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We derive the electric permittivity ϵ and magnetic permeability μM of the quark-gluon plasma (QGP)
with the kinetic theory associated with a Bhatnagar-Gross-Krook (BGK) collisional kernel. Based on them,
we study the effect of collisions on the refractive index of QGP. Compared to the collisionless case,
collisions change the ω-behavior of ϵ and μM dramatically, which is responsible for the fact that the real and
imaginary parts of n2 and the Depine-Lakhtakia index nDL are smooth functions of ω. For a small collision
rate ν, the Depine-Lakhtakia index nDL is negative in some frequency range. When the collision rate
increases, the frequency range for nDL < 0 becomes narrower. Numerical results show a critical collision
rate ν ∼ 0.2mD, above which the Depine-Lakhtakia index nDL is positive for all frequency regions, which
indicates a normal refractive index. In contrast to the collisionless case, there exists some frequency range
in which nDL < 0 and the propagating mode may satisfy the dispersion relation n2ω2 ¼ k2 simultaneously,
which implies the existence of a negative refractive index.
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I. INTRODUCTION

Quark-gluon plasma (QGP) is a special state of matter
that is believed to be produced in ultrarelativistic heavy-ion
collisions with an energy density above 1 GeV=fm3 in
ground laboratories. The initial energy density that the
Relativistic Heavy-Ion Collider (RHIC) and the Large
Hadron Collider (LHC) can achieve is much higher than
that [1]. One striking finding at the RHIC is that the
produced hot quantum chromodynamics (QCD) plasma in
heavy-ion collisions behaves as a nearly perfect fluid with a
small viscosity [2–5]. The first results from the LHC also
qualitatively support the similar conclusion drawn at the
RHIC [6,7]. The study of QGP properties has attracted
intense interest in recent years.
Electromagnetic probes, once produced in heavy-ion

collisions, will be not involved in strong interactions and
pass through the medium almost undisturbed. So electro-
magnetic probes, carrying information directly from wher-
ever they were generated, may be clear and promising
signatures for QGP in relativistic heavy-ion collisions. At
the very early stage of relativistic heavy-ion collisions,
named the glasma stage [8], and at the late stage of the
evolution process in the near Tc region in the so-called
magnetic scenario for QGP [9,10], there are color-electric
flux tubes that contain strong color-electric fields. On the
other hand, it has been argued that the very strong magnetic

fields will be produced perpendicular to the reaction
plane in off-central heavy-ion collisions [11–14].
Electromagnetic properties will play an important role in
the evolution of hot QCD matter produced in heavy-ion
collisions and many heavy-ion phenomena may be relevant
to them. Therefore, the study of them may be helpful for
understanding the nature of QGP.
The refractive index reflects the propagation property of

light in an electromagnetic medium, which is one of the
most important electromagnetic properties in a medium. It
can be determined in terms of electric permittivity ϵðω; kÞ
(EP) and magnetic permeability μMðω; kÞ (MP). A gluon is
the QCD counterpart of a photon. In addition, jet quenching
has been proposed as a potential signal for QGP and has
become an active field in heavy-ion collisions in the last
three decades, which is relevant to the parton propagation
in the hot medium. So the study of the refraction index in
QGP may be helpful to understand the nature of QGP.
Amariti et al. have studied the refractive index of the

strongly coupled system with the string-inspired theory of
AdS/CFT correspondence in Ref. [15]. Along that line,
some investigations on refractive properties have been
carried out in strongly coupled and correlation systems
in the past years [16–23]. Recently, Juan Liu et al. have
extended the study of the refractive index of light to the
weakly coupled QGP within the framework of the hard
thermal loop perturbation theory [24]. Bing-feng Jiang
et al. have studied the refractive index of viscous QGP [25]
subsequently within the framework of viscous chromohy-
drodynamics [26]. In addition, the viscous effect on
electromagnetic properties in a charged fluid system has

*jiangbf@mails.ccnu.edu.cn
†houdf@mail.ccnu.edu.cn
‡ljr@mail.ccnu.edu.cn

PHYSICAL REVIEW D 94, 074026 (2016)

2470-0010=2016=94(7)=074026(12) 074026-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.074026
http://dx.doi.org/10.1103/PhysRevD.94.074026
http://dx.doi.org/10.1103/PhysRevD.94.074026
http://dx.doi.org/10.1103/PhysRevD.94.074026


also been addressed in recent literature [27]. Later, authors
have studied the electric permittivity, magnetic permeabil-
ity, and refractive index in a relativistic electron gas with
quantum electrodynamics at finite temperature and density
[28]. In the present paper, we will study the refractive index
of QGP within the framework of the transport approach
associated with a Bhatnagar-Gross-Krook (BGK) colli-
sional kernel.
Collisions are one of the main sources of dissipation. For

a long time, the BGK collisional kernel has been proposed
in the Boltzmann transport theory to study the plasma
properties in an electromagnetic plasma [29]. It should be
noted that the derivation of the collisional terms of the
transport equations for the QCD plasma has been a
complex task and is far from strictly solved [30–33].
Carrington et al. have extended the study of kinetic theory
with a BGK-type collisional kernel to the QGP system, and
they investigated the dielectric functions and the dispersion
relations in Ref. [34]. Then the plasma collective modes in
QGP were investigated, including the effect of BGK
collisions with an anisotropic momentum distribution
[35]. It was found that collisions strongly affect QGP
unstable modes, which may speed up the thermalization
process of the QCD plasma produced in heavy-ion colli-
sions at the RHIC. In addition, the collision effect on the
wakes caused by a fast parton traveling through QGP have
been addressed recently [36,37].
In the present paper, we will derive the gluon polariza-

tion tensor by solving the kinetic equations associated with
a BGK-type collisional kernel. The electric permittivity
ϵðω; kÞ and magnetic permeability μMðω; kÞ are evaluated
from the obtained gluon polarization tensor, through which
the refractive index is investigated subsequently. Through
the polarization tensor, electric permittivity, and magnetic
permeability, the collision effect is encoded into the
refractive index. Thus we can study its effect on the latter.
It should be noted that we are going to study the
chromodynamic properties of QGP here—we should add
the prefix “chromo” to the electromagnetic quantities of
QGP, such as chromoelectric permittivity, chromomagnetic
permeability, and chromorefractive index. For concision,
wewill omit that prefix in the following, but we should bear
in mind that what we want to study are the chromodynamic
quantities.
The paper is organized as follows. In Sec. II, we will

briefly review the formulism of the electromagnetic proper-
ties in an electromagnetic plasma, which can be applied to
the QGP system. In Sec. III, we will make a brief derivation
of the polarization tensor and the electric permittivity and
the magnetic permeability subsequently by solving the
kinetic equations with the BGK collisional term. We will
give numerical results of the electric permittivity, magnetic
permeability, and the refractive index and we discuss the
collision’s effect on them in Sec. IV. In Sec. V we will give
a summary.

The natural units kB ¼ ℏ ¼ c ¼ 1; the metric
gμν ¼ ðþ;−;−;−Þ; and the notations K ¼ ðω;kÞ, k ¼
jkj are used in the paper.

II. ELECTROMAGNETIC PROPERTIES
IN PLASMA

In this section, by following the classical literature [38],
we will give a brief derivation of the electromagnetic
properties in a homogeneous and isotropic plasma. Some
details can be also found in the literature [24,25,39]. In
addition, the extension of the discussion to an anisotropic
medium has been addressed in Ref. [24].
Usually a pair of four-vectors ~Eμ, ~Bμ are introduced to

covariantly describe the electric and magnetic properties in
plasma,

~Eμ ¼ uνFνμ; ~Bμ ¼ 1

2
ϵνλρμFνλuρ; ð1Þ

where uν is the fluid four-velocity and Fμν is constructed as

Fμν ¼ uμ ~Eν − ~Eμuν þ ϵμνλρ ~Bλuρ: ð2Þ

In Eqs. (1)–(2), one should not confuse the greek index μ
with the magnetic permeability μM mentioned in the
Introduction. The free action can be expressed in terms
of the Fourier-transformed ~Eμ, ~Bμ:

S0¼−
1

2

Z
d4K
ð2πÞ4f

~EμðKÞ ~Eμð−KÞ− ~BμðKÞ ~Bμð−KÞg: ð3Þ

When interactions between the constituents of plasma are
taken into account, the correction to the action is

Sint ¼ −
1

2

Z
d4K
ð2πÞ4 A

μð−KÞΠμνðKÞAνðKÞ; ð4Þ

where the terms that are cubic and higher order in AμðKÞ
are omitted. In Eq. (4), AμðKÞ is a vector field in
momentum space, and ΠμνðKÞ is the polarization tensor
that embodies the medium effects in plasma. In a homo-
geneous and isotropic medium, the polarization tensor can
be divided into longitudinal and transverse parts

ΠμνðKÞ ¼ ΠLðKÞPL
μνðKÞ þ ΠTðKÞPT

μνðKÞ ð5Þ

with projectors defined as PT
00 ¼ PT

0i ¼ PT
i0 ¼ 0, PT

ij ¼
δij − kikj

k2 , P
L
μν ¼ kμkν

K2 − gμν − PT
μν [40,41]. Thus, the effective

action, including medium effects, is

Seff ¼ S0 þ Sint; ð6Þ

which also can be described as
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Seff ¼ −
1

2

Z
d4K
ð2πÞ4

�
ϵ ~EμðKÞ ~Eμð−KÞ− 1

μM
~BμðKÞ ~Bμð−KÞ

�
:

ð7Þ

In (7), ϵ and μM are the electric permittivity and magnetic
permeability mentioned in the Introduction, which can
describe the difference between the electric and magnetic
properties of the vector field in the medium and those in the
vacuum. According to Eqs. (3), (4), and (7), one can get the
electric permittivity and magnetic permeability in plasma as
follows:

ϵðω; kÞ ¼ 1 −
ΠLðω; kÞ

K2
; ð8Þ

1

μMðω; kÞ
¼ 1þ K2ΠTðω; kÞ − ω2ΠLðω; kÞ

k2K2
: ð9Þ

The refraction index is defined in terms of the electric
permittivity and magnetic permeability as

n2 ¼ ϵðω; kÞμMðω; kÞ; ð10Þ

which is a square definition and not sensitive to the
simultaneous change of signs of ϵ and μM. About 50 years
ago, Veselago proposed that the simultaneous change
from positive ϵ and μM to negative −ϵ and −μM
corresponds to the transformation of the refractive index
from one branch, n ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ϵðω; kÞμMðω; kÞ
p

, to the other,
n ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵðω; kÞμMðω; kÞ

p
, i.e., the change from a general

refractive index to a negative one [42]. The physical nature
of the negative refraction is that the electromagnetic phase
velocity propagates opposite to the energy flow [42–44].
Nevertheless, no natural material shows such special
properties (recently some people argued that the relativistic
electron gas may be one of nature’s candidates for the
realization of a negative refraction system [28]). Around
2000, by manipulating the array of small and closely
spaced elements, scientists have constructed a negative
refraction material in the laboratory [45,46]. Since then, the
study of negative refraction has attracted intense interest. It
has been found that negative refraction is a general
phenomenon for a charged fluid system in some frequency
region [17].
The criterion for negative refraction is ϵ < 0 and μM < 0

simultaneously for the real electric permittivity and
magnetic permeability medium. If dissipation is taken into
account, the situation is complicated. The electric
permittivity and magnetic permeability are generally
complex-valued functions of ω and k, such as ϵðω; kÞ ¼
ϵrðω; kÞ þ iϵiðω; kÞ, μMðω; kÞ ¼ μrðω; kÞ þ iμiðω; kÞ, so is
the refractive index n. According to the phase velocity
propagating antiparallel to the energy flow, some authors
have derived the condition for negative refraction in a

dissipative medium and found that it is not necessary for
ϵr < 0 and μr < 0 simultaneously [47]. Later, another
simple, convenient, and widely adopted condition was
derived as [48]

nDL ¼ ϵrjμMj þ μrjϵj < 0; ð11Þ

where nDL is called the Depine-Lakhtakia index. nDL < 0
implies Ren < 0; otherwise we will have a normal refrac-
tion index [48].

III. ELECTRIC PERMITTIVITY AND MAGNETIC
PERMEABILITY IN KINETIC THEORY:

INCLUSION OF COLLISIONS

The transport equations for the quark, antiquark, and
gluon can be expressed as equations for functions fiaðp;XÞ
with i ∈ fq; q̄; gg and a ¼ 1; 2;…N2

c − 1, which correlate
to the corresponding phase space densities, i.e., Wigner
functions [35,36,49]. In the case of linear approximation
fiaðp;XÞ ¼ fiðpÞ þ δfiaðp; XÞ, the transport equations can
be given as [35,36,49]

V · ∂Xδfiaðp;XÞ þ gθiVμF
μν
a ðXÞ∂ðpÞ

ν fiðpÞ ¼ Ciaðp;XÞ;
ð12Þ

where V ¼ ð1; vÞ with v ¼ p=jpj and g is the strong

coupling constant. θg ¼ θq ¼ 1, θq̄ ¼ −1, and ∂ðpÞ
ν denotes

the four-momentum derivative. Fμν ¼ ∂μAν − ∂νAμ −
ig½Aμ; Aν� represents the field strength tensor with the
gauge field Aμ ¼ Aμ

aTa or Aμ ¼ Aμ
aτa, where τa and Ta

are the SUðNcÞ group generators in the fundamental
and adjoint representations with Tr½τa; τb� ¼ 1

2
δab,

Tr½Ta; Tb� ¼ Ncδ
ab. Ciaðp;XÞ denotes the collision term.

In the following consideration, we will adopt the BGK-type
collisional term, given by [34,35]

Ciaðp; XÞ ¼ −ν
�
fiaðp; XÞ −

Ni
aðXÞ
Ni

eq
fieqðjpjÞ

�
: ð13Þ

In Eq. (13), particle numbers Ni
aðXÞ and Ni

eq read [34,35]

Ni
aðXÞ ¼

Z
p
fiaðp; XÞ; Ni

eq ¼
Z
p
fieqðjpjÞ ¼

Z
p
fiðpÞ;

Z
p
≔

Z
d3p
ð2πÞ3 : ð14Þ

In Eq. (13), ν denotes the collision rate, which implies that
collisions equilibrate the system within a time interval
proportional to ν−1. As considered in Refs. [34,35], we will
regard the collision rate ν as a free input parameter
independent of momentum and particle species. When the
ratio Ni

aðXÞ over Ni
eqðXÞ in the second term in Eq. (13)
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is set to one, the collisional term changes to the familiar
one in the relaxation time approximation. It is argued that the
BGK collisional term is an improvement of the one in the
relaxation time approximation for the transport equation.
The advantage of the BGK collisional term is that it can
conserve the particle numbers of system instantane-
ously [34,35].
The total induced color current due to the fluctuations of

δfiaðp;XÞ can be expressed as [35]

Jμinda ¼ g
Z
p
Vμf2Ncδf

g
aðp;XÞ þ Nf½δfqaðp;XÞ

− δfq̄aðp;XÞ�g: ð15Þ

Solving Eq. (12) associated with Eq. (13) and Fourier-
transforming, one can get [34]

δfiðp;KÞ ¼ −igθiVμFμνðKÞ∂ðpÞ
ν fiðpÞ þ iνfieqðpÞð

R
p0 δfiðp0; KÞÞ=Neq

ω − v · kþ iν
; ð16Þ

where the color index is suppressed. The derivation of
δfiaðp;XÞ in the case of the anisotropic momentum dis-
tribution can be found in Appendix A in [35] and in
Ref. [36]. Substituting the obtained δfiaðp;KÞ from
Eq. (16) into Eq. (15), one can get the induced color

current. According to the relation Πμγ
ab ¼ δJμindaðKÞ

δAb
γ ðKÞ in the

linear response theory, one can arrive at the polarization
tensor [35,36]

Πμγ
abðKÞ ¼ δabg2

Z
p
Vμ∂ðpÞ

β fðpÞMγβðK;VÞD−1ðK; v; νÞ

þ δabiνg2
Z

dΩ
4π

VμD−1ðK; v; νÞ

×
Z
p0
∂ðp0Þ
β fðp0ÞMγβðK;V 0Þ

×D−1ðK; v0; νÞW−1ðK; νÞ; ð17Þ

with

MγβðK;VÞ ≔ gγβðω − k · vÞ − VγKβ;

D−1ðK; v; νÞ ≔ ωþ iν − k · v; ð18Þ

and

WðK; νÞ ≔ 1 − iν
Z

dΩ
4π

D−1ðK; v; νÞ;

fðpÞ ¼ 2NcfgðpÞ þ Nf½fqðpÞ þ fq̄ðpÞ�: ð19Þ

We have briefly reviewed the derivation of the polarization
tensor in QGP within the framework of kinetic theory
associated with the BGK collisional term by following
the pioneer work [34,35]. For details please refer to
Refs. [34–36]. It is easy to test that Eq. (17) is diagonal
in color and transverse, i.e., KμΠμν ¼ KνΠμν.
In terms of Eqs. (8)–(9) and Eqs. (5), (17), one can arrive

at the electric permittivity [34,37],

ϵðω; kÞ ¼ 1þm2
D

k2

�
1 −

ωþ iν
2k

ln
ωþ iνþ k
ωþ iν − k

�

×

�
1 −

iν
2k

ln
ωþ iνþ k
ωþ iν − k

�
−1
; ð20Þ

and the magnetic permeability finally,

μMðω; kÞ ¼
1

1þ ω2m2
D

k4

�
1 − ωz

2k−iν·k þ 2ωþ2iνþkz
4ω − ðωþiνÞ2z

4ωk

� ;

ð21Þ

where z ¼ ln ωþiνþk
ωþiν−k and mD is the isotropic Debye mass

denoted as m2
D ¼ − g2

2π2

R∞
0 dpp2 dfðpÞ

dp . A derivation of μM
with more details can be found in Appendix A. Through the
polarization tensor, the collision rate is encoded into the
electric permittivity and magnetic permeability. Combined
with Eqs. (20)–(21) and Eqs. (10)–(11), one can study the
collision effect on the refractive index.

IV. COLLISION EFFECT ON THE REFRACTIVE
INDEX: NUMERICAL ANALYSIS

We will apply the kinetic theory associated with the
BGK collisional term to investigate the electric permittivity,
magnetic permeability, and refractive index, which implies
that the adopted theoretical framework is perturbative. The
collision rate ν cannot be determined in that theoretical
framework consistently. As in Refs. [34–37], wewill regard
the collision rate ν as an input parameter independent of ω
and k to study its effect on those electromagnetic quantities.
In the literature [35], Schenke et al. illuminated that the
collision rate lies in the range ν ∼ 0.1–0.2mD for αs ¼
0.2–0.4 with a perturbative consideration for parton scat-
terings. In the present paper, we will study the collision
effect on the electric permittivity, magnetic permeability,
and refractive index for ν ∈ ½0 − 0.3mD�. In addition, in
numerical analysis, scales such as k ¼ 0.2mD are used to
study the ω behavior of the electromagnetic properties.
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We present the numerical results of the real and
imaginary parts of the electric permittivity and magnetic
permeability for different collision rates in Figs. 1 and 2,
respectively. When ν ¼ 0, ϵ and μM recover the corre-
sponding results in the hard thermal loop approximation
(HTLA) [24,25,30,34,35,38,40,41]. As shown by the black
curves in the left panels in Figs. 1 and 2, the real parts of the
electric permittivity and magnetic permeability show fre-
quency poles at ω=k ¼ 1 and ω=k ∼ 2, respectively. On the
other hand, ϵ and μM have nonzero imaginary parts due to
the Landau damping in the frequency range ω=k ≤ 1. For
ω=k > 1, the corresponding imaginary parts turn to zero
except for a frequency pole ω=k ∼ 2 for the magnetic
permeability. While for ν > 0, both the real and imaginary
parts of the electric permittivity and magnetic permeability
are smooth functions of ω and have no poles, as shown by
the red, green, and blue curves in Figs. 1 and 2. In addition,
both ϵ and μM gain a nonzero imaginary part even in the
frequency region ω=k > 1.
Carrington et al. mentioned that the collisional electric

permittivity and magnetic permeability do not follow from
the collisionless case by simply replacing ω by ωþ iν [34].

In the following, as an example, we will give an inves-
tigation on the analysis structure of the collisional ϵ, which
will shed light on the collision effect on the electromagnetic
quantities. We firstly focus on the logarithmic function
ln ωþkþiν

ω−kþiν ¼ aþ bi, where a, b are real functions of ω, k,
and ν. After some algebra, the logarithmic function can be
written as

ln
ωþ kþ iν
ω − kþ iν

¼ ln
ðωþ kþ iνÞðω − k − iνÞ

ðω − kÞ2 þ ν2

¼ lnR − iθ; ð22Þ

with

a¼ lnR; b¼ −θ; R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2 − k2 þ ν2Þ2 þ 4k2ν2

p
ðω− kÞ2 þ ν2

;

θ ¼ arccos
ðω2 − k2 þ ν2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω2 − k2 þ ν2Þ2 þ 4k2ν2
p : ð23Þ

For a detailed derivation, please refer to Appendix B.
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FIG. 1. The electric permittivity for different collision rates in units of mD. Left panel: The real part. Right panel: The imaginary part.
The black, red, green, and blue curves are for the cases of ν ¼ 0; 0.1mD, 0.2mD, and 0.3mD, respectively.
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FIG. 2. The magnetic permeability for different collision rates in units of mD. Left panel: The real part. Right panel: The imaginary
part. The black, red, green, and blue curves are for the cases of ν ¼ 0; 0.1mD, 0.2mD, and 0.3mD, respectively.
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By substituting (22) into (20), we can obtain the real and
imaginary parts of the electric permittivity as follows (for
details please refer to Appendix C):

Reϵðω; kÞ ¼ 1þm2
D

k2
·

	
1−

2ωk lnR
4k2 þ ν2ðθ2 þ ln2RÞ− 4kνθ



;

ð24Þ

Imϵðω; kÞ ¼ −
m2

D

k2
·

ωνðθ2 þ ln2RÞ − 2ωkθ
4k2 þ ν2ðθ2 þ ln2RÞ − 4kνθ

; ð25Þ

which coincide with the results in [37] and in [36] in the
collisional isotropic case (ν ≠ 0, ξ ¼ 0).
When ν ¼ 0, in terms of the logarithmic function derived

in Appendix B,

ln
ωþ kþ i0þ

ω − kþ i0þ
¼ ln

����ωþ k
ω − k

���� − iπΘðk2 − ω2Þ; ð26Þ

the electric permittivity (20) turns to the well-known result
in the HTLA [30,38,40,41,49]:

ϵðω; kÞ ¼ 1þm2
D

k2

�
1−

ω

2k
·

�
ln

����ωþ k
ω− k

����− iπΘðk2 −ω2Þ
��

:

ð27Þ

One can see that the real part diverges at ω=k ¼ 1 and the
imaginary part is linear with ω in the frequency region
ω=k ≤ 1.
When ν > 0, from (24)–(25) associated with R, θ in (23),

one can see that the real and imaginary parts of the electric
permittivity are smooth functions of ω without any fre-
quency poles. Furthermore, the electric permittivity will
gain a nonzero imaginary part both in the frequency region
ω=k ≤ 1 and ω=k > 1. In terms of the preceding discus-
sion, one can see that compared to the collisionless case,
the presence of collisions results in a remarkable change of
ω-dependence of electric permittivity. A similar discussion
can be applied to magnetic permeability. Therefore, one can
expect that collisions might influence the refractive index
through the collisional ϵ and μM.
We present n2 and the Depine-Lakhtakia index nDL in

Figs. 3 and 4 respectively. When ν ¼ 0, n2 and the Depine-
Lakhtakia index nDL change to the corresponding results in
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FIG. 3. n2 for different collision rates in units of mD. Left panel: The real parts. Right panel: The imaginary parts.
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the HTLA [24,25], as shown by the black curves in Fig. 3
and in the left panel of Fig. 4. One can see that there are a
frequency inflexion ωi and a frequency pole ωm for the
Depine-Lakhtakia index nDL. At the frequency pole ωm of
nDL, the real and imaginary parts of n2 are divergent. The
frequency inflexion ωi and the frequency pole ωm of nDL
and n2 are attributable to the frequency poles of the electric
permittivity and magnetic permeability, which have already
been elaborated in Ref. [25]. While for ν > 0, the real and
imaginary parts of n2 and the Depine-Lakhtakia index nDL

are smooth functions as shown by the colored curves in
Fig. 3 and in the left panel of Fig. 4. According to the
definitions of n2 and the Depine-Lakhtakia index nDL,
one can see that compared to the collisionless case, the
smooth ϵ and μM due to collisions result in analytically
ω-dependent n2 and the Depine-Lakhtakia index nDL.
In the case of ν ¼ 0, as shown by the solid-black curve in

the left panel in Fig. 4, nDL becomes negative in some
frequency range ω ∈ ½ωi;ωm� with ωi ≃ k, which implies a
negative refractive index according to the preceding
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FIG. 5. The Depine-Lakhtakia index nDL and the real part of n2 for the different collision rates.
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discussion in Sec. II. In addition, there is a frequency gap
ω ∈ ½ωm;ωg�, in which the Depine-Lakhtakia index
nDL ¼ 0 and Ren2 < 0. In that frequency gap, light cannot
propagate because the refraction index is pure imaginary
and the electromagnetic wave is severely damped [24,25].
For a small ν, there exists some frequency range in which
nDL < 0. As ν increases, the frequency region for nDL < 0
becomes narrower, as shown by the colored curves in the
left panel of Fig. 4. It should be noted that in a previous
paper, we have studied the viscous effect on the electro-
magnetic properties in QGP with the chromohydrodynamic
approach. Our results show that the frequency range for the
negative Depine-Lakhtakia index nDL becomes wider as
shear viscosity increases [25]. Collisions generally can
drive the system to reach equilibrium, which is also
responsible for dissipation. According to a very robust
estimation η ∼ T4=ν [30], one can see that the results here
qualitatively agree with those in the previous paper [25]. On
the other hand, it is shown from the solid green curve in the
left panel of Fig. 4 that there exists a critical collision rate
around 0.2mD above which nDL > 0 for the whole fre-
quency range, which indicates a normal refractive index.
We also display the three-dimensional plot of the Depine-
Lakhtakia index nDL as a function of ω and ν in the right
panel of Fig. 4, which might be helpful for understanding
the refractive properties.
The criterion (11) nDL < 0 has been widely used to judge

the existence of negative refraction in a medium. However,
Juan Liu et al. have argued that besides the condition
nDL < 0, the propagating mode should satisfy the
dispersion relation n2ω2 ¼ k2 simultaneously [24]. We
present the Ren2 and the Depine-Lakhtakia index nDL in
the same plots in Fig. 5, which may be helpful for
understanding the existence of propagating modes for
the dispersion relation n2ω2 ¼ k2. In the case of ν ¼ 0,
nDL becomes negative in the frequency range k < ω < ωm

[24]. It is displayed in Fig. 5 that Re n2 > 1 in the same
frequency region. There are no solutions for n2ω2 ¼ k2 in
that frequency range. Therefore, in the collisionless case,
there are no propagation modes in the frequency region
k < ω < ωm for a negative Depine-Lakhtakia index nDL
[24]. It is also argued that there exists strong dissipation in
the frequency region for the negative Depine-Lakhtakia
index in a strongly coupled system within the framework of
AdS/CFT correspondence, propagation may dominate over
dissipation only around ω → 0 [15].
However, for ν > 0, as shown in Fig. 5, in the frequency

regions ω1a < ω < ω1b for ν ¼ 0.05mD, ω2a < ω < ω2b
for ν ¼ 0.08mD, ω3a < ω < ω3b for ν ¼ 0.1mD, and ω4a <
ω < ω4b for ν ¼ 0.15mD, respectively, the Depine-
Lakhtakia index nDL will be negative. At the same time,
ω1a=k;ω2a=k;ω3a=k, and ω4a=k are larger than one and
0 < Re n2 < 1, the propagating modes may satisfy the
dispersion relation n2ω2 ¼ k2, which is another distinct
aspect from the collisionless case. Some people have

investigated the collision effect on the dispersion relations
based on the dielectric functions derived from the kinetic
theory associated with the BGK collision term. Their results
show that the finite collision rate ν will result in a spacelike
dispersion (ω < k) [34,35], which is responsible for the
existence of a propagating mode satisfying n2ω2 ¼ k2.
Moreover, the frequency range in which nDL < 0 and 0 <
Re n2 < 1 becomes wider as the collision rate increases.

V. SUMMARY AND DISCUSSION

Within the framework of the kinetic theory associated
with the BGK collisional term, we have derived the electric
permittivity ϵ and the magnetic permeability μM of QGP.
Our results show that in contrast with the collisionless case,
collisional ϵ and μM are smooth functions of ω. Some
algebraic analysis clearly demonstrates that compared to
the collisionless case, the collisions dramatically change
the ω-dependence of ϵ and μM. Based on the collisional ϵ
and μM, we have studied the collision effect on the square
of refractive index n2 and the Depine-Lakhtakia index nDL.
The ω behavior of ϵ and μM modified by collisions is
responsible for the analytic structure of the real and
imaginary parts of n2 and the Depine-Lakhtakia index
nDL. There is some frequency range in which the Depine-
Lakhtakia index nDL is negative for a small collision rate ν.
However, the frequency range for nDL < 0 becomes nar-
rower as the collision rate ν increases. There exists a critical
collision rate ν ∼ 0.2mD above which the Depine-
Lakhtakia index nDL is positive for the whole frequency
region, which indicates a normal refractive index. In
contrast to the collisionless case, there exists some fre-
quency range in which nDL < 0 and the propagating
mode may satisfy the dispersion relation n2ω2 ¼ k2 simul-
taneously, which implies that there may exist a negative
refractive index.
Recently, some models have been proposed based on the

refraction index to address diverse aspects of the phenom-
enology of ultrarelativistic heavy-ion collisions. A parton
jet traveling through the hot medium produced in heavy-ion
collisions may induce Cherenkov gluon radiation, which
might contribute to the double peak structure of the
experimental azimuthal dihadron correlation in the away
side [50–52]. Some authors have investigated the photolike
refraction of the gluon jet in the nonhomogeneous QGP
produced in heavy-ion collisions, and they have argued that
it might be a possible mechanism for the pT-dependent
away-side shape in central Auþ Au collisions observed at
the RHIC [53]. By phenomenologically modeling polari-
zation and absorption mechanisms with a complex index of
refraction, other investigations have shown that the radi-
ative energy loss of an energetic charge can be substantially
reduced in an absorptive medium [54,55], which might be
helpful in understanding the jet-quenching phenomena in
ultrarelativistic heavy-ion collisions at the RHIC and LHC.
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In addition, some people have studied the effect of the QCD
medium refraction on the elliptic flow and higher-order
harmonics of prompt photons in high-energy heavy-ion
collisions and found that refraction affects flow harmonics
of prompt photons nontrivially [56]. Recently, some
investigations have indicated that the refractive index in
a medium under a strong magnetic field has two different
physical propagating modes, i.e., birefringence, which will
lead to a modification of the Hanbury-Brown-Twiss (HBT)
interferometry of photons and the spectra of photons and
dileptons in ultrarelativistic heavy-ion collisions [57,58].
Generally, negative refraction of light will lead to some
special properties in a medium, such as modified refraction
law, perfect lens, inverse Doppler and Cherenkov effect,
inverse Snell’s law, and so on. The negative refraction of
QGP might lead to some novel effect on observables in
ultrarelativistic heavy-ion collisions, which may be an
interesting issue and needs a further comprehensive
investigation.
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APPENDIX A: A DETAILED DERIVATION
OF MAGNETIC PERMEABILITY

IN EQ. (21)

As discussed in Appendix A in Ref. [25], in addition to
the combination of electric permittivity ϵ and magnetic
permeability μM, the following longitudinal and transverse
dielectric functions ϵL, ϵT are usually used to describe
the electromagnetic properties in plasma. The combination
(ϵL, ϵT) can be related to ϵ and μM as follows:

ϵ ¼ ϵL ðA1Þ

1

μM
¼ 1þ

�
ω2

k2

�
½ϵLðω; kÞ − ϵTðω; kÞ�: ðA2Þ

In Refs. [34,37], the authors have derived the longi-
tudinal and transverse dielectric functions by using the
kinetic theory and the BGK-type collisional term

ϵLðω; kÞ ¼ 1þm2
D

k2

�
1 −

ωþ iν
2k

ln
ωþ iνþ k
ωþ iν − k

�

×

�
1 −

iν
2k

ln
ωþ iνþ k
ωþ iν − k

�
−1
; ðA3Þ

ϵTðω; kÞ ¼ 1 −
m2

D

2ωðωþ iνÞ
	
1þ

�ðωþ iνÞ2
k2

− 1

�

×

�
1 −

ωþ iν
2k

ln
ωþ iνþ k
ωþ iν − k

�

: ðA4Þ

We denote z ¼ ln ωþiνþk
ωþiν−k and substitute it into the longi-

tudinal and transverse dielectric functions. After some
algebra, we can obtain

ϵLðω; kÞ ¼ 1þm2
D

k2
1 − ωþiν

2k z

1 − iν
2k z

¼ 1þm2
D

k2

	
1 −

ωz
2k − iνz



; ðA5Þ

ϵTðω; kÞ ¼ 1−
m2

D

k2

	
k2

2ωðωþ iνÞ
�
1þ

�ðωþ iνÞ2
k2

− 1

�

×

�
1−

ωþ iν
2k

z

��


¼ 1−
m2

D

k2

	
k2

2ωðωþ iνÞ

þ ðωþ iνÞ2 − k2

2ωðωþ iνÞ
�
1−

ωþ iν
2k

z

�


¼ 1−
m2

D

k2

	
2ωþ kzþ i2ν

4ω
−
ðωþ iνÞ2

4ωk
z



: ðA6Þ

Substituting (A5) and (A6) into (A2),

1

μM
¼ 1þ ω2m2

D

k4

	
1 −

ωz
2k − iνz

þ 2ωþ kzþ i2ν
4ω

−
ðωþ iνÞ2

4ωk
z



; ðA7Þ

therefore, we can finally obtain

μM ¼ 1

1þ ω2m2
D

k4

n
1 − ωz

2k−iνz þ 2ωþkzþi2ν
4ω − ðωþiνÞ2

4ωk z
o : ðA8Þ

APPENDIX B: THE REAL AND IMAGINARY
PARTS OF THE LOGARITHMIC

FUNCTION ln ωþkþiν
ω−kþiν

In the following, we will disentangle the real and
imaginary parts from the logarithmic function ln ωþkþiν

ω−kþiν ¼
aþ bi.
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ln
ωþ kþ iν
ω − kþ iν

¼ ln
ðωþ kþ iνÞðω − k − iνÞ

ðω − kÞ2 þ ν2
¼ ln

ω2 − k2 þ ν2 − i2kν
ðω − kÞ2 þ ν2

: ðB1Þ

After some algebra, we can obtain

ln
ωþ kþ iν
ω − kþ iν

¼ ln

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2 − k2 þ ν2Þ2 þ 4k2ν2

p
ðω − kÞ2 þ ν2

� ðω2 − k2 þ ν2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2 − k2 þ ν2Þ2 þ 4k2ν2

p − i
2kνffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω2 − k2 þ ν2Þ2 þ 4k2ν2
p

��

¼ lnðRðcos θ − i sin θÞÞ ¼ lnðRe−iθÞ ¼ lnRþ ln e−iθ ¼ lnR − iθ; ðB2Þ

with

a¼ lnR; b¼ −θ; R¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2 − k2 þ ν2Þ2 þ 4k2ν2

p
ðω− kÞ2 þ ν2

;

θ ¼ arccos
ðω2 − k2 þ ν2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω2 − k2 þ ν2Þ2 þ 4k2ν2
p : ðB3Þ

Then, we can determine the logarithmic function in the
limit of ν → 0:

lim
ν→0

ln
ωþ kþ iν
ω− kþ iν

¼ lim
ν→0

ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω2 − k2 þ ν2Þ2 þ 4k2ν2

p
ðω− kÞ2 þ ν2

− ilim
ν→0

arccos
ðω2 − k2 þ ν2Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðω2 − k2 þ ν2Þ2 þ 4k2ν2
p

¼ ln

����ωþ k
ω− k

����− i arccos
ω2 − k2

jω2 − k2j

¼ ln

����ωþ k
ω− k

����− i

	
0; ω2 > k2

π; ω2 < k2
: ðB4Þ

We can express that result in a concise form with the step
function Θ as

ln
ωþ kþ i0þ

ω − kþ i0þ
¼ ln

����ωþ k
ω − k

���� − iπΘðk2 − ω2Þ: ðB5Þ

APPENDIX C: THE REAL AND IMAGINARY
PARTS OF THE COLLISIONAL ELECTRIC

PERMITTIVITY IN EQS. (24) AND (25)

Substituting the disentangled the logarithmic function
ln ωþkþiν

ω−kþiν ¼ aþ bi into the collisional electric permittivity
Eq. (20),

ϵðω; kÞ ¼ 1þm2
D

k2

�
1 −

ωþ iν
2k

ln
ωþ iνþ k
ωþ iν − k

�

×
�
1 −

iν
2k

ln
ωþ iνþ k
ωþ iν − k

�
−1
; ðC1Þ

one can obtain

ϵðω; kÞ ¼ 1þm2
D

k2
·
1 − ωþiν

2k · ðaþ ibÞ
1 − iν

2k · ðaþ ibÞ

¼ 1þm2
D

k2
·
ð2kþ bν − ωaÞ − iðωbþ aνÞ

ð2kþ bνÞ − iaν

¼ 1þm2
D

k2
·
½ð2kþ bν − ωaÞ − iðωbþ aνÞ� · ½ð2kþ bνÞ þ iaν�

ð2kþ bνÞ2 þ ðaνÞ2

¼ 1þm2
D

k2
·

	
1 −

2ωka
4k2 þ b2ν2 þ 4kbνþ a2ν2

− i
ωνða2 þ b2Þ þ 2ωkb

4k2 þ b2ν2 þ 4kbνþ a2ν2



: ðC2Þ

Therefore, the real and imaginary parts of the electric
permittivity are expressed as

ReϵLðω; kÞ ¼ 1þm2
D

k2
·

	
1 −

2ωka
4k2 þ b2ν2 þ 4kbνþ a2ν2




ðC3Þ

and

ImϵLðω; kÞ ¼ −
m2

D

k2
·

ωνða2 þ b2Þ þ 2ωkb
4k2 þ b2ν2 þ 4kbνþ a2ν2

: ðC4Þ

In terms of a ¼ lnR, b ¼ −θ, One can arrive at

ReϵLðω;kÞ¼ 1þm2
D

k2
·

	
1−

2ωk lnR
4k2þν2ðθ2þ ln2RÞ−4kνθ



;

ðC5Þ
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ImϵLðω; kÞ ¼ −
m2

D

k2
·

ωνðθ2 þ ln2RÞ − 2ωkθ
4k2 þ ν2ðθ2 þ ln2RÞ − 4kνθ

; ðC6Þ

where R,θ are defined in Eq. (B3) in Appendix B.
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