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The variational approach to QCD in Coulomb gauge is revisited. By assuming the non-Abelian Coulomb
potential to be given by the sum of its infrared and ultraviolet parts, i.e. by a linearly rising potential and an
ordinary Coulomb potential, and by using a Slater determinant ansatz for the quark wave functional, which
contains the coupling of the quarks and the gluons with two different Dirac structures, we obtain variational
equations for the kernels of the fermionic vacuum wave functional, which are free of ultraviolet
divergences. Thereby, a Gaussian-type wave functional is assumed for the gluonic part of the vacuum.
By using the results of the pure Yang-Mills sector for the gluon propagator as input, we solve the equations
for the fermionic kernels numerically and calculate the quark condensate and the effective quark mass in
leading order. Assuming a value of σC ¼ 2.5σ for the Coulomb string tension (where σ is the usual
Wilsonian string tension) the phenomenological value of the quark condensate hψ̄ψi≃ ð−235 MeVÞ3 is
reproduced with a value of g≃ 2.1 for the strong coupling constant of the quark-gluon vertex.
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I. INTRODUCTION

In recent years the vacuum sector of Yang-Mills theory
was treated within the Hamiltonian approach in Coulomb
gauge using the variational principle [1–3]. In the approach
of Ref. [3], the Gribov-Zwanziger confinement scenario
[4,5] was found to be realized [6]: A linearly rising static
quark potential, as well as infrared (IR) diverging ghost
form factor and gluon energy [see Eq. (36) below] were
found. The latter could be nicely fitted by Gribov’s
formula [4,7].
In Ref. [8], the variational approach to Yang-Mills theory

in Coulomb gauge was extended to full quantum chromo-
dynamics (QCD). Thereby the coupling of the quarks to the
gluons was included in the (fermionic) vacuum wave
functional by a single Dirac structure corresponding to
the quark-gluon coupling in the QCD Hamiltonian. In
Ref. [9], a second Dirac structure for the quark-gluon
coupling was included. Thereby it was observed that the
leading (linear) order ultraviolet (UV) divergences cancel
in the gap equation for the scalar variational kernel.
However, in Ref. [9] the Coulombic part of the non-
Abelian Coulomb term was not properly included due to
a sign error. Here we show that with the proper inclusion of
the Coulombic part of the non-Abelian Coulomb potential
all UV divergences cancel in the quark gap equation. The
latter is solved numerically and results are presented for the
quark condensate and the effective quark mass.
The organization of the paper is as follows: In the next

section, we present the QCD Hamiltonian in Coulomb
gauge and summarize some results obtained for the pure
Yang-Mills theory, which serve as input for the quark
sector. The variational ansatz for the QCD vacuum wave
functional as well as the variational equations of motion are

presented in Sec. III A. The UV behavior of these equations
is discussed in Sec. III B, while the static quark propagator
and the chiral condensate are given in Sec. III C. The
numerical solution of the variational equations of motion is
presented in Sec. IV and some concluding remarks are
given in Sec. V.

II. THE QCD-HAMILTONIAN
IN COULOMB GAUGE

The QCD Hamiltonian in Coulomb gauge, ∇ · A ¼ 0,
reads [8]

HQCD ¼ HYM þHQ þHC; ð1Þ

where

HYM ¼ 1

2

Z
d3xðJ−1½A�ΠðxÞJ½A�ΠðxÞ þ B2ðxÞÞ ð2Þ

is the Hamiltonian of the transversal components of the
gauge field. Here

Πa
kðxÞ ¼

δ

iδAa
kðxÞ

ð3Þ

is the operator of the canonical momentum of the gluons
(which represents the color electric field) and

Ba
kðxÞ ¼ εklm

�
∂lAa

mðxÞ −
g
2
fabcAb

l ðxÞAc
mðxÞ

�
ð4Þ

is the non-Abelian color magnetic field (g is the bare strong
coupling constant and f is the structure constant of the
color group). Furthermore,
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J½A� ¼ detðĜ−1Þ ð5Þ

is the Faddeev-Popov determinant where

ðĜ−1Þabðx; yÞ ¼ ð−∇ · D̂Þabðx; yÞ ð6Þ

denotes the Faddeev-Popov operator containing the covar-
iant derivative in adjoint representation,

D̂ab
k ðxÞ ¼ δab∂k − gfacbAc

kðxÞ: ð7Þ

The second term in Eq. (1) denotes the Dirac Hamiltonian
of the quark field ψ interacting with the gauge field A,1

HQ ¼
Z

d3xψ†ðxÞα · ð−i∇þ gtaAaðxÞÞψðxÞ ð8Þ

with t being the generator of the color group in the
fundamental representation. Finally, the third term in
Eq. (1), the so-called Coulomb term

HC ¼ g2

2

Z
d3x

Z
d3yJ−1½A�ρaðxÞJ½A�F̂abðx; yÞρbðyÞ; ð9Þ

stems from the longitudinal components of the canonical
momentum operator after resolving Gauß’s law. Here

F̂abðx; yÞ ¼
Z

d3zĜacðx; zÞð−ΔzÞĜcbðz; yÞ ð10Þ

is the Coulomb kernel and

ρaðxÞ ¼ ρaYMðxÞ þ ρaQðxÞ
¼ fabcAbðxÞ · ΠcðxÞ þ ψ†ðxÞtaψðxÞ ð11Þ

is the color density of the gluons and quarks. Up to two-
loop order in the energy, it is sufficient to replace the
Coulomb kernel by its gluonic expectation value

g2hF̂abðx; yÞiYM ¼ δabVCðjx − yjÞ ð12Þ

(which yields the static color potential VC) and to use the
Gaussian functional

J½A� ¼ exp
�
−
Z

d3x
Z

d3yAa
kðxÞχabkl ðx; yÞAb

l ðyÞ
�

ð13Þ

for the Faddeev-Popov determinant where

χabkl ðx; yÞ ¼ −
1

2

�
δ

δAa
kðxÞ

δ

δAb
l ðyÞ

ln J½A�
�

YM
ð14Þ

is the ghost loop referred to as curvature [10]. The actual
calculation performed in Ref. [6] shows that the Coulomb
potential (12) can be nicely fitted by a superposition of a
linearly rising and an ordinary Coulomb term, i.e. by a sum
of its IR and UV limits,

VCðrÞ ¼ −σCrþ
αS
r
; ð15Þ

where σC is the so-called Coulomb string tension and
αS ¼ g2=4π. The UV part of the potential (the second term)
is dictated by perturbation theory and should not be
confused with a ∼1=r correction to the infrared part of
the potential (the so-called Lüscher term). We ignore here a
possible Lüscher term in the Coulomb potential.

III. VARIATIONAL APPROACH

A. Variational ansatz and equations of motion

Following Ref. [9], we use the ansatz

jϕ½A�i ¼ ϕYM½A�jϕQ½A�i ð16Þ

for the QCD vacuum wave functional where the gluonic
part is given by the Gaussian-type functional

ϕYM½A� ¼ N I−
1
2½A�J−1

2½A� ~ϕYM½A�; ð17aÞ

~ϕYM½A� ¼ exp

�
−
1

2

Z
d3x

Z
d3yAa

kðxÞωðx; yÞAa
kðyÞ

�
;

ð17bÞ

with a normalization factor N , the fermionic determinant
I ¼ hϕQjϕQi and ω being a variational kernel. For the
quark part the ansatz [9]

jϕQ½A�i ¼ exp

�
−
Z

d3x
Z

d3yψ†
þðxÞKðx; yÞψ−ðyÞ

	
j0i

ð18Þ

is assumed, where ψ� denotes the positive/negative spec-
tral projection of the field operator, j0i is the bare fermionic
vacuum (Dirac sea) and

Kðx; yÞ ¼ βSðx; yÞ þ g
Z

d3z½Vðx; y; zÞ

þ βWðx; y; zÞ�α · AaðzÞta ð19Þ

contains three variational kernels S, V, W, which, together
with ω, have to be determined by minimizing the ground
state energy. The ansatz (18) and (19) for the quark wave
functional reduces for V ¼ W ¼ 0 to the BCS-type wave
functional used in Refs. [11–14] and for W ¼ 0 to the
ansatz considered in Ref. [8].

1For simplicity, we consider only one single chiral, i.e.
massless, quark flavor.

CAMPAGNARI, EBADATI, REINHARDT, and VASTAG PHYSICAL REVIEW D 94, 074027 (2016)

074027-2



In Ref. [9], the vacuum energy hHQCDi≡ hϕjHQCDjϕi
was calculated with the wave functional (16) up to
including two loops. This is conveniently done in momen-
tum space. We use the same convention as in Ref. [9] for
the kernels (đ≡ d=2π),

Sðx; yÞ ¼
Z

đ3p expðip · ðx − yÞÞSðpÞ; ð20Þ

Vðx; y; zÞ ¼
Z

đ3p
Z

đ3q expðip · ðx − zÞÞ

× expðiq · ðy − zÞÞVðp; qÞ; ð21Þ

and analogous definitions for the Fourier transforms of
ωðx; yÞ andWðx; y; zÞ. Here we have exploited translational
and rotational invariance and overall momentum conser-
vation. The quark field is expanded as

ψmðxÞ ¼
Z

đ3p
1ffiffiffiffiffiffi
2p

p expðip · xÞðas;mðpÞusðpÞ

þ bs;m†ð−pÞvsð−pÞÞ ð22Þ

where a (b) denotes the annihilation operator for an (anti)
quark state and u (v) is the Dirac eigenspinor with positive

(negative) eigenvalue. Furthermore, s ¼ �1 is the double
of the spin projection.
Variation of hHQCDi with respect to the scalar kernel S

yields the following integral equation [9]

kSðkÞ ¼ IQCðkÞ þ IQVVðkÞ þ IQWWðkÞ þ IQVQðkÞ
þ IQWQðkÞ þ IQEðkÞ ð23Þ

to which we will refer as (quark) gap equation. Here,

IQCðkÞ ¼
CF

2

Z
đ3pVCðjp − kjÞPðpÞ½SðpÞð1 − S2ðkÞÞ

− SðkÞð1 − S2ðpÞÞp̂ · k̂� ð24Þ

is the contribution of the Coulomb term HC (9) with the
Casimir factor CF ¼ ðN2

C − 1Þ=2NC and

VCðpÞ ¼
8πσC
p4

þ 4παS
p2

¼ VIR
C ðpÞ þ VUV

C ðpÞ ð25Þ

being the Coulomb potential (15) in momentum space.
Furthermore,

IQVVðkÞ ¼ −
CF

2
g2

Z
đ3p

V2ðp; kÞ
ωðjpþ kjÞXðp; kÞPðpÞfkPðkÞSðkÞ½−3þ S2ðkÞ� þ pPðpÞSðkÞ½−1þ S2ðpÞ�

þ kPðkÞSðpÞ½1 − 3S2ðkÞ� þ pPðpÞSðpÞ½1 − S2ðkÞ�g; ð26Þ

IQWWðkÞ ¼ −
CF

2
g2

Z
đ3p

W2ðp; kÞ
ωðjpþ kjÞYðp; kÞPðpÞfkPðkÞSðkÞ½−3þ S2ðkÞ� þ pPðpÞSðkÞ½−1þ S2ðpÞ�

− kPðkÞSðpÞ½1 − 3S2ðkÞ� − pPðpÞSðpÞ½1 − S2ðkÞ�g ð27Þ

result from the free single particle Dirac Hamiltonian,

IQVQðkÞ ¼
CF

2
g2

Z
đ3p

Vðp; kÞ
ωðjpþ kjÞXðp; kÞPðpÞ½SðpÞð1 − S2ðkÞÞ − 2SðkÞ�; ð28Þ

IQWQðkÞ ¼
CF

2
g2

Z
đ3p

Wðp; kÞ
ωðjpþ kjÞYðp; kÞPðpÞ½1 − S2ðkÞ − 2SðkÞSðpÞ� ð29Þ

are the contributions stemming from the quark-gluon coupling in the Dirac Hamiltonian HQ (8) and, finally,

IQEðkÞ ¼
CF

2
g2SðkÞ

Z
đ3pV2ðp; kÞXðp; kÞPðpÞ þ CF

2
g2SðkÞ

Z
đ3pW2ðp; kÞYðp; kÞPðpÞ ð30Þ

results from the action of the operator of the gluonic kinetic energy HYM (2) on the quark wave functional. In the above
equations, we have used the abbreviations (p̂ ¼ p=p)

PðpÞ ¼ 1

1þ S2ðpÞ ; ð31Þ
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Xðp; qÞ ¼ 1 − ½p̂ · dðpþ qÞ�½q̂ · dðpþ qÞ�; ð32Þ

Yðp; qÞ ¼ 1þ ½p̂ · dðpþ qÞ�½q̂ · dðpþ qÞ�: ð33Þ

The variational equations for the quark-gluon coupling kernels V andW can be explicitly solved in terms of SðpÞ and ωðpÞ
yielding [9]

Vðk; k0Þ ¼ 1þ SðkÞSðk0Þ
kPðkÞð1 − S2ðkÞ þ 2SðkÞSðk0ÞÞ þ k0Pðk0Þð1 − S2ðk0Þ þ 2SðkÞSðk0ÞÞ þ ωðjkþ k0jÞ ð34Þ

and

Wðk; k0Þ ¼ SðkÞ þ Sðk0Þ
kPðkÞð1 − S2ðkÞ − 2SðkÞSðk0ÞÞ þ k0Pðk0Þð1 − S2ðk0Þ − 2SðkÞSðk0ÞÞ þ ωðjkþ k0jÞ : ð35Þ

In principle, our approach yields also a variational integral
equation for the gluon propagator ∼ω−1ðpÞ, see Ref. [9].
However, here we perform a quenched calculation and use
for ωðpÞ Gribov’s formula [4]

ωðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM4

G

p2

s
ð36Þ

which nicely fits the lattice data with a Gribov mass of
MG ≃ 880 MeV [7].

B. UV behavior

Assuming that the scalar kernel S is vanishing suffi-
ciently fast in the UVas expected from asymptotic freedom,
one finds that the loop terms on the rhs of the gap equation
(23) containing the vector kernel V yield the UV divergence

CF

16π2
g2SðkÞ

�
−2Λþ k ln

Λ
μ

�
−
2

3
þ 4PðkÞ

�	
ð37Þ

(Λ is the UV cutoff and μ an arbitrary momentum scale)
while the loop terms containing the vector kernel W give

CF

16π2
g2SðkÞ

�
2Λþ k ln

Λ
μ

�
10

3
− 4PðkÞ

�	
: ð38Þ

Finally, the loop contribution (24) of the Coulomb potential
gives rise to the UV divergence2

−
CF

6π2
g2kSðkÞ lnΛ

μ
: ð39Þ

The crucial point now is that the sum of these UV divergent
contributions vanish so that the quark gap equation (23) is

in fact UV finite. As one observes from Eqs. (37) and (38),
the cancellation of the linear UV divergences requires the
inclusion of both Dirac structures of the quark-gluon
coupling in the vacuum wave functional (18) and (19).
Cancellation of the logarithmic UV divergences demands
in addition the inclusion of the UV part of the Coulomb
potential, VUV

C ðpÞ (25).3

C. Static quark propagator and chiral condensate

The static quark propagator

Gmn
ij ðx; yÞ ¼ 1

2
h½ψm

i ðxÞ;ψn
j
†ðyÞ�i ð40Þ

can be calculated along the same lines as the ground state
energy and reads in momentum space (up to including one-
loop terms) [9]

GðpÞ ¼ PðpÞ
2

½1 − S2ðpÞ − IαðpÞ�α · p̂

þ PðpÞ½SðpÞ − IβðpÞ�β; ð41Þ

where the loop terms are given by

IαðpÞ ¼CFg2
Z

đ3q
PðpÞPðqÞ
ωðjpþ qjÞ

× ½V2ðp;qÞXðp;qÞð1þ 2SðpÞSðqÞ−S2ðpÞÞ
þW2ðp;qÞYðp;qÞð1− 2SðpÞSðqÞ−S2ðpÞÞ�; ð42Þ

2Note that this UV divergence is exclusively stemming from
the UV part of the Coulomb potential VUV

C ðpÞ (25) while its IR
part VIR

C ðpÞ yields UV finite contributions.

3In Ref. [9] due to the wrong sign of the Coulombic term
VUV
C ðpÞ (25) the cancellation of the logarithmic UV divergences

was missed.
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IβðpÞ ¼
CF

2
g2

Z
đ3q

PðpÞPðqÞ
ωðjpþ qjÞ

× ½V2ðp; qÞXðp; qÞð2SðpÞ − SðqÞ þ S2ðpÞSðqÞÞ
þW2ðp; qÞYðp; qÞð2SðpÞ þ SðqÞ − S2ðpÞSðqÞÞ�:

ð43Þ

The UV analysis of these loop contributions yields the
following, divergent behavior:

IαðpÞ ¼
CFg2

8π2
ð1 − S2ðpÞÞ lnΛ

μ
þ finite terms ð44Þ

IβðpÞ ¼
CFg2

8π2
SðpÞ lnΛ

μ
þ finite terms: ð45Þ

The quark propagator (41) can be rewritten in the
quasiparticle form

GðpÞ ¼ ~ZðpÞ α · pþ β ~MðpÞ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ~M2ðpÞ

q ð46Þ

with an effective quark mass function

~MðpÞ ¼ 2p½SðpÞ − IβðpÞ�
1 − S2ðpÞ − IαðpÞ

ð47Þ

and the field renormalization factor

~ZðpÞ ¼ PðpÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1 − S2ðpÞ − IαðpÞ�2 þ 4½SðpÞ − IβðpÞ�2

q
:

ð48Þ

From the expression (46) for the static quark propagator
one finds for the chiral quark condensate

hψ̄ðxÞψðxÞi ¼ −trðβGðx; xÞÞ

¼ −2NC

Z
đ3p

~ZðpÞ ~MðpÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ ~M2ðpÞ

q : ð49Þ

Spontaneous breaking of chiral symmetry, hψ̄ψi ≠ 0,
obviously requires a nonvanishing mass function ~M (47)
(or scalar kernel S).
The one-loop terms [(42) and (43)] in the propagator (41)

give rise to two-loop terms in the quark condensate. When
their UV-divergent pieces are removed by counterterms in a
minimal subtraction scheme, we find that the finite con-
tributions to the loop integrals [(42) and (43)] have only a
small effect (some percent) to the quark condensate and
will hence be ignored in the following. The quark con-
densate is then given by

hψ̄ðxÞψðxÞi ¼ −2NC

Z
đ3p

MðpÞ
EðpÞ ; ð50Þ

where the mass function (47) is now given by

MðpÞ ¼ 2pSðpÞ
1 − S2ðpÞ ð51Þ

and

EðpÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þM2ðpÞ

q
ð52Þ

plays the role of a quasiparticle energy.

IV. NUMERICAL RESULTS

For the numerical solution of the quark gap equation (23)
it is convenient to rewrite it in terms of the mass function
(51). This yields

MðkÞ ¼ IQ
CðkÞ þ IQ

VVðkÞ þ IQ
WWðkÞ þ IQ

VQðkÞ
þ IQ

WQðkÞ þ IQ
EðkÞ; ð53Þ

where the loop terms on the rhs are given by

IQ
CðkÞ ¼

CF

2

Z
đ3pVCðjpþ kjÞMðpÞ þMðkÞ p·kk2

EðpÞ ; ð54Þ

IQ
VVðkÞ ¼ −

CF

2
g2

Z
đ3p

V2ðp; kÞ
ωðjpþ kjÞXðp; kÞ

�
−
EðpÞ þ p
2EðpÞ MðkÞEðkÞ þ 2k

EðkÞ

−p2
EðpÞ þ p
2E2ðpÞ

MðkÞ
k

þ MðpÞ
2EðpÞ

EðkÞ þ k
EðkÞ ½−EðkÞ þ 2k� þ pMðpÞEðpÞ þ p

2E2ðpÞ
�
; ð55Þ

IQ
WWðkÞ ¼ −

CF

2
g2

Z
đ3p

W2ðp; kÞ
ωðjpþ kjÞYðp; kÞ

�
−
EðpÞ þ p
2EðpÞ MðkÞEðkÞ þ 2k

EðkÞ

−p2
EðpÞ þ p
2E2ðpÞ

MðkÞ
k

−
MðpÞ
2EðpÞ

EðkÞ þ k
EðkÞ ½−EðkÞ þ 2k� − pMðpÞEðpÞ þ p

2E2ðpÞ
�
; ð56Þ
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IQ
VQðkÞ ¼

CF

2
g2

Z
đ3p

Vðp; kÞ
ωðjpþ kjÞXðp; kÞ

�
MðpÞ
EðpÞ −

EðpÞ þ p
EðpÞ

MðkÞ
k

	
; ð57Þ

IQ
WQðkÞ ¼

CF

2
g2

Z
đ3p

Wðp; kÞ
ωðjpþ kjÞYðp; kÞ

�
EðpÞ þ p
EðpÞ −

MðpÞ
EðpÞ

MðkÞ
k

	
; ð58Þ

IQ
EðkÞ ¼

CF

2
g2

MðkÞ
k

Z
đ3pV2ðp; kÞXðp; kÞEðpÞ þ p

2EðpÞ þ CF

2
g2

MðkÞ
k

Z
đ3pW2ðp; kÞYðp; kÞEðpÞ þ p

2EðpÞ ð59Þ

while the vector kernels (34) and (35) read

Vðp; qÞ ¼
1þ EðpÞ−p

MðpÞ
EðqÞ−q
MðqÞ

p2

EðpÞ ½1þ MðpÞ
p

EðqÞ−q
MðqÞ � þ q2

EðqÞ ½1þ MðqÞ
q

EðpÞ−p
MðpÞ � þ ωðjpþ qjÞ

ð60Þ

and

Wðp; qÞ ¼
EðpÞ−p
MðpÞ þ EðqÞ−q

MðqÞ
p2

EðpÞ ½1 − MðpÞ
p

EðqÞ−q
MðqÞ � þ q2

EðqÞ ½1 − MðqÞ
q

EðpÞ−p
MðpÞ � þ ωðjpþ qjÞ

: ð61Þ

Let us stress that the transformation of the gap equation (23)
for S to the equation (53) for M (51) is exact, i.e. Eqs. (23)
and (53) are completely equivalent even if Eq. (51) is only
the leading-order expression for the mass function ~M (47).
In the following, we make some remarks on the

numerical solution of the quark gap equation (53). In the
limit g ¼ 0, this equation was already solved in a number
of previous papers, see Refs. [14,15]. However, the
numerical method given e.g. in Ref. [15] is not applicable
to the full equation (53). This is because this method
separates an IR finite term into two IR divergent terms,
which would suppress the remaining IR finite terms of the
full equation (53).
In order to solve the gap equation (53), we first shift the

loop momentum pþ k → q which simplifies the handling
of the apparent IR divergence of VIR

C ðqÞ at q ¼ 0. After
switching to spherical coordinates for q, the integration
over the azimuthal angle becomes trivial yielding a factor
of 2π while for the polar angle the common substitution
q̂ · k̂ ¼ z is used. The remaining integrations over z and
jqj ¼ q are carried out by means of a standard Gauß-
Legendre quadrature thereby introducing finite IR (κ) and
UV (λ) cutoffs for the q-integration.4 The numerical
solution is stable for reasonable values of the cutoffs
(κ > 0.8 MeV, λ < 16 GeV). The number of sampling
points for the z-integration manifests itself in the numerical
result as second scale (beside the physical scale given by
the Coulomb string tension σC). This can be clearly seen in

Fig. 1 where the mass function for g ¼ 0 is presented on a
logarithmic scale. In the UV, the numerical solution shows
a power-law behavior up to a critical momentum where a
bending sets in. The appearance of this critical momentum
is an artifact of our numerical procedure. Increasing the
number of integration points of the angular integral shifts
this critical momentum to higher values. For simplicity, we
calculate the numerical solution only for a moderate
number of sampling points (∼30) and determine the UV
behavior of MðpÞ by fitting it to a power law.
In the numerical calculation, we use a Coulomb string

tension of σC ¼ 2.5σ, where σ ¼ ð440 MeVÞ2 is the
Wilsonian string tension. This value is favored by the

FIG. 1. Numerical solution of the gap equation (53) for
g ¼ 0 for different numbers of z-integration points in physical
units and on logarithmic scale. The straight line shows a power
law fit to the data for 20 integration points and momenta between
1.7 GeV < p < 3.0 GeV.

4Note that the IR cutoff serves as regulator for the apparent
divergence of the Coulomb term.
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lattice calculation reported in Ref. [16] where a lattice of
size 323 × 128 was used. In general, the value of σC cannot
be extracted from the lattice calculation very accurately.
However, existing lattice calculations show the general
features that σC decreases with increasing lattice size and
with improved quality of the Coulomb gauge fixing. In
Ref. [17], a large lattice of 483 × 192 was used and a
Coulomb string tension of σC ≃ 1.74σ was found. In
Ref. [18] with a similar lattice size of 484, a similar value
of σC ≃ ð1.6� 0.2Þσ was found. The rather large value of
σC ¼ 4σ found in Ref. [19] was very likely due to the use of
a small lattice of 244. One should also mention that the
value of σC can be modified by dynamical quarks.
However, we expect unquenching effects on σC to be small
since the non-Abelian Coulomb potential does not capture
gluon screening effects. These effects have to be added
afterwards to turn the Coulomb potential into the physical
potential [19].

The quark-gluon coupling constant g is adjusted to
reproduce the phenomenological value of the quark con-
densate hψ̄ψi≃ ð−235 MeVÞ3 [20]. This yields g≃ 2.1,
which corresponds to a value of the running coupling
constant (calculated in Ref. [6] from the ghost-gluon
vertex) in the mid-momentum regime.5

Figures 2 and 3 show the numerical solution of the quark
gap equation (53) for the mass function M (51) and the
scalar kernel S, respectively. For the sake of comparison we
also show the solution when the coupling of the quarks to
the transversal gluon is neglected (g ¼ 0, Adler-Davis
model [12]). As one observes the inclusion of the coupling
to the transversal gluons does not practically alter the IR
behavior of S and M, while it does change the mid- and

(a) (b)

FIG. 2. Numerical solution of the quark gap equation (53) for the mass function M (51) comparing the results for g≃ 2.1 (full curve)
and g ¼ 0 (dashed curve). Differences occur mostly in the UVas can be seen on a logarithmic scale (a) while on a linear scale (b) both
solutions show almost the same behavior. Note that the straight lines refer to fitting functions while numerical data points are marked by
crosses/boxes.

(a) (b)

FIG. 3. Numerical solution of the quark gap equation (53) for the scalar kernel S for g≃ 2.1 (full curve) and g ¼ 0 (dashed curve) on a
(a) logarithmic and (b) linear scale.

5The obtained IR value of the running coupling constant is
g ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8π2=NC

p ≃ 5.13 for SUð3Þ [21].
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large momentum regime. This comes as no surprise: The IR
behavior of the gap equation (23), (53) is dominated by the
IR part of the Coulomb potential, VIR

C ðpÞ ∼ 1=p4, which is
present also in the Adler-Davis model. Therefore we expect
the same IR behavior for g ¼ 0 and g ≠ 0. The coupling of
the quarks to the gluons induces terms in the gap equa-
tion (23), which are IR subleading and, in fact, are of the
same order as the term arising from the UV part of the
Coulomb potential VUV

C ðpÞ (25), as the cancellation of
the UV divergences shows, see Eqs. (37), (38) and (39). If
the linearly rising part of the non-Abelian Coulomb
potential VIR

C , Eq. (15), is neglected (σC ¼ 0), only the
trivial solution is found, MðpÞ ¼ 0, implying that chiral
symmetry is not broken spontaneously.
For the calculation of the quark condensate we fit the

mass function M for small and mid-momenta by the
analytic expression

MIR
fit ðpÞ ¼

m0

1þ ð p
mA
ÞA þ ð p

mB
ÞB : ð62Þ

For g≃ 2.1 the optimized fit parameters read

m0 ¼ 135 MeV mA ¼ 673 MeV mB ¼ 392 MeV

A ¼ 3.578 B ¼ 1.910: ð63Þ

Above p≃ 1 GeV, we use the power law fit

MUV
fit ðpÞ ¼ mC

�
p
mC

�
C

ð64Þ

with the fit parameters mC ¼ 279 MeV and C ¼ −2.466.
As can be seen from Fig. 2(a), this yields a suitable fit
to the numerical data points. From Eq. (62), we can
conclude that the IR limit of the mass function is given

by Mðp → 0Þ≃ 135 MeV which is almost the same as
for the Adler-Davis model (133 MeV). However, the UV
exponent C obtained from (64) is much higher than that
of the numerical solution for g ¼ 0 (−4.54).6 The larger
UV exponent implies a larger quark condensate. At
g≃ 2.1, the chiral condensate obtained reaches its phe-
nomenological value hψ̄ψi≃ ð−235 MeVÞ3 which is
significantly larger than that of the Adler-Davis model,
ð−185 MeVÞ3.
Using the algebraic fit (62) and (64), we find for the

vector kernels Vðp; qÞ (34) and Wðp; qÞ (35) the result
shown in Fig. 4 for the section p ¼ q. Although both
kernels have a similar shape, the (nonperturbative) W
kernel is significantly smaller than the V kernel. Due to
the choice p ¼ q, W vanishes much faster in the UV than
V. However, for a general q ≠ p, both vector kernels vanish
∼1=p for p → ∞. See Ref. [9] for further discussion on the
vector kernels.
Finally, Fig. 5 shows the occupation number density of

quark states [9]7

has;m†ðpÞas;mðpÞi
ð2πÞ3δ3ð0Þ ¼ PðpÞS2ðpÞ: ð65Þ

On a linear scale, the results for g≃ 2.1 and g ¼ 0 are
almost indistinguishable. Note that for the chosen ansatz
for the vacuum wave functional the densities of occupied
quark and antiquark states agree.

FIG. 4. The vector kernel (a) Vðp; qÞ and (b) Wðp; qÞ obtained from the solution of the gap equation (53) for g≃ 2.1 as a function of
the modulus p ¼ q and z ¼ cos∢ðp; qÞ. Note the different scales in the plots.

6Numerical calculations show that both Mðp → 0Þ and the
UV exponent are increasing the higher the coupling g is
chosen. However, Mð0Þ only differs significantly from its
g ¼ 0 value at higher values of the coupling g > 5.

7Note that there is no summation over spin and color indices on
the lhs.
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V. CONCLUSIONS

In this paper, we have carried out a variational calcu-
lation within the Hamilton approach to QCD [9]. The
vacuum wave functional used includes the quark-gluon
coupling with two different Dirac structures. The vacuum

energy is calculated up to including two-loop order. In the
resulting gap equation the linear UV divergences induced
by these two Dirac structures cancel. When, in addition, the
Coulomb potential with its correct UV form is included,
also the logarithmic UV divergences cancel. The resulting
finite variational equations were solved numerically. When
the Coulomb string tension is put to zero, chiral symmetry
turns out to be not spontaneously broken. Assuming a
Coulomb string tension of σC ¼ 2.5σ with σ being the
Wilsonian string tension the phenomenological value of the
quark condensate hψ̄ψi≃ ð−235 MeVÞ3 was reproduced
for a value of g≃ 2.1 of the quark-gluon coupling constant.
The variational solution of QCD obtained in the present

paper will serve as input in a forthcoming investigation of
the chiral and deconfinement phase transitions.
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