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We argue that lepton flavor violating (LFV) decays M → l1l2 of quarkonium states M with
different quantum numbers could be used to put constraints on the Wilson coefficients of effective
operators describing LFV interactions at low energy scales. We note that restricted kinematics of the
two-body quarkonium decays allows us to select operators with particular quantum numbers, significantly
reducing the reliance on the single operator dominance assumption that is prevalent in constraining
parameters of the effective LFV Lagrangian. We shall also argue that studies of radiative lepton
flavor violating M → γl1l2 decays could provide important complementary access to those effective
operators.
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I. INTRODUCTION

Flavor-changing neutral current (FCNC) interactions
serve as a powerful probe of physics beyond the standard
model (BSM). Since no operators generate FCNCs in the
standard model (SM) at tree level, new physics (NP)
degrees of freedom can effectively compete with the SM
particles running in the loop graphs, making their discovery
possible. This is, of course, only true provided the BSM
models include flavor-violating interactions.
The observation of charged lepton flavor violating

(CLFV) transitions would provide especially clean probes
of new physics. This is because in the standard model
with massive neutrinos the CLFV transitions are sup-
pressed by the powers of m2

ν=m2
W , which renders the

predictions for their transition rates vanishingly small,
e.g. Bðμ → eγÞνSM ∼ 10−54. A variety of well-established
models on new physics predict significantly larger rates for
CLFV transitions [1].
Any new physics scenario which involves lepton

flavor violating interactions can be matched to an
effective Lagrangian, Leff , whose Wilson coefficients
would be determined by the ultraviolet (UV) physics that
becomes active at some scale Λ. Below the electroweak
symmetry breaking scale, this Lagrangian must be invariant
under unbroken SUð3Þc ×Uð1Þem groups. The effective
operators would reflect degrees of freedom relevant at the
scale at which a given process takes place. If we assume
that no new light particles (such as “dark photons” or
axions) exist in the low energy spectrum, those operators
would be written entirely in terms of the SM degrees of
freedom such as leptons: li ¼ τ, μ, and e; and quarks:
b, c, s, u, and d. We shall not consider neutrinos in this
paper. We also assume that top quarks have been inte-
grated out.

The effective Lagrangian, Leff , can then be divided into
the dipole part, LD; a part that involves four-fermion
interactions, Llq; and a gluonic part, LG.

Leff ¼ LD þ Llq þ LG þ � � � : ð1Þ

Here the ellipses denote effective operators that are not
relevant for the following analysis. The dipole part in
Eq. (1) is usually written as [2]

LD ¼ −
m2

Λ2
½ðCl1l2

DR l1σ
μνPLl2 þ Cl1l2

DL l1σ
μνPRl2ÞFμν

þ H:c:�; ð2Þ

where PR;L ¼ ð1� γ5Þ=2 is the right (left) chiral projection
operator. The Wilson coefficients would, in general, be
different for different leptons li.
The four-fermion dimension-six lepton-quark Lagrangian

takes the form

Llq ¼ −
1

Λ2

X
q

½ðCql1l2
VR l1γ

μPRl2 þ Cql1l2
VL l1γ

μPLl2Þqγμq

þ ðCql1l2
AR l1γ

μPRl2 þ Cql1l2
AL l1γ

μPLl2Þqγμγ5q
þm2mqGFðCql1l2

SR l1PLl2 þ Cql1l2
SL l1PRl2Þqq

þm2mqGFðCql1l2

PR l1PLl2 þ Cql1l2
PL l1PRl2Þqγ5q

þm2mqGFðCql1l2

TR l1σ
μνPLl2

þ Cql1l2
TL l1σ

μνPRl2Þqσμνqþ H:c:�: ð3Þ

We note that the tensor operators are often omitted when
constraints on the Wilson coefficients in Eq. (3) are derived
(see, e.g., [2]). We would like to point out that those are no
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less motivated than others in Eq. (3). For example, they
would be induced from Fierz rearrangement of operators of
the type Q ∼ ðql2Þðl1qÞ that often appear in leptoquark
models. Also, as we shall see later, the experimental con-
straints on those coefficients follow from studying vector
mesondecays,where thebest informationonLFV transitions
in quarkonia is available.
The dimension seven gluonic operators can be generated

either by some high scale physics or by integrating out
heavy quark degrees of freedom [2,3],

LG ¼ −
m2GF

Λ2

βL
4αs

½ðCl1l2
GR l1PLl2 þCl1l2

GL l1PRl2ÞGa
μνGaμν

þ ðCl1l2
GR

l1PLl2 þCl1l2
GL

l1PRl2ÞGa
μν
~Gaμν þH:c:�:

ð4Þ

Here βL ¼ −9α2s=ð2πÞ is defined for the number of light
active flavors, L, relevant to the scale of the process, which
we take μ ≈ 2 GeV. All Wilson coefficients should also be
calculated at the same scale. GF is the Fermi constant and
~Gaμν ¼ ð1=2ÞϵμναβGa

αβ is a dual to the gluon field strength
tensor [2].
The experimental constraints on the Wilson coefficients

of effective operators in Leff could be obtained from a
variety of LFV decays (see, e.g., [1] for a review). Deriving
constraints on those Wilson coefficients usually involve an
assumption that only one of the effective operators domi-
nates the result. This is not necessarily so in many particular
UV completions of the LFVeffective field theories (EFTs),
so certain cancellations among contributions of various
operators are possible. Nevertheless, single operator
dominance is a useful theoretical assumption in placing
constraints on the parameters of Leff .
In this paper we are going to argue that most of the

Wilson coefficients of the effective Lagrangian in
Eq. (1) for different li could be determined from exper-
imental data on quarkonium decays. In particular, we
consider two- and three-body decays of the quarkonia of
differing quantum numbers with quarks of various flavors
such asϒðnSÞ → l1l2,ϒðnSÞ → γl1l2, or similar modes.
We will note that restricted kinematics of the two-body
transitions would allow us to select operators with particu-
lar quantum numbers significantly reducing the reliance on
the single operator dominance assumption. Finally, we
shall argue that studies of radiative lepton flavor violating
(RLFV) decays could provide important complementary
access to study Leff.
We shall provide calculations of the relevant decay rates

and establish constraints, where experimental data are
available, on Wilson coefficients of effective operators of
the Lagrangian Leff of Eq. (1). In the following sections we
assume CP conservation, which implies that all Wilson
coefficients will be treated as real numbers. We shall note
that some transitions have not yet been experimentally

studied, so no numerical constraints from those decays are
available at the moment. Finally, in studying branching
ratios we assume that for a meson, M, the branching
fraction BðM → l1l2Þ ¼ BðM → l1l2Þ þ BðM → l1l2Þ,
unless specified otherwise.

II. VECTOR QUARKONIUM
DECAYS V → l1l2

There is abundant experimental information on flavor
off-diagonal leptonic decays of vector quarkonia, both from
the ground and from the excited states (see Table I) [4]. This
information can effectively be converted to experimental
bounds on Wilson coefficients of vector and tensor oper-
ators in Eq. (3), as well as on those of the dipole operators
of Eq. (2). Those Wilson coefficients can then be related to
model parameters of explicit realizations of UV comple-
tions of effective Lagrangian in Eq. (1). The examples of
particular new physics models that have been previously
suggested to be constrained using vector meson decays
V → l1l2 include, e.g., [5,6] (for Z0 scenarios), [7–9] (for
R-parity violating supersymmetric models), and [10–12]
for other approaches. The most general expression for the
V → l1l2 decay amplitude can be written as

AðV → l1l2Þ

¼ uðp1; s1Þ
�
Al1l2
V γμ þ Bl1l2

V γμγ5 þ
Cl1l2
V

mV
ðp2 − p1Þμ

þ iDl1l2
V

mV
ðp2 − p1Þμγ5

�
vðp2; s2ÞϵμðpÞ: ð5Þ

Al1l2
V , Bl1l2

V , Cl1l2
V , and Dl1l2

V are dimensionless con-
stants which depend on the underlying Wilson coefficients
of the effective Lagrangian of Eq. (1) as well as on hadronic
effects associated with meson-to-vacuum matrix elements
or decay constants.
The amplitude of Eq. (5) leads to the branching

fraction, which is convenient to represent in terms of the
ratio,

BðV → l1l2Þ
BðV → eþe−Þ ¼

�
mVð1− y2Þ
4παfVQq

�
2

½ðjAl1l2
V j2þjBl1l2

V j2Þ

þ 1

2
ð1− 2y2ÞðjCl1l2

V j2þjDl1l2
V j2Þ

þ yReðAl1l2
V Cl1l2�

V þ iBl1l2
V Dl1l2�

V Þ�: ð6Þ

Here α is the fine structure constant; we neglected the mass
of the lighter of the two leptons and set y ¼ m2=mV . The
form of the coefficients Al1l2

V toDl1l2
V depends on the initial

state meson. For example, for V ¼ ϒðnSÞ (bb states),
ψðnSÞ (cc states), or ϕ (ss state), the coefficients are

DEREK E. HAZARD and ALEXEY A. PETROV PHYSICAL REVIEW D 94, 074023 (2016)

074023-2



Al1l2
V ¼ fVmV

Λ2
½

ffiffiffiffiffiffiffiffi
4πα

p
Qqy2ðCl1l2

DL þ Cl1l2
DR Þ þ κVðCql1l2

VL þ Cql1l2
VR Þ

þ 2y2κV
fTV
fV

GFmVmqðCql1l2

TL þ Cql1l2
TR Þ�;

Bl1l2
V ¼ fVmV

Λ2
½−

ffiffiffiffiffiffiffiffi
4πα

p
Qqy2ðCl1l2

DL − Cl1l2
DR Þ − κVðCql1l2

VL − Cql1l2
VR Þ

− 2y2κV
fTV
fV

GFmVmqðCql1l2
TL − Cql1l2

TR Þ�;

Cl1l2
V ¼ fVmV

Λ2
y½

ffiffiffiffiffiffiffiffi
4πα

p
QqðCl1l2

DL þ Cl1l2
DR Þ þ 2κV

fTV
fV

GFmVmqðCql1l2
TL þ Cql1l2

TR Þ�;

Dl1l2
V ¼ i

fVmV

Λ2
y½−

ffiffiffiffiffiffiffiffi
4πα

p
QqðCl1l2

DL − Cl1l2
DR Þ − 2κV

fTV
fV

GFmVmqðCql1l2
TL − Cql1l2

TR Þ�: ð7Þ

Here Qq ¼ ð2=3;−1=3Þ is the charge of the quark q and
κV ¼ 1=2 is a constant for pure qq states. It is a good
approximation to drop terms proportional to y2 in Eq. (7)
for the heavy quarkonium states. Inspecting the ratio in
Eq. (6), one immediately infers that the best constraints
could be placed on the four-fermion coefficients, Cql1l2

VL

and Cql1l2
VR , as no final state lepton mass suppression exists

for those coefficients. Yet, constraints on the dipole
coefficients, Cl1l2

DL ðCl1l2

DR Þ, are also possible in this case.
This would provide NP constraints that are complementary
to the ones obtained from the lepton decay experiments,
especially for l ¼ τ, obtained in the radiative τ → μðeÞγ
decays.
The constraints on the Wilson coefficients of tensor

operators, Cql1l2
TL ðCql1l2

TR Þ, in Eq. (7) also depend on the
ratio of meson decay constants,

h0jqγμqjVðpÞi ¼ fVmVϵ
μðpÞ;

h0jqσμνqjVðpÞi ¼ ifTVðϵμpν − pμϵνÞ; ð8Þ

where ϵμðpÞ is the V-meson polarization vector, and p is its
momentum [13].

While the decay constants, fV , are known, both exper-
imentally from leptonic decays and theoretically from
lattice or QCD sum rule calculations, for a variety of states
V, the tensor (transverse) decay constant, fTV , has only
recently been calculated for the charmonium J=ψ state with
the result fTJ=ψð2 GeVÞ ¼ ð410� 10Þ MeV [13]. In the

absence of the estimate for fTV, we follow the suggestion
made in Ref. [14] and assume that fTV ¼ fV . This seems to
be the case for the J=ψ state [13] to better than 10%. We
present numerical values of the decay constants in Table II.
Note that the ratio of Eq. (6) is largely independent of the
values of the decay constants.
Choosing other initial states would make it possible to

constrain other combinations of the Wilson coefficients in
Eq. (1). This is important for the NP models where several
LFV operators would contribute, especially in the case
where no operator gives a priori dominant contribution.
For example, choosing V to be the ρ meson with ρ ∼
ðuu − ddÞ= ffiffiffi

2
p

gives

Aeμ
ρ ¼ fρmρ

Λ2
y2

ffiffiffiffiffiffiffiffi
2πα

p
ðQu −QdÞðCl1l2

DL þ Cl1l2
DR Þ;

Beμ
ρ ¼ −

fρmρ

Λ2
y2

ffiffiffiffiffiffiffiffi
2πα

p
ðQu −QdÞðCl1l2

DL − Cl1l2

DR Þ;

Ceμ
ρ ¼ fρmρ

Λ2
y

ffiffiffiffiffiffiffiffi
2πα

p
ðQu −QdÞðCl1l2

DL þ Cl1l2
DR Þ;

Deμ
ρ ¼ −i

fρmρ

Λ2
y

ffiffiffiffiffiffiffiffi
2πα

p
ðQu −QdÞðCl1l2

DL − Cl1l2
DR Þ: ð9Þ

Here we imposed isospin symmetry on the NP operators
and their coefficients, which resulted in the cancellation of
the four-fermion operator contribution. The restricted
kinematics of the decay implies that only μe operators
can be constrained. The corresponding results for V ¼
ω ∼ ðuuþ ddÞ= ffiffiffi

2
p

decay can be obtained from Eq. (7) by
substituting Qq → ðQu þQdÞ=

ffiffiffi
2

p
and using κω ¼ 1=

ffiffiffi
2

p
.

Again, the restricted kinematics of the decay implies that

TABLE I. Available experimental upper bounds onBðV→l1l2Þ
and Bðl2 → l1γÞ [4,15]. Center dots signify that no experimental
constraints are available, and “FPS” means that the transition is
forbidden by available phase space. Charge averages of the final
states are always assumed.

l1l2 μτ eτ eμ

Bðϒð1SÞ → l1l2Þ 6.0 × 10−6 � � � � � �
Bðϒð2SÞ → l1l2Þ 3.3 × 10−6 3.2 × 10−6 � � �
Bðϒð3SÞ → l1l2Þ 3.1 × 10−6 4.2 × 10−6 � � �
BðJ=ψ → l1l2Þ 2.0 × 10−6 8.3 × 10−6 1.6 × 10−7

Bðϕ → l1l2Þ FPS FPS 4.1 × 10−6

Bðl2 → l1γÞ 4.4 × 10−8 3.3 × 10−8 5.7 × 10−13
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only μe operators interacting with up and down quarks can
be constrained. Since we imposed isospin symmetry, it is
convenient to use mq ¼ ðmu þmdÞ=2.
Contrasting Eq. (6) with the experimental data from

Ref. [4] we can constrain the Wilson coefficients of
the Lagrangian Eq. (1). Assuming single operator domi-
nance, the results can be found in Table III. The
Wilson coefficients of dipole operators can be found in
Table IV.
It is important to note that some of the bounds presented

in Tables III and IVare rather weak and might not even look
physically meaningful, especially the ones coming from ϕ
decays. In fact, assuming Wilson coefficients C ∼ 1 seems
to imply that the new physics scale Λ=

ffiffiffiffi
C

p
only extends to

several MeVs, clearly breaking the EFT paradigm that
assumes local operators up to scales of several TeVs. A
correct interpretation of those entries in Tables III and IV is
that existing data simply do not allow one to place strong

TABLE II. Vector meson decay constants used in the calculation of branching ratios BðV → l1l̄2Þ. The transverse decay constants are
set fTV ¼ fV except for J=ψ, which has fTJ=ψ ¼ ð410� 10Þ MeV [10,13,16–19].

State ϒð1SÞ ϒð2SÞ ϒð3SÞ J=ψ ψð2SÞ ϕ ρðωÞ
fV [MeV] 649� 31 481� 39 539� 84 418� 9 294� 5 241� 18 209.4� 1.5

TABLE IV. Constraints on the dipole Wilson coefficients from the 1−− quarkonium decays and radiative lepton transitions l2 → l1γ.
Center dots signify that no experimental data are available to produce a constraint; “FPS”means that the transition is forbidden by phase
space.

Leptons Initial state

Dipole Wilson coefficient [GeV−2] l1l2 ϒð1SÞðbÞ ϒð2SÞðbÞ ϒð3SÞðbÞ J=ψðcÞ ϕðsÞ l2 → l1γ

jCl1l2
DL =Λ2j μτ 2.0 × 10−4 1.6 × 10−4 1.4 × 10−4 2.5 × 10−4 FPS 2.6 × 10−10

eτ � � � 1.6 × 10−4 1.6 × 10−4 5.3 × 10−4 FPS 2.7 × 10−10

eμ � � � � � � � � � 1.1 × 10−3 0.2 3.1 × 10−7

jCql1l2

DR =Λ2j μτ 2.0 × 10−4 1.6 × 10−4 1.4 × 10−4 2.5 × 10−4 FPS 2.6 × 10−10

eτ � � � 1.6 × 10−4 1.6 × 10−4 5.3 × 10−4 FPS 2.7 × 10−10

eμ � � � � � � � � � 1.1 × 10−3 0.2 3.1 × 10−7

TABLE III. Constraints on the Wilson coefficients of four-fermion operators. Center dots signify that no experimental data are
available to produce a constraint; “FPS” means that the transition is forbidden by phase space. Note that no experimental data are
available for higher excitations of ψ .

Leptons Initial state (quark)

Wilson coefficient [GeV−2] l1l2 ϒð1SÞðbÞ ϒð2SÞðbÞ ϒð3SÞðbÞ J=ψðcÞ ϕðsÞ
jCql1l2

VL =Λ2j μτ 5.6 × 10−6 4.1 × 10−6 3.5 × 10−6 5.5 × 10−5 FPS
eτ � � � 4.1 × 10−6 4.1 × 10−6 1.1 × 10−4 FPS
eμ � � � � � � � � � 1.0 × 10−5 2 × 10−3

jCql1l2

VR =Λ2j μτ 5.6 × 10−6 4.1 × 10−6 3.5 × 10−6 5.5 × 10−5 FPS
eτ � � � 4.1 × 10−6 4.1 × 10−6 1.1 × 10−4 FPS
eμ � � � � � � � � � 1.0 × 10−5 2 × 10−3

jCql1l2

TL =Λ2j μτ 4.4 × 10−2 3.2 × 10−2 2.8 × 10−2 1.2 FPS
eτ � � � 3.3 × 10−2 3.2 × 10−2 2.4 FPS
eμ � � � � � � � � � 4.8 1 × 104

jCql1l2

TR =Λ2j μτ 4.4 × 10−2 3.2 × 10−2 2.8 × 10−2 1.2 FPS
eτ � � � 3.3 × 10−2 3.2 × 10−2 2.4 FPS
eμ � � � � � � � � � 4.8 1 × 104

TABLE V. Available experimental limits on BðP → l1l2Þ [4].
Note that no constraints for the heavy quark pseudoscalar states
such as ηbðcÞ are available. Only phase space allowed transitions
are shown.

l1l2 eμ

Bðη → l1l2Þ 6 × 10−6

Bðη0 → l1l2Þ 4.7 × 10−4

Bðπ0 → l1l2Þ 3.6 × 10−10
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constraints on the combination Wilson coefficients. This is
rather common in EFT analyses of new physics phenom-
ena; see, e.g., [20].
As one can see from Eq. (7), there is a practical limitation

on the two-body vector meson decays. Only a subset of the
Wilson coefficients is selected by the quantum numbers of
the initial state and can be probed. This fact can be turned into
virtue if experimental information on LFV decays of
quarkonium states with other quantum numbers is available.

III. PSEUDOSCALAR QUARKONIUM
DECAYS P → l1l2

Constraints on other Wilson coefficients of the effective
Lagrangian in Eq. (1) could be obtained by considering
decays of pseudoscalar mesons with quantum numbers
0−þ, which include states like ηbðcÞ, η, ηð0Þ, and their
excitations (see Table V). These decays would be sensitive
to axial and pseudoscalar operators, providing information
about Cql1l2

PL ðCql1l2
PR Þ and/or Cql1l2

AL ðCql1l2
AR Þ in Eq. (3) as

well as to gluonic operators of Eq. (4). The ηbðcÞ states
could be abundantly produced at the LHCb experiment
directly in gluon-gluon fusion interactions [21]. In case of
the ηc and its excitations, another production mechanism
would include nonleptonic B decays, as the corresponding
branching ratios for nonleptonic B decays into ηc and kaons
are reasonably large, of order of per mille [4].
Similar to the decays of vector mesons considered in

Sec. II, one can write the most general expression for the
P → l1l2 decay amplitude as

AðP → l1l2Þ ¼ uðp1; s1Þ½El1l2
P þ iFl1l2

P γ5�vðp2; s2Þ
ð10Þ

with El1l2
P and Fl1l2

P being dimensionless constants which
depend on the Wilson coefficients of operators in Eq. (1)
and various decay constants.
The amplitude of Eq. (10) leads to the branching ratio

for flavor off-diagonal leptonic decays of pseudoscalar
mesons,

BðP → l1l2Þ ¼
mP

8πΓP
ð1 − y2Þ2½jEl1l2

P j2 þ jFl1l2
P j2�:

ð11Þ

Here ΓP is the total width of the pseudoscalar state. We
have once again neglected the mass of the lighter lepton and
set y ¼ m2=mP. Calculating E

l1l2

P and Fl1l2
P for P ¼ ηb (bb

state) and ηc (cc state), the coefficients are

El1l2
P ¼y

mP

4Λ2
½−ifP½2ðCql1l2

AL þCql1l2
AR Þ

−m2
PGFðCql1l2

PL þCql1l2
PR Þ�þ9GFaPðCl1l2

~GL
þCl1l2

~GR
Þ�;

Fl1l2
P ¼−y

mP

4Λ2
½fP½2ðCql1l2

AL −Cql1l2
AR Þ

−m2
PGFðCql1l2

PL −Cql1l2
PR Þ�þ9iGFaPðCl1l2

~GL
−Cl1l2

~GR
Þ�:

ð12Þ

The hadronic matrix elements in Eq. (12) are defined as [3]

h0jqγμγ5qjPðpÞi ¼ −ifPpμ;

h0j αs
4π

Gaμν ~Ga
μνjPðpÞi ¼ aP: ð13Þ

Here p is the momentum of the meson. For heavy quarks
q ¼ c, b one expects the matrix elements of gluonic
operators in Eq. (13) to be quite small. This can be visualized
by noting that in the heavy quark limit ηbðcÞ is a small state of
size ðmbðcÞvÞ−1, and it has a small overlap with soft gluons,
whose Compton wavelength is of the order of Λ−1

QCD, as
mbðcÞv ≫ ΛQCD. Here v is the velocity of heavy quarks.
Thus, for the remainder of this paper, we shall set aηbðcÞ ¼ 0.
The constraints on the Wilson coefficients of gluonic
operators could be obtained either from studying lepton
flavor violating η0 decays (for μe currents) or from the
corresponding tau decays. We use aη ¼ −0.022�
0.002 GeV3 and aη0 ¼ −0.057� 0.002 GeV3 [22]. The
numerical values of the other pseudoscalar decay constants
used in the calculations can be found in Table VI. For the
light quark states, such as η and η0, the corresponding
expressions are a bit more involved,

El1l2
P ¼ y

mP

4Λ2
½−ifu=dP κP1 ½2ðCu=dl1l2

AL þ Cu=dl1l2
AR Þ − GFm2

PðCu=dl1l2
PL þ Cu=dl1l2

PR Þ�
− ifsPκ

P
2 ½2ðCsl1l2

AL þ Csl1l2
AR Þ −GFm2

PðCsl1l2

PL þ Csl1l2
PR Þ� þ 9GFaPðCl1l2

~GL
þ Cl1l2

~GR
Þ�;

Fl1l2
P ¼ y

mP

4Λ2
½−fu=dP κP1 ½2ðCu=dl1l2

AL − Cu=dl1l2
AR Þ − GFm2

PðCu=dl1l2
PL − Cu=dl1l2

PR Þ�
− fsPκ

P
2 ½2ðCsl1l2

AL − Csl1l2
AR Þ −GFm2

PðCsl1l2

PL − Csl1l2
PR Þ� − 9iGFaPðCl1l2

~GL
− Cl1l2

~GR
Þ�; ð14Þ
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where κη1 ¼ 1=
ffiffiffi
3

p
, κη2 ¼ −

ffiffiffiffiffiffiffiffi
2=3

p
, κη

0
1 ¼ ffiffiffiffiffiffiffiffi

2=3
p

, and

κη
0
2 ¼ 1=

ffiffiffi
3

p
. It is important to note that, if observed, a

simultaneous fit to several light quark meson decays could
independently constrain Wilson coefficients of effective
operators in Eq. (1), as follows from Eq. (14).
The resulting constraints on the Wilson coefficients

could be found in Tables VII and VIII. Note that no

experimental constraints on the b and c currents are
available, as the corresponding transitions ηbðcÞ → l1l2

have not yet been experimentally studied. Also, constraints
on the Wilson coefficients of gluonic operators in
Table VIII are significantly weaker than those available
from tau decays [3]. Finally, just as in Sec. II, large entries
in Tables VII and VIII do not imply a breakdown of the
EFT description of LFV decays, but signify that existing
data do not allow us to place strong constraints on the
combination of relevant Wilson coefficients.

IV. SCALAR QUARKONIUM
DECAYS S → l1l2

Scalar quarkonium decays would ideally allow one to
probe the Wilson coefficients of the scalar quark density
operators in Eq. (3). The corresponding p-wave states χq0,
where q ¼ b, c could effectively be produced directly
either in gluon-gluon fusion at the LHC or in the radiative
decays of ϒð2SÞ, ϒð3SÞ, or corresponding ψ states. It is

TABLE VII. Constraints on the Wilson coefficients from pseudoscalar meson decays. Center dots signify that no experimental data are
available to produce a constraint; “FPS” means that the transition is forbidden by phase space.

Leptons Initial state

Wilson coefficient l1l2 ηb ηc ηðu=dÞ ηðsÞ η0ðu=dÞ η0ðsÞ
jCql1l2

AL =Λ2j μτ � � � � � � FPS FPS FPS FPS
eτ � � � � � � FPS FPS FPS FPS
eμ � � � � � � 3 × 10−3 2 × 10−3 2.1 × 10−1 1.9 × 10−1

jCql1l2

AR =Λ2j μτ � � � � � � FPS FPS FPS FPS
eτ � � � � � � FPS FPS FPS FPS
eμ � � � � � � 3 × 10−3 2 × 10−3 2.1 × 10−1 1.9 × 10−1

jCql1l2

PL =Λ2j μτ � � � � � � FPS FPS FPS FPS
eτ � � � � � � FPS FPS FPS FPS
eμ � � � � � � 2 × 103 1 × 103 3.9 × 104 3.6 × 104

jCql1l2

PR =Λ2j μτ � � � � � � FPS FPS FPS FPS
eτ � � � � � � FPS FPS FPS FPS
eμ � � � � � � 2 × 103 1 × 103 3.9 × 104 3.6 × 104

TABLE VIII. Constraints on the pseudoscalar gluonic Wilson coefficients. Center dots signify that no experimental data are available
to produce a constraint. No data for other lepton species are available.

Gluonic Wilson Leptons Initial state

coefficient [GeV−2] l1l2 ηb ηc η η0

jCl1l2
GL =Λ2j eμ � � � � � � 2 × 102 5.0 × 103

jCl1l2
GR =Λ2j eμ � � � � � � 2 × 102 5.0 × 103

TABLE VI. Pseudoscalar meson decay constants used in the calculation of branching ratios BðP → l1l̄2Þ [4,13,22,23].
State ηb ηc η; uðdÞ η, s η0; uðdÞ η0; s π

fqP [MeV] 667� 6 387� 7 108� 3 −111� 6 89� 3 136� 6 130.41� 0.20

TABLE IX. Decay constants of Eq. (13) for the scalar quarko-
nium decays, derived from the quark model calculation of [24].
We follow [24] and do not assign uncertainty to the quark model
estimates of the decay constants. Masses and measured widths
are from [4], and unmeasured widths (in brackets) are calculated
as in [24,26].

State χc0ð1PÞ χb0ð1PÞ χb0ð2PÞ
mS [MeV] 3414.75� 0.31 9859.44� 0.52 10232.5� 0.6
ΓS [MeV] 10.5� 0.6 (1.35) ð0.247� 0.097Þ
fS [MeV] ≈887 ≈423 ≈421
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important to note that the corresponding branching ratios
for, say, ψð2SÞ → γχc0 are rather large, of the order of 10%.
Finally, they could also be produced in B decays at flavor
factories.
Since Wilson coefficients of other operators could be

better probed in the processes discussed in Secs. II and III,
in this section we shall concentrate on the contributions of
operators that could not be probed in the decays of vector or
pseudoscalar quarkonium states.
The most general expression for the S → l1l2 decay

amplitude looks exactly like Eq. (10), with obvious
modifications for the scalar decay,

AðS → l1l2Þ ¼ uðp1; s1Þ½El1l2
S þ iFl1l2

S γ5�vðp2; s2Þ:
ð15Þ

El1l2
S and Fl1l2

S are dimensionless constants. The branching
ratio, which follows from Eq. (15), is

BðS → l1l2Þ ¼
mS

8πΓS
ð1 − y2Þ2½jEl1l2

S j2 þ jFl1l2
S j2�: ð16Þ

Here ΓS is the total width of the scalar state and
y ¼ m2=mS. The coefficients El1l2

S and Fl1l2
S are

El1l2
S ¼ y

mSGF

4Λ2
½2ifSmSmqðCql1l2

SL þ Cql1l2
SR Þ

þ 9aSðCql1l2
GL þ Cql1l2

GR Þ�;

Fl1l2
S ¼ y

mSGF

4Λ2
½2fSmSmqðCql1l2

SL − Cql1l2
SR Þ

− 9iaSðCql1l2
GL − Cql1l2

GR Þ�: ð17Þ

The hadronic matrix elements in Eq. (17) are defined as

h0jqqjSðpÞi ¼ −imSfS;

h0j αs
4π

GaμνGa
μνjSðpÞi ¼ aS: ð18Þ

Note that we introduced an extra minus sign and a factor of
mS compared to [24] for the scalar quark density to have
uniform units for all matrix elements of quark currents. For
the same reasons as in the pseudoscalar case, one expects
that the gluonic matrix elements in Eq. (17) for the heavy
quark states χc0 or χb0 are small, so we set aS ¼ 0 from now
on. This means that the Wilson coefficients of the gluonic
operators are better probed in LFV tau decays, where the
low energy theorems [3] or experimental data [2] could be
used to constrain relevant gluonic matrix elements.
Finally, we note that no constraints on the Wilson

coefficients of the scalar currents in Leff are available, as
the corresponding transitions χbðcÞ0 → l1l2 have not yet
been experimentally studied.

V. THREE BODY VECTOR QUARKONIUM
DECAYS V → γl1l2

Addition of a photon to the final state certainly reduces
the number of the events available for studies of LFV
decays, especially since no compensating mechanisms
seem to be present (cf. [25]). However, it also makes it
possible for other operators in Leff that were not considered
in two-body decays of vector quarkonium to contribute.
This makes the analysis of RLFV decays a worthwhile
exercise, especially for the decays of the vector quarkonium
states.

A. Resonant transitions

The resonant two-body radiative transitions of vector
states V → γðM → l1l2Þ could be used to study two-body
decays considered above, provided the corresponding
branching ratios for the radiative decays are large enough.
Since vector states are abundantly produced in eþe−
annihilation, these decays could provide a powerful tool
to study LFV transitions at flavor factories.
If the soft photon can be tagged in an effective manner at

B factories and ðpl1 þ pl2Þ2 ≈m2
M, the combined branch-

ing ratio factorizes1 and can be written as

BðV → γl1l2Þ ¼ BðV → γMÞBðM → l1l2Þ; ð19Þ

where the scalar decays (M ¼ χq0) Bðχq0 → l1l2Þ have
been studied in Sec. IV, while the corresponding pseudo-
scalar transitions (M ¼ ηq) Bðηq → l1l2Þ have been stud-
ied in Sec. III.
The resonant RLFV decays are quite useful for studies

of scalar heavy meson decays, as the corresponding
branching ratios are large, of order of a few percent [4].
In charm,

Bðψð2SÞ → γχc0ð1PÞÞ ¼ 9.99� 0.27%;

Bðψð3770Þ → γχc0ð1PÞÞ ¼ 0.73� 0.09%:

The corresponding radiative transitions in the beauty sector
are also rather large,

Bðϒð2SÞ → γχb0ð1PÞÞ ¼ 3.8� 0.4%;

Bðϒð3SÞ → γχb0ð1PÞÞ ¼ 0.27� 0.04%;

Bðϒð3SÞ → γχb0ð2PÞÞ ¼ 5.9� 0.6%: ð20Þ

1This equation implicitly assumes that the state M is narrow,
which is an excellent approximation for the scalar heavy
quarkonium states considered in this paper (see Table IX). A
complete Dalitz plot analysis would be required for wider states.
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A rough estimate [24] shows that with the integrated
luminosity of L ¼ 250 fb−1 the number of produced χb
states could reach tens of millions. Thus, studies of LFV
transitions of χb states could result in a solid bound on the
Wilson coefficients of the scalar operators in Leff .
Similar radiative transitions to the pseudoscalar

states are generally smaller. However, since the pseudo-
scalar 0−þ states are lighter than the 1−− ones, the radiative

transition rates could still reach a percent level in
charm,

BðJ=ψ → γηcÞ ¼ 1.7� 0.4%;

Bðψð2SÞ → γηcÞ ¼ 0.34� 0.05%:

The corresponding branching ratios in the b sector are in a
sub permille level and cannot effectively be used to study
LFV decays of the ηb states.

FIG. 1. Feynman diagrams forAðV → γl1l̄2Þ. The black circles represent the four fermion LFV vertex, the black boxes represent the
dipole LFV vertex, and the grey boxes represent the quarkonium bound state.
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B. Nonresonant transitions

Nonresonant three-body radiative decays of vector states
V → γl1l2 could be used to constrain the scalar operators,
which are not accessible in the two-body decays of vector
or pseudoscalar states. Since the final state now includes
the photon, it is no longer possible to express all of the
hadronic effects in terms of the decay constants. The
constraints would then depend on a set of V → γ form
factors that are not well known. We shall discuss those in a
future publication [27].
Here we would provide information about

Cql1l2
SL ðCql1l2

SR Þ, but at the expense of introducing model
dependence. We shall calculate the transition V → γl1l2

choosing a particular model to describe the effective quark-
antiquark distribution function [25].
In principle, besides the Wilson coefficients of the scalar

operators, nonresonant RLFV decays could be used to
obtain information about vector, axial, pseudoscalar, and
tensor operators and thus Cql1l2

VL ðCql1l2
VR Þ, Cql1l2

AL ðCql1l2
AR Þ,

Cql1l2
PL ðCql1l2

PR Þ, and Cql1l2
TL ðCql1l2

TR Þ. However, because
these operators can be constrained using much simpler
two-body decays of vector and pseudoscalar states

(see Secs. II and III) without significant model dependence,
and with better statistics, we shall focus here mainly on
the scalar operators, leaving the other constraints to future
work [27]. In principle, a calculation of the amplitude
AðV → γl1l2Þ involves evaluation of the eight diagrams
shown in Fig. 1. Since the initial state is a 1−− vector meson,
the contributions of the axial, scalar, and pseudoscalar
are contained in diagrams 1(a) and 1(b). The diagrams 1(c)
and 1(d) contain the vector and tensor operator contributions,
and 1(e) and 1(f) are generated by the dipole operator
contributions. By the same arguments as above, we shall also
ignore those in this paper.
A calculation of AðV → γl1l2Þ presented in this paper

involves a model to describe the quark-antiquark wave
function of the quarkonium state [25]. We choose to follow
[25,28–30] and write it as

ΨV ¼ Icffiffiffi
6

p ΦVðxÞðmVγ
α þ ipβσαβÞϵαðpÞ: ð21Þ

Here Ic is the identity matrix in color space, x is the
quarkonium momentum fraction carried by one of the
constituent quarks, and p is the momentum of the vector

(a) (b)

(c)

FIG. 2. Differential decay rates as functions of photon energyEγ for axial operators. Plotted decay rates are for (a)ϒð1SÞ → γμτ or γeτ
(solid blue curve), ϒð2SÞ → γμτ or γeτ (short-dashed gold curve), ϒð3SÞ → γμτ or γeτ (dotted red curve), ϒð1SÞ → γeμ (dot-dashed
green curve), ϒð2SÞ → γeμ and ϒð3SÞ → γeμ (long-dashed purple curve); (b) J=ψ → γμτ or γeτ (solid blue curve), ψð2SÞ → γμτ or
γeτ (short-dashed gold curve), J=ψ → γeμ (dotted red curve), ψð2SÞ → γeμ (dot-dashed green curve); (c) ρ → γeμ (solid blue curve),
ω → γeμ (short-dashed gold curve), ϕ → γeμ (dotted red curve).
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meson. The distribution amplitude, ΦVðxÞ, in Eq. (21) is
defined as

ΦVðxÞ ¼
fV
2

ffiffiffi
6

p δðx − 1=2Þ; ð22Þ

where fV is a decay constant defined in Eq. (8). We chose
the simplest wave function which makes the approximation
that each constituent quark carries half the meson’s
momentum, which is a good approximation for the heavy
quark states such as ϒðnSÞ or J=ψ. The nonlocal matrix

element that is relevant for the radiative transition is
then expressed in terms of an integral over momentum
fraction,

h0jqΓμqjVi ¼
Z

1

0

Tr½ΓμΨV �dx: ð23Þ

We can now calculate the total and differential decay rates.
Assuming single operator dominance, the axial, scalar, and
pseudoscalar operators lead to the following differential
decay rates:

dΓA
V→γl1l2

dm2
12

¼ 1

9

αQ2
q

ð4πÞ2
f2V
Λ4

ðC2
AL þ C2

ARÞ
ðm2

V −m2
12Þð2m2

Vy
2 þm2

12Þðm2
Vy

2 −m2
12Þ2

mVm6
12

;

dΓS
V→γl1l2

dm2
12

¼ 1

24

αQ2
q

ð4πÞ2
f2VG

2
FmV

Λ4
ðC2

SL þ C2
SRÞ

y2ðm2
V −m2

12Þðm2
Vy

2 −m2
12Þ2

m2
12

;

dΓP
V→γl1l2

dm2
12

¼ 1

24

αQ2
q

ð4πÞ2
f2VG

2
FmV

Λ4
ðC2

PL þ C2
PRÞ

y2ðm2
V −m2

12Þðm2
Vy

2 −m2
12Þ2

m2
12

: ð24Þ

Here y and Qq are defined to be the same as in Sec. II, and we follow the usual definition of the Mandelstam variable
m2

12 ¼ ðp1 þ p2Þ2 [4], where momentum p1 and p2 correspond to l1 and l2. Note that in writing Eqs. (24) and (25) we

(a) (b)

(c)

FIG. 3. Differential decay rates as functions of photon energy Eγ for scalar/pseudoscalar operators. Plotted decay rates are for
(a)ϒð1SÞ → γμτ or γeτ (solid blue curve),ϒð2SÞ → γμτ or γeτ (short-dashed gold curve),ϒð3SÞ → γμτ, γeτ, or γeμ (dotted red curve),
ϒð1SÞ → γeμ (dot-dashed green curve), ϒð2SÞ → γeμ (long-dashed purple curve); (b) J=ψ → γμτ or γeτ (solid blue curve), ψð2SÞ →
γμτ or γeτ (short-dashed gold curve), J=ψ → γeμ (dotted red curve), ψð2SÞ → γeμ (dot-dashed green curve); (c) ρ → γeμ (solid blue
curve), ω → γeμ (short-dashed gold curve), ϕ → γeμ (dotted red curve).
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suppressed some of the indices of the Wilson coefficients (i.e., Cql1l2
SL → CSL) for brevity. The total decay rates for the

RLFV transitions can be found by integrating Eq. (24) over m2
12, which gives

ΓAðV → γl1l2Þ ¼
1

18

αQ2
q

ð4πÞ2
f2Vm

3
V

Λ4
ðC2

AL þ C2
ARÞfðy2Þ;

ΓSðV → γl1l2Þ ¼
1

144

αQ2
q

ð4πÞ2
f2VG

2
Fm

7
V

Λ4
ðC2

SL þ C2
SRÞy2fðy2Þ;

ΓPðV → γl1l2Þ ¼
1

144

αQ2
q

ð4πÞ2
f2VG

2
Fm

7
V

Λ4
ðC2

PL þ C2
PRÞy2fðy2Þ; ð25Þ

where fðy2Þ ¼ 1 − 6y2 − 12y4 logðyÞ þ 3y4 þ 2y6. We
can use Eq. (25) to normalize differential decay distribu-
tions, so that they are independent of the unknown Wilson
coefficients and plot the normalized decay distributions
under the assumption of a single operator dominance. We
show differential photon spectra in V → γl1l2 decay in
Fig. 2 for the axial operators, and in Fig. 3 for the scalar or
pseudoscalar ones.
Since no experimental constraints are available for the

RLFV decays of vector quarkonia, we cannot yet place
any constraints on the Wilson coefficients from those
transitions.

VI. CONCLUSIONS

Lepton flavor violating transitions provide a powerful
engine for new physics searches. Any new physics model
that incorporates flavor and involves flavor-violating inter-
actions at high energy scales can be cast in terms of the
effective Lagrangian of Eq. (1) at low energies. We argued
that Wilson coefficients of this Lagrangian could effec-
tively be probed by studying decays of quarkonium states
with different spin-parity quantum numbers, providing

complementary constraints to those obtained from tau
and mu decays [1,31].
The proposed framework allows us to select two-body

quarkonium decays in such a way that only operators with
particular quantum numbers are probed, significantly
reducing the reliance on the single operator dominance
assumption that is prevalent in constraining the parameters
of the effective LFV Lagrangian. We also argued that
studies of RLFV decays could provide important comple-
mentary access to those effective operators.
With new data coming from the LHC experiments and

the Belle II experiment, we strongly encourage our col-
leagues to provide experimental constraints on both the
LFV and the RLFV transitions discussed in this paper.
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