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We compute the relation between heavy quark masses defined in the modified minimal subtraction and
the on-shell schemes. Detailed results are presented for all coefficients of the SU(N,.) color factors. The
reduction of the four-loop on-shell integrals is performed for a general QCD gauge parameter. Altogether
there are about 380 master integrals. Some of them are computed analytically, others with high numerical
precision using Mellin-Barnes representations, and the rest numerically with the help of FIESTA. We
discuss in detail the precise numerical evaluation of the four-loop master integrals. Updated relations
between various short-distance masses and the MS quark mass to next-to-next-to-next-to-leading order
accuracy are provided for the charm, bottom and top quarks. We discuss the dependence on the

renormalization and factorization scale.
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I. INTRODUCTION

Quark masses are fundamental parameters of quantum
chromodynamics (QCD) and thus it is mandatory to
determine their numerical values as precisely as possible.
Furthermore, it is important to have precise relations at
hand which relate the masses in different renormalization
schemes.

The renormalization scheme for the quark masses has to
be fixed once quantum corrections are considered. In QCD
there are two distinct renormalization schemes for the
quark masses: the on-shell (OS) scheme, which is moti-
vated by the physical interpretation of the mass parameter,
and the modified minimal subtraction (MS) scheme
which is very convenient for many practical calculations,
in particular, in high-energy processes.

In the case of the lighter quarks (up, down and strange)
the meson masses are in general much larger than the
masses of the quarks. Thus, the concept of the on-shell
scheme is not applicable to light quark flavors; their
numerical values are usually given in the MS scheme.
On the other hand, the masses of the mesons involving
charm and bottom quarks are essentially dominated by the
quark masses. For this reason, the quantum corrections
considered in this paper are mainly relevant for the three
heavy quarks, charm, bottom and top.

The top quark plays a special role in this context. Due to
its large width it decays before hadronization and thus can
be considered as an almost free quark. As a consequence it
can be expected that the on-shell value for the top quark can
be determined with a relatively small uncertainty. This
aspect has been studied in detail in recent papers [1,2]. It
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has been shown that the on-shell top quark can be
computed from the MS mass with an irreducible uncer-
tainty of about 70 MeV [2].

There are various methods which can be used to obtain
numerical values for the quark masses. Some of them
determine directly the MS quark mass (see, e.g., Ref. [3])
and thus do not suffer from the inherent renormalon
ambiguity. However, the highest sensitivity to the quark
masses is in general obtained from physical quantities
evaluated at energies close to the quark mass. In such
situations it is convenient to introduce so-called threshold
masses to parametrize the physical quantities. Among the
most prominent ones are the potential subtracted (PS) [4],
1S [5-7], renormalon subtracted (RS) [8] and the kinetic
mass [9]." They allow for a precise determination of the
heavy MS mass without explicit reference to the pole quark
mass. However, at intermediate stages the pole mass and, in
particular, the relation between the pole and the MS mass is
still needed.

In the following we describe three typical examples
where the four-loop terms in the mass relations turn out to
be important.

(i) At the TEVATRON and the LHC the top quark

mass is measured with an uncertainty below 1 GeV.
For example, the combination of results from
ATLAS, CDF, CMS and DO from March 2014
[10] leads to

'Note that the relation of the kinetic mass to the on-shell mass
is currently only known to next-to-next-to-leading order (NNLO).
For this reason it is not considered in the following.
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M, = 173.34 £ 0.27(stat) + 0.71(syst) GeV, (1)

with a total uncertainty of 760 MeV. The value in
Eq. (1) is often called “Monte-Carlo mass” and there
are several attempts which suggest methods to relate
it to the on-shell mass (see, e.g., Refs. [11-13]). In
case Eq. (1) is interpreted as the on-shell quark mass
it has to be converted to the MS top quark mass.
Note that the three-loop term in the conversion
formulas contributes approximately 500 MeV which
is of the same order as the experimental uncertainties
in Eq. (1).

(i) From measurements of the top quark pair production
cross section close to threshold at a future linear
collider it will be possible to determine the top quark
threshold mass with an accuracy below 100 MeV
(see, e.g., Refs. [14,15]). In the conversion to the
MS definition there is a contribution of about
150-200 MeV from the three-loop term in the mass
relations which contributes significantly to the final
uncertainty of the MS mass (see Sec. IVB for
precise numbers). With the help of the four-loop
MS-on-shell relation this uncertainty can be drasti-
cally reduced.

For the sake of completeness let us mention that
there is an approach to determine directly the MS top
quark mass from the threshold cross section (see,
e.g., Ref. [16]). In future it will be interesting to
compare the top quark mass values obtained with
different methods.

(iii) The bottom quark mass can be extracted from Y sum
rules (see Refs. [17,18] for recent N°LO analyses)
and from M (Y (1S)) [19-22]. Usually, in a first step
a threshold mass is obtained. To be able to compare
with the MS quark mass (as, e.g., extracted from
low-moment sum rules [3]) one has to apply the
corresponding conversion formula. At three loops
the contribution is of the order of 30 MeV, which is
of the same order of magnitude (in some cases even
larger) than the combination of all other uncertain-
ties involved.

These examples show that the three-loop contribution
is sizeable and a reliable estimate of the uncertainty is
only obtained once the four-loop corrections are available.
Furthermore, note that for the PS, 1S and RS masses one
knows the relation to the pole mass to N3LO. However, due
to strong cancellations (see below) the N°LO term cannot
be used unless four-loop corrections to the MS and on-shell
quark mass are available.

The remainder of the paper is organized as follows:
In the next section we introduce the conversion factor
between the on-shell and the MS mass and discuss the color
decomposition of the four-loop term. Furthermore, we
provide several technical details and discuss, in particular,
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the numerical accuracy of the master integrals. Section III is
devoted to the results of the MS-on-shell relation which we
discuss for the physical limit, i.e. N. = 3 and fixed number
of massless quarks, n;, but also for generic N and even for
general SU(N,.) color factors. Several applications of the
MS-on-shell relation are discussed in Sec. IV and our
conclusions are contained in Sec. V.

II. TECHNICALITIES

A. Mass relations

The relation between the bare (m() and renormalized
mass in the MS scheme (m) is given by

my = er\nﬁmv (2)

where Zl,\,/l[_S only contains poles in ¢. It is obtained by
requiring that the renormalized propagator is finite. Note
that in QCD the fermion propagator contains two Lorenz
structures (scalar and vector). Thus next to ZMS also the MS

wave function renormalization constant is determined. ZMS
has been computed to five-loop order in Ref. [23]; for our
calculation only four-loop corrections [24-26] are needed.
We use ZMS expressed for generic SU(N,.) color factors
which can be extracted from the anomalous dimension
given in [25]. For convenience we present the result for ZMS
in Appendix F. Note that the MS-renormalized mass m
depends on the renormalization scale y which is suppressed
in Eq. (2). ZMS depends on p via the strong coupling
constant o (u).

In the on-shell renormalization scheme one requires that
the quark two-point function vanishes at the position of the
on-shell mass M which fixes the renormalization constant
798 introduced via

my = Z9SM. (3)

Note that m, and M are u independent and Z° contains
a,(p) and log(u/M) terms. The on-shell wave function
renormalization constant is determined from the require-
ment that the quark propagator has a residue —i at g> = M>.
This leads to a formula for Z9% which is independent

of ZOS. This is different in the MS scheme where ZMS and

Zg/l_s have to be determined simultaneously.
A formula for Z93 is conveniently derived by consid-
ering the renormalized quark propagator

_ —iZ3® .
q - mgo0 + Z(q’M) ’

Sr(q) (4)

%(q, M) is the (amputated) quark self energy which can be
split into a scalar and vector contribution
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(g, M) = MZ5(q>. M) + 42y (q*>. M), (5)

where g and Xy, only depend of ¢, the (renormalized) quark
mass and p (which is again suppressed). They are obtained
from the self energy X with the help of the projectors

S (M2 M) = 1 T M) e (6)

=, (M2 M) =~ Tr(g/%(q.

» M)l ()

Sample Feynman diagrams contributing to X(qg,
shown in Fig. 1.

Requiring that the inverse quark propagator, [Sy(q)]~!,
vanishes at the position of the on-shell mass, i.e.

M) are

P-M —i
Sr(q)” — q-M (8)
leads to
Z0S =1+ Z5(M* M) + Zy(M*, M). 9)

Thus, for the evaluation of the n-loop contribution to Z9%
n-loop on-shell integrals have to be computed.
In this paper we present results for the finite quantity

(ON]
) = =2 (10)

which is obtained from Egs. (2) and (9). Note that z,,(u)
depends on a,(u) and log(u/M) and has the following
perturbative expansion,

|
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Zn(p) = Z(@)nzﬁf)(ﬂ), (11)

n>0
with zﬁ,?) = 1. For later convenience we decompose z,(f ) (m)
into

szf)(ﬂ) :Z%)(M)+Z£r?)’log7 (12)

where the second term on the right-hand side comprises
the u-dependent terms which vanish for y = M. Analytic

results for z\'¢ are given in Appendix C.

For later use we also introduce the inverted relation to
Eq' (10)5

Cm(/’l):m’ (13)

with
— M ") 14
=) w0
and ¢ = 1. c%’)(u) is a function of log(u/m(u)).

Furthermore, we assume the similar decomposition of
Eq. (12) with "8 = 0 for y = m(m).

In this paper we consider generic SU(N,.) color factors
and present results for the coefficients. The four-loop term
of Eq. (11) can be decomposed into 23 color structures
which are given by

@ abcddabcd d d%bcdd%bcd d L d%ded?;de decH
zm’ = CELFFE + CLC Zh A 4+ CLCR 20 A + CrCiziAs + T R
c c c

+ CLTn PPl + CELCo Tz FAE + CpCaTn M + CET?n3zEFEE + CpCaT* n2 Z5AE + CpT3ni b EE
+ C3TnyzEFPH 4 Co.CoTnyzbFAR 4 CpCiTny A + CAT?n2 5P + CpCyT?n2 2EAHH 4 Cp T3n3 PHHH

+ CET?nny, b M+ CpCT?nyng, 2EAMH + CpT3ning, 2l + CpTPnyndz A (15)

where Cr and C, are the eigenvalues of the quadratic Casimir operators of the fundamental and adjoint representation for
the SU(N,.) color group, respectively, T = 1/2 is the index of the fundamental representation, and n; and n; count the
number of massless and massive (with mass M) quarks. In the applications discussed in Sec. IV we use n;, = 1. It is
nevertheless convenient to keep the variable n;, as a parameter. d4“¢ and d“”‘d are the symmetrized traces of four generators
in the fundamental and adjoint representation, respectively. The Color structures in Eq. (15) are related to N, via® (see, e. g.,
Ref. [27])

Ne -1 I N2 — 1)(N* -
N Cy=N, T :5’ danCdd‘}de — ( )(

6N2 + 18) gabed jabed _ N.(N?2-1)(N?+6)
F A - .

Cr = 96N? ’ 48

(16)
In the case of QCD we have N, = 3.

Note that our results are also valid for other groups. The corresponding expressions can easily be obtained by the proper choice of the
group theory factors; see, e.g., Ref. [27]. We restrict ourselves to SU(N,.) since it is closely connected to QCD.
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FIG. 1.
and the curly lines gluons.

One-, two- and three-loop QCD results to Z9S have been
computed in Refs. [28,29] and [30-33], respectively, and
electroweak effects have been considered in Refs. [34—43].
In Ref. [44] the four-loop results for z,, have been presented
for N, = 3 and n; = 3, 4 and 5 with a numerical precision
of 3% in the four-loop coefficient evaluated at u = M. It is
the aim of the present paper to generalize the findings of
[44] to general N, and arbitrary n;, Furthermore, the
precision is significantly improved. In this paper we do
not study light-quark mass effects which are known at two
[29] and three loops [45].

The relations between the threshold and the MS masses
are too long so that we refrain from printing them in explicit
form. For practical purposes it is convenient to use their
implementation in RunDec [46] and CRunDec [47]. The
construction of the relations can be found in the original
literature [4—8]; a summary can be found in, e.g., Ref. [44].

B. Reduction to master integrals

For the calculation of Xy and X, we use a highly
automated and well-established setup based on

POS
POS
D

A £
R

Sample Feynman diagrams contributing to Xg and 2, at one-, two-, three- and four-loop order. The solid lines represent quarks

qgraf [48], g2e and exp [49,50] and in-house
Mathematica and FORM [51,52] programs which work
hand in hand to minimize the manual interaction. Color
factors are computed with the help of color [27].

We use ggraf for the generation of the 3100 fermion
self-energy amplitudes. They are converted to FORM code
using g2e and exp. A further task of the program exp is
to map each diagram to one out of a set of 102 predefined
integral families which are shown in graphical form in
Appendix A. To obtain these families we start with the 11
prototypes shown in Fig. 2. They serve as the basis to
generate the allowed families by considering all possible
routings of a massive line through the diagrams. Diagrams
with self-energy insertions can be obtained from the ones in
Fig. 2 by removing some lines and raising the propagator
powers of other lines. For convenience we show a pictorial
representation for each family in Appendix A. At four
loops, they are labeled by 14 indices that correspond to
powers of propagators and irreducible numerators. The
maximal number of positive indices is 11.

We use in-house FORM programs to apply the projectors
to the vector and scalar parts of the fermion propagator

-®-
-9

FIG. 2. Four-loop prototype families needed to generate the four-loop on-shell integral families shown in Appendix A.
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needed for the calculation of the on-shell quark mass, to
perform traces and to decompose the scalar products in the
numerator in terms of denominator factors. As an outcome
our result is written as a linear combination of scalar
Feynman integrals which are related by integration-by-
parts identities [53]. We apply to each family the Laporta
algorithm [54] as implemented in FIRE [55-57] and
Crusher [58] to perform a reduction to master integrals.

We first work with each of the individual families and
determine the corresponding master integrals. It turns out
that the primary sets of the master integrals revealed with
FIRE are not minimal, i.e. there exist additional relations
among them. Then, following Ref. [56], we find additional
relations using symmetries of various integrals with indices
0,1, and 2. For each sector® one can estimate the number of
the master integrals using the code Mint [59]. There are,
however, additional relations which connect master inte-
grals of partially overlapping sectors and they can be
revealed by the same procedure based on symmetries.
The number of the master integrals in a given family can be
as large as 176.

One more criterion when looking for additional relations
is the absence of a spurious dependence of denominators in
reduction relations on d. The general analysis of singular-
ities of Feynman integrals as functions of d shows that poles
in d can be only real rational numbers. So, if we observe a
nonfactorizable polynomial of second or higher degree in d
in a denominator this means that either we miss a relation
between the current master integrals or some master inte-
grals are chosen in an inappropriate way. At least in all the
cases in our calculation, we managed to get rid of such
spurious denominators by revealing additional relations or
making better choices of the master integrals. However, with
the sets of master integrals we have arrived at it is not
guaranteed that we have really minimal sets of master
integrals, i.e. bases of the corresponding linear spaces.

The next step was to find relations between master
integrals of various families. To do this, we used the
Mathematica code tsort which is part of the latest
FIRE version [57] and end up with 386 four-loop massive
on-shell propagator integrals, i.e. with g> = M?.

We have performed the calculation allowing for a general
gauge parameter & keeping terms up to order & in the
expression we give to the reduction routines. We have
checked that ¢ drops out after adding counterterm con-
tributions from mass renormalization which is a welcome
cross-check on the consistency of our result.

As was mentioned above the algorithms we use to
minimize the number of basis integrals does not guarantee
that we obtain all relations among the integrals which
appear as master integrals of the individual families. The
fact that & drops out before using explicit results for the

A sector is a subset of indices where some indices are positive
and the other indices are nonpositive.
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master integrals is a hint that we are at least close to
the minimal set.

We refrain from listing all master integrals but provide
some examples in the next subsection where the numerical
accuracy of those integrals is discussed which cannot be
computed analytically.

Let us stress that up to this point our calculation is
completely analytical.

C. Computation of master integrals

In this subsection we describe the methods that have
been used to obtain results for the master integrals.

All master integrals are computed numerically with the
help of FIESTA [60-62]. FIESTA applies the sector
decomposition algorithm which leads to a, in general,
multidimensional integral representation of the coefficients
of the e expansion. The integration is performed using
Monte Carlo methods as implemented in the CUBA [63]
library. FIESTA allows for a highly parallel numerical
integration and provides an almost linear scaling behavior.
In fact, most of our calculations are performed at the
High Performance Computing Center Stuttgart (HLRS)
and the Supercomputing Center of Lomonosov Moscow
State University which provide up to 1024 CPU cores or
64 Tesla GPUs for a single run. The integral data base
obtained with FIESTA provides the reference for the
improvements for some of the integrals discussed in the
following.

We have computed all integrals using different statis-
tics ranging from N =0.5x10° to N =2 x 10° sam-
pling points. We have observed that the uncertainty
decreases proportional to 1/+/N according to the expect-
ations for Monte Carlo integrations. In Fig. 3 we show
three typical master integrals which are shown in graphi-
cal form to the left of the plot. For each term of the ¢
expansion, which is indicated on the x axis, several data
points are shown which correspond to different numbers
of sampling points.4 The central values are normalized to
the most precise result and then we subtract 1 which
explains why the central value of the leftmost data point
is equal to 0. The uncertainty bars correspond to the
results where the Monte Carlo uncertainty based on
Vegas [64] is multiplied by a factor 10 (see also
discussion below).

For the first two examples we observe that the central
values of the more precise calculation lie within the
uncertainties of the less precise ones. At the same
time the uncertainty is significantly reduced.” The third
example behaves differently: For the €' and €? terms we

*For better readability the results for different sampling points
are slightly displaced.

’In those cases where the uncertainty does not become smaller
after increasing the sampling points the requested precision is
already reached for a smaller number of sampling points.
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FIG. 3. FIESTA results for three typical integrals for various
choices of N. The corresponding master integrals are shown to
the left of the plots (see caption of Fig. 4 for the meaning of
the lines). In this plot the FIESTA uncertainties have been
multiplied by a factor 10. For each e coefficient on the x axis
results for different numbers of sampling points, N, are shown.
For all plots we show results for N = 5 x 10¥ with k = 5, 6, 7, 8.
The bottom plot also contains results for N = 2 x 10°. In each
case we normalize the results to the most precise one and then
subtract 1.

observe relatively big jumps after increasing the sam-
pling points from N =5x 10" to N =5x10® and
then to N =2 x 10°. Furthermore, the more precise
central value lies partly outside the ten-sigma uncer-
tainty bands.

We have produced convergence plots as those in Fig. 3
for all master integrals computed with FIESTA. Note that
the one in the bottom panel of Fig. 3 is among the integrals
with the worst behavior. Altogether for about five master
integrals the five-sigma uncertainty band is not sufficient to
find agreement between the central values of the high-
precision results with the uncertainty band of the low-
precision results. For this reason we adopt a conservative
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attitude and multiply the Monte Carlo uncertainty of
FIESTA by a factor 10. The reason for such a multipli-
cation can also be justified by the fact that each master
integral leads to thousands of individual sector integrals,
and each of them produces some error estimate. FTESTA
uses the mean-square norm when adding up error estimates,
but in unlucky situations this might be not enough for a real
error estimate.

It turns out that some of the master integrals determined
with FIRE, which have usually indices equal to 1 and 0, are
not optimal for the subsequent numerical evaluation with
FIESTA and only a poor numerical precision is obtained.
In such situations, we tried to make a better choice of the
master integrals replacing master integrals of some sector
by other integrals which can have indices equal to 2. In
some cases, we successfully followed the strategy advo-
cated in Ref. [65] where the goal was to choose a finite
or a quasifinite (in the sense that the only divergence
comes from the overall gamma function in Feynman
parametrization) basis.

In particular, for our final result we replaced the integral
shown in the bottom panel of Fig. 3 by an integral with
numerators which shows a much better convergence
behavior. Let us, however, stress that the final results
(discussed in the next section) for the two different bases
are consistent within the uncertainties.

For all factorizable integrals, we obtained analytic
results from the known one-, two- and three-loop results.
In particular, we use the results of Ref. [66] where all
three-loop master integrals have been obtained in an €
expansion up to the order typical to four-loop calculations.
For four of them, G43, G53, G62, and G65 (see Fig. 3 of
[66]) we had to add an additional order in e which is
straightforward. In most cases one can derive a one-
dimensional Mellin-Barnes representation which converges
exponentially and thus ((1000) digits can easily be
obtained. In our calculation we encounter in total seven
factorizable integrals.

For some master integrals, analytic results could be
derived using a straightforward loop-by-loop integration at
general d; see, e.g., Fig. 5 (top, leftmost). We also used
analytical results obtained for the 13 nontrivial four-loop
on-shell master integrals computed in our earlier paper [67]
(see Figs. 3 and 4 of [67]).

At this point we adopt a practical attitude and generate
an ordered list which contains the € coefficients of master
integrals with large contributions to the final uncertainty.
This list is used as a starting point to improve the accuracy
of our result by increasing the numerical precision of the
corresponding master integral. Up to a certain point this
could be reached by simply increasing the statistics in the
approach based on FIESTA. Of course, this approach is
quite limited since an increase of the number of sampling
points by 10 leads to an uncertainty which is reduced by
about a factor 3.
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FIG. 4. Sample building blocks for the loop-by-loop approach with three different types of external legs: dashed or solid lines denote
massless or massive propagators of general momentum p?, respectively. Their general complex powers can depend on the dimensional
regularization parameter ¢ and Mellin-Barnes integration variable z;. Double lines are on shell with the condition p?> = m?. The
dimension of the Mellin-Barnes integration is specified below the diagrams.

A closer look at the generated list shows that the major massless ones at the cost of a Mellin-Barnes inte-
contribution to the uncertainty comes from master integrals gration. It is worth mentioning that it does not
containing two- or three-point subdiagrams. For these need any specific hierarchy among the summands.
integrals we proceed as follows: Depending on the other lines of the original diagram

(1) Derive Mellin-Barnes representations for the we use the Mellin-Barnes method such that the

subdi-ag?ams. _ _ external momenta of the subdiagram are either
This is achieved with the help of the formula massive or massless. If possible, we apply on-shell
1 11 Liso y? conditions for external momenta.
— == dz——I'(4 I'(-z),
XYy T2 /_m SGE (A+2)[(-z) As af} e@rpple we p’r’esent our results for two
(17) typical “building blocks.

The bubble integral with two massive lines (see
which is used to split sums in the denominator Fig. 4, second diagram of the first row) and with
raised to arbitrary power into products. In this massless external legs can be written in the
way massive propagators can be transformed into following form:

|
/ d'k ! _ /Hw e e L TR LY G L CTIR e Rk S
ind [m* = k24 [m? — (k+ p)?|® 27 J_ie (-p?)* C(a))T(ay)T(a; + a; +2z) '

The triangle integral with two massive internal lines and one massive, one massless and one on-shell leg (see first
diagram of the second row in Fig. 4) is given by

/ddk 1
in2 [m* — (k+ p1)*“[m* — (k+ p1 + p2)?][-k*]“

1 +ico (m2)§—a1—a2—a3—z1—zz
e e e
(=2l (=2)T (a2 + 22)T(a3 + 2)l(a) + 21 + 22)
I'(a))T(ay)T(a3)I'(d —ay — a; — a3)
XF(d—al—az—zag—zl)F(al+a2+a3—§+zl+zz) (19)
C(ay + ay + 21 + 225) '

Note that the exponents in Eqgs. (18) and (19) need not be integer but may also depend on e.
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FIG. 5.
specified below the diagrams.

(i) Decompose integral into products of building blocks.
The derived building blocks are applied step by
step until all momentum integrations are replaced by
Mellin-Barnes integrals. For simple integrals one
ends up with a two- or three-dimensional integration
(cf. Fig. 5). In theses cases a precision of about nine
digits is achieved for the € terms. The coefficients of
the lower e-orders are more precise. We also encoun-
tered higher-dimensional integrals which lead to a
lower precision. Some examples with five-, six- or
even seven-dimensional integrations can be found in
Fig. 5. For these cases one obtains about five digits for
the € and two to three digits for the € term.

It is interesting to note that the decomposition into
building blocks is not unique. In fact, different
representations may have significantly different con-
vergence properties which we exploited for some of
the integrals.

Altogether we have treated 80 master integrals with the
help of the described method. The results of the Mellin-
Barnes integrals are usually quite precise for lower orders
of the e expansion and give several digits more than
FIESTA provides. For 16 out of 80 integrals FIESTA
produced more precise results for the higher orders in € and
we chose to compose “hybrid” results where the lower
orders were taken from the Mellin Barnes (MB) integrals
and the € or higher terms came from FIESTA.

For the preparation of the Mellin-Barnes integrals we use
the package MB [68] together with its extensions discussed
in Ref. [69]. For the numerical integration we use the
integrator cuhre as implemented in the CUBA library [63].
As far as our experience goes the estimated uncertainty of
cuhre is too small which can be seen by comparing the
results of the numerical integration to (analytically) known
results. Thus, we multiply the uncertainty by a factor 100 to
be on the conservative side. For the higher-dimensional
integrals we have also tried to use vegas; however, we
could not increase the precision [70].

We have compared all 80 master integrals computed with
the Mellin-Barnes method with the FIESTA results and

®:

S

4-dim 6-dim
. *

*
5-dim 7-dim

Sample master integrals which are treated with the Mellin-Barnes method. The dimension of the Mellin-Barnes integration is

found good agreement for almost all € coefficients within 3
standard deviations. However, in a few cases deviations up to
seven sigma are observed which once again justifies the use of
a conservative limit of ten sigma for the Monte Carlo
uncertainty of FIESTA [70]. The systematic application of
the Mellin-Barnes method is the main source for the improve-
ments as compared to the results presented in Ref. [44].

The described procedure can, of course, only be applied
to a subset of all master integrals. However, as mentioned
above, in our basis these integrals provide the substantial
part of the uncertainty to z,, in case we use the results based
on FIESTA.

For the remaining 259 integrals (i.e. the ones which
are neither known analytically nor treated with the Mellin-
Barnes method) we use the FTESTA result. When inserting
the master integrals we keep track of all uncertainties and
combine them in quadrature in the final expression. We
interpret the resulting uncertainty as a standard deviation
and multiply it by 10 (as justified above) in the final result
for the relation between the MS and on-shell quark mass.
Note that, if we add the uncertainties from the individual
contributions linearly we obtain an uncertainty which is
about five times larger than the uncertainty resulting from

the quadratic combination. For example, 2 for N.=3
and n; =5 reads —871.732 +0.180 for quadratic and
—871.732 £ 0.872 for the linear combination (without
security factor 10).

III. RESULTS FOR THE MS-ON-SHELL
RELATION

As an outcome of the procedure discussed in the
previous section we obtain bare four-loop results for
2y (q* = M2) + Zg(¢* = M?2) which still contain fourth-
order poles in the regularization parameter e¢. Furthermore,
uncertainties from each ¢ order of the numerically
evaluated master integrals are present in the expression.
The individual uncertainties are eventually combined
quadratically to obtain the overall uncertainty. It is obvious
that the latter is sensitive to the following choices:
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(i) Set N. =3 (and optionally also a value for n;)
before combining the uncertainties from the master
integrals.

(i1) Parametrize Xy + Z¢ in terms of generic N, and n;.

(iii) Parametrize Xy + Xg in terms of SU(N,) Casimir
invariants.
In this section we discuss the three options. Note that
we interpret the final uncertainty as a standard deviation
which we multiply by a factor 10 to be on the con-
servative side.

It is convenient to present results for the finite relation

between the MS and on-shell mass. It is obtained after

PHYSICAL REVIEW D 94, 074025 (2016)

renormalization of the quark mass in the on-shell and the
strong coupling constant in the MS scheme using three-
loop renormalization constants. Whereas a; is renormalized
by a simple multiplicative factor it is convenient to generate
the mass counterterm contribution at the same time as the
lower-order contributions. A finite quantity is obtained
after dividing the (parameter renormalized) Z5S by ZMS, as
discussed around Eq. (10).

To get a sense of the quality of the cancellations of the
poles we present in the following table results for three

typical contributions to zi (u*> = M?).

z,(;,‘) for N.=3,n,=5

coef. of N term coef. of C} term

e —0.00001 = 0.00002
e 0.0003 =+ 0.0002
€2 —0.0002 £ 0.0018
¢! 0.0044 4+ 0.0191
€0 —871.732 4+ 0.180

—0.0000002 + 0.0000002 —0.000006 + 0.000013
0.000002 =+ 0.000002 0.0001 £ 0.0001
0.000001 + 0.000016 —0.0007 £ 0.0009

0.00002 £ 0.00018 0.0005 £ 0.0081

—51.181 £ 0.002 —6.983 + 0.081

Note that the uncertainties are the ones returned from the
numerical integration without introducing any security
factor. Still, all pole coefficients are 0 within 1 standard
deviation which shows that the factor 10 applied to the final

results presented below is conservative.
From now on we only consider €’ terms and choose

u> = M? (for z,,) or u> = m*(u?) (for c,,). The renorm-
alization scale dependent terms can be computed analyti-
cally using renormalization group techniques; they are
given in Appendix C.

A. Results for N, =3

We start with specifying both N, and n; before combin-
ing the uncertainties of the master integrals. The results for

Fan) (M) and (:E;)(m) for N. = 3 are shown in Table I. Note
that for the physically interesting cases n; = 4, 5 and 6 we
find a relative uncertainty between 0.1% and 0.2%.
From Table I one observes that the uncertainty has only a
very mild dependence on n;. Thus, to a good approximation

we can write zﬁ,‘,‘) in the form®

2 = —3654.15 + 1.64 + (756.942 + 0.040)n,
—43.4824n% + 0.678141n;. (20)

In Fig. 6 we plot Eq. (20) for n; between 0 and 20 and
combine the data points for integer n; to guide the eye. It is

interesting to note that the four-loop coefficient Fan
becomes positive between n; =9 and n; = 16. Close to

®Note that this is not a fit to Table L.

these values of n; (i.e. for n; = 8 and n; = 17) the absolute
value of ziy is quite small and thus the relative uncertainty
exceeds 5%. The range for n; where the four-loop coef-
ficient changes sign coincides with the one for the so-called
Banks-Zaks fixed point for the QCD beta function [71].
However, we are not aware of a deeper connection which

might be a subject for further studies.

TABLE I Results for zi (M) and ¢l (m) for N, =3 and
0 <n <20.

i o (M) i (m)

0 —3654.15 £ 1.64 3567.60 £ 1.64
1 —2940.01 £ 1.67 2864.60 & 1.67
2 —2308.77 £1.70 224432 £ 1.70
3 —1756.36 £ 1.74 1702.70 £ 1.74
4 —1278.70 £ 1.77 1235.66 £+ 1.77
5 —871.73 £1.80 839.14 £1.80
6 -531.39+1.84 509.07 £ 1.84
7 —253.59 £ 1.87 241.37 £ 1.87
8 —34.28 +1.91 31.99 £ 1.91
9 130.62 = 1.94 —123.15+1.94
10 245.17 £ 1.98 —228.12+1.98
11 313.45£2.01 —286.98 +2.01
12 339.51 £2.05 —-303.81 +2.05
13 327.44 £2.08 —282.68 +2.08
14 281.30 £2.12 —227.64 £2.12
15 205.16 £2.16 —142.78 +2.16
16 103.09 +=2.19 -32.15£2.19
17 -20.85+2.23 100.16 £ 2.23
18 —162.58 £2.26 250.10 £ 2.26
19 —318.03 £2.30 413.59 +2.30
20 —483.15+2.34 586.56 +2.34
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FIG. 6. n; dependence of fan) (M).

The four-loop coefficient of the inverted relation, cﬁfp,

which is basically obtained from negative z,(ﬁ) plus some
products of lower order contributions, shows a similar
behavior except for the overall sign. It has, in particular,
the same uncertainty, as can be seen in the last column of

Table 1. The explicit n; dependence reads

i) = 3567.60 + 1.64 — (745.721 + 0.040)n,
+43.3963n2 — 0.67814173. (21)

For some applications it is useful to have control over
all fermionic contributions, including the ones from
closed fermion loops of mass M which we label by
ny. The corresponding result is shown in Table II where
we present the coefficients of ninj for i, j=0, 1, 2, 3
with i 4 j < 3.

B. Results for generic N,

In a next step we do not specify numerical values for N,
and n; which leads to 23 nonzero color structures. For the
corresponding coefficients we obtain

TABLE II. 251‘11 ) decomposed into coefficients of nﬁn{l

n?n) —-3678.28 + 1.63
ninj 23.63 £0.12
ndn3 0.5273 + 0.0027
ndn; —0.02484 =+ 0.00000
n}nf 757.64 +0.04
ninj —0.6646 + 0.0004
nin;, —0.03617 =+ 0.00000
nin —43.47 +0.00
nin —0.01720 = 0.00000
nyn 0.6781 = 0.0000

PHYSICAL REVIEW D 94, 074025 (2016)
LEELUNE — () 25430),
(NG _ (025430,

ZEEVNE — 014090,
ZEEUNE _0.00645,
LINY 5 58071,
ZEENE — _0.00645,
(HINE — _5.44881,
EVNE — 0.1788 + 0.0333,
VNS — _0.18076 + 0.00000,
ZEUNE — 0.9282 + 0.0445,
LN°
LN — 0.28392 + 0.00005,
ENe — 327991 + 0.0100,
LN?
ZENE — _0.10316 + 0.00005,
LN3
ENE — 31.69215 + 0.00124,
NS
ZYNE — _0.4364 + 0.0503,
NS 0,821 +0.121,
N2
ZYNE 01739 + 0.0738,
NS 0,645 +0.161,
NO
N _0.614 +0.175,
N = 22,6228 + 0.0415,
N — 52,0579 + 0.0808,
N 1.15654 + 0.00424,
N = 511812+ 0.0161, (22)

where the notation used for the superscripts is self-
explanatory.” The n} and 1} terms are known analytically
and can be found in Ref. [67,72] (see Appendix E). Both for
the linear-n; and the n;-independent contribution one obtains
small (relative) uncertainties for the positive powers in N..
which dominate in the physical limit N . = 3. This explains the
small uncertainties of coefficients in the previous subsection.

From Eq. (22) one learns that for N. = 3 the dominant
uncertainty originates from z]n\?, followed by the N,-

0
independent term e,
As a cross-check we choose N, = 3, fix n; and use the

coefficients of Egs. (22) to compute zﬁf ) combining all uncer-

tainties again quadratically. We obtain the following results:

7Example: z,ﬁl /N

factors n;.

is the coefficient of n;/N2; “L” counts the
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(4)

n; Zm

3 —1756.36 = 1.52
4 —1278.70 4+ 1.53
5 —-871.73 £ 1.53

The central values are by construction identical to the
corresponding entries in Table I; the uncertainties are even
slightly smaller. This might happen since the uncertainties are
added linearly when setting N. and n; to numerical values
before combining the uncertainties from the individual €
terms (cf. Sec. Il A). As compared to adding the uncertainties
in quadrature this might lead to larger (as in the case at hand)
or smaller (see the next subsection) uncertainties.

C. Results in terms of Casimir color factors

This subsection is devoted to the most general results,
namely z,, in the form of Eq. (15). For the coefficients of
the 23 color structures we obtain

ZbFFF = —6.983 + 0.805,
ZPFFA — 13,40 4 2.07,
ZPFAA — _11.17 4 1.74,
ZhAAA — 99272 4 0.493,
zd =039 4 1.07,
2l — —0.937 £0.178,
2l — _3.924 4 0.642,
ZBFFL — —0.05094 + 0.00298,
ZhFAL = 9.26642 + 0.00454,
ZPAAL — 122.1872 + 0.0100,
ZPFLL = —2.25441,
ZPALL — —42 46326,
ZPELL = 4,06885,
ZPFFH — 13625 4 0.0132,
ZBFAH — 14,9800 4 0.0334,
ZhAAH — 2 3597 +0.0342,
ZBFHH — 1.65752 4 0.00031,
ZPAHH — _ (020934 + 0.00273,
ZPHHH — _0.14902 4 0.00000,
ZhFLH — 2 89209 =+ 0.00010,
ZPALH — (0,62076 + 0.00042,
ZhELH — —0.10321,
ZhEHH = —0.21703 + 0.00000. (23)

The n and n? terms are known analytically and can be
found in Appendix E. The linear-n; term is dominated by

PHYSICAL REVIEW D 94, 074025 (2016)

zFAAL which has an uncertainty below 0.01%. On the other

hand, for zZFL the precision is only about 4%; however,
the numerical impact is small, even for N, = 2.

The contributions involving closed heavy quark loops
are generally small and known to a precision of about 10%
or better, the numerically dominant z5fA# contribution
even to about 1.3%.

FFFF_FFFA

There are five nonfermionic contributions, z;," ", z5,

ZBFAA ZFAAA and z,f*. The most precise one, z,444, has by

far the largest coefficient and furthermore the 1argest color

factor. The three coefficients 7577, zIFFA and zFFA4 have

dra

an uncertainty between 11% and 15%. zii,,“ 1s the worst
known coefficient. Actually, within our precision we cannot
claim whether it is positive or negative. Note, however, that
not only the coefficient itself but also the color factor is
numerically small as compared to others. For example, for
N, =3 we have d%°did/N.=15/6 =2.5 whereas

CrC3 = 36. The current uncertainty of z%4 is dominated
by master integrals where we rely on the FIESTA results.

As a cross-check we insert the results from Eq. (23) into
Eq. (15) and specify the color factors to their numerical
values with N. = 3. We add all uncertainties in quadrature
and obtain

n; ZE:>

—1756.36 £ 36.3
—1278.70 £ 36.3
-871.73 +£36.3

(O I SN O]

which has to be compared with the corresponding entries in
Table T where N. =3 is chosen before combining the
uncertainties from the individual master integrals. As
expected, one observes the same central value; however,
the uncertainties are significantly larger.

IV. APPLICATIONS
A. MS-on-shell transformation formulas

In the following we discuss the relation between the MS
and on-shell quark mass and specify the number of
massless quarks to the top, bottom and charm case.

Let us start with the version where the on-shell mass is

computed from the MS mass. We use as input the following
MS masses,

m,(m;) = 163.508 GeV,
mb(mb) =4.163 GeV,
m,(3 GeV) = 0.986 GeV, (24)

where m,(m,) is computed from M, = 173.34 GeV [10]
using four-loop accuracy. The MS masses for charm and
bottom are taken from Ref. [3].
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The values for the strong coupling are given by
o\ (m,)=0.1085, !’ (m;) = 0.2253, and o'’ (3 GeV) =
0.2540. They have been computed from aﬁs)(M 7) =
0.1181 using RunDec [46,47]. In the case of the charm
quark we also provide results for y = m.(m,.) using the
input values m.(m.) =1.279 GeV and a§4>(mc) =
0.3872. Note that the choice y = 3 GeV is preferable since
it has the advantage that low renormalization scales u ~ m,.
are avoided.

In the following equations we list the results for the
relations which convert the MS to the on-shell mass. For
simplicity we set here and in the remainder of this section
the uncertainty of the four-loop coefficient to 0.2%
although it is for charm and bottom slightly smaller (see
Table I). We obtain

M, = m,(m,)(1 + 0.4244a, + 0.8345a?
+2.375a3 + (8.615 £ 0.017)a?)
= 163.508 + 7.529 + 1.606 + 0.496
+ (0.195 4 0.0004) GeV, (25)

My, = my(m,)(1 + 0.4244a, + 0.9401a?
+3.04503 + (12.685 £ 0.025)a})
=4.163 +0.398 + 0.199 + 0.145

+(0.136 +0.0003) GeV., (26)

M, =m.(3 GeV)(1 + 1.133a, + 3.11902
+10.981a3 + (51.419 +0.102)a%)
= 0.986 + 0.284 + 0.198 + 0.177
+(0.211 4 0.0004) GeV, (27)

M. = m.(m.)(1 + 0.4244a, + 1.0456a2
+3.757a3 + (17.480 £ 0.035)a?)
=1.279 + 0.210 + 0.200 + 0.279
+ (0.503 £ 0.001) GeV, (28)

where the renormalization scale of a, in each equation is
identical to the one specified for the MS quark mass in the
prefactor of the first lines in each equation.

One observes a good convergence for the top quark
where the coefficients steadily decrease; the four-loop
coefficient is more than a factor 2 smaller than the
three-loop one. This is different for charm and bottom
where the two-, three- and four-loop coefficients are of the
same order of magnitude. In Eq. (28) (where y?> = m? has
been chosen) the four-loop coefficient is even almost twice
as large as the three-loop coefficient.
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For convenience we also present the inverted relation of
Eq. (25) which is given by

m,(m,) = M,(1 — 0.4244a, — 0.924602 — 2.593a>
— (8.949 +0.018)a)
= 173.34 —7.924 — 1.859 — 0.562
— (0.209 + 0.0004) GeV, (29)

where a; = ay(M,) = 0.1077. We refrain from providing
the analogue equations for charm and bottom since this
would require specifying the pole masses.

B. Relation between MS and threshold mass

The threshold masses are constructed such that the
relation to the MS mass is well behaved in perturbation
theory. It is illustrating to examine the cancellations which
take place between the coefficients in the MS-OS relation
and the ones in the relation of the OS and threshold mass.
For example, in the case for the bottom quark mass we have
for the PS mass

mpS(up =2 GeV)
— 4.163 + (0.399 — 0.191)
+(0.199 — 0.120) + (0.145 — 0.114)
+ (0.1364 — 0.1368 + 0.0003) GeV
=4.163 + 0.207 + 0.080 + 0.032
— (0.0004 + 0.0003) GeV, (30)

where the second terms inside the round brackets after
the first equality sign originate from the PS-OS relation.
As expected due to the very definition of the PS mass,
one observes a significant cancellation between the
coefficients of the PS-OS and PS-MS relation. The
cancellation becomes stronger at higher loop order. In
particular, at four loops one observes a cancellation of
three significant digits, which is the reason why four
digits after the comma are provided. Note that the details
of the cancellations depend on u;, as we discuss in
Sec. IV C.

After the second equality sign the numbers in the round
brackets are added. One observes a nice convergence
behavior with decreasing coefficients which has to be
compared to the OS-MS relation where the three- and
four-loop coefficients have the same order of magnitude,
cf. Eq. (26). The four-loop coefficient in Eq. (30) only
amounts to —0.4 MeV which is actually of the same order
of magnitude as the uncertainty. Note, however, that both
the central value and the uncertainty are far below the
expected precision of the MS bottom quark mass within the
foreseeable future.
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The analogue equation to (30) for the top quark reads

PHYSICAL REVIEW D 94, 074025 (2016)

mPS (1, = 80 GeV) = 163.508 + (7.531 — 3.685) + (1.607 — 0.989)
+ (0.495 — 0.403) + (0.195 — 0.211 4 0.0004) GeV
= 163.508 + 3.847 + 0.618 + 0.092 — (0.016 = 0.0004) GeV. (31)

Also here one observes a drastic reduction of the correction terms when going to higher orders. In fact, the last term amounts

to only 16 MeV instead of 200 MeV in Eq. (25).

For the 1S mass we obtain the following perturbative relations to the MS bottom and top mass,

mlS = 4.163 + (0.399 — 0.047) + (0.195 — 0.072) + (0.139 — 0.100) + (0.129 — 0.137 + 0.0003) GeV
= 4.163 + 0.352 4 0.123 4 0.039 — (0.008 = 0.0003) GeV,
m!S = 163.508 + (7.531 — 0.428) + (1.588 — 0.368) + (0.479 — 0.262) + (0.185 — 0.174 =+ 0.0004) GeV
= 163.508 4 7.103 4 1.220 4+ 0.217 + (0.011 + 0.0004) GeV, (32)

where the first and second number in the bracket originates
from the OS-MS and OS-1S relation, respectively.
Furthermore, we order the terms according to the ¢
expansion as defined in Refs. [5-7]. It is interesting to
note that at leading order (LO) (first round bracket) the
contribution from the OS-1S relation amounts only to a few
per cent of the OS-MS relation. At N°LO, however, it is
more than 90% both for bottom and top.

Similar results to those presented in Egs. (30), (31) and
(32) for bottom and top are also obtained for the charm
quark in case y = 3 GeV is chosen for the renormalization
scale. On the other hand, in the case when the relation of the
threshold mass to m.(m,.) is computed the four-loop term
exceeds the three-loop one. We furthermore observe that
the relations to the RS and RS’ masses behave very similar
to the PS and 1S masses. We refrain from providing explicit
results which are easily obtained with the help of RunDec
[46] and CRunDec [47].

In practice a threshold quark mass is extracted from
comparison of experimental measurements and theory
predictions. Afterwards it is converted to the MS quark
mass. In Table III we show the results for the scale invariant
MS quark masses m,(m,) (g =1, b, ¢) and m.(3 GeV)
using one- to four-loop accuracy for the conversion. The
input values for the threshold masses (which are provided at
the top of each table) are chosen such that the four-loop
results agree with the input values discussed in Eq. (24).
For the top quark a rapid convergence is observed with
four-loop contributions between 10 and 20 MeV. The
situation is similar for the bottom quark where the four-
loop term amounts to at most 8 MeV for the case of the 1S
mass. As already mentioned above, the four-loop term for
the case where m.(m,.) is computed from the threshold
masses is larger than the three-loop contribution which is
different for m.(3 GeV) where the four-loop term is

|
smaller by up to a factor 4. Thus, even in this case we
observe a reasonable convergence of the perturbative series;
for the PS and RS masses the N3LO corrections are even
below 10 MeV.

The results in Table IIT show that perturbatively well-
behaved quark mass relations are obtained after introducing
threshold masses. To exploit them at third order in
perturbation theory, which is mandatory due to current
precision reached for the quark masses, it is necessary to
use the four-loop relation between the on-shell and MS
quark mass for the construction of the MS-threshold mass
relation.

To obtain the results in Table III we have set the
renormalization scale in the relation between the threshold
and MS mass to the quark mass itself or to 3 GeV. As an
alternative one could also apply the conversion relation at
some intermediate scale u and then run with four-loop
accuracy in the MS scheme for either the scale invariant
mass or to 4 =3 GeV for the charm quark. The corre-
sponding results are shown in Fig. 7 where m,(m,),
my(m,) and m.(3 GeV) are shown as a function of the
intermediate scale u. The panels on the left show the results
for the PS mass for the one- to four-loop analysis. In all
three cases one observes a rapid convergence when
including higher order corrections resulting in an almost
horizontal, i.e, y-independent, result at four loops.

The panels on the right compare the various threshold
masses at three and four loops. Note that by construction
the four-loop curves coincide for 4 = m,(m,) for top and
bottom and for y = 3 GeV for charm. In all cases one
observes that the four-loop curves are significantly flatter
than the three-loop results. Particularly good results are
obtained for the top quark in panel (b) where in a large
range the four-loop results lie on top of each other. The
four-loop curves in the case of the bottom quark show
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TABLE IIl.  m,(m,) (g =1, b, ¢) in GeV [see (a)-(c)] and
m.(3 GeV) (d) computed from the PS, 1S, RS and RS’ quark
mass using LO to N3LO accuracy. The numbers in the last line are
obtained by taking into account the uncertainty of the four-loop
coefficient, i.e., it is increased by 0.2%. This leads to a shift of at
most 1 MeV. The factorization scales for the PS, RS and RS’
masses are set to 2 GeV for bottom and charm. For the top quark
we use py = 80 GeV for the PS, RS and RS’ masses.

() m,(m,)

Input mPS — m!S — mRS — MRS —
No. of loops 168.049 172.060 166.290 171.785
1 164.174 164.904 163.702 164.226
2 163.580 163.727 163.520 163.591
3 163.492 163.519 163.490 163.500
4 163.508 163.508 163.508 163.508
4 (x1.002) 163.507 163.507 163.507 163.507
(b) my,(my,)

Input mPS — m!S — mRS — MRS —
No. of loops 4.481 4.668 4.364 4.692
1 4.266 4.308 4.210 4.286
2 4.191 4.192 4.173 4.196
3 4.163 4.155 4.159 4.165
4 4.163 4.163 4.163 4.163
4 (x1.002) 4.163 4.163 4.163 4.163
(©) mc(mc)

Input mPS = m'S = mRS — mRS —
No. of loops 1.130 1.513 1.035 1.351
1 1.255 1.342 1.249 1.146
2 1.230 1.250 1.273 1.276
3 1.235 1.214 1.249 1.250
4 1.279 1.279 1.279 1.279
4 (x1.002) 1.278 1.278 1.278 1.278
(d) m.(3 GeV)

Input mPS — m!S — mRS — mRS —
No. of loops 1.153 1.545 1.043 1.357
1 1.077 1.261 1.028 1.074
2 1.021 1.117 1.008 1.020
3 0.993 1.032 0.992 0.995
4 0.986 0.986 0.986 0.986
4 (x1.002) 0.986 0.986 0.986 0.986

stronger variations below, say, 4 = 2.5 GeV. Here the PS,
RS and RS’ results are quite close together whereas the 1S
curve shows a quite strong rise for 4 — 2 GeV. Note that
the scale on the y axis for the charm plot covers a bigger
range than for the bottom quark. Nevertheless the four-loop
curve shows a quite flat behavior. One observes again that
the 1S curve deviates from the remaining ones.

C. us dependence of PS, RS and RS’ mass

In this section we study the dependence of the PS, RS
and RS’ mass on the factorization scale #y- To do this we
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use m,(m,), my(my), m.(m.) and m.(3 GeV) from
Eq. (24) and compute the threshold masses for the given
value of y to four-loop accuracy. This value is then used as

starting point for the computation of the MS mass at one- to
four-loop order as a function of y;. In Fig. 8 the three-
(black) and four-loop (red) contributions to the conversion
formula are plotted for the PS (solid), RS (short dashes) and
RS’ (long dashes) masses. In the case of the top quark the
default scale for the PS mass suggested in Ref. [4] is
#r =20 GeV. For this value the four-loop contribution
amounts to about —50 MeV. One observes that the per-
turbative conversion formula is better behaved for larger
values of us. In fact, the four-loop term vanishes for
pr~50 MeV and amounts to about +10 MeV for
ur ~ 80 MeV, a value suggested in Ref. [14] in the context
of top quark pair production close to threshold. Similar
conclusions also hold for the RS and RS’ masses.

For the bottom quark the general behavior of the three-
and four-loop correction terms is similar to the top quark
case. Here, the suggested default value of u, =2 GeV
[4,8] seems to be a good choice from the perturbative point
of view.

For completeness we show in Fig. 8 the corresponding
results for the charm quark masses m.(m.) and
m.(3 GeV). Here, the results are less conclusive, in
particular, for m.(m.). Over a large range of u, the
four-loop term is even larger than the three-loop contribu-
tion which is a sign that the formalism should not be
applied to m,(m..). The situation is better when m.(3 GeV)
is considered, which is probably due to the smaller values
of a, [which increases significantly when going from
u=3GeV to u=m.m.)~ 1.3 GeV]. For m.(3 GeV)
the four-loop contribution is always smaller than the three-
loop term; however, it comes close to 0 only for values
near puy ~ 3 GeV.

D. c,, in terms of "

For certain applications (see, e.g, Ref. [2]) it is necessary

to express the MS-on-shell relation in terms of al™)

of aﬁ”’H). It is obtained by using the decoupling relation for

a, which is given by®

instead

a" ) = ¢, o™ (33)

with

(n;) 2

1 o Y7

=14+- I —
R °g(m2<u2>

) +0(@2), (34)

*The formulas of this subsection and the ones of the
appendixes (except Appendix E) can be found on the website
https://www.ttp.kit.edu/_media/progdata/2016/ttp16-023.tgz and
also see Supplemental Material [73].
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FIG. 7. (a) MS top quark mass m,(m,) computed from the PS mass with LO, next-to-leading order, NNLO and N3LO accuracy as a
function of the renormalization scale used in the MS-threshold mass relation. (b) MS top quark mass m,(m,) computed from the PS, 18,
RS and RS’ mass with NNLO (dashed) and N3LO (solid line) accuracy as a function of the renormalization scale used in the
MS-threshold mass relation. At the right end of the plot the lines from bottom to top correspond to the RS, PS, RS’ 1S mass. (c)—(f) show
the results for bottom and charm. For the bottom quark the four-loop result for the 1S mass is below (above) the others for high (low)
values of .

where results up to four-loop order can be found in Refs. [74,75]. In our case we only need three-loop corrections which
have been computed for the first time in Ref. [76]. Inserting Eq. (33) into the equation for z,, leads to

Cm(nl) - Cm(nl + 1)|a(_”1+')_,a(_"1) + 5cm(nl)’ (35)
with
2 21
2) il
13} m — ) 36

2 3 2 3 2 2
5 Lo 171, B 252 B3R 71« 11
s = | (=24l Plog) ) 2k e o (2 T L o (37
¢ K 1879 T3y o™ 10e@) )l Tt H 736 T q0s T\ Tam sa) e Tsa BT
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3248~ 324 81" 08 (D)~ ygp 7 loe2)
Lol (Aas 2418 6lat 10572 502145 | log*(2)
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U\ 27 144~ 3888 1296 93312 162
1, 1 76, 252 11233 1
g7 10g () —yg 7 loel )> +< i3 108 2592 54" 1082 )l
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13 89 117> 209567 11
e (22 T\ p b T SO L 0e(2)] 38
T (1296+ 108> ”} 103 23328 324" l°8( >] (38)
|
with However, most of the master integrals are only known
numerically. For QCD, we managed to obtain an uncer-
u ! tainty of 0.2% for the four-loop coefficient.
l, = log (1)) a, = Li, 5 ) (39) We have also computed the coefficients of the

V. CONCLUSIONS

The main result of this paper is the calculation of the
four-loop coefficient in the relation between the MS
and on-shell heavy quark mass. Up to the reduction to
master integrals the calculation is performed analytically.

individual color structures. It is interesting to note that
the large coefficients (z5A44 and zZA4L) are known to
high precision and furthermore also have large color
factors. Thus, they dominate the numerical result
obtained after specifying N, in particular, the physical
result for N, = 3. Some coefficients are known to high
relative precision; others have uncertainties of about
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30%. There is one coefficient (zf,l{/*) with an uncertainty
which is larger than the central value. Fortunately, it has
only a minor numerical contribution to z,,.

In this paper several applications have been discussed.
Among them is the numerical analysis of the heavy quark
relation for the top, bottom and charm quark. Furthermore,
the relations between the MS and several threshold masses
are investigated. We have shown that the latter have well-
behaved perturbative expansions, in particular, for the top
and bottom quark. We have furthermore investigated the
dependence of the PS, RS and RS’ masses on the
factorization scale. It turns out that for bottom and charm
#y =2 GeV is a reasonable choice. For the top quark we
observe that for u; = 80 GeV the four-loop corrections are
small. The numerical results presented in Sec. IV are easily
reproduced with the help of RunDec [46] and CRunDec
[47] where the latest results for the mass relations are
implemented.

D

J
=

T T

GQRPIOCE)
S

FIG. 9.
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APPENDIX A: INTEGRAL FAMILIES

Graphical representation of the 102 integral families is
shown in Figs. 9-11. They are obtained from Fig. 2 by
introducing a throughgoing massive line. Note that tables
are only required for 100 families since the color factors of
the diagrams mapped to two families are O.

e QG & 5
@ 9% P T

Integral families needed at four-loop order. Thick black lines indicate massive particles and thin orange lines massless particles.
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FIG. 11. Four-loop families (continued).

APPENDIX B: ANALYTIC RESULTS FOR z,, UP TO THREE LOOPS

In this appendix we present analytic results for z,, up to three loops including higher order terms in ¢ which might
be important in case the relation between the MS and on-shell mass is used in divergent expressions. For y> = M? our
results read

(1) _ Q_g_”_z_ﬁ 3 ®_4_”_2 2 _2_”_2 _
Z’”_<3 6 640) F T (g 12)<Cr T 16)€Cr—Cr

=

4 2 4
0 _ o L 13G 77t 2717 8581 log*(2) 1 5 o0 3, o
Zm e(CACF< as+—= 20 + TR t— ty7leg (2) 57 0g(2)

g

N———

33¢; 72t 213z* 91 log*(2)
(12, - 223 2200 20 08 1) 121002(2) + 322 log(2
* F( U=t T 256 2 Flee (@ irlog(2)

78, 22777 1133 972* 581
+TCF<—£— ® 4 +7r210g(2)>nh+ <C3 —l——ﬂ—l——)TCpn,)

2 288 192 288 192
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The logarithmic contributions can be found in Appendix C.

APPENDIX C: RENORMALIZATION SCALE DEPENDENCE OF z,(: )

In this appendix we present the dependence of z,,(u) and c,, () on log(u). The corresponding analytic expressions are
easily constructed from Egs. (10) and (13) by taking the derivative with respect to > and exploiting the fact that M is u
independent. The y dependence of m(u) and o (u) is governed by corresponding renormalization group equations which
are needed to four- and three-loop accuracy, respectively.

Our results read

o 3
Zﬁrp'l § = _ZCFLMy (C1)

o 185C,C 13 13 21C% 11C,C 1 1 9C%
zﬁf“g:LM<—#+—TCFnh+ﬁTCFn,+ F>+L§4{— A F+—TCFnh+—TCFn,+—F}, (C2)

96 24 32 32 8 8 32
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2
ADC apcC. aDC abc //l
dpr = de dde / dpa = de ddAb 4 Ly =log (W)’ I, = log(2). (Cs)

We present the ¢ dependence of the four-loop term of the inverted relation in the form
e = = sl (C6)

where

2 4 2 4 2
(4).log 2 3703 89¢5 15¢s ;1 2P 85771, 437z 43z~ 95551
0 m - lm T 2 - —= l —
¢ < i (CACF< o 16 * 48 16 12 12" 16 + 720 9 20736
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with
l,, = log (m/;(zﬂ)) (C8)

Note that the x4 dependence at four-loop order has also been discussed in Ref. [78].
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APPENDIX D: COUNTERTERM CONTRIBUTION TO Z,(,IS

In this Appendix we show the four-loop contribution to Z9S introduced by the lower loop orders. To be precise we write

n>0

S.(4) according to

and split ZSL
0S.(4) _ ,08.(4 oS
Zm ) = Zm ( >|CT + Zm ( )|genuine4loop’ (D2)

where Z(,ZS’W |t contains all counterterm contributions from the renormalization of the strong coupling constant and quark
mass. For y?> = M? it is given by
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where a, and [, are given in Egs. (39) and (C5), respectively. The QCD gauge parameter ¢ is defined via the gluon
propagator

gv —ELL
DY (q) = —i——1—. D4
g (‘1) q2 Tie ( )

APPENDIX E: ANALYTIC RESULTS FOR z,

In this appendix we repeat for convenience the coefficients of the color structures presented in Sec. III C which are known
analytically [67]. They are given by
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where a, and [, are given in Egs. (39) and (C5), respectively.
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APPENDIX F: Z,@ FOR GENERAL SU(N,.) GAUGE GROUP

In this appendix we present ZW up to four-loop order [24,25] expressed in terms of SU(N,) color factors. It has been
obtained from the quark mass anomalous dimension given in [25].
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where dpp and dp, are defined in Eq. (C5).

074025-30



MS-ON-SHELL QUARK MASS RELATION ...

[1] P. Nason, Proc. Sci., TOP2015 (2016) 056 [arXiv:
1602.00443].

[2] M. Beneke, P. Marquard, P. Nason, and M. Steinhauser,
arXiv:1605.03609.

[3] K. G. Chetyrkin, J. H. Kuhn, A. Maier, P. Maierhofer, P.
Marquard, M. Steinhauser, and C. Sturm, Phys. Rev. D 80,
074010 (2009).

[4] M. Beneke, Phys. Lett. B 434, 115 (1998).

[5]1 A. H. Hoang, Z. Ligeti, and A. V. Manohar, Phys. Rev. D 59,
074017 (1999).

[6] A.H. Hoang, Z. Ligeti, and A. V. Manohar, Phys. Rev. Lett.
82, 277 (1999).

[7] A.H. Hoang and T. Teubner, Phys. Rev. D 60, 114027
(1999).

[8] A. Pineda, J. High Energy Phys. 06 (2001) 022.

[9] A. Czarnecki, K. Melnikov, and N. Uraltsev, Phys. Rev.
Lett. 80, 3189 (1998).

[10] ATLAS and CDF and CMS and DO Collaborations,
arXiv:1403.4427.

[11] P.Z. Skands and D. Wicke, Eur. Phys. J. C 52, 133 (2007).

[12] S. Kawabata, Y. Shimizu, Y. Sumino, and H. Yokoya,
Phys. Lett. B 741, 232 (2015).

[13] J. Kieseler, K. Lipka, and S. O. Moch, Phys. Rev. Lett. 116,
162001 (2016).

[14] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum, and
M. Steinhauser, Phys. Rev. Lett. 115, 192001 (2015).

[15] F. Simon, arXiv:1603.04764.

[16] Y. Kiyo, G. Mishima, and Y. Sumino, J. High Energy Phys.
11 (2015) 084.

[17] A. A. Penin and N. Zerf, J. High Energy Phys. 04 (2014)
120.

[18] M. Beneke, A. Maier, J. Piclum, and T. Rauh, Nucl. Phys.
B891, 42 (2015).

[19] A.A. Penin and M. Steinhauser, Phys. Lett. B 538, 335
(2002).

[20] C. Ayala, G. Cvetic, and A. Pineda, J. High Energy Phys. 09
(2014) 045.

[21] Y. Kiyo, G. Mishima, and Y. Sumino, Phys. Lett. B 752, 122
(2016).

[22] C. Ayala, G. Cvetic, and A. Pineda, arXiv:1606.01741.

[23] P. A. Baikov, K. G. Chetyrkin, and J. H. Kiihn, J. High
Energy Phys. 10 (2014) 76.

[24] K. G. Chetyrkin, Phys. Lett. B 404, 161 (1997).

[25] J. A.M. Vermaseren, S.A. Larin, and T. van Ritbergen,
Phys. Lett. B 405, 327 (1997).

[26] K. G. Chetyrkin, Nucl. Phys. B710, 499 (2005).

[27] T. van Ritbergen, A.N. Schellekens, and J. A.M.
Vermaseren, Int. J. Mod. Phys. A 14, 41 (1999).

[28] R. Tarrach, Nucl. Phys. B183, 384 (1981).

[29] N. Gray, D.J. Broadhurst, W. Grafe, and K. Schilcher,
Z. Phys. C 48, 673 (1990).

[30] K. G. Chetyrkin and M. Steinhauser, Phys. Rev. Lett. 83,
4001 (1999).

[31] K. G. Chetyrkin and M. Steinhauser, Nucl. Phys. B573, 617
(2000).

[32] K. Melnikov and T.v. Ritbergen, Phys. Lett. B 482, 99
(2000).

[33] P. Marquard, L. Mihaila, J. H. Piclum, and M. Steinhauser,
Nucl. Phys. B773, 1 (2007).

PHYSICAL REVIEW D 94, 074025 (2016)

[34] R. Hempfling and B. A. Kniehl, Phys. Rev. D 51, 1386
(1995).

[35] F. Jegerlehner, M. Y. Kalmykov, and O. Veretin, Nucl. Phys.
B658, 49 (2003).

[36] F. Jegerlehner and M. Y. Kalmykov, Nucl. Phys. B676, 365
(2004).

[37] F. Jegerlehner and M. Y. Kalmykov, Acta Phys. Pol. B 34,
5335 (2003).

[38] M. Faisst, J. H. Kiihn, and O. Veretin, Phys. Lett. B 589, 35
(2004).

[39] S.P. Martin, Phys. Rev. D 72, 096008 (2005).

[40] D. Eiras and M. Steinhauser, J. High Energy Phys. 02
(2006) 010.

[41] F. Jegerlehner, M.Y. Kalmykov, and B.A. Khniehl,
Phys. Lett. B 722, 123 (2013).

[42] B. A. Kniehl, A. F. Pikelner, and O. L. Veretin, Nucl. Phys.
B896, 19 (2015).

[43] S.P. Martin, Phys. Rev. D 93, 094017 (2016).

[44] P. Marquard, A.V. Smirnov, V.A. Smirnov, and M.
Steinhauser, Phys. Rev. Lett. 114, 142002 (2015).

[45] S. Bekavac, A. Grozin, D. Seidel, and M. Steinhauser,
J. High Energy Phys. 10 (2007) 006.

[46] K. G. Chetyrkin, J. H. Kiihn, and M. Steinhauser, Comput.
Phys. Commun. 133, 43 (2000).

[47] B. Schmidt and M. Steinhauser, Comput. Phys. Commun.
183, 1845 (2012).

[48] P. Nogueira, J. Comput. Phys. 105, 279 (1993).

[49] R. Harlander, T. Seidensticker, and M. Steinhauser,
Phys. Lett. B 426, 125 (1998).

[50] T. Seidensticker, arXiv:hep-ph/9905298.

[51] J. A. M. Vermaseren, arXiv:math-ph/0010025.

[52] J. Kuipers, T. Ueda, J. A. M. Vermaseren, and J. Vollinga,
Comput. Phys. Commun. 184, 1453 (2013).

[53] K. G. Chetyrkin and F. V. Tkachov, Nucl. Phys. B192, 159
(1981).

[54] S. Laporta, Int. J. Mod. Phys. A 15, 5087 (2000).

[55] A.V. Smirnov, J. High Energy Phys. 10 (2008) 107.

[56] A.V.Smirnov and V. A. Smirnov, Comput. Phys. Commun.
184, 2820 (2013).

[57] A.V. Smirnov, Comput. Phys.
(2015).

[58] P. Marquard and D. Seidel (to be published).

[59] R.N. Lee and A. A. Pomeransky, J. High Energy Phys. 11
(2013) 165.

[60] A.V. Smirnov and M.N. Tentyukov, Comput. Phys.
Commun. 180, 735 (2009).

[61] A.V. Smirnov, V. A. Smirnov, and M. Tentyukov, Comput.
Phys. Commun. 182, 790 (2011).

[62] A.V. Smirnov, Comput. Phys. Commun. 185, 2090
(2014).

[63] T. Hahn, Comput. Phys. Commun. 168, 78 (2005).

[64] G.P. Lepage, Report No. CLNS-80/447.

[65] A. von Manteuffel, E. Panzer, and R.M. Schabinger,
J. High Energy Phys. 02 (2015) 120.

[66] R.N. Lee and V. A. Smirnov, J. High Energy Phys. 02
(2011) 102.

[67] R. Lee, P. Marquard, A. V. Smirnov, V. A. Smirnov, and M.
Steinhauser, J. High Energy Phys. 03 (2013) 162.

[68] M. Czakon, Comput. Phys. Commun. 175, 559 (2006).

Commun. 189, 182

074025-31


http://arXiv.org/abs/1602.00443
http://arXiv.org/abs/1602.00443
http://arXiv.org/abs/1605.03609
http://dx.doi.org/10.1103/PhysRevD.80.074010
http://dx.doi.org/10.1103/PhysRevD.80.074010
http://dx.doi.org/10.1016/S0370-2693(98)00741-2
http://dx.doi.org/10.1103/PhysRevD.59.074017
http://dx.doi.org/10.1103/PhysRevD.59.074017
http://dx.doi.org/10.1103/PhysRevLett.82.277
http://dx.doi.org/10.1103/PhysRevLett.82.277
http://dx.doi.org/10.1103/PhysRevD.60.114027
http://dx.doi.org/10.1103/PhysRevD.60.114027
http://dx.doi.org/10.1088/1126-6708/2001/06/022
http://dx.doi.org/10.1103/PhysRevLett.80.3189
http://dx.doi.org/10.1103/PhysRevLett.80.3189
http://arXiv.org/abs/1403.4427
http://dx.doi.org/10.1140/epjc/s10052-007-0352-1
http://dx.doi.org/10.1016/j.physletb.2014.12.044
http://dx.doi.org/10.1103/PhysRevLett.116.162001
http://dx.doi.org/10.1103/PhysRevLett.116.162001
http://dx.doi.org/10.1103/PhysRevLett.115.192001
http://arXiv.org/abs/1603.04764
http://dx.doi.org/10.1007/JHEP11(2015)084
http://dx.doi.org/10.1007/JHEP11(2015)084
http://dx.doi.org/10.1007/JHEP04(2014)120
http://dx.doi.org/10.1007/JHEP04(2014)120
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.001
http://dx.doi.org/10.1016/j.nuclphysb.2014.12.001
http://dx.doi.org/10.1016/S0370-2693(02)02040-3
http://dx.doi.org/10.1016/S0370-2693(02)02040-3
http://dx.doi.org/10.1007/JHEP09(2014)045
http://dx.doi.org/10.1007/JHEP09(2014)045
http://dx.doi.org/10.1016/j.physletb.2015.11.040
http://dx.doi.org/10.1016/j.physletb.2015.11.040
http://arXiv.org/abs/1606.01741
http://dx.doi.org/10.1007/JHEP10(2014)076
http://dx.doi.org/10.1007/JHEP10(2014)076
http://dx.doi.org/10.1016/S0370-2693(97)00535-2
http://dx.doi.org/10.1016/S0370-2693(97)00660-6
http://dx.doi.org/10.1016/j.nuclphysb.2005.01.011
http://dx.doi.org/10.1142/S0217751X99000038
http://dx.doi.org/10.1016/0550-3213(81)90140-1
http://dx.doi.org/10.1007/BF01614703
http://dx.doi.org/10.1103/PhysRevLett.83.4001
http://dx.doi.org/10.1103/PhysRevLett.83.4001
http://dx.doi.org/10.1016/S0550-3213(99)00784-1
http://dx.doi.org/10.1016/S0550-3213(99)00784-1
http://dx.doi.org/10.1016/S0370-2693(00)00507-4
http://dx.doi.org/10.1016/S0370-2693(00)00507-4
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.010
http://dx.doi.org/10.1103/PhysRevD.51.1386
http://dx.doi.org/10.1103/PhysRevD.51.1386
http://dx.doi.org/10.1016/S0550-3213(03)00177-9
http://dx.doi.org/10.1016/S0550-3213(03)00177-9
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.012
http://dx.doi.org/10.1016/j.nuclphysb.2003.10.012
http://dx.doi.org/10.1016/j.physletb.2004.03.045
http://dx.doi.org/10.1016/j.physletb.2004.03.045
http://dx.doi.org/10.1103/PhysRevD.72.096008
http://dx.doi.org/10.1088/1126-6708/2006/02/010
http://dx.doi.org/10.1088/1126-6708/2006/02/010
http://dx.doi.org/10.1016/j.physletb.2013.04.012
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.010
http://dx.doi.org/10.1016/j.nuclphysb.2015.04.010
http://dx.doi.org/10.1103/PhysRevD.93.094017
http://dx.doi.org/10.1103/PhysRevLett.114.142002
http://dx.doi.org/10.1088/1126-6708/2007/10/006
http://dx.doi.org/10.1016/S0010-4655(00)00155-7
http://dx.doi.org/10.1016/S0010-4655(00)00155-7
http://dx.doi.org/10.1016/j.cpc.2012.03.023
http://dx.doi.org/10.1016/j.cpc.2012.03.023
http://dx.doi.org/10.1006/jcph.1993.1074
http://dx.doi.org/10.1016/S0370-2693(98)00220-2
http://arXiv.org/abs/hep-ph/9905298
http://arXiv.org/abs/math-ph/0010025
http://dx.doi.org/10.1016/j.cpc.2012.12.028
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1016/0550-3213(81)90199-1
http://dx.doi.org/10.1142/S0217751X00002159
http://dx.doi.org/10.1088/1126-6708/2008/10/107
http://dx.doi.org/10.1016/j.cpc.2013.06.016
http://dx.doi.org/10.1016/j.cpc.2013.06.016
http://dx.doi.org/10.1016/j.cpc.2014.11.024
http://dx.doi.org/10.1016/j.cpc.2014.11.024
http://dx.doi.org/10.1007/JHEP11(2013)165
http://dx.doi.org/10.1007/JHEP11(2013)165
http://dx.doi.org/10.1016/j.cpc.2008.11.006
http://dx.doi.org/10.1016/j.cpc.2008.11.006
http://dx.doi.org/10.1016/j.cpc.2010.11.025
http://dx.doi.org/10.1016/j.cpc.2010.11.025
http://dx.doi.org/10.1016/j.cpc.2014.03.015
http://dx.doi.org/10.1016/j.cpc.2014.03.015
http://dx.doi.org/10.1016/j.cpc.2005.01.010
http://dx.doi.org/10.1007/JHEP02(2015)120
http://dx.doi.org/10.1007/JHEP02(2011)102
http://dx.doi.org/10.1007/JHEP02(2011)102
http://dx.doi.org/10.1007/JHEP03(2013)162
http://dx.doi.org/10.1016/j.cpc.2006.07.002

PETER MARQUARD et al.

[69] A.V. Smirnov and V. A. Smirnov, Eur. Phys. J. C 62, 445
(2009).

[70] D. Wellmann, Master thesis, KIT (unpublished).

[71] T. Banks and A. Zaks, Nucl. Phys. B196, 189 (1982).

[72] M. Beneke and V. M. Braun, Phys. Lett. B 348, 513 (1995).

[73] See  Supplemental ~Material at  http://link.aps.org/
supplemental/10.1103/PhysRevD.94.074025 for the formu-
las of Sec. IVD and the ones of the appendixes (except
Appendix E) in computer readable format.

[74] Y. Schroder and M. Steinhauser, J. High Energy Phys. 01
(2006) 051.

PHYSICAL REVIEW D 94, 074025 (2016)

[75] K. G. Chetyrkin, J. H. Kuhn, and C. Sturm, Nucl. Phys.
B744, 121 (2006).

[76] K.G. Chetyrkin, B.A. Kniehl, and M. Steinhauser,
Nucl. Phys. B510, 61 (1998).

[77] V. Sadovnichy, A. Tikhonravov, V. Voevodin, and V.
Opanasenko, in Contemporary High Performance Comput-
ing: From Petascale toward Exascale, Chapman & Hall/
CRC Computational Science (CRC Press, Boca Raton,
2013), pp. 283-307.

[78] A.L. Kataev and V. S. Molokoedov, Eur. Phys. J. 131, 271
(2016).

074025-32


http://dx.doi.org/10.1140/epjc/s10052-009-1039-6
http://dx.doi.org/10.1140/epjc/s10052-009-1039-6
http://dx.doi.org/10.1016/0550-3213(82)90035-9
http://dx.doi.org/10.1016/0370-2693(95)00184-M
http://link.aps.org/supplemental/10.1103/PhysRevD.94.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.074025
http://link.aps.org/supplemental/10.1103/PhysRevD.94.074025
http://dx.doi.org/10.1088/1126-6708/2006/01/051
http://dx.doi.org/10.1088/1126-6708/2006/01/051
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.020
http://dx.doi.org/10.1016/j.nuclphysb.2006.03.020
http://dx.doi.org/10.1016/S0550-3213(98)81004-3

