonic processes (a, b, and c) obviously
neglect some of the NLO contributions (in the b and c
cases), namely, the shares of the nonvalence quarks along
the chain of evolution. Additionally, assuming the nonzero
transverse momentum for the valence quarks in the infinite-
momentum frame is to some extent unacceptable, since, in
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the absence of any extra structure, the intrinsic transverse
momenta of the valence quarks should not be enough for
producing the W=Z bosons with relatively large pt. In the
present work, we have upgraded the partonic processes of
the b and c cases with their NLO counterparts, i.e., q� þ
g� → W=Z þ qþ g and q� þ q̄� → W=Z þ gþ g subpro-
cesses. So, we are able to use the UPDF of the kt
factorization for the incoming quarks and gluons to
insert the transverse-momentum dependency of the pro-
duced bosons and at the same time avoid overcounting.
Furthermore, the problem of separating the W=Z þ single-
jet and the W=Z þ double-jet cross sections will reduce to
inserting the correct physical constraints on the dynamics
of these processes, e.g., via inserting some transverse-
momentum cuts for the produced jets, using the anti-kt
algorithm; see Ref. [55]. Nevertheless, since we are
interested in calculating the inclusive cross section for
the production of the W=Z bosons, inserting such con-
straints is unnecessary.
One should note that the partonic subprocesses that

contribute to the production of Z0 bosons are the same in
either p − p or p − p̄ collisions. The crucial difference
arises from the configuration of the distribution functions
of the incoming partons. For example, in the p − p case,
one has to consider a fq × fq̄ setup, while in the p − p̄
case, fq × fq would be sufficient since fpq ¼ fp̄q̄ .

V. RESULTS, DISCUSSIONS, AND CONCLUSIONS

Using the theory and the notions of the previous sections,
one can calculate the production rate of the W� and Z0

gauge vector bosons for the center-of-mass energy of
1.8 TeV. The PDFs of Martin et al. [43–46],
MSTW2008 and MMHT2014, are used as the input
functions to feed Eqs. (6), (7), (9), and (11). The results
are the double-scale UPDF in the KMR, the LO MRW,
and the NLO MRW schemes. These UPDFs are in
turn substituted into Eq. (25) to construct the W=Z cross
sections in their respective frameworks. Since we intend
to compare our calculations to the W� → l� þ ν and
Z → lþ þ l− decays, we should multiply our theoretical
output by the relevant branching fractions, i.e.,
fðW� → l� þ νÞ ¼ 0.1075 and fðZ → lþ þ l−Þ ¼
0.03366 [56]. Thus, Figs. 3 and 4 present the reader with
a comparison between the different contributions into the
differential cross sections of the W� and Z0 vs their
transverse momentum (kt) in the KMR scheme. The main
contributions to the production of the W� are those
involving u → W þ d and c → W þ s vertices. Other
production vertices have been calculated and proven to
be negligible compared to these main contributions (never-
theless, for the sake of completeness, we have included
every single share, no matter how small they are in the total
contributions; see Figs. 5 and 6, where the individual
contributions of each of the production vertices in the
partonic subprocesses for the production of W� and Z0

have been depicted clearly, in the framework of KMR for
ECM ¼ 1.8 TeV). In the case of Z0 production, the main
vertices are u → Z þ u, d → Z þ d, c → Z þ c, and
s → Z þ s. In both cases, one can recognize the different
behavior of various partonic subprocesses. As expected, the
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FIG. 3. The differential cross section of the productions ofW� bosons in a DIS at ECM ¼ 1.8 TeV, against the transverse-momentum
distribution of the produced particle. The panels (a) and (b) illustrate the up-down and charm-strange contributions, respectively. The
contribution of each partonic subprocess is singled out: the green-dashed histogram is for gþ g → W� þ qþ q̄0, the red-dotted
histogram is for qþ g → W� þ q0 þ g, and the blue-dashed-dotted histogram is for qþ q̄0 → W� þ gþ g. The black full histogram is
the total contribution of the given quark pairs. The histograms are produced using the KMR UPDF with the PDF of MSTW2008.
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contributions of the gþ g → W=Z þ qþ q̄0 in all of the
diagrams are similar, and even (roughly) of the same size,
since they only depend on the behavior of the gluon
density. On the other hand, the contribution coming from
the qþ q̄0 → W=Z þ gþ g differs from one production
vertex to another, mimicking the differences between the
quark densities of different flavors and going from the
high contributions of the up and down quarks to small
contributions of the charm and strange and even negligible
contributions of the top and bottom quarks. Additionally,
one notices the smallness of the qþ g → W=Z þ q0 þ g
contributions. This is also anticipated, since the
incoming gluon could (with a relatively large probability)
decay into a quark-antiquark pair that does not have

the right flavor to form a production vertex with
considerable contribution.
Figures 7 and 8 illustrate a complete comparison

between the results of the calculation of the production
of the electroweak gauge vector bosons in the frameworks
of KMR, LO MRW, and NLO MRW with each other and
with the experimental data of the D0 and CDF collabora-
tions, Refs. [31,32,34–37]. The results in the KMR
framework have excellent agreement with the experimental
data, both in the W� and Z0 productions. The LO MRW
scheme behaves similarly compared to the KMR frame-
work yet has a noticeably shorter peak, especially in the
case of Z0. This is due the different visualization of the
AOC between these two frameworks; see the Sec. III.
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FIG. 4. The differential cross section of the productions of Z0 boson in a DIS at ECM ¼ 1.8 TeV, against the transverse-momentum
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Meanwhile, the results in the NLO MRW scheme are
unexpectedly unable to describe the experiment data. This
is related to the conditions in which the AOC has been
imposed in this framework. The θð1 − z − k2t =μ2Þ con-
straint gives the parton distributions of the NLO MRW, a
sharp descent to zero at kt → μ, and returns a vanishing
contribution for the better part of the transverse-momentum
integration in Eq. (25). Consequently, the overall value of
the differential cross sections of the W� and Z0 production
in this framework reduces dramatically, as is apparent

Figs. 7 and 8. Overall and as has been stated elsewhere (see,
for example, Refs. [27,28]), the results in the KMR scheme
seemingly have better agreement with the experiment. This
is to some extent ironic, since the LO and the NLO MRW
formalisms are developed as extensions and improvements
to the KMR approach and are more compatible with the
DGLAP evolution equation.
Such comparisons can also be made for the larger values

of kt, see Figs. 9 and 10, where the production rates of the
electroweak gauge bosons are plotted against their
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transverse momentum for kt < 200 GeV. The diagrams
include the calculations of dσW=Z=dkt and 1=σWdσW=dkt,
and the comparisons are made with the help of the data
from the D0 Collaboration, Refs. [34,37]. Of course, since
the data points have small values and large errors and
because of the closeness of the results in different frame-
works, one cannot stress over the superiority of any of the
approaches. Yet, our previous conclusion about the validity
of the KMRUPDF and the shortcomings of the NLOMRW
UPDF holds. Another interesting observation is that in the
large kt, where because of the smallness of the results the
higher-order corrections become important, the calcula-
tions in the KMR approach start to separate from the LO
MRW and behave similarly to the NLO MRW. The reason

is that the inclusion of the nondiagonal splitting functions
in the domain of the AOC introduces some corrections from
the NLO region. Additionally, one notices that the con-
tribution coming from the qþ q0 → W� þ gþ g in the
NLO evaluations considerably deviates from the similar
behavior of its respective counterparts. This of course
rooted in the evolution of the NLO quark densities in this
framework; see Ref. [49].
Recently, Martin et al. have updated their PDF libraries

[46]. Figures 11 and 12 demonstrate the differences
between the cross sections of the production of the W=Z
vector bosons in the KMR framework, using the (older)
MSTW2008 and the (newer) MMHT2014 PDF. One
notices that using either of these PDFs as input for our
UPDF produces a negligible difference.
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FIG. 9. The production rate of the W� boson in ECM ¼ 1.8 TeV. The labels (a), (b), and (c) compare the contributions of the
individual subprocesses in their respective frameworks. The total values of differential cross section in these frameworks are subjected to
a comparison with the data of the D0 Collaboration [37] separately, in label (d). This very same notion is also presented in labels
(e) through (f), where the 1=σdσ=dkt histograms are compared with each other and with the data from Ref. [34].
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Figures 13 and 14 present an interesting comparison
between the experimental data and the results of the
different approximations in the calculation of the pro-
duction of the electroweak gauge vector bosons. In addi-
tion to our calculations in the KMR and the MRW
UPDF in the LO and the NLO approximations, the results
coming from the CCFM TMD PDF (Ref. [40]), from
the doublly unintegrated parton distributions (see Ref. [9]),
and from the collinear frameworks are included in these
diagrams. The CCFM results are calculated as the sum of

gþ g → W=Z þ qþ q̄0, gþ q → W=Z þ q0, and qþ q →
W=Z subprocesses. The DUPDF results are in the ðkt − zÞ-
factorization framework, utilizing a qþ q → W=Z
“effective” production vertex. Furthermore, to calculate
the differential cross section of the W=Z production
in the collinear approximation, one has to ignore the
transverse-momentum integrations in Eq. (25) and
replace the UPDF with the unpolarized parton distribu-
tions of MSTW2008, MMHT2014, or GRV2009
[57–59]:

σðPþ P̄ → W�=Z0 þ XÞ ¼
X

ai;bi¼q;g

Z
dp2

b1;t
dp2

b2;t
dy1dy2dyW=Z

dφb1

2π

dφb2

2π

×
jMða1 þ a2 → W=Z þ b1 þ b2Þj2

256π3ðx1x2sÞ2
a1ðx1; μ2Þa2ðx2; μ2Þ: ð28Þ
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FIG. 10. The production rate of the Z0 boson in ECM ¼ 1.8 TeV. The notions of the diagrams are the same as in Fig. 9.
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Note that the curves that are labeled as LO collinear have
been calculated in Ref. [40], utilizing the LO quark-
antiquark annihilation matrix elements [see Fig. 5 and
Eqs. (A3) and (A4) of Ref. [40], bearing in minding that
Eq. (A1) of this reference is to some extent misleading in
this regard]. To include the transverse dependency of the
produced gauge vector bosons, Eq. (4) has been embedded
into Eq. (28). Nevertheless, since the LO matrix elements
are independent of the transverse momenta of the incoming
partons, the result should in theory be unchanged (and still

in the collinear approximation). In addition to their LO
level precision, the shortcomings of such computations
compared to the experimental data are also a consequence
of the discrepancy that naturally accompanies the identity
(4); see Ref. [5].
The reader should notice that the results of our compu-

tations in the NLO regime, as expected, have a better
behavior toward describing the experimental data, both in
the W� and Z0 cases, since they descend with a shallow
steep, compared to the results calculated in other schemes.

0 5 10 15 20
0

50

100

150

200

250

d
/d

k t [
pb

/G
eV

]

 D0 

 MSTW2008
 MMHT2014

0 5 10 15 20
0

50

100

150

200

250

d
/d

k t [
pb

/G
eV

]
k

t
 [GeV] k

t
 [GeV]

 D0 

KMR with MMHT2014
 g+g W+q+q'
 g+q W+g+q'
 q+q' W+g+g
 Total

0 5 10 15 20
0

50

100

150

200

250
d

/d
k t [

pb
/G

eV
]

k
t
 [GeV]

 D0 

KMR with MSTW2008
 g+g W+q+q'
 g+q W+g+q'
 q+q' W+g+g
 Total

(c)(b)(a)

FIG. 11. Comparison of the differential cross section of the W� production, using the UPDF of KMR, prepared with the PDF of
MSTW2008 [label (a)] and MMHT2014 [label (b)]. Label (c) shows their difference relative to the experimental data of the D0
Collaboration, Ref. [37].
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This is in part because the NLO evaluations are inherently
more accurate. Yet, most of the credit goes to the precision
of the utilized UPDF. Again, the KMR framework in the
NLO calculations offers the best description of the
experiment.
Additionally, it is possible to compare our presumed

frameworks through the calculation of the total cross
section of the W� and Z0 production with respect to the
center-of-mass energy of the hadronic collision, i.e.,
Figs. 15 and 16. Following our previous pattern, the results
of both the KMR and the LO MRW frameworks show a
good level of compatibility with the experimental data. On
the other hand, since the NLO MRW framework has failed
to describe the data, we have excluded its contributions
here, to save some computation time.
Finally, it has been brought to our attention that the

ATLAS and CMS collaborations have recently published
some data regarding the production of the Z0 gauge vector
boson in the LHC for ECM ¼ 8 TeV [38,39]. In the above
calculations, the rapidity of the produced boson has been

separated in equally spaced rapidity sectors within 0 <
jyZj < 2.4 domain. In Fig. 17, we have addressed the above
observations, using our NLO framework and utilizing the
UPDF of KMR, since we have already established the
superiority of this scheme in describing the experiment.
The individual contributions from the partonic subpro-
cesses are presented, and the total values of (single and
double) differential cross sections are subjected to
comparison with the data of the ATLAS and CMS
collaborations. We should mention that the recent theo-
retical next-to-next-to-leading-order (NNLO) QCD calcu-
lation, i.e., Ref. [42], have been very successful in
describing these experimental measurements with respect
to the present formalism.
Unfortunately, performing these calculations is

extremely time consuming, and the existing data points
are not plentiful or accurate enough to let us make a
decisive statement about the superiority regarding any of
our presumed frameworks. Nevertheless, considering these
comparisons, it is apparent that the KMR UPDFs in the
framework of kt factorization, despite their misalignments
with the theory of the DGLAP evolution equation and the
physics of the successive gluon radiations, as an effective
theory, proposes the best option to describe the deep
inelastic QCD events. However, until further phenomeno-
logical analysis, such a claim remains an educated
speculation.
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FIG. 13. The differential cross section of the production of the
W�, calculated in different frameworks, against the transverse
momentum of the produced gauge boson at ECM ¼ 1.8 TeV. The
notions of the histograms are as follows: the continuous black
histogram represents the calculation in using the KMRUPDF, the
dotted green histogram is prepared in the LO MRW framework,
and the short-dotted red line is prepared in the NLO MRW. To
perform these calculations, we have utilized the PDF of
MSTW2008. The brown dot-dot-dashed histogram is produced
using the CCFM TMD PDF (Ref. [40]). The yellow dotted-
dashed histogram is calculated, utilizing the doubly DUPDF in
the framework of ðkt − zÞ factorization [9]. The purple short-
dashed histogram is calculated in the collinear framework.
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FIG. 14. The differential cross section of the production of the
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One should note that having a semisuccessful prediction
from the framework of kt factorization by itself is a success,
since our calculations utilizing these UPDF inherently have
a considerably larger error compared to those from the
NNLO QCD or even the NLO QCD. This is because we are
incorporating the single-scaled PDF (with their already
included uncertainties) to form the double-scaled UPDF (or
the triple-scaled DUPDF) with additional approximations
and further uncertainties. Being able to provide predictions
with a desirable accuracy would require a thorough

universal fit for these frameworks; see Ref. [9]. The goal
of these calculations is not to provide predictions that can
exactly match the experimental data. We have performed
these computations, merely to illustrate our point that the kt
factorization framework, despite its simplicity and compu-
tational advantages, can provide us with valuable insight
regarding the transverse-momentum dependency of various
high-energy QCD events.
In summary, within the present work, we have calculated

the rate of productions belonging to the electroweak gauge
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LO MRW UPDF. We have omitted the NLO UPDF results here, to save computation data.
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vector bosons in the framework of kt factorization, utilizing
the UPDF of KMR, LO mRW, and NLO MRW, by the
means of NLO QCD processes. The results have been
demonstrated and compared to each other and to the
experimental data points from the D0 and the CDF
collaborations, as well as the calculations in other frame-
works. Through our analysis, we have suggested that,
despite the theoretical advantages of the MRW, formalism,
the KMR approach has better behavior toward describing
the experiment. One can correctly argue that in the absence
of uncertainty or ratio plots a precise comparison between
the calculations and the experimental data is uneasy.
However, it should be noted that including an accurate
ratio plot would require developing an already proven
baseline (e.g., a LO level Z0 production in the kt factori-
zation or a NLO level in collinear factorization with the
same resolution as of the original calculations) in addition

to providing the original calculations with a decent uncer-
tainty region (e.g., via manipulating the hard scale, μ, by a
factor of 2). We will, however, try to address this short-
coming in our future work.
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FIG. 17. (continued).
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APPENDIX: THE MATRIX ELEMENTS OF THE PARTONIC SUBPROCESSES

Given that we are interested in the calculation of the matrix element squared for each process, one immediately concludes
that the jMggj2 ¼ jMqqj2. Therefore, it is sufficient to calculate the invariant amplitudes for the Feynman diagrams of
Fig. 2, the panels (b) and (c), which can be written as

Mab ¼
X8

i¼1

Mab
i ; a; b ¼ q; g; ðA1Þ

with

Mqg
1 ¼ g2suðk1Þtaγμϵμðp1Þ

ðk1 − p1Þ þm
ðk1 − p1Þ2 −m2

Gλ
W;Zϵλðp3Þ

ðk2 þ p2Þ þm
ðk2 þ p2Þ2 −m2

tbγνϵνðk2Þūðp2Þ; ðA2Þ

Mqg
2 ¼ g2suðk1Þtbγνϵνðk2Þ

ðk1 þ k2Þ þm
ðk1 þ k2Þ2 −m2

Gλ
W;Zϵλðp3Þ

ðk2 þ k2 − p3Þ þm
ðk2 þ k2 − p3Þ2 −m2

taγμϵμðp1Þūðp2Þ; ðA3Þ
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FIG. 17. Production of the Z0 boson in ECM ¼ 8 TeV, using the KMR approach. The individual contributions from the partonic
subprocesses are presented, and the total values of (single and double) differential cross sections are subjected to comparison with the
data of the ATLAS (black circles) and CMS (white circles) collaborations [38,39]. The labels (a) through (f) illustrate the results of our
calculations for a single differential cross section of the production of Z0, in the given rapidity regions. The results for double differential
cross section are presented in the this figure with labels (g) through (h).
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Mqg
3 ¼ 2g2suðk1Þtaγμϵμðp1Þ

ðk1 − p1Þ þm
ðk1 − p1Þ2 −m2

tbγνϵνðk2Þ
ðp2 þ p3Þ þm
ðp2 þ p3Þ2 −m2

Gλ
W;Zϵλðp3Þūðp2Þ; ðA4Þ

Mqg
4 ¼ 2g2suðk1Þtaγμϵμðk2Þ

ðk1 þ k2Þ þm
ðk1 þ k2Þ2 −m2

tbγνϵνðp1Þ
ðk1 þ k2 − p1Þ þm
ðk1 þ k2 − p1Þ2 −m2

Gλ
W;Zϵλðp3Þūðp2Þ; ðA5Þ

Mqg
5 ¼ g2suðk1ÞγρCμνρðk2;−p1; p1 − k2Þ

ϵμϵν
ðk2 − p1Þ2

fabctc
ðp2 þ p3Þ þm
ðp2 þ p3Þ2 −m2

Gλ
W;Zϵλðp3Þūðp2Þ; ðA6Þ

Mqg
6 ¼ g2suðk1ÞGλ

W;Zϵλðp3Þ
ðk1 − p3Þ þm
ðk1 − p3Þ2 −m2

γρCμνρðk2;−p1; p1 − k2Þ
ϵμϵν

ðk2 − p1Þ2
fabctcūðp2Þ; ðA7Þ

and

Mgg
1 ¼ g2s ūðp1Þtaγμϵμðk1Þ

ðp1 − k1Þ þm
ðp1 − k1Þ2 −m2

Gλ
W;Zϵλðp3Þ

ðp2 þ k2Þ þm
ðp2 þ k2Þ2 −m2

tbγνϵνðk2Þuðp2Þ; ðA8Þ

Mgg
2 ¼ g2s ūðp1Þtaγμϵμðk1Þ

ðk2 − p1Þ þm
ðk2 − p1Þ2 −m2

Gλ
W;Zϵλðp3Þ

ðk1 þ p2Þ þm
ðk1 þ p2Þ2 −m2

tbγνϵνðk2Þuðp2Þ; ðA9Þ

Mgg
3 ¼ g2s ūðp1Þ

ðp1 þ p3Þ þm
ðp1 þ p3Þ2 −m2

taγμϵμðk1Þ
ðp1 þ p3 − k1Þ þm
ðp1 þ p3 − k1Þ2 −m2

Gλ
W;Zϵλðp3Þtbγνϵνðk2Þuðp2Þ; ðA10Þ

Mgg
4 ¼ g2s ūðp1ÞGλ

W;Zϵλðp3Þtaγμϵμðk1Þ
ðp1 − k1Þ þm
ðp1 − k1Þ2 −m2

tbγνϵνðk2Þ
ðp1 − k1 − k2Þ þm
ðp1 − k1 − k2Þ2 −m2

uðp2Þ; ðA11Þ

Mgg
5 ¼ g2s ūðp1ÞGλ

W;Zϵλðp3Þ
ðp1 þ p3Þ þm
ðp1 þ p3Þ2 −m2

tbγνϵνðk2Þ
ðp1 þ p3 − k2Þ þm
ðp1 þ p3 − k2Þ2 −m2

taγμϵμðk1Þuðp2Þ; ðA12Þ

Mgg
6 ¼ g2s ūðp1ÞGλ

W;Zϵλðp3Þtbγνϵνðk2Þ
ðp1 − k2Þ þm
ðp1 − k2Þ2 −m2

taγμϵμðk1Þ
ðp1 − k1 − k2Þ þm
ðp1 − k1 − k2Þ2 −m2

uðp2Þ; ðA13Þ

Mgg
7 ¼ g2s ūðp1ÞγρCμνρðk1; k2;−k1 − k2Þ

ϵμϵν
ðk1 þ k2Þ2

fabctc
ðp1 − k1 − k2Þ þm
ðp1 − k1 − k2Þ2 −m2

Gλ
W;Zϵλðp3Þuðp2Þ; ðA14Þ

Mgg
8 ¼ g2s ūðp1ÞGλ

W;Zϵλðp3Þ
ðp1 − p3Þ þm
ðp1 − p3Þ2 −m2

γρCμνρðk1; k2;−k1 − k2Þ
ϵμϵν

ðk1 þ k2Þ2
fabctcuðp2Þ; ðA15Þ

where gs is the running coupling constant for QCD and Gλ
W;Z represents the vertex of the electroweak gauge vector bosons

with quarks:

Gλ
W ¼ eem

2
ffiffiffi
2

p
sin θw

γλð1 − γ5ÞVqq0

Gλ
Z ¼ eem

sin 2θw
γλ½I3;qð1 − γ5Þ − 2eqsin2θw�: ðA16Þ

θw is the Weinberg angle, Vqq0 is the corresponding CKM matrix element, and I3;q is the weak isospin component of the
quark q. Additionally, the standard QCD three-gluon coupling can be written as follows:

Cμνρðk1; k2; k3Þ ¼ gμνðk2 − k1Þρ þ gνρðk3 − k2Þμ þ gρμðk1 − k3Þν: ðA17Þ

With the above information, one has enough tools to calculate the matrix elements of Eq. (25).
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