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For J=ψ pair production at hadron colliders, we present the full next-to-leading order (NLO) calculations
with the color-singlet channel in nonrelativistic QCD. We find that the NLO result can reasonably
well describe the LHCb measured cross section, but exhibits very different behaviors from the CMS data
in the transverse momentum distribution and mass distribution of the J=ψ pair. Moreover, by adding
contributions of gluon fragmentation and quark fragmentation, which occur at even higher order in αs, it is
still unable to reduce the big differences. In particular, the observed flat distribution in the large invariant
mass region is hard to explain. New processes or mechanisms are needed to understand the CMS data for
J=ψ pair production.
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I. INTRODUCTION

Nonrelativistic QCD (NRQCD) [1] is widely used in
the study of heavy quarkonium physics. In NRQCD a
quarkonium production process can be factorized as short-
distance parton scattering amplitudes multiplied by long-
distance matrix elements (LDMEs). This factorization has
been applied in single quarkonium production and tested by
various experiments [2–7].
Besides the single quarkonium production, the multi-

quarkonuim production provides another ideal laboratory
to understand the quarkonium production mechanism that
NRQCD assumes. At the LHC, the LHCb Collaboration
in 2011 measured the J=ψ pair production for the first time
at the center-of-mass energy

ffiffiffi
s

p ¼ 7 TeV with an inte-
grated luminosity of 35.2 pb−1 [8]. In 2013, the CMS
Collaboration further released the data of J=ψ pair pro-
duction [9] with a much larger transverse moment range,
providing a good platform for testing the validity of
NRQCD in quarkonium pair production.
In Refs. [10–12], the leading order (LO) calculation of

J=ψ pair production in the color-singlet model is per-
formed. The relativistic correction to the J=ψ pair pro-
duction is carried out in Ref. [13], where the relativistic
correction makes significant improvement for diluting
the discrepancy between the shapes of color-singlet (CS)
and color-octet (CO) differential cross sections at LO.
Furthermore, the partial next-to-leading order (NLO⋆)
correction for J=ψ pair production is evaluated by
Lansberg and Shao [14]. They argue that the NLO⋆ yield

can approach the full NLO result at large pT , the trans-
verse momentum of one of the two J=ψ’s, and thus the
NLO⋆ results give a more precise theoretical prediction
than the LO results in this region. All the above works are
performed in the single parton scattering (SPS) mecha-
nism, while the contribution of double parton scattering
(DPS) is assessed in Refs. [15–17], and is expected to be
important. As predictions for DPS are very model depen-
dent [15–17], it is needed to have an accurate calculation
for SPS contribution before one can extract the DPS
contribution.
In order to further understand the multiquarkonium

production mechanism, it is necessary to evaluate the
J=ψ pair production at NLO, which is the main work in
this paper. Compared to the LO calculation, the NLO
calculation is expected to not only reduce the theoretical
uncertainties, but also open new kinematic enhanced
topologies, which may dominate at large pT . More pre-
cisely, we may find that at NLO the differential cross
section dσ=dp2

T at large pT behaves as p−6
T due to double

parton fragmentation contributions [18], while it only
behaves as p−8

T at LO. Moreover, we also include the
dominant p−4

T contribution via single parton fragmentation,
which contributes at even higher order in αs and also
involves color-octet channels. Thus we obtain the most
precise predictions for J=ψ pair production with the color-
singlet channel as well as some color-octet effects in the
fragmentation contributions.

II. FORMULISM

In NRQCD, the cross section of J=ψ pair production at
the LHC can be expressed as [1]
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dσpþp→J=ψþJ=ψ ¼
X

i;j;n1;n2

Z
dx1dx2fi=pðx1Þfj=pðx2Þ

× dσ̂n1;n2i;j hOn1iJ=ψ hOn2iJ=ψ ; ð1Þ

where fi=pðx1;2Þ are the parton distribution functions
(PDFs), x1 and x2 represent the momentum fraction of
initial state partons from the protons, hOniJ=ψ are LDMEs

of J=ψ with n ¼ 2Sþ1L½c�
J being the standard spectroscopic

notation for the quantum numbers of the produced inter-
mediate heavy quark pairs, and dσ̂ are partonic short-
distance coefficients. For the J=ψ pair production we

usually set n1 ¼ n2 ¼ 3S½1�1 in Eq. (1) but other intermediate
states may also be specified.
In the LO calculation, there are two subprocesses:

gþ g → J=ψ þ J=ψ and qþ q̄ → J=ψ þ J=ψ ; only the
former is taken into account since the contribution of the
other process is highly suppressed by the quark PDFs.
While in the NLO case, besides the gluon fusion process,
the quark gluon process qþ g → 2J=ψ þ q should also be
considered. Typical Feynman diagrams at LO and NLO are
shown in Figs. 1(a) and 1(c).
The cc̄ pair hadronization process can be computed

by using the covariant projection operator method, for
J=ψð3S1Þ; we employ the following commonly used
projection operators for spin and color:

Π1 ¼
1ffiffiffiffiffiffiffiffiffi
8m3

c

p
�
P
2
−mc

�
ϵJ=ψ

�
P
2
þmc

�
; ð2Þ

and

C1 ¼
1ffiffiffiffiffiffi
Nc

p ; ð3Þ

where ϵμJ=ψ is the J=ψ polarization vector with P · ε ¼ 0; P
is the momentum of J=ψ .
The NLO contributions can be divided into two parts:

the virtual correction and the real correction. The virtual
correction that arises from loop diagrams includes gluon
fusion process only, the same as the LO case, while for
the real correction, besides the gluon fusion process, the
process qþ g → 2J=ψ þ q should also be taken into
account.
In the virtual correction, the ultraviolet (UV) and infrared

(IR) divergences usually exist. We use the dimensional
regularization scheme to regularize the UV and IR diver-
gences. The Coulomb divergence caused by the virtual
gluon line connecting the quark pair in a J=ψ is regularized
by the relative velocity v. The UV divergences can be
renormalized by counterterms. The renormalization con-
stants include Z2, Z3, Zm, and Zg, corresponding to quark
field, gluon field, quark mass, and strong coupling constant
αs, respectively. Here, in our calculation the Zg is defined
in the modified-minimal-subtraction (MS) scheme, while
for the other three the on-shell (OS) scheme is adopted,
which reads

δZOS
m ¼ −3CF

αs
4π

�
1

ϵUV
− γE þ ln

4πμ2r
m2

c
þ 4

3

�
;

δZOS
2 ¼ −CF

αs
4π

�
1

ϵUV
þ 2

ϵIR
− 3γE þ 3 ln

4πμ2r
m2

c
þ 4

�
;

δZOS
2l ¼ −CF

αs
4π

�
1

ϵUV
−

1

ϵIR

�
;

δZOS
3 ¼ αs

4π

�
ðβ00 − 2CAÞ

�
1

ϵUV
−

1

ϵIR

�

−
4

3
Tfðnf − nlfÞ

�
1

ϵUV
− γE þ ln

4πμ2r
m2

c

��
;

δZMS
g ¼ −

β0
2

αs
4π

�
1

ϵUV
− γE þ lnð4πÞ

�
; ð4Þ

where β0 ¼ 11
3
CA − 4

3
TFnf is the one-loop coefficient of

the QCD beta function; nf ¼ 4 is the number of active
quarks in our calculation; β00 ¼ 11

3
CA − 4

3
TFnlf with

nlf ¼ 3 is the number of light quarks. CA ¼ 3 and
TF ¼ 1=2 are attributed to the SU(3) group; μr is the
renormalization scale.
As mentioned above, there are two processes involved

in the real corrections: gþ g → J=ψ þ J=ψ þ g and
qþ g → J=ψ þ J=ψ þ q. It is known that IR divergence
exists in these processes because of the phase space
integration, which can be canceled by the IR singularities
left in the virtual correction. According to the different
regions of the phase space, the IR divergence can be

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 1. Typical Feynman diagrams for J=ψ pair production
in the color-singlet channel, including LO (a), NLO (b–e), as
well as single quark or gluon fragmentation diagrams beyond
NLO (f–i).
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categorized as soft or collinear. In this paper, we use the
two-cutoff phase space slicing method [19] to isolate the
two types of IR sigularities; then the cross section of real
correction can be expressed as

σReal ¼ σSoftReal þ σHCReal þ σHCReal; ð5Þ

where HC and HC represent hard collinear and hard
noncollinear contributions, respectively.
The soft sigularities only originate from real gluon

emission, that is, the gðp1Þ þ gðp2Þ → J=ψðp3Þ þ
J=ψðp4Þ þ gðp5Þ process. p5 is the momentum of the
emitted gluon, and in the p1 þ p2 rest frame,
p1 þ p2 ¼ ffiffiffiffiffiffi

s12
p ð1; 0; 0; 0Þ. Applying the two-cutoff tech-

nique, the soft region is defined in the p1 þ p2 rest frame
by 0 ≤ E5 ≤ δs

ffiffiffiffiffiffi
s12

p
=2, where δs is a small cut.

In the soft region, the three-body phase space can be
simplified as

dPS3jSoft ¼ dPS2
dd−1p5

2p0
5ð2πÞd−1

����
Soft

¼ dPS2

��
4π

s12

�
ϵ Γð1 − ϵÞ
Γð1 − 2ϵÞ

1

2ð2πÞ2
�
dS; ð6Þ

with

dS ¼ 1

π

�
4

s12

�
−ϵ Z δs

ffiffiffiffiffi
s12

p
=2

0

dE5E1−2ϵ
5

× sin1−2ϵ θ1dθ1 sin−2ϵ θ2dθ2: ð7Þ

Meanwhile, the relative matrix elements in the soft
region can be factorized as

Ma
3jSoft ≃ gμϵrεμðp5ÞJaμðp5ÞM2; ð8Þ

where a is the color index the emitted gluon carries, and
εμðp5Þ is the gluon’s polarization vector. M2 is the color
connected LO Born matrix element; Jaμðp5Þ is the non-
Abelian eikonal current, which contains the color structure
of the emitted gluon and the soft divergence information.
The concrete form of Jaμðp5Þ is given by

Jaμðp5Þ ¼
X
f

Ta
f

pf

pf · p5

; ð9Þ

where the sum goes over each external line that can emit a
soft gluon; the color structure associated with each soft
gluon emission from parton f is denoted by Tf. Then the
squared matrix element reads

jM3j2jsoft ≃ −g2μ2ϵr
X
f;f0

pf · pf0

pf · p5pf0 · p5

M0
ff0 ; ð10Þ

with

M0
ff0 ¼ ðTa

fM2ÞðTa
f0M2Þ

¼ ½Mc1…bf…bf0…c4 ��Ta
bfdf

Ta
bf0df0

Mc1…df…df0…c4 :

ð11Þ

Combining the phase space and squared matrix element
given above, one can finally get the cross section of real
correction in the soft region,

dσSoftReal ¼
�
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2r
s12

�
ϵ
�X
f;f0

dσBornff0

×
Z −pf · pf0

pf · p5pf0 · p5

dS; ð12Þ

with

dσBornff0 ∝
X̄

M0
ff0dPS2: ð13Þ

We can see in Eq. (12) that in the soft region, the
divergence is singled out. All the concrete expressions
of the integration

R −pf ·pf0
pf ·p5pf0 ·p5

dS are listed in the appendix

of Ref. [19].
The hard collinear divergence only occurs in the mass-

less case, so it is also called “mass singularity.” According
to the two-cutoff method, a small cut δc is brought in, and
the hard collinear region of the phase space is that where
any invariant (sij or tij) gets smaller than δcs12. The hard
collinear divergence can be divided into initial state
collinear and final state collinear, depending on the
singularities from the initial or final state. For our process,
there is only initial state collinear divergence because the
J=ψ pair in the final state is massive. The processes include
gðp1Þþgðp2Þ→J=ψðp3ÞþJ=ψðp4Þþgðp5Þ and gðp1Þ þ
qðp2Þ→J=ψðp3ÞþJ=ψðp4Þþqðp5Þ. Hereafter, we only
consider the case in which the emitting and splitting
occur at parton gðp2Þ and qðp2Þ, that is, 0 ≤ t25 ¼
ðp2 − p5Þ2 ≤ δcs12; the other cases are tackled the
same way.
In the hard collinear region, the three-body phase space

can be written as

dPS3jHC ¼
�

dd−1p3

2p0
3ð2πÞd−1

dd−1p4

2p0
4ð2πÞd−1

× ð2πÞdddðp1 þ zp2 − p3 − p4Þ
�

dd−1p5

2p0
5ð2πÞd−1

;

ð14Þ

where z is the momentum fraction for the splitting
2 → 20 þ 5; by applying the collinear approximation, the
three-body matrix elements can be expressed as follows:
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X
jM3ð1þ 2 → 3þ 4þ 5Þj2

≃X
jM2ð1þ 20 → 3þ 4Þj2P202ðz; ϵÞg2μ2ϵr

−2
zt25

:

ð15Þ

Combining the phase space and the matrix elements, we
can obtain the cross section in the hard collinear region,

dσHCRealðpþ p → 2J=ψ þ XÞ

¼
X
i¼g;q

fg=pðx1Þfi=pðx2=zÞ
�
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2r
s12

�
ϵ
�

× dσ̂Born0

�
−
1

ϵ

�
δ−ϵc Pgiðz; ϵÞ

dz
z

�ð1 − zÞ
z

�
−ϵ
dx1dx2:

ð16Þ

The collinear singularity emerging in Eq. (16) should be
factorized into the parton distribution functions. To do this,
a scale dependent parton distribution function is introduced
using the MS convention,

fb=Bðx; μfÞ ¼ fb=BðxÞ −
1

ϵ

�
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2r
μ2f

�
ϵ
�

×
Z

1

z

dz
z
Pbb0 ðzÞfb0=Bðx=zÞ: ð17Þ

After renormalization of the parton distribution function,
we can eventually obtain the cross section for the initial
state collinear contribution,

dσHCRealðpþ p → 2J=ψ þ XÞ

¼ dσ̂Born0

�
αs
2π

Γð1 − ϵÞ
Γð1 − 2ϵÞ

�
4πμ2r
s12

�
ϵ
�

×

�
fg=pðz1; μfÞ ~fg=pðz2; μfÞ þ

�
ASC
1 ðg → gþ gÞ

ϵ

þ ASC
0 ðg → gþ gÞ

�
fg=pðz1; μfÞfg=pðz2; μfÞ

	
dz1dz2:

ð18Þ

Note that in this expression, the collinear singularity is
absorbed into the redefinition of the parton distribution
function. The left soft collinear factors ASC

i result from the
difference of the upper bound of the z integration in
Eqs. (16) and (17). These factors are given by

ASC
1 ðg → gþ gÞ ¼ 2N ln δs þ ð11N − 2nfÞ=6;

ASC
0 ðg → gþ gÞ ¼ ½2N ln δs þ ð11N − 2nfÞ=6� ln

�
s12
μ2f

�
:

ð19Þ

There is no ASC
i ðq → qþ gÞ term existing because the

q → qþ g splitting process demonstrates no soft singular-
ities. The ~f functions read

~fg=pðz; μfÞ ¼
X
i

Z
1−δsδgi

z

dy
y
fi=p

�
z
y
; μf

�
~PgiðyÞ; ð20Þ

with

~PijðyÞ ¼ PijðyÞ ln
�
δc

1 − y
y

s12
μ2f

�
− P0

ijðyÞ; ð21Þ

where the index i in the sum represents a gluon or a quark,
and the d-dimension unregulated splitting functions PijðyÞ
and P0

ijðyÞ are given by

PqqðyÞ ¼ CF
1þ y2

1 − y
;

P0
qqðyÞ ¼ −CFð1 − yÞ;

PgqðyÞ ¼ CF
1þ ð1 − yÞ2

y
;

P0
gqðyÞ ¼ −CFy;

PggðyÞ ¼ 2N

�
y

1 − y
þ 1 − y

y
þ yð1 − yÞ

�
;

P0
ggðyÞ ¼ 0;

PqgðyÞ ¼
1

2
½y2 þ ð1 − yÞ2�;

P0
qgðyÞ ¼ −yð1 − yÞ: ð22Þ

Now the cross sections for the J=ψ pair production at
NLO can be expressed as

σNLO ¼ σBorn þ σVirtual þ σReal: ð23Þ

The soft divergences and collinear divergences from real
corrections cancel divergences from virtual corrections, and
thus the final NLO contributions are IR safe.
Because there are two J=ψ states in the final state,

the LO contributions behave as p−8
T when pT is large.

However, at NLO level, there are double quark and double
gluon fragmentation contributions [Figs. 1(d) and 1(e)],
which give p−6

T behavior [18]. We thus expect that the NLO
contribution will dominate at large pT , especially for the
CMS data, where a relatively large lower pT cutoff is taken
[9]. Since in the double parton fragmentation diagrams
the two J=ψ’s come from the same fragmenting partons, the
invariant mass of the pair (denoted as MJ=ψJ=ψ ) should be
small. This implies that the NLO correction will be
significant only in the small MJ=ψJ=ψ region, and it will
be mild whenMJ=ψJ=ψ is large. All of these expectations are
confirmed by our numerical results shown below.
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When pT is large enough, the single parton fragmenta-
tion contributions, which behave as p−4

T , eventually domi-
nate, although they are suppressed by powers of αs. For
double J=ψ production, the quark and gluon fragmentation
processes can be expressed as

dσAþB→2J=ψþX ¼
X

i;j;n1;n2

dσ̂AþB→iþjþX ⊗ Di→QQ̄ðn1Þ

⊗ Dj→QQ̄ðn2ÞhOn1ihOn2i; ð24Þ

where Di;j→QQ̄ðnÞ are the single-parton fragmentation
functions (FFs) for a NRQCD state n. Typical Feynman
diagrams for these kinds of fragmentation contributions
are shown in Figs. 1(h) and 1(i). These FFs are
factorization scale dependent, and satisfy the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi (DGLAP) evolution
equation [20–24]

d
d log μ2f

�
Dc

Dg

�
¼ αsðμfÞ

2π

�
Pcc Pgc

Pcg Pgg

�
⊗

�
Dc

Dg

�
; ð25Þ

where Dg and Dc denote the FFs from the gluon and charm
quark, respectively, and Pij’s are the splitting functions.
Based on this evolution equation, we only need inputs of
FFs at an initial scale, which can be found in Ref. [25].
Note that fragmentation functions in color-octet channels
are also considered in Eq. (24).
In addition, there are also p−4

T contributions coming from
Feynman diagrams like Figs. 1(f) and 1(g), where one
parton fragments to a J=ψ pair. We argue later that these
contributions should not be important.

III. NUMERICAL INPUTS

Because of the complexity of the J=ψ pair production,
in our calculation, the package FEYNARTS [26] is used
to generate the Feynman diagrams and amplitudes. The
phase space integration is evaluated by employing the
package Vegas.
In numerical calculation, the CTEQ6L1 and CTEQ6M

parton distribution functions [27,28] are used. The renorm-
alization scale μr and factorization scale μf are chosen as

μr ¼ μf ¼ mT , with mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
T þ 16m2

c

p
and charm quark

mass mc ¼ MJ=ψ=2 ¼ 1.55 GeV. In the two-cutoff
method, there are soft and collinear cutoffs, δs and δc,
which we set to be δs ¼ 10−2 and δc ¼ 10−4. Theoretical
uncertainties are estimated by varying μr ¼ μf from
mT=2 to 2mT .

The CS LDME hOð3S½1�1 ÞiJ=ψ ¼ 1.16 GeV3 is estimated
by using the B − T potential model [29], while CO LDMEs

for 1S½8�0 , 3S½8�1 and 3P½8�
0 channels, which are needed in

fragmentation processes, are taken from three different

extractions [30–32]. Meanwhile, the 1S½8�0 -dominant CO

matrix elements extracted from [33] are also taken into
account.

IV. RESULTS

To see the importance of NLO calculation, we show the
cross section pT distribution of one of the two J=ψ’s in
Fig. 2 for both the forward region and central region in
rapidity. In the low pT region, although NLO results are
close to LO results, their behaviors are different. Especially,
the NLO result peaks at a larger pT than that of the LO
result. When pT ≳ 5 GeV, NLO results become much
larger than the LO one. As emphasized above, the large
NLO corrections are due to the p−6

T contributions from
double parton fragmentation. To demonstrate this point, we
show also the hard noncollinear contributions of real

correction σHCReal, which contain all the p−6
T contributions,

in Fig. 2. As expected, the hard noncollinear contributions
approach the full NLO result as pT becomes larger. As for
the NLO⋆ result in Ref. [14], which introduces cutoffs
to regularize soft and collinear divergences in the real
corrections, it should be similar to our hard noncollinear
contributions. So the NLO⋆ result can give a good
approximation to the full NLO result for double J=ψ
production in the high pT region. But the problem of
infrared divergence and cutoff dependence at NLO⋆ is
removed in our full NLO calculation.
At the LHCb window with

ffiffiffi
S

p ¼ 7 TeV,
2 < yðJ=ψÞ < 4.5, and 0 < pT < 10 GeV, the measured
value is σJ=ψJ=ψ ¼ 5.1� 1.0� 1.1 nb [8]. Our calculated
cross sections at LO and NLO are shown in Fig. 3, as
functions of μr and μf. It can be seen that both μr
dependence and μf dependence are reduced at NLO
level. To avoid large logarithms of lnðμr=μfÞ, as in the
literature, one usually estimates theoretical uncertainties
by keeping μr ¼ μf and varying them from mT=2 to 2mT .
In this way, our predictions are σLO ¼ 4.56� 1.13 nb and

0 2 4 6 8 10 12 14
10 5

10 4

10 3

10 2

10 1

1.
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pT GeV

d
dp

T
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G
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NLO
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pT GeV

d
dp

T
nb

G
eV

NLO
HC
LO

S 7 TeV, y 2.2,

mc 1.55 GeV,

s 10 2, c 10 4.

FIG. 2. Comparison between LO, HC, and full NLO results of
the cross section pT distribution in J=ψ pair production.
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σNLO ¼ 5.41þ2.73
−1.14 nb, which are roughly compatible with

the LHCb measured cross section.
The invariant mass distribution at LHCb is shown in

Fig. 4. We see that both the LO and NLO results are
inconsistent with the LHCb data, indicating that the
behaviors at both LO and NLO are very different from
the LHCb data, which peak at small invariant mass and
decrease more slowly than the theoretical predictions at
large invariant mass. We therefore draw the conclusion that
the full NLO calculation in the CS model cannot describe
the LHCb data.
In the CMS conditions [9],

jyðJ=ψÞj< 1.2 for pT > 6.5 GeV; or

1.2< jyðJ=ψÞj< 1.43 for pT > 6.5→ 4.5 GeV; or

1.43< jyðJ=ψÞj< 2.2 for pT > 4.5 GeV;

the total cross section is measured to be

σExp ¼ 1.49� 0.07� 0.14 nb; ð26Þ

while our LO and NLO calculations for the total cross
section give

σLO ¼ 0.08�0.02 nb; σNLO ¼ 0.93�0.25 nb: ð27Þ

As expected, we see the NLO calculation gives the
dominant contribution. In Eq. (27) the contribution of
feed-down process pþp→J=ψþψð2SÞþX→2J=ψþX
is also included, which is estimated to be 30% of the direct
production [12]. Comparing Eq. (26) with Eq. (27), we see
the theoretical result is inconsistent with the experimen-
tal data.
We then compare our prediction for the transverse

momentum pTJ=ψJ=ψ distribution of J=ψ pair with data.
The result is shown in Fig. 5. At LO, pTJ=ψJ=ψ is always 0,
because it is a two-body final state process. At NLO,
unfortunately, as indicated in Fig. 5, the theoretical result is
still very different from the CMS data. The data obviously
overshoots our NLO prediction at large pTJ=ψJ=ψ .
As mentioned before, the single parton fragmentation

processes behave as p−4
T , which may give larger contribu-

tions at very large pTJ=ψJ=ψ . We thus evaluate the single
parton fragmentation contribution according to Eq. (24),
and the results are shown in Fig. 5. It can be seen that,
however, the fragmentation contribution is negligible even
when pTJ=ψJ=ψ is as large as 30 GeV, no matter which set
of CO LDMEs is chosen. This phenomenon seems to be
surprising, but actually is not new. Similar behavior was
found in Refs. [33,34] for the single J=ψ inclusive
production, where the p−6

T contribution still dominates
over the p−4

T contribution even when pT is 15 times larger
than the mass of J=ψ . Here, the smallness of the single
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FIG. 3. Scale dependence of total cross sections for LO and
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parton fragmentation contribution for double J=ψ produc-
tion is again due to the current experimental pTJ=ψJ=ψ

being not large enough to make fragmentation dominant.
Similarly, we also do not expect the same-side-fragmentation
contribution, e.g. in Figs. 1(f) and 1(g), to be able to solve the
surplus problem for the CMS large pTJ=ψJ=ψ data.
The invariant mass distribution at CMS is shown in

Fig. 6. We see that the NLO result can well describe the
first two bins, but it decreases too fast beginning from the
third bin. This indicates that the behavior at NLO is very
different from the CMS data: the latter is almost flat
at large invariant mass, and larger than the NLO result
by several orders of magnitude. In fact, when 22 GeV <
MJ=ψJ=ψ < 35 GeV, the NLO prediction is less than CMS
data by almost 2 orders of magnitude, and when
35 GeV < MJ=ψJ=ψ < 80 GeV, the discrepancy raises to
almost 4 orders of magnitude.
Intuitively, by examining the discrepancy in the J=ψ

pair mass distribution, a large angle J=ψ pair production
process is apparently needed. The quark and gluon
fragmentation processes shown in Figs. 1(h) and 1(i) are
typically among the large angle processes. We then
evaluate these fragmentation contributions, including all
relevant color-singlet and color-octet channels [Figs. 1(f)
and 1(g) are neglected because they are not large angle
scattering processes and contribute little to the large
invariant mass distribution]. The total contribution of all
concerned fragmentation channels is shown in Fig. 6.
Unfortunately, the fragmentation contributions are found
to be negligible to the J=ψ pair production; thus the
discrepancy between NLO result and CMS data cannot
be resolved by these processes.

We also consider other possible sources for the
discrepancy, e.g., the Z0 boson decays to a J=ψ pair:
Z0 → 2J=ψ þ X. Under the CMS condition, the total cross
section of this process is σ ¼ 2.5 × 10−4 nb. Its contribu-
tion to each bin of the J=ψ pair transverse momentum
distribution or invariant mass distribution is negligibly
small. So the big gap between NLO predictions and
CMS data still remains.
The J=ψ pair rapidity difference jΔyj distribution at

CMS is shown in Fig. 7. We see that the NLO result can
well describe the first four bins, but it decreases too fast
beginning from the fifth bin. This is the same as the mass
distribution, because the large mass is equivalent to the
large jΔyj, and the color singlet contributes little to a large
angle scattering process. Therefore, the fragmentation
contributions are also negligible in resolving the discrep-
ancy between NLO result and CMS data, so we do not label
them in this figure.

V. SUMMARY

In the framework of NRQCD factorization, we evalu-
ate the full NLO J=ψ pair production via the color-singlet
channel. We demonstrate that NLO corrections are
essential for J=ψ pair production both in low pT and
high pT regions, as compared to the LO results. Our
NLO calculation can give a reasonably good description
for the total cross section observed by LHCb. However,
the NLO predictions of pTJ=ψJ=ψ distribution, invariant
mass distribution of the J=ψ pair, and rapidity difference
distribution of the J=ψ pair are very different from the
CMS data. For the J=ψ pair invariant mass distribution,
the observed flatness and orders of magnitude differences
from theoretical predictions in the large invariant mass
region (22GeV<MJ=ψJ=ψ <80GeV) are hard to explain
in NLO NRQCD with color-singlet contributions, and the

FIG. 6. Differential cross sections in bins of the J=ψ pair
invariant mass at CMS. The data are taken from Ref. [9]. The
green and blue bands denote the LO and NLO theoretical results,
respectively, where the uncertainties are due to scale choices as
mentioned in the text. The yellow band, solid, dash dotted lines
represent the sum of the quark and gluon fragmentation from all
relevant channels by three groups of different CO matrix
elements. The dashed line represents the fragmentation contri-

bution by taking the 1S½8�0 -dominant CO matrix elements.

FIG. 7. Differential cross sections in bins of the J=ψ pair jΔyj at
CMS. The data are taken from Ref. [9]. The green and blue bands
denote the LO and NLO theoretical results, respectively, where
the uncertainties are due to scale choices as mentioned in the text.
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situation for rapidity difference distribution is similar to
the mass distribution. This strongly indicates that the CS
model cannot solve the problems not only for the well-
known single J=ψ inclusive production but also for the
double J=ψ production at hadron colliders. We further
take into account the contributions from quark fragmen-
tation and gluon fragmentation with both CS and CO
channels beyond NLO in αs, but find they cannot provide
a sizable contribution to the large angle production of the
J=ψ pair. Our calculation implies that at low pT the
color-singlet contribution may be dominant but the color-
octet contribution may be important at large pT , as
shown in Ref. [35] with LO color-octet calculations.
Apparently, new processes or mechanisms are needed to

simultaneously enlarge the total cross section, improve
the pTJ=ψJ=ψ distribution, and increase the large invariant
mass distribution and large rapidity difference distribution
of the J=ψ pair, if the CMS data are confirmed.
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