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The deconfinement transition and the hadronization mechanism at high energy are related to the
quark-antiquark string breaking, and the corresponding temperature depends on the string tension σ. In the

Unruh scheme of hadron production, it turns out T ¼ ffiffiffiffiffiffiffiffiffiffi
σ=2π

p
, with σ ≃ ϵvac, the vacuum energy density.

In heavy ion collisions at lower energy, i.e., large baryonchemical potential, μB, the dynamics is dominated
by Fermi statistics and baryon repulsion. However, one can still consider ϵvac as the relevant physical scale,
and its evaluation as a function of the baryon density, in a nuclear matter approach, gives dynamical
information on the μB dependence of the hadronization temperature and on the value of the critical end
point in the T − μB plane.

DOI: 10.1103/PhysRevD.94.074022

I. INTRODUCTION

The detection of the Hawking-Unruh radiation has been
recently proposed in various analogue gravity systems [1–6],
but the Unruh temperature, TU ¼ a=2π (a is the uniform
acceleration), in those systems is probably still too low [7].
On the other hand, huge accelerations are produced in

particle physics, and the hadron production in high-energy
collisions has been proposed as the Hawking-Unruh
radiation in QCD [8,9].
Indeed, it has been shown [8,9] that the hadron

formation occurs at a typical temperature TU ¼ a=2π ¼ffiffiffiffiffiffiffiffiffiffi
σ=2π

p
=c0 ≃ 160 Mev (σ is the string tension, c0 ≃ 1.1

[8,10]), which is universal; i.e., it does not depend on the
specific initial setting of the high-energy collisions (eþe−,
hadron-hadron, heavy ions). Moreover, its dependence on
the quark mass explains [11,12] the suppression of strange
particles production in elementary (eþe−, hadron-hadron)
collisions with respect to heavy ion scatterings.
At large energy, the underlying mechanism of the hadron

production is the breaking of the quark-antiquark (qq̄)
strings with the production of other qq̄ pairs in a self-
similar dynamics [8,13,14], and the deconfinement tran-
sition is related to the same phenomenon. In fact, in QCD,
the uniform acceleration of the Unruh effect is due to the
Rindler force which describes quark confinement, which is
a linear rising potential, V, at large distances, r, V ≃ σr; for
massless quarks with intrinsic transverse momentum kT ,
when the qq̄ distance is such that σr ¼ 2kT , a new pair is
produced from the QCD vacuum [15]. This process gives a
thermal spectrum for the final states, with a temperature
T ¼ a=2π as shown by many different techniques [18–22]
and in particular by considering the tunneling through the
Rindler event horizon [23], in analogy with the black-hole
calculations [24].
The Unruh temperature TU ≃ 160 MeV refers to high-

energy collisions [8] (center-of-mass energy larger than

≃10–20 GeV), where the final states are essentially mes-
ons and the hadronization is dominated by the resonance
formation and decay.
In heavy ion collisions at lower energy, the finite baryon

density, described by the baryonchemical potential μB, has
a crucial role, and the dynamics is dominated by Fermi
statistics and baryon repulsion. In the T − μB plane, the
dependence of the hadronization temperature on μB defines
the chemical “freeze-out” curve. Lattice QCD simulations,
at small density, give the deconfinement critical line, and
the relation between the two curves is an interesting
problem, analyzed, for example, in Refs. [25–27].
According to previous discussion, they should almost
coincide in the small μB region.
The chemical freeze-out curve can be described

by specific criteria [25,28–33]. Indeed, a fixed ratio
between the entropy density, s, and the hadronization
temperature, s=T3 ≃ 7, or the average energy per particle,
hEi=N ≃ 1.08 GeV, reproduces the curve in the T − μB
plane as shown in Fig. 1, where the percolation model
result [25] is also plotted.
The physical origin of the freeze-out criteria is unclear,

but in the Unruh hadronization scheme at μB ≃ 0, it is
possible to understand them in terms of the breaking of qq̄
strings [34].
For large baryonchemical potential, the interpretation of

the freeze-out and of the QCD critical lines is more
difficult, and in this regime, their evaluation has been
proposed by the generalization of the Unruh hadronization
temperature at finite μB in analogy with black holes
[8,35,36] or by the percolation model [25].
In here, one discusses how the Unruh approach suggests

a method to obtain direct dynamical indications on the T
dependence on μB, not in analogy with gravity or by
general geometric models.
The starting point of our analysis is the relation between

the string tension and the vacuum energy density ϵvac
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[37,38], essentially the gluon condensate. By considering
ϵvac as the relevant dynamical scale at finite density also,
the freeze-out curve originates from the decreasing of the
gluon condensate by increasing the baryon density [39–41].
The final results are in agreement with the phenomeno-
logical analysis and indicate μB ≃ 0.35 GeV as the critical
point separating the string dynamics from the high-density
regime. However, ϵvac is not an order parameter for
the deconfinement transition, and the results have to be
considered as an approximation to the freeze-out curve and
to the lattice QCD critical T − μB line [42,43].
In the next section, the freeze-out curve obtained by

analogy with charged black holes is recalled. Section II is
devoted to the relation between the string tension and the
gluon condensate and its modification in nuclear matter.
Section III contains the results for the chemical freeze-out
curve, and the approximations of our analysis are discussed
in the conclusions.

II. COLOR CONFINEMENT AND
GRAVITATIONAL ANALOGY

Color confinement is a nonperturbative quantum phe-
nomenon, related to the chromomagnetic properties of the
QCD vacuum (see, for example, Ref. [44]), producing the
squeezing of the chromoelectric field in quark-antiquark
strings with a constant energy density.
At phenomenological level, confinement is described by a

linear rising potential at large distances, V ¼ σr, which
corresponds to a constant acceleration, i.e., to aRindler force.
It is well known that the metric of system in uniform

acceleration, the Rindler metric, is equivalent to the
near-horizon approximation of the black-holes metric if

the acceleration is equal to the surface gravity, k. Therefore,
at the local level, the correspondence between a linear
rising potential and the dynamics near a black-hole horizon
is more than an analogy, and the idea that an event horizon
for color degrees of freedom can be related with quark
confinement is rather natural [45,46].
Moreover, the Hawking radiation is a quantum phe-

nomenon associated with pairs creation near the event
horizon and tunneling, in clear analogy with the string
breaking and pair creation in systems with uniform accel-
eration. Indeed, the Hawking temperature is given by
T ¼ k=2π, equal to the Unruh temperature TU ¼ a=2π
for a system in uniform acceleration with a ¼ k.
This point of view suggests a correspondence at large

temperature among quark confinement, Unruh hadroniza-
tion, and black-hole physics. Let us try to apply this
correspondence when a conserved charge, i.e., a chemical
potential, is taken into account.

A. Black-holes analogy

For the Reissner-Nordstrom black hole, with massM and
charge Q, the Unruh-Hawking temperature is given by

TRNðM;QÞ ¼ TðM; 0Þ
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q2

GM2

q
�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − Q2

GM2

q �2
; ð1Þ

where TðM; 0Þ is the Hawking-Unruh temperature for a
Schwarzschild black hole.
Also, in this case, the near-horizon approximation

corresponds to a Rindler metric with the acceleration equal
to the surface gravity, and therefore one can evaluate the
radiation temperature for an accelerated observer as a
function of the chemical potential.
To obtain the explicit dependence on the chemical

potential, it is more useful to start from the first law of
black-hole thermodynamics, i.e.,

dM ¼ TBHdSBH þ ΦdQþ ΩdJ; ð2Þ

where the entropy SBH is defined in terms of the area of the
event horizon, Φ denotes the electrostatic potential, and Ω
is the rotational velocity

Φ ¼ Q
RRN

Ω ¼ 4πj
SBH

: ð3Þ

For a Reissner-Nordstrom black hole (j ¼ 0), the Hawking-
Unruh temperature (1) as a function of the electrostatic
potential becomes

TðM;ΦÞ ¼ TðM; 0Þ½1 − ðGΦ2Þ2�: ð4Þ

The potential Φ plays the role of a chemical potential,
and a direct comparison between the Schwarzschild

FIG. 1. Freeze-out curve in the statistical hadronization model
compared with the criteria discussed in the text. The green
squares without error bars are the QCD lattice simulation data.

P. CASTORINA and D. LANTERI PHYSICAL REVIEW D 94, 074022 (2016)

074022-2



mass-radius relation, i.e., M ¼ R=2G, and the Rindler
potential energy V ¼ σr suggests the correspondence

Φ → μB ð5Þ

and

G → 1=2σ; ð6Þ

which gives

Tðμ; σÞ ¼ Tðμ ¼ 0Þ
�
1 −

�
dμ2

2σ

�
2
�
; ð7Þ

where d is a dimensionless proportionality constant. In
Fig. 2 is depicted the behavior of Tðμ; σÞ for Tðμ ¼ 0Þ ¼
0.155 GeV and d ¼ 2σ=μ̄2 corresponding to the value
μ̄≃ 1.1 GeV for which T ¼ 0 in the percolation model
of Ref. [25,26].
The temperature remains rather flat up to large value of

μB, but a better agreement of the black-hole analogy with
the phenomenological results in Fig. 1 can be obtained
by assuming a linear dependence of the string tension on
the baryonchemical potential [36] or by considering that
near the event horizon the effective dynamics is two
dimensional [35].

III. STRING TENSION AND GLUON
CONDENSATE AT FINITE DENSITY

The QCD Rindler force is characterized by the string
tension, which is the energy density of the vacuum times
the transverse string area,

σ ¼ ϵvacπr2T; ð8Þ

with ϵvac essentially due to the QCD gluon condensate,

ϵvac ≃
	
βðgÞ
g

Ga
μνGμνa



; ð9Þ

where g is the coupling constant and βðgÞ is the QCD β
function. At T ¼ 0 and μB ¼ 0, ϵvac can be evaluated by
QCD sum rules [47], ϵvac ≃ 0.012� 0.006 GeV4 [48–53],
corresponding to a typical scale≃ðϵvacÞ1=4 ¼ 330 MeV. At
finite temperature and μB ¼ 0, the gluon condensate has
been studied by lattice simulations [54], and it turns out to
be T independent below the critical temperature and
reduced by more than a factor 2 at the transition.
The density dependence of ϵvac has been discussed with

different methods [39–41], and the analysis in nuclear
matter, including nonlinear density effects, gives (see
Refs. [39,40] for details)

ϵvacðρ; TÞ ¼ ϵvacð0; TÞ − 8ρ

9
ðmþ ϵðρ; TÞÞ

−
8ρ

9
mshs̄siðρ; TÞ; ð10Þ

where ρ is the number density, ϵvacð0; TÞ indicates the
gluon condensate at zero density, m is the nucleon mass,
ϵðρ; TÞ is the binding energy per nucleon in the medium,
ms is the strange quark current mass, hs̄si is the strange
quark condensate in the medium, and the contribution of
light quarks has been neglected due to their very small
current masses. The strange quark condensate gives a small
numerical contribution [39,40]; it has been included for the
sake of completeness, and its dependence on T and μB will
be neglected.
Since the gluon condensate at μB ¼ 0 turns out to be

independent on the temperature and also ϵðρ; TÞ is weakly
dependent on T up to T ≤ 50 Mev [55], one approximates

ϵvacðρ; TÞ≃ ϵvacð0Þ − 8

9
fðρÞ; ð11Þ

where ϵvacð0Þ ¼ ϵvacð0; 0Þ and

fðρÞ ¼ ρðmþ ϵðρÞ −mshs̄siÞ: ð12Þ

The nonlinear effects, contained in ϵðρÞ, can be esti-
mated, at finite baryon density and zero temperature, in
nuclear matter, described as a dilute gas of nucleons with a
residual nucleon-nucleon interaction mainly mediated by
mesons. In this regime, it is a reliable approximation to
model nuclear matter as a gas of nucleons interacting
through a static potential. The latter can be extracted from
the phenomenological analysis of nucleon-nucleon scatter-
ing data. Once the static nucleon-nucleon interaction is

FIG. 2. T as a function of μ in the black-hole analogy based on
Eq. (7).
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given, the many-body problem can be accurately solved,
and the binding energy as a function of baryon density can
be calculated (see, e.g., Ref. [55]).
At high density, the Pauli principle strongly modifies the

two-nucleon scattering process in the medium and other
many-body effects, like the momentum dependence of the
single particle potential and three-body correlations con-
tribute to the nonlinear terms, which have a certain degree
of extrapolation, since both two-nucleon and three-nucleon

forces must be extended beyond the values of the relative
momenta where they have been phenomenologically
checked. However, up to density three to four times larger
than the saturation density, the nuclear matter approxima-
tion, obtained along these lines, can be considered still
reliable. We shall use the extrapolation of ϵ (ρ), evaluated in
the previous scheme [55,56], for symmetric matter and
by the AV18 [57] potential, where one expects the
transition from the string breaking mechanism to the finite
density dynamics [25,26,32].
The dependence of ρ and ϵ on μB in nuclear matter

is reported in Figs. 3 and 4 [55,56], and in both cases,
there is a linear dependence on μS ¼ μB −m in the
range μS ≥ 0.2 GeV, almost independent of T up to
T ≃ 50 MeV [55].
The freeze-out curve can be now evaluated on the basis

of the previous dynamical analysis.

IV. EVALUATING THE FREEZE-OUT CURVE

In the T − μB plane, there are two distinct regimes: the
string breaking and resonance formation at high temper-
ature and low density and the nuclear matter, describing a
system of overlapping nucleons with a hard core repulsion,
at large μB and small T.

A. High T, low μB regime

If one neglects the interrelation of the strangeness and
baryon number, at low density the resonance production is
almost independent of μB [26] (taking associated produc-
tion into account, however, implies with increasing μB an
increasing density of strange mesons and thus a slightly
decreasing temperature), and then in the range μB < μ0B,
one can approximate

TðμBÞ≃ Tð0Þ ¼
ffiffiffiffiffiffiffiffiffiffi
σ=2π

p
=c0 μB < μ0B; ð13Þ

where the meaning of μ0B will be clarified later. By Eq. (8)
and recalling that the string transverse size depends on σ
according to the relation [10]

rT ¼ c0
ffiffiffiffiffiffiffiffiffiffi
2=πσ

p
; ð14Þ

one gets

TðμÞ≃ Tð0Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ=2πc20

q
¼ 1ffiffiffiffiffiffiffiffiffiffi

2πc0
p ½2ϵvacð0Þ�1=4 ð15Þ

for μB < μ0B, which sets ϵvacð0Þ in terms of Tð0Þ.

B. Low T, high μB regime

As the baryon density increases, there are more and more
nonresonant contributions, and the dynamics is described
by the nuclear matter approximation. The typical string
condition in Eq. (14) is not valid anymore; however, the

FIG. 3. Extrapolation of the number density as a function of
μS ¼ μB −m; the green line refers to the nuclear matter
results [55,56].

FIG. 4. Extrapolation of the binding density per nucleon as a
function of μS ¼ μB −m [55,56].
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vacuum energy density can be considered as the relevant
physical scale, which by Eq. (8) implies

TðμBÞ≃ ffiffiffi
σ

p ¼ c½ϵvacðμBÞ�1=2 μB ≥ μ0B; ð16Þ

where c is a constant that can be removed, by continuity, in
terms of Tðμ0BÞ to obtain

TðμBÞ ¼ Tðμ0BÞ½ϵvacðμBÞ=ϵvacðμ0BÞ�1=2 μB ≥ μ0B ð17Þ

with ϵvacðμBÞ in Eqs. (11)–(12), i.e.,

TðμBÞ ¼ Tð0Þ
�
1 − ð8=9Þ fðμBÞ − fðμ0BÞ

ϵvacðμ0BÞ
�
1=2

: ð18Þ

The baryonchemical potential for which T ¼ 0, μ̄, is
solution of the equation

ϵvacðμ0BÞ ¼ ð8=9Þ½fðμ̄Þ − fðμ0BÞ�; ð19Þ

i.e., by Eqs. (11)–(12),

ϵvacð0Þ ¼ ð8=9Þfðμ̄Þ; ð20Þ

and then μ̄ does not depend on μ0B.
The previous formulas are reliable at large μB and low T,

and one needs a smooth interpolation of the nuclear matter
results in this region with the behavior at lower chemical
potential and larger temperature. Here, one considers
ρðμBÞ¼ a½μ2B− ðμ0BÞ2�=½μ2i − ðμ0BÞ2�, with a ¼ 0.232 fm−3,
in the lower density region and the interpolation with
nuclear matter results at μi ¼ 900 MeV. At low μB, the
baryon density is very small, i.e., ρðμ0BÞ≃ 0, since the
system is dominated by mesonic resonances. Moreover,
ϵvacðμ0BÞ should have a dependence on the value of T0, and
therefore it will be considered as a parameter in Eq. (18).

C. Freeze-out curve

In the percolation model, the transition from the string
breaking and resonance formation to the large μB nuclear
matter, describing a system of overlapping nucleons with a
hard core repulsion, is a first-order mobility or jamming
transition [25,26]. From this point of view, the parameter
μ0B, where the hadronization mechanism changes, can be
considered as an estimate of the baryon density at which the
transition between the crossover and the first-order phase
transition in the deconfinement critical line occurs.
In Figs. 5 is depicted the result of Eqs. (15) and (18) for

μ0B ¼ 200, 400 MeV, at fixed Tð0Þ ¼ 150 MeV, which is in
agreement with low-density, high-temperature data but
does not fit the high-density data.
By fitting the freeze-out curve, one gets good agreement

with data, see Fig. 6, for ϵvacðμ0BÞ1=4 ≃ 190 MeV and

μ0B ¼ 353 MeV as the crossing point between the two
regions in the T − μB plane.

V. CONCLUSIONS

The proposed approach is an attempt to understand the
freeze-out curve on a dynamical basis. No black-hole
analogy or geometrical models are used. However, the
dynamical analysis can be done at the price of strong
approximations.
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FIG. 5. Freeze-out curve for Tð0Þ ¼ 150 MeV, ϵvacðμ0BÞ1=4 ¼
260 MeV and μ0B ¼ 200, 400 MeV (blue points, black points).
The green line gives the constant value for μB < μ0B.

0 200 400 600 800
µ in MeV

0

50

100

150

200
T

 in
 M

eV

FIG. 6. Fit of the freeze-out curve which gives μ0B ≃ 0.353 GeV
and ϵvacðμ0BÞ1=4 ¼ 184 Mev.
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The first one concerns the extrapolation of the nuclear
matter results from three to four times the saturation
density, n0, to about 6–8 n0. Another simplification is
about the dependence of the vacuum energy density on the
temperature and on μB, i.e., ϵvacðT; μBÞ. We have, indeed,
considered ϵvac as a function of μB since the gluon
condensate does not depend on T, at μB ¼ 0, below the
critical temperature (lattice data) and the density effects in
ϵðρÞ in Eq. (10) are independent of the temperature up
to T ≤ 50 MeV.

With these warnings, the resulting freeze-out curve is
reasonable, and the evaluation of the transition point,
μ0B ≃ 0.35 GeV, is consistent with previous analyses
[25,26,32,58] based on complete different methods.
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