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In this work corrections to the usual flavor SU(2) Nambu-Jona-Lasinio (NJL) coupling due to a weak
external magnetic field are calculated by considering quark polarization in a (dressed) gluon exchange
mechanism for quark interactions. The quark field is split into two components: one that condenses and
another one that is a background field for interacting quarks, the former being integrated out. The resulting
determinant is expanded for relatively large quark mass and small magnetic field ðeB0=M�2Þ < 1 by
resolving magnetic-field-dependent low energy quark effective interactions. Besides the corrections for the
NJL and vector NJL effective couplings, different B0-dependent effective couplings that break isospin and
chiral symmetry emerge.
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I. INTRODUCTION

Quark interactions involve a large variety of different
effects and mechanisms. To identify their particular roles in
observables and to establish a realistic hierarchy among all
of them for each of the processes under their conditions
within the complexity of quantum chromodynamics (QCD)
is a difficult task. High energy density (temperature and
baryon density) systems are known to be suitable to test
quark (and gluon) dynamics, from relativistic (heavy) ion
collisions to several dense stars. Magnetic fields are also
expected to be sizable in such systems [1–3] and, actually,
they are expected to produce a large variety of effects not
only in such high energy systems but also in the vacuum by
means of phenomena such as the magnetic catalysis and
the inverse effect at finite temperatures, for example
Refs. [2,4–9], to produce changes in the CP violation phase
transition [10], the emergence of superconducting vacuum
[11]or chiral asymmetryor imbalance and the chiralmagnetic
effect [12–14] among others. In particular, it has been argued
that finite temperature inverse magnetic catalysis may be
traced back to the chirality imbalance [15]. In the core of
dense stars (magnetars) and in the early Universe magnetic
fields are expected to be of the order of eB0 ∼ 1015 G and in
noncentral relativistic heavy ion collisions they may reach
eB0 ∼ 1018 G ∼m2

π or 0.04–0.3 GeV2 from RHIC to LHC
[1,3,16], even if within a short time interval. More recently it
has been envisaged that one of the most emblematic quark-
quark effective interactions, the Nambu-Jona-Lasinio (NJL)
coupling [17,18], might receive a magnetic field contribution
due to theQCDcouplingconstant dependence onB0 [19–24],
being that for strong B0 an explicit form for the corrected
running couplingconstant has beenderived [2,4].Anisotropic
contributions for the NJL coupling have also been found
[19,25]. Although the usual benchmark for the investigation
of low energy effects of quark dynamics in a magnetic field,
including dynamical chiral symmetry breaking, is the NJL
model, other hadron models can also be considered and

compared [26,27]. Besides that, it has been shown that vector
NJL interaction provides meaningful corrections for quark
dynamics and strong interactions phase diagram [28–30]. If
quark NJL and vector NJL interactions receive corrections
due to magnetic fields, they might produce relevant effects in
quark dynamics favoring or not chiral imbalance or vector
condensation.
Even before the establishment of quantum electrody-

namics, vacuum fluctuations for the electromagnetic field
had already been calculated with the Euler-Heisenberg
action [31]. With QED several approaches have been
employed to derive effective actions or Hamiltonians for
higher order contributions of the electromagnetic field
firstly in the absence and then in the presence of matter;
a few examples are given in Refs. [32–34]. For several
strongly interacting systems where magnetic fields are
sizable and relevant it becomes interesting to investigate
the vacuum polarization effects in the presence of magnetic
fields. In this work, effective quark-quark interactions
are calculated in the presence of constant weak magnetic
field from vacuum polarization effects. The one-loop
background field method for quarks, as employed in
Refs. [35–37], will be considered in the presence of a
constant weak magnetic field.
The departure point of the present work is the global

color model (GCM) obtained by considering gluon
exchange corrected by gluon interactions and its non-
Abelian character; i.e. it can be a realistic gluon propagator.
It is given by [38–40]

Seff ½ψ̄ ;ψ � ¼
Z
x

�
ψ̄ði∂ −MÞψ

−
g2

2

Z
y
jbμðxÞðRμν

bcÞ−1ðx − yÞjcνðyÞ
�
; ð1Þ

where the color quark current is jμa ¼ ψ̄λaγ
μψ , the sums in

color, flavor and Dirac indices are implicit, and the kernel
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ðRμν
bcÞ−1 is the gluon propagator. Non-Abelian gluon

interactions can be considered to dress the gluon exchange
by considering a nonperturbative (realistic) gluon propa-
gator that, together with the quark-gluon vertex, will be
assumed to provide the strength for dynamical chiral
symmetry breaking (DChSB). Several different effects
are known to contribute to the strength of the quark-quark
interaction above [41–43]. Therefore this calculation
presents, in this sense, a similar level of approximation
to the rainbow ladder approximation for the Schwinger
Dyson equations that yield DChSB [38–41,44–46]. The
quark-gluon vertex was shown to depend on B0 [22] and
this will not be considered in the present work. This model
will be coupled to the electromagnetic field via the quark
minimal coupling. To investigate the flavor structure of the
model, one performs a Fierz transformation from which a
NJL coupling emerges in the local limit, besides other
structures. This work is organized as follows. In the next
section the Fierz transformation of this GCM interaction
coupled (minimally) to a constant magnetic field is pre-
sented and the quark field is integrated out in the presence
of background quark. In the following section the deter-
minant is expanded for small magnetic field with respect to
the quark effective mass, i.e. ðeB0Þ ≪ M�2. Several simple
ratios between the effective couplings in the limit of large
quark effective mass are obtained. In the final section a
summary and discussion are presented.

II. QUARK COMPONENTS AND LIGHT
MESON FIELDS

The generating functional to be considered is the
following:

Z½ξ; ξ̄� ¼ N
Z

D½ψ̄ ;ψ �ei
R
ðLþψ̄JþJ̄ψÞ;

where the Lagrangian density for the minimal electromag-
netic coupling (for a background electromagnetic field) to
the global color model can be written as

L ¼ ψ̄ðiγ ·D −mÞψ

−
g2

2

Z
y
ψ̄ðxÞγμλbψðxÞRμν

bcðx − yÞψ̄ðyÞγνλcψðyÞ; ð2Þ

where a; b… ¼ 1;…ðN2
c − 1Þ stand for color in the adjoint

representation and i; j; k ¼ 0;…ðN2
f − 1Þ will be used for

SU(2) flavor indices, the sums in color, flavor and Dirac
indices are implicit, and the covariant quark derivative is
D ¼ Dμ ¼ ∂μδij − ieQijAμ for the diagonal matrix
Q̂ ¼ diagð2=3;−1=3Þ. In several gauges, the gluon kernel
can be written in terms of the transversal and longitudinal
components as Rμν

abðx − yÞ ¼ δab½ðgμν − ∂μ∂ν
∂2 ÞRTðx − yÞþ

∂μ∂ν
∂2 RLðx − yÞ�. The infrared regime of the gluon propa-
gator exhibits a nontrivial behavior that is often

parameterized in terms of an effective gluon mass [47].
This will be discussed further in Sec. IV.
To make possible a more detailed investigation of the

different flavor channels of quark interactions a Fierz
transformation [18,48] can be done next. Then, for the
quark interaction above,

Ω≡ g2

2
ψ̄ðxÞγμλbψðxÞRμν

bcðx − yÞψ̄ðyÞγνλcψðyÞ;

the Fierz transformed F ðΩÞ color singlet expression is
given by

F ðΩÞ ¼ αg2f½jSðx; yÞjSðy; xÞ
þ jiPðx; yÞjiPðy; xÞ�Rðx − yÞ

−
1

2
½jiV;μðx; yÞjiV;νðy; xÞ

− jiμAðx; yÞjiνAðy; xÞ�R̄μνðx − yÞg;
where α ¼ 8=9 for SU(2) flavor, and the following bilocal
quark bilinears [jqi ðx; yÞ ¼ ψ̄ðxÞΓqψðyÞ for operators Γq

where q ¼ s, p, v, a] were defined:

jSðx; yÞ ¼ ψ̄ðxÞψðyÞ;
jPi ðx; yÞ ¼ ψ̄ðxÞσiiγ5ψðyÞ;

jV;μi ðx; yÞ ¼ ψ̄ðxÞγμσiψðyÞ;
jμ;Ai ðx; yÞ ¼ ψ̄ðxÞiγ5γμσiψðyÞ: ð3Þ

In these expressions the following kernels were used:

Rðx − yÞ≡ R ¼ 3RTðx − yÞ þ RLðx − yÞ;
R̄μνðx − yÞ≡ R̄μν ¼ gμνðRTðx − yÞ þ RLðx − yÞÞ

þ 2
∂μ∂ν

∂2
ðRTðx − yÞ − RLðx − yÞÞ: ð4Þ

The long-wavelength or local limit of the scalar and

pseudoscalar interactions yields the NJL coupling withG ∼
g2

Λ2
qcd

or G ∼ g2

M2
G
for massless and massive gluons [35,49,50].

The quark field will be split according to the background
field method (BFM) [51,52]. One component is considered
to be a (constituent quark) background field (ψ1), and the
sea quark field (ψ2) will be integrated out. This splitting of
the field can be made by means of the bilinears ψ̄Γψ , where
Γ stands for Dirac, color or flavor operators, such that the
resulting determinant corresponds basically to the one-loop
BFM results. The splitting can be written as [35,36]

ψ̄Γqψ → ðψ̄ΓqψÞ2 þ ðψ̄ΓqψÞ1; ð5Þ

where ðψ̄ψÞ2 will be integrated out, being possible that it
composes light mesons and the scalar condensate and the
component ðψ̄ψÞ1 stands for the background field that yields
baryon constituent quarks. This separation preserves chiral
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symmetry, and it may not correspond to a simple mode
separation of low and high energies which might be a very
restrictive assumption since pions and constituent quarks
might be composed by quarks with similar energy modes
(fully or in part). Therefore it seems the criterion might not
involve a separation scale and, at the end, the shape of the
results should be basically the same. The shift of bilinear may
also be suitable for envisaging quark-antiquark states which
are the most important states for the very low energy QCD,
i.e. below the nucleonmass scale. The effective interactionΩ
is split accordingly and terms with mixed bilinear of ψ1 and
ψ2 can bewritten such that the quadratic part of bilinear ψ̄2ψ2

will be suitable to be integrated out. The interaction Ω2

deserves some more attention and it can be handled in two
ways: (i) By resorting to a weak field approximation Ω2 ≪
Ω1whichyields directly the one-loopBFMthatmight receive
corrections by a perturbative expansion which incorporates
Ω2 [51]; (ii) by making use of the auxiliary field method
according to which a set of auxiliary fields is introduced by
means of unitary functional integrals multiplying the gen-
erating functional [36,38,39,53,54]. Auxiliary fields (AFs)
allow one to incorporate properly DChSBwith the formation
of the scalar quark condensate which endows quarks with a
large effective mass. Therefore the use of the AFs improves
the one-loop background field method as usually imple-
mented. Auxiliary fields are introduced by multiplying the

generating functional by the following normalized Gaussian
integrals:

1 ¼ N
Z

D½S�D½Pi�e−
i
2
t2
2

R
x;y

Rα½ðS−gjSð2ÞÞ2þðPi−gjPi;ð2ÞÞ2�

×
Z

D½Vi
μ�
Z

D½Āi
μ�e−

i
4
t2
2

R
x;y

R̄μνα½ðVi
μ−gj

i;ð2Þ
V;μ ÞðVi

ν−gj
i;ð2Þ
V;ν Þ�

× e
−i
4
t2
2

R
x;y

R̄μνα½ðĀi
μ−gj

i;ð2Þ
μ

AÞðĀi
ν−gj

i;ð2Þ
ν

AÞ�
: ð6Þ

In these expressions the bilocal AFs are Sðx; yÞ, Piðx; yÞ,
Vi
μðx; yÞ and Āi

μðx; yÞ and they have been shifted by quark
currents such as to cancel out the fourth-order interactionsΩ2.
These shifts have unit Jacobian and they generate a coupling
to quarks. The nonlocality of these auxiliary fields gives rise
to form factors which nevertheless can produce punctual
meson fields by expanding in an infinite basis of local fields.
Finally it is also possible to consider the long-wavelength
limit by keeping only the lowest energy states and by simply
considering the local limit for structureless light mesons [36].
The resulting effective action for quarks (ψ1 and ψ2)
interacting with auxiliary fields (quark-antiquark mesons)
is quadratic in ψ2 requiring a typical Gaussian integration.
The resulting determinant can be written, by considering the
identity detA ¼ expTr lnðAÞ, as

Seff ¼ iTr lnfS0−1ðx − yÞ þ Ξðx − yÞ − αg2R̄μνðx − yÞγμσi½ðψ̄ðyÞγνσiψðxÞÞ1 þ iγ5ðψ̄ðyÞiγ5γνσiψðxÞÞ1�

þ 2Rðx − yÞαg2½ðψ̄ðyÞψðxÞÞ1 þ iγ5σiðψ̄ðyÞiγ5σiψðxÞÞ1�g −
1

2

Z
x;y

�
R½S2 þ P2

i � þ
1

2
R̄μν½Vi

μVi
ν þ Āi

μĀi
ν�
�

−
Z
x
ψ̄1ðxÞðiγμDμ −mÞψ1ðxÞ −

g2

2

Z
x;y

ja;ð1Þμ ðxÞRμν
abðx − yÞjb;ð1Þν ðyÞ; ð7Þ

where Tr stands for traces of discrete internal indices and
integration of spacetime coordinates, the inverse Fierz
transformation was done for the ψ1 interaction that is
written in the last line, and where S−10 ¼ ðiD −mÞ, being
D ¼ γμð∂μδij − ieQijAμÞ. Ξ stands for the auxiliary fields
coupling to sea quarks. Vector and axial auxiliary fields
yield heavier excitations and may be neglected for the low
energy regime. The bilocal AFs can be expanded in a basis
of local meson excitations. However, this work is con-
cerned with the effects of weak magnetic field in the low
energy regime of quark effective interactions and the local
limit of these composite fields might be adopted because
the only leading effect of the AFs is to produce the large
quark effective mass due to DChSB. The quark coupling to
the local scalar and pseudoscalar fields, in the absence of
the heavier vector states, can be written as

Ξðx; yÞ ¼ gαF0;0ðx− yÞR
�
S

�
xþ y
2

�
þPi

�
xþ y
2

�
iγ5σi

�
;

ð8Þ

where, due to the structureless mesons approximation, it
will be considered z ¼ ðxþ yÞ=2 ¼ x. Then it reduces to

Ξðx; yÞ≃ F½sðxÞ þ piðxÞγ5σi�δðx − yÞ; ð9Þ

where F is the pion decay constant that allows for
the canonical definition of the pion field as πi ¼ Fpi.
The saddle point equations for expression (7) yield the
usual gap equations; by denoting the auxiliary fields
ϕq ¼ Sðx; yÞ, Piðx; yÞ, Vμ

i ðx; yÞ and the axial field
Āμ
i ðx; yÞ these equations are

∂Seff
∂ϕq

¼ 0: ð10Þ

These equations for the NJL model and GCM have been
analyzed in many works, under external B or not, for the
vacuum or at finite temperatures or quark densities, includ-
ing in the complete form which corresponds to Dyson
Schwinger equations in the rainbow ladder approximation.
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The only possible nontrivial solution might exist for the
scalar field since the ground state is scalar. It yields a
correction to the quark mass, as the leading effect, and
therefore only the limit of local auxiliary field S is needed
from here on. The magnetic field is known to increase the
effective mass in the magnetic catalysis effect, for example
in Refs. [2,5,6,55]. By considering solutions for which the
quark-gluon coupling of the model is sufficiently strong to
generate DChSB, as shown in Sec. IV, it yields a correction
to the quark effectivemass (M�) such that the quark kernel in
expression (7) receives a correction, being written as

S−10 ¼ ðiD −M�Þ: ð11Þ

At this point it is worth noticing that an estimate of the effect
of theAFs on the eventual quark-quark effective interactions
can be obtained by expanding the quark determinant above

in powers of the AFs. However it is seen that the effects of
AFs on the quark-quark effective interactions only will
appear at least in the third order of the expansion to produce,
for example, terms of the following form:ϕqðψ̄ΓqψÞ2. These
terms are of higher order inSn0 and consequently numerically
smaller in the large quark mass limit. Alternatively, if these
auxiliary fields are kept as a whole and afterwards elimi-
nated, for example being integrated out approximately when
expanding the determinant in a steepest descent approxi-
mation, their contribution to the photon-quark interaction
would be again of higher order. Therefore the AFs can be
neglected by keeping the nontrivial value of the scalar field
that endows quarks with an effective mass. Results will be
precisely those fromone-loopBFMwith the corrected quark
effective mass.
The determinant can be rewritten as

Idet ¼ Tr ln

�
S−10 þ

X
q

aqΓqjq

�
¼ 1

2
Tr ln

��
S−10 þ

X
q

aqΓqjq

��
S̄−10 þ

�X
q
āqΓqjq

����
; ð12Þ

where S̄−10 ¼ ðiDþM�Þ; for q ¼ s, p, v, a and ās ¼ −as, āv ¼ −av and āp ¼ ap, āa ¼ aa, and also it has been defined the
following shorthand notation for the four channels q:

X
q

aqΓqjq ¼ −αg2R̄μνðx − yÞγμσi½ðψ̄ðyÞγνσiψðxÞÞ þ iγ5ðψ̄ðyÞiγ5γνσiψðxÞÞ�

þ 2αg2Rðx − yÞ½ðψ̄ðyÞψðxÞÞ þ iγ5σiðψ̄ðyÞiγ5σiψðxÞÞ�: ð13Þ

By turning the (background) quark currents to zero this determinant yields the celebrated Euler Heisenberg effective action
for the electromagnetic field [31,32,48,55]. Below, a large quark mass expansion will be performed and the leading quark-
quark effective couplings and their dependence on a constant magnetic field will be shown.

III. EXPANSION OF THE DETERMINANT AND EFFECTIVE COUPLINGS

The large quark mass expansion of the determinant will be performed next by neglecting all the quark derivative
couplings [56]. A shorthand notation will be used below to improve the reading of the expressions; the gluon kernels will be
written shortly: R≡ Rðx − yÞ, R̄μν ≡ R̄μνðx − yÞ and so on. By neglecting terms such as Tr lnðiS−10 Þ that becomes an
irrelevant constant in the generating functional, the dynamical part of expression (12), by considering the anticommutation
relations of the Dirac gamma matrices, can then be written as

Sd ≃ Tr
X∞
n¼1

dnf ~S2½ΔA þ ξþ ξsb þ ξder þ Icrossed þ 4ðαg2Þ2R2½jSðx; yÞjSðy; xÞ þ γ25σiσjj
i
Pðx; yÞjjPðy; xÞ�

− ðαg2Þ2R̄μνR̄ρσγμγρσiσj½jVi
νðx; yÞjVj

σðy; xÞ − γ25jA
i
νðx; yÞjAjσðy; xÞ��gn; ð14Þ

where the following terms have been defined:

ΔA ¼ −e2Q̂2ðAμAμ þ AμAνσμνÞ þ
ie
2
Q̂σμνFμν; ð15Þ
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ξ ¼ −e2ðαg2ÞRQ̂σii½A; γ5�jiPðx; yÞ þ eðαg2ÞR̄μνQ̂σi½½γμ; A�jVi
νðx; yÞ þ fγμiγ5; AgjAiνðx; yÞ�; ð16Þ

ξsb ¼ 4ðαg2ÞRM�jSðx; yÞ − 2M�ðαg2ÞR̄μνσiγμjVi
νðx; yÞ; ð17Þ

ξder ¼ −iαg2R̄μνðx − yÞσi½½γρ; γμ�∂ρðjiV;νðy; xÞÞ þ iγ5fγρ; γμg∂ρðjiA;νðy; xÞÞ� þ 2αg2Rðx − yÞiσi½γρ; γ5�∂ρðjiPðy; xÞÞ; ð18Þ

Icrossed¼ iðαg2Þ2R̄μνR̄ρσfγμγργ5σiσjþγργ5γμσjσigjVi
νðx;yÞjAjσðy;xÞþ2ðαg2ÞRR̄μνfγ5γμγ5σiσjþγμγ

2
5σjσigjjPðx;yÞjAiνðy;xÞ

þ2iðαg2ÞRR̄μνfγ5γμσjσi−γμγ5σiσjgjjPðx;yÞjVi
νðy;xÞþ2ðαg2ÞRR̄μνσiγμjSðx;yÞjVi

νðy;xÞ: ð19Þ

The terms ΔA and ξ contain magnetic-field-dependent
terms, and ξsb presents the symmetry breaking terms since
they appear to be proportional to the Lagrangian quark
mass m. However if DChSB is considered for the auxiliary
scalar field and the corresponding gap equation, this
Lagrangian mass is corrected to an effective mass M�.
The other terms above are ξder with the derivative terms
that, with an integration by parts, may produce constant
magnetic field contribution when multiplied by ξ, whereas
Icrossed contains mixing interactions with different quark
currents and they produce nonzero terms in the expansion
only in higher orders. In this work only the lowest order
terms will be investigated, up to the second order in the
expansion. The third order of the expansion will have
additional factors ~S2, each of them being Oð1=M�2Þ
smaller than the second order ones. In expression (14)
the following parameters were defined:

dn ¼ −i
ð−1Þnþ1

2n
; ð20Þ

~S2 ¼ 1=ð−∂2 −M�2Þ: ð21Þ

A. First order terms

In the long-wavelength or local limit of the expressions
below the effective couplings can be resolved to yield
effective coupling constants. In the zero order derivative
expansion for the first order expansion the following
effective couplings appear:

I eff;1 ¼ ΔM�ψ̄ψ þ g4½ðψ̄ψÞ2 þ ðψ̄σiiγ5ψÞ2�
− g4v½ðψ̄σiγμψÞ2 þ ðψ̄σiγμγ5ψÞ2�: ð22Þ

These couplings have already been found in Refs. [36,37]
and, for these expressions, traces of Dirac and Pauli
matrices are taken. The effective coupling constants were
defined in the following way:

ΔM� ¼ −i2ðαg2ÞTrð ~S2RM�Þ;
g4ð1; δijÞ ¼ −i2ðαg2Þ2Trð ~S2R2ð1; σiσjÞÞ;

g4vgνσδij ¼ −
i
2
ðαg2Þ2Trð ~S2R̄μνR̄ρσγμγρσiσjÞ; ð23Þ

where, by performing the trace in Dirac indices, the
following kernel can be defined:

R̄ρ
μR̄ρν ¼ R̄2μν ¼ gμνðRT þ RLÞ2 þ 8

kμkν
k2

RTðRT − RLÞ:
ð24Þ

The expression for the effective mass (23) might be
ultraviolet divergent or finite depending on the gluon
propagator behavior. However the effective couplings
constants g4 and g4;v are finite unless the quark and gluon
kernels present an unusual momentum dependence. For
gluon propagators written in terms of an effective gluon
mass these expressions should also be infrared finite.

B. Second order quark terms up to Oðψ̄ΓqψÞ2
The second order nonderivative couplings that depend

on the magnetic field will be exhibited below. Those terms
containing one derivative of quark currents (ξder) that
multiply the vector Aμ either can yield nontrivial contri-
butions to (nonderivative) effective quark couplings if an
integration by parts is performed, producing quark cou-
plings to the strength tensor Fμν, or it may disappear. The
terms that produce nonzero contributions are shown below
(I4q ¼ I2 þ I4 þ I4;ξ þ I4;der þ Icross;B). The two possible
orders of combining structures for each of the term in the
expansion will be written as a big anticommutator in most
of the terms. Although all the calculations will be per-
formed for the Landau gauge for a constant magnetic field
Aμ ¼ −B0ð0; 0; x; 0Þ, the electromagnetic field will be
carried almost until the last expressions. These terms are
the following:
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I2 ¼ ie2ðαg2ÞM�TrQ̂2f ~S2ðAμAμÞ; ~S2RgjSðx; yÞ;
I4 ¼ −ie2ðαg2Þ2Trf ~S2ðAμAμ þ AμAνσμνÞ; ~S2R2gðQ̂2jSðx; yÞjSðy; xÞ þ γ25Q̂

2σiσjjiPðx; yÞjjPðy; xÞÞ

−
i
4
e2ðαg2Þ2Trf ~S2ðAμAμ þ AμAνσμνÞ; ~S2R̄ρ1σ1R̄ρσγρ1γρQ̂

2σiσjg
× ðjVi

σ1ðx; yÞjVj
σðy; xÞ − γ25jA

i
σ1ðx; yÞjAjσðy; xÞÞ

þ i
8
ieðαg2Þ2Trf ~S2Fμ1ν1; ~S2R̄μνR̄ρσσμ1ν1γμγρQ̂

2σiσjgðjVi
νðx; yÞjVj

σðy; xÞ − γ25jA
i
νðx; yÞjAjσðy; xÞÞ;

I4;ξ ¼ ie2ðαg2Þ2TrQ̂σiQ̂σjð ~S2R½A; γ5� ~S2R½A; γ5�ÞjiPðx; yÞjjPðy; xÞ

þ i
4
e2ðαg2Þ2TrQ̂σiQ̂σjð ~S2½γμ; A�R̄μν ~S2½γρ; A�R̄ρσÞjVi

νðx; yÞjVj
σðy; xÞ

þ i
4
e2ðαg2Þ2TrQ̂σiQ̂σjð ~S2fγμiγ5AgR̄μν ~S2fγρiγ5; AgR̄ρσÞjAiνðx; yÞjAjσðy; xÞ

þ i
4
e2ðαg2Þ2TrQ̂σiQ̂σjð ~S2½γμ; A�R̄μν ~S2½γρ; A�ðiγ5ÞR̄ρσÞjVi

νðx; yÞjAjσðy; xÞ
þ i2eðαg2Þ2TrM�ð ~S2Q̂σi½γμ; A�R̄μν ~S2RÞjVi

νðx; yÞjSðx; yÞ
þ i4ðαg2Þ2TrðM� ~S2RÞ2jSðx; yÞjSðy; xÞ
þ iðαg2Þ2TrðσiσjγμγρM� ~S2R̄μνM� ~S2R̄ρσÞjVi

νðx; yÞjVj
σðy; xÞ;

I4;der ¼ −i2eðαg2Þ2Trf ~S2RQ̂σi½A; γ5�; ~S2Rσj½γ5; γρ�gjiPðx; yÞ∂ρðjjPðy; xÞÞ

þ i2

2
eðαg2Þ2Trf ~S2R̄μνQ̂σið½γμ; A�Þ; ~S2R̄μ2ν2ðx − yÞσj½γρ; γμ2 �gjVi

νðx; yÞ∂ρðjjV;ν2ðy; xÞÞ

þ i2

2
eðαg2Þ2Trf ~S2R̄μνQ̂σið½γμ; A�Þ; ~S2R̄μ2ν2ðx − yÞσjγ5fγρ; γμ2ggjVi

νðx; yÞ∂ρðjjA;ν2ðy; xÞÞ

þ i2

2
eðαg2Þ2Trf ~S2R̄μνQ̂σifγμγ5; Ag; ~S2R̄μ2ν2ðx − yÞσj½γρ; γμ2 �gjAiνðx; yÞ∂ρðjjV;ν2ðy; xÞÞ

þ i4

2
eðαg2Þ2Trf ~S2R̄μνQ̂σifγμγ5; Ag; ~S2R̄μ2ν2ðx − yÞσjγ5fγρ; γμ2ggjAiνðx; yÞ∂ρðjjA;ν2ðy; xÞÞ;

Icross;B ¼ −
i
2
ðαg2Þ2e2Tr

�
~S2

�
Q̂2ðAμ2A

μ2 þ Aμ2Aν2σμ2ν2Þ þ
ie
2
Q̂σμ2ν2F

μ2ν2

�

× ~S2R̄μνR̄ρσðγμγρσiσj þ γργμσjσiÞγ5
�
jVi

νðx; yÞjAjσðy; xÞ: ð25Þ

The following traces of isospin and Dirac indices (TrF and TrD) will be used in the next steps:

TrFðσiσjÞ ¼ 2δij; ð26Þ

TrFðQ̂σiσjÞ ¼
1

3
δij þ iϵij3; ð27Þ

TrFðQ̂2σiσjÞ ¼
5

9
δij þ

i
3
ϵij3; ð28Þ

TrDðγμγνÞ ¼ 4gμν; ð29Þ

TrDðσμσσρμ2Þ ¼ 4ðgμμ2gσρ − gμρgσμ2Þ; ð30Þ

TrDðγ5γαγβγδγλÞ ¼ −4iϵαβδλ: ð31Þ
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By resolving the effective coupling constants in the long-wavelength limit, several of the terms above disappear. Besides
that, only the momentum derivatives of internal lines will be considered. The nonzero contributions of these expressions can
be written as

L4q ¼ ΔBM�ψ̄ψ þ g4;B½ðψ̄ψÞ2 þ ðψ̄σiiγ5ψÞ2� þ
�
3g4;B
5

iϵij3 þ gps;Bciδij

�
ðψ̄σiiγ5ψÞðψ̄σjiγ5ψÞ

þ
�
δij

�
g4v;B þ g4v;B2ci þ

g4v;B−F
3

þ g4v2;B

�
þ iϵij3

�
3

5
g4v;B þ g4v;B−F þ 3g4v2;B

��

× ½ðψ̄σiγμψÞðψ̄σjγμψÞ þ ðψ̄σiγμγ5ψÞðψ̄σjγμγ5ψÞ�
þ gs;sbðψ̄ψÞ2 þ gv;sbðψ̄σiγμψÞ2; ð32Þ

where the following notation was adopted in the terms depending on the coefficients ci with operators Γi:

ciðψ̄ΓiψÞ2 ¼ c1ðψ̄Γ1ψÞ2 þ c2ðψ̄Γ2ψÞ2 þ c3ðψ̄Γ3ψÞ2; ð33Þ

the following isospin coefficients being defined:

c1 ¼ −
4

9
; c2 ¼

4

9
; c3 ¼

5

9
; ð34Þ

These coefficients are responsible for the pseudoscalar, vector and axial quark-antiquark states (pion, rho, A1) couplings to
the magnetic field. In the first and second lines of expression (32) there are effective couplings dependent on the magnetic
field and in the last line those due to the explicit symmetry breaking discussed in Ref. [37]. The couplings g4;B and mainly
gps;B are responsible for extra contributions to the axial current and then they allow for chiral separation effect. Chiral and
isospin breaking terms also appear in the vector channel. The effective coupling constants are defined as

ΔBM� ¼ −i2e2ðαg2ÞTr½Q̂2 ~S2ðAμAμÞM� ~S2R�; ð35Þ

g4;B

�
1;

�
δij þ

3

5
iϵij3σ3

��
¼ −i2e2ðαg2Þ2Tr½Q̂2 ~S2AμAμ

~S2R2�ð1; γ25σiσjÞ; ð36Þ

g4v;B

�
δij þ

3

5
iϵij3σ3

�
gσ1σ ¼ −

i
2
e2ðαg2Þ2Tr½Q̂2σiσjγρ1γρ

~S2AμAμ
~S2R̄ρ1σ1R̄ρσ�; ð37Þ

gps;Bciδij ¼ −i2e2ðαg2Þ2Tr½Q̂σiQ̂σjð ~S2½A; γ5�RÞð ~S2½A; γ5�RÞ�; ð38Þ

g4v;B2ciδijgνσ ¼ −
i
4
e2ðαg2Þ2Tr½Q̂σiQ̂σj ~S2½γμ; A�R̄μν ~S2½γρ; A�R̄ρσ�; ð39Þ

g4v;B−Fðδij þ 3iϵij3σ3Þgνσ ¼
i
2
ieðαg2Þ2Tr½Q̂σiσjFμ1ν1 ~S2R̄μν ~S2R̄ρσσμ1ν1γμγρ�; ð40Þ

g4v2;Bðδij þ 3iϵij3σ3Þgνν2 ¼ −ieðαg2Þ2Tr½Q̂σiσjð∂σAρÞ½γμ; γσ�½γρ; γμ2 � ~S2R̄μν
~S2R̄μ2ν2 �; ð41Þ

gs;sb ¼ −i4ðαg2Þ2TrðM� ~S2RÞ2; ð42Þ

gv;sbδijgνσ ¼ −iðαg2Þ2Tr½σiσjγμγρM� ~S2R̄μν ~S2M�R̄ρσ�:
ð43Þ

By performing the traces in discrete indices, always by neglecting the quark derivative couplings, and by taking x ¼ −i ∂
∂qx

the above expressions can be written as

ΔBM� ¼ −i
40

9
ðeB0Þ2ðαg2ÞNcTr0½M� ~S2x2 ~S2R�; ð44Þ
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g4;B ¼ −i
40

9
ðeB0Þ2ðαg2Þ2NcTr0½ ~S2x2 ~S2R2�; ð45Þ

g4v;Bgσσ1 ¼ −i
40

9
ðeB0Þ2ðαg2Þ2NcTr0½ ~S2x2 ~S2R̄σσ1

2 �; ð46Þ

gps;Bcj ¼ −icj8ðeB0Þ2ðαg2Þ2NcTr0½ð ~S2xRÞ2�; ð47Þ

g4v;B2gνσcj ¼ −icjðeB0Þ2ðαg2Þ2NcTr0

× ½ ~S2xR̄μν ~S2xR̄ρσ�ð4gμygyρ − 2gμρgyyÞ; ð48Þ

g4v;B−F ¼ i
8

3
ðeB0Þðαg2Þ2NcTr0½ ~S2 ~S2R̄xy

2 �; ð49Þ

g4v2;B ¼ −i16ðeB0Þðαg2Þ2NcTr0

× ½Txy½8~S2ðRT − RLÞ ~S2ðRT − RLÞ
þ ~S2ðRT − RLÞ ~S2ðRT þ RLÞ��; ð50Þ

gs;sb ¼ −i32ðαg2Þ2NcTr0ðM� ~S2RÞ2; ð51Þ

gv;sbgνσ ¼ −i8ðαg2Þ2NcTr0½M�2 ~S2R̄νμ ~S2R̄σ
μ�; ð52Þ

where Txy ¼ kxky
k2 in expression (50) and Tr0 stands for the

trace or integral in internal momenta. Due to the structure of
R̄xy
2 in expression (24) the coupling g4v;B−F is nonzero only

for a nonzero transversal component of the gluon propa-
gator; i.e. if RT ¼ 0, it yields g4v;B−F ¼ 0.
In Fig. 1, the diagrams corresponding to the one-loop

terms presented above are shown. The wavy line with a full
dot is a (dressed) nonperturbative gluon propagator, and the
short thick line insertions stand for the vector potential
whereas the full triangle insertion stands for the magnetic
field insertion (Fμν). Figure 1(a) shows the contribution
to the effective mass due to the magnetic field, whereas
Figs. 1(b1)–1(b3) represent the quark-quark effective
interactions shown above.
The leading effective mass dependence on the magnetic

field, shown in Fig. 1(a), is of the order of ðeB0Þ2=M�3

instead of the leading correction obtained from the gap
equation

ffiffiffiffiffiffiffiffi
eB0

p
[5]. The leading coupling constants in the

expressions above are g4v2;B and g4v;B−F that are linearly
proportional to the magnetic field ∂μAν, eB0=M�2. The
corresponding diagram is shown in Fig. 1(b3). By
extracting 1=M�2 from ~S2 in the limit of large quark
effective mass, it produces a quantity proportional to the
dipole moment coupling itself eB0=ð2M�Þ. In spite of
the absence of a tensor current for the dipolar coupling in
the leading effective action, the magnetic field couples
directly to the vector or axial currents being a dipolar
interaction. All the other couplings—in expressions
(35)–(39)—have two insertions AμAμ introducing a larger
(and suppressing) momentum dependence in internal lines,
with corresponding factor ðeB0Þ2=ðM�Þ4. They are smaller
in the limit of large quark effective mass.

IV. RATIOS BETWEEN EFFECTIVE
COUPLING CONSTANTS

There are few ambiguities in performing numerical
estimates of the effective coupling constants found above.
The first reason is that the gluon propagator with its
infrared behavior is not really well known and results
depend strongly on it. Also, one has to choose a way of
performing the momenta or energy traces, for example in
Euclidean or Minkowski spaces, and this might yield
different numerical results. Furthermore, other effects in
the gluon sector, such as the B0 dependence of the quark-
gluon coupling or the gluon propagator itself, might be
expected to yield B dependence at least of the same order of
magnitude as the quark condensate (or quark effective
mass) from the gap equation [57]. Due to these reasons
numerical estimates will not be presented. Nevertheless,
below a few solutions for the gap equation are presented
with the intention to justify the approximations done, i.e. to
consider the quark effective mass from DChSB as the
leading effect of the auxiliary field and the large quark
effective mass expansion. With respect to the gap equation,
the behavior of the chiral condensate, and therefore of the

FIG. 1. In these diagrams, the wavy line with a full dot is a (dressed) nonperturbative gluon propagator, and the short bold line
insertions for the vector potential, whereas the full triangle is for the magnetic field insertion (Fμν). Diagram (a) shows the effective mass
due to the magnetic field contribution, whereas diagrams (b1)–(b3) represent all the quark-quark effective interactions shown above.
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quark effective mass, under a constant magnetic field has
been investigated extensively [2,57,58] and it has been
found that the increase of the quark condensate with the
(weak) magnetic field is due to the increase of the density of
states by accounting the lowest Landau levels with high
degeneracy in this regime. Besides that, magnetic catalysis
has also been related to the positivity of the scalar QED β
function [55].
To solve the gap equation (10) a longitudinal (confining)

effective gluon propagator was chosen of the form of
g2Rμν

abðkÞ ¼ KF=ðk2 þM2
gÞ2gμνδab for KF ¼ 8π3M2=9

[43,59]. This effective propagator incorporates the large
strength of the running coupling constant and, to some
extent, some of the relatively important issues of the
ultraviolet and infrared behavior of the gluon confining
propagator [43]. With this gluon propagator the gap
equation, as well as all the expressions for the effective
quarkmasses and effective coupling constants, is finite, i.e.
free of ultraviolet and infrared divergences. For example
consider Mg ¼ M ≃ 378 MeV, that is of the order of the
values discussed in Ref. [43] in spite of being relatively
smaller than the usual theoretical and lattice findings
[41,47]. For a current quark mass m ¼ 10 MeV, the
gap equation (10) is nonzero only for the scalar auxiliary
field s as defined, and it yields, for B0 ¼ 0, s0 ≃ 210 MeV
for which M� ≃ 220 MeV. For a weak magnetic field
z ¼ eB0

M�2 ¼ 0.1 the gap equation yields M�ðz ¼ 0.1Þ ¼
227 MeV. By considering MG ¼ 511 MeV, which is
closer to the values obtained in lattice QCD, it yields
M�ðz ¼ 0Þ ¼ 300 MeV and for weak magnetic field
M�ðz ¼ 0.1Þ ¼ 309 MeV.
The effective coupling constants presented above

can exhibit simple relations in the limit of large effec-
tive masses. For some of these effective coupling constants,
this is achieved in specific limits of the gluon kernels.
In the limit of very large quark effective mass, i.e. for
~S2 → 1=M�2, some of these ratios are independent of the
chosen component for the gluon propagator [RTðx − yÞ or
RLðx − yÞ], i.e.

ΔM�
B

ΔM� ∼
5

9

ðeB0Þ2
M�4 ;

g4;B
g4

∼
5

9

ðeB0Þ2
M�4 ;

gps;B
g4;B

∼
9

5
;

g4v;B2
g4v;B

∼
27

40
: ð53Þ

For other effective coupling constants, still in the limit of
very large effective quark mass M�, it is possible to obtain
simple relations by considering particular relative contri-
butions of the longitudinal and transversal components of
the gluon propagator. In the following it will be considered
that any of the two components present an effective gluon
mass. The ratios will be computed in the limit of large
masses RT=L ∼ 1=Mn

G for n ¼ 2, 4, by keeping MG > M�.

If it is assumed RL ¼ 0, then the following ratios are
obtained:
�
g4;B
g4v;B

�
T
∼
3

4
;

�
g4;B−F
g4;B

�
T
∼

3

20

M�2

eB0

;

�
g4;B
g4v2;B

�
T
∼
80

9

eB0

M�2 ; ð54Þ

whereas for RT ¼ 0 it yields
�
g4;B
g4v;B

�
L
∼
1

4
;

�
g4;B−F
g4;B

�
L
∼ 0;

�
g4;B
g4v2;B

�
L
∼
80

63

eB0

M�2 : ð55Þ

All the coupling constants of the order of B0 or B2
0 are

smaller than the NJL coupling, from expression (23), since
a large effective quark mass expansion has been done: i.e.
ðeB0Þ
M�2 < 1 or ðeB0Þ

M�2 ≪ 1. However, by increasing the magnetic
field strength this expansion still may be reliable up to some
limit by computing higher orders terms (nth order
expansion). This produces further quark-quark effective
interactions dependent on Bn−j

0 where j ¼ 0; 1; 2…n.
Consequently the complete account of the Landau orbits
that could be done for the quark kernel [2,58] emerges as a
series in powers of the magnetic field in agreement
with [60].

V. SUMMARY AND CONCLUSIONS

By departing from a (dressed) one-gluon exchange
mechanism for the quark-quark interaction, different lead-
ing quark-quark effective interactions due to polarization
were derived in the presence of a weak magnetic field, i.e.
eB0 ≪ M�2. The relevant assumption for the GCM is that
the gluon propagator is dressed by nonperturbative effects
due to the non-Abelian character of gluon interactions. The
one-loop BFMmethod was applied with a correction due to
the auxiliary field method. However only the leading effect
of the auxiliary fields was considered, that is the correction
to the quark effective mass. The one-loop quark effective
action in the presence of the background field was
expanded for large quark effective mass and weak magnetic
field up to the second order in quark bilinears and to leading
order in the magnetic field. The (leading) first and second
order B0-dependent terms provided corrections to the
background quark mass and effective interactions such
as the usual NJL and vector NJL ones, besides new chiral
and isospin symmetry breaking terms. They correspond to
the different couplings of the magnetic field to pseudo-
scalar, vector and axial isospin triplets states. The set of B0-
dependent interactions from expressions (32) is given by
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L4q ¼ ΔBM�ψ̄ψ þ g4;B½ðψ̄ψÞ2 þ ðψ̄σiiγ5ψÞ2� þ
�
3g4;B
5

iϵij3 þ gps;Bciδij

�
ðψ̄σiiγ5ψÞðψ̄σjiγ5ψÞ

þ
�
δij

�
g4v;B þ g4v;B2ci þ

g4v;B−F
3

þ g4v2;B

�
þ iϵij3

�
3

5
g4v;B þ g4v;B−F þ 3g4v2;B

��

× ½ðψ̄σiγμψÞðψ̄σjγμψÞ þ ðψ̄σiγμγ5ψÞðψ̄σjγμγ5ψÞ�
þ gs;sbðψ̄ψÞ2 þ gv;sbðψ̄σiγμψÞ2: ð56Þ

The mass correction ΔBM is positive as expected from the
usual magnetic catalysis analysis from the NJL-type gap
equation. However this effective mass contribution for a
weak field is of the order of ðeB0Þ2=M�3 whereas the
leading contribution from the gap equation for a weak B
field is of the order of

ffiffiffiffiffiffiffiffi
eB0

p
. The gap equation for the

auxiliary field was found to depend on the magnetic field as
usually investigated for NJL or GCM-type models. Almost
all the effective coupling constants are of the order of
ðeB0Þ2=M�4 except two of them, g4v2;B and g4v;B−F, are
OðeB0=M�2Þ, corresponding therefore to dipolar couplings
in spite of the absence of the tensor current. These two
effective couplings are the leading ones being that g4v;B−F is
nonzero only if the gluon propagator has a transversal
component. There are overall corrections to the NJL and
vector-NJL coupling constants, respectively, given by g4;B
and g4v;B, g4v;B−F and g4v2;B. The effective coupling
constant g4;B enhances the strength of the quark scalar
interaction. This might be seen as an increase of the
strength of quark interactions that produce dynamical chiral
symmetry breaking. Although this may suggest that
DChSB can be obtained for zero NJL coupling constant
(g4 → 0) when g4;B ≠ 0, this might be misleading in the
sense that in the present development both effective
couplings have the same physical origin, namely the quark
polarization with a quark-gluon coupling g2. The physical
content of magnetic catalysis would be clearer in this sense
by considering a different mechanism for one of the two
effective interactions (g4 or g4;B). The effective coupling
g4v2;B is also positive and therefore it might contribute to
the vector condensation in the vacuum [11]. However some
new couplings appear signaling the emergence of pseudo-
scalar and vector or axial multiplets with a different

interaction with the magnetic field, i.e. different electric
charge (þ, − and 0). These couplings therefore break chiral
and isospin symmetries. In particular the effective cou-
plings g4;B and gps;B yield pion interactions with the
magnetic field. The vector couplings to the magnetic field
are g4v;B, g4v;B2, g4v;B−F and g4v2;B providing the different
couplings in the vector and axial channels therefore related
to the ρ and A1 triplets. The two couplings due to the
explicit symmetry breaking, gs;sb and gv;sb, have already
been investigated in Ref. [37]. The analytical ratios
exhibited in Sec. IV are very specific to the limit in which
the large quark effective mass is smaller than an effective
gluon mass that is expected to be present in a non-
perturbative gluon propagator [47]. Other limits could be
considered and will be presented elsewhere. The main
sources of possible improvements are the simplified mo-
mentum dependence of the internal lines and the inclusion
of auxiliary fields which however will produce numerically
smaller contributions. Higher order interactions of the
expansion of the quark determinant considered in this
manuscript yield corrections for stronger magnetic fields
with increasing powers of eB0 for the effective coupling
constants. Alternatively, the whole summation over the
Landau levels for internal quark lines (quark kernel) can be
considered for arbitrary values of the magnetic field. Pion
and quark B0-dependent effective interactions will be
investigated elsewhere.
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