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Spontaneously broken supersymmetry (SUSY) and a vanishingly small cosmological constant imply
that R symmetry must be spontaneously broken at low energies. Based on this observation, we suppose
that, in the sector responsible for low-energy R symmetry breaking, a discrete R symmetry remains
preserved at high energies and only becomes dynamically broken at relatively late times in the
cosmological evolution, i.e., after the dynamical breaking of SUSY. Prior to R symmetry breaking, the
Universe is then bound to be in a quasi–de Sitter phase—which offers a dynamical explanation for
the occurrence of cosmic inflation. This scenario yields a new perspective on the interplay between SUSY
breaking and inflation, which neatly fits into the paradigm of high-scale SUSY: inflation is driven by the
SUSY-breaking vacuum energy density, while the chiral field responsible for SUSY breaking, the Polonyi
field, serves as the inflaton. Because R symmetry is broken only after inflation, slow-roll inflation is not
spoiled by otherwise dangerous gravitational corrections in supergravity. We illustrate our idea by means of
a concrete example, in which both SUSY and R symmetry are broken by strong gauge dynamics and in
which late-time R symmetry breaking is triggered by a small inflaton field value. In this model, the scales of
inflation and SUSY breaking are unified, the inflationary predictions are similar to those of F-term hybrid
inflation in supergravity, reheating proceeds via gravitino decay at temperatures consistent with thermal
leptogenesis, and the sparticle mass spectrum follows from pure gravity mediation. Dark matter consists of
thermally produced winos with a mass in the TeV range.
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I. INTRODUCTION: INFLATION AND
SUPERSYMMETRY BREAKING UNIFIED

A. High-scale supersymmetry breaking
as the origin of inflation

The paradigm of cosmic inflation [1,2] is one of the main
pillars of modern cosmology. Not only does inflation
account for the vast size of the observable Universe and
its high degree of homogeneity and isotropy on cosmo-
logical scales, it also seeds the postinflationary formation of
structure on galactic scales. In this sense, inflation is a key
aspect of our cosmic past and part of the reason why our
Universe is capable of harboring life. From the perspective
of particle physics, the origin of inflation is, however, rather
unclear. After decades of model building, there exists a
plethora of inflation models in the literature [3]. But a
consensus about how to embed inflation into particle
physics is out of sight. In this situation, it seems appropriate
to take a step back and ask ourselves what avenues have
been left unexplored so far. In particular, we should
question our dearly cherished prejudices and re-examine
whether inflation might not be connected to other high-
energy phenomena which, up to now, have been taken
to be mostly unrelated to inflation. As we are going to

demonstrate in this paper, an important example in this
respect might be the interplay between inflation and the
spontaneous breaking of supersymmetry (SUSY).1

In recent years, the picture of supersymmetry as a
solution to the hierarchy problem has become increasingly
challenged by the experimental data. The null results of
SUSY searches at the Large Hadron Collider (LHC) [8] and
the rather large standard model (SM) Higgs boson mass of
125 GeV [9] indicate that supersymmetry, if it exists in
nature, must be broken at a high scale [10]. Based on this
observation, one could feel tempted to give up on super-
symmetry as an extension of the standard model altogether.
But this would not do justice to supersymmetry’s other
virtues. Provided that supersymmetry is broken at a high
scale [11,12], such as in the minimal framework of pure
gravity mediation (PGM) [13,14],2 it may no longer be
responsible for stabilizing the electroweak scale. But in
this case, supersymmetry is still capable of providing a
viable candidate for dark matter [14,16,17], ensuring
the unification of the SM gauge couplings [18] and
setting the stage for a UV completion of the standard
model in the context of string theory. In addition, high-scale
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1For related earlier work on the relation between inflation and
supersymmetry breaking, see, e.g., [4–7].

2For closely related schemes for the mediation of supersym-
metry breaking to the visible sector, see [15,16].

PHYSICAL REVIEW D 94, 074021 (2016)

2470-0010=2016=94(7)=074021(46) 074021-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.074021
http://dx.doi.org/10.1103/PhysRevD.94.074021
http://dx.doi.org/10.1103/PhysRevD.94.074021
http://dx.doi.org/10.1103/PhysRevD.94.074021


supersymmetry does not suffer from a number of phenom-
enological problems that low-scale realizations of supersym-
metry breaking are plagued with. A high SUSY breaking
scale does awaywith the cosmological gravitinoproblem [19]
and reduces the tension with constraints on flavor-changing
neutral currents and CP violation [20]. Moreover, in PGM,
the SUSY-breaking (or “Polonyi”) field is required to be a
nonsinglet [21], which solves the cosmological Polonyi
problem [22].
In this paper, we will now concentrate our attention to yet

another intriguing feature of supersymmetry which comes
into reach, once we let go of the notion that supersymme-
try’s main purpose is to solve the hierarchy problem in the
standard model. The spontaneous breaking of supersym-
metry at a scale ΛSUSY results in a nonzero contribution to
the total vacuum energy density, Λ4

SUSY. If we allow ΛSUSY

to take values as large as, say, the unification scale,
ΛGUT ∼ 1016 GeV, this SUSY breaking vacuum energy
density might, in fact, be the origin of the inflationary phase
in the early Universe. Such a connection between inflation
and supersymmetry breaking not only appears economical,
but also very natural.
First of all, supersymmetry tends to render inflation

technically more natural, independent of the scale at which
it is broken. Thanks to the SUSY nonrenormalization
theorem [23], the superpotential W in supersymmetric
models of inflation does not receive any radiative correc-
tions in perturbation theory. This represents an important
advantage in preserving the required flatness of the inflaton
potential. Besides, all remaining radiative corrections
(which can be collected in an effective Kähler potential
K to leading order [24]) scale with the soft SUSY-breaking
mass scale [25] and are, thus, under theoretical control.
Supersymmetry, therefore, has the ability to stabilize the
inflaton potential against radiative corrections, and it is,
thus, conceivable that supersymmetry’s actual importance
may lie in the fact that it is capable of taming the hierarchy
among different mass scales in the inflaton sector rather
than in the standard model. Second of all, the spontaneous
breaking of global supersymmetry via nonvanishing
F-terms, i.e., via the O’Raifeartaigh mechanism [26], always
results in a pseudoflat direction in the scalar potential [27].
Together with the constant vacuum energy density Λ4

SUSY,
such a flat potential for a scalar field is exactly one of the
crucial requirements for the successful realization of an
inflationary stage in the early Universe. In principle, the
necessary ingredients for inflation are, therefore, already
intrinsic features of every O’Raifeartaigh model. Inflation
may be driven by the SUSY-breaking vacuum energy density
Λ4
SUSY and the inflaton field may be identified with the

pseudoflat direction in the scalar potential.
The main obstacle in implementing this idea in realistic

models is gravity. Here, the crucial point is that the vanish-
ingly small value of the cosmological constant (CC) tells us
that we live in a near-Minkowski vacuum with an almost

zero total vacuum energy density, hVi≃ 0. Note that, as
pointed out by Weinberg, this not a mere observation, but a
necessary condition for a sufficient amount of structure
formation in our Universe, so that it can support life [28]. In
the context of supergravity (SUGRA) [29], the fact that
hVi≃ 0 means that the SUSY-breaking vacuum energy
density Λ4

SUSY must be balanced, with very high precision,
by a nonvanishing vacuum expectation value (VEV) of the
superpotential, hWi,

hVi ¼ hjFji2 − 3 exp

�hKi
M2

Pl

� hjWji2
M2

Pl

≃ 0;

hjFji ¼ Λ2
SUSY; ð1Þ

where MPl ¼ ð8πGÞ−1=2 ≃ 2.44 × 1018 GeV denotes the
reduced Planck mass. If the SUSY breaking scale ΛSUSY

is indeed of Oð1016Þ GeV, the requirement of a zero CC
results in a huge VEVof the superpotential, which, in turn,
generates dangerously large SUGRA corrections to the
scalar potential. These corrections then easily spoil the
flatness of the potential and render inflation impossible [30].
The most attractive and, in fact, only way out of this

problem is R symmetry. Under R symmetry, the super-
potential carries charge 2, so that hWi ¼ 0, as long as R
symmetry is preserved [31]. In other words, by imposing R
symmetry, we promote hWi to the order parameter of
spontaneous R symmetry breaking, in analogy to hFi
which acts as the order parameter of spontaneous super-
symmetry breaking. In the true vacuum, R symmetry must
be broken, so that hWi ≠ 0, in order to satisfy the condition
in Eq. (1). But this does not necessarily mean that hWimust
be nonzero during the entire cosmological evolution. It is
conceivable that, at early times, R symmetry is, in fact, a
good symmetry, so that hWi ≈ 0, thereby “switching off”
the most dangerous SUGRA corrections to the Polonyi
potential. The main intention of our paper now is to present
a minimal dynamical model, in which this is indeed the
case, so that inflation driven by the SUSY-breaking vacuum
energy density, i.e., Polonyi inflation, becomes a viable
option.

B. Two avenues towards a vanishing
cosmological constant

Let us now outline our general philosophy in, to some
extent, simplified terms. We suppose that, from the per-
spective of the low-energy effective theory, the breaking of
supersymmetry and R symmetry are two distinct dynamical
processes, taking place in two different hidden sectors at
two different times, tSUSY and tR. In particular, we assume
that the parameters tSUSY and tR may be sampled in the
UV theory, so that in some patches of the early Universe (or
in the landscape of string vacua [32] for that purpose)
tSUSY < tR and in other patches tSUSY > tR. Note that this
differentiation equally includes the case of a maximally
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symmetric initial state, min ftSUSY; tRg > tini, as well
as the possibility that either supersymmetry or R
symmetry is already broken from the very beginning,
min ftSUSY; tRg≡ tini. Our crucial observation is that
regions in space where R symmetry is broken before
supersymmetry correspond to bubbles of anti–de Sitter
(AdS) space with an AdS radius RAdS equal to the inverse
of the gravitino mass m3=2, while regions in space where
supersymmetry is broken before R symmetry correspond to
bubbles of de Sitter (dS) space with a dS radius RdS equal to
the inverse of the Hubble parameter H,

tSUSY > tR ⇒ AdS bubbles with radius RAdS ¼ m−1
3=2;

m3=2 ¼ exp ½hKi=2=M2
Pl�hjWji=M2

Pl;

tSUSY < tR ⇒ dS bubbles with radius RdS ¼ H−1;

H ¼ hjFji=
ffiffiffi
3

p
=MPl: ð2Þ

As long as supersymmetry is unbroken, the AdS bubbles
represent open Friedmann-Lemaître-Robertson-Walker
(FLRW) universes with a negative CC and an oscillatory
scale factor. The dS bubbles, on the other hand, turn, as
long as R symmetry is unbroken, into (asymptotically) flat
FLRW universes with a positive CC and an exponentially
growing scale factor [33]. This is to say that the dS bubbles
experience inflation, while the AdS bubbles remain limited
in their spatial extent. Furthermore, if we suppose that
there is no other source of inflation present in the theory,
this means that the AdS bubbles will never develop into
habitable universes. Intelligent observers and humans can,
therefore, only live in regions where, initially, R symmetry
remains unbroken up to a certain high energy scale. This
applies, in particular, to our own observable Universe.
Under the above assumptions, the inflationary period in the
early history of our Universe must have been a consequence
of spontaneous supersymmetry breaking and R symmetry
must have been broken only at late times, i.e., after a
sufficient amount of inflation. Put differently, we can say
that supersymmetry breaking and Weinberg’s argument
regarding the size of the CC postdict a period of inflation
and late-time R symmetry breaking in our cosmic past.
This conclusion also sheds new light on the role of the

CC itself. The fine-tuning of the CC is now a dynamical
process that takes place only after inflation. In order to
obtain zero CC, we have to require that the gravitino mass
generated during R symmetry breaking matches the infla-
tionary Hubble rate,3

hVi≃ 0 ⇒ m3=2 ≃Hinf : ð3Þ

If R symmetry breaking results in a gravitino mass smaller
than Hinf , inflation never ends; if it “overshoots” and the
gravitino mass is eventually larger than Hinf , our Universe
becomes AdS. We, thus, recognize the requirement that
inflation must terminate at one point or another as part of
the reason why the CC in our Universe is fine-tuned.
A certain amount of fine-tuning during late-time R sym-
metry breaking is inevitable, as inflation would otherwise
not exit into a near-Minkowski vacuum. This situation
needs to be contrasted with standard scenarios of inflation,
such as chaotic [34] or hybrid [35] inflation, where the
vacuum energy density driving inflation is neither related
to R symmetry breaking nor to low-energy supersymmetry
breaking. These scenarios require an independent reason
for the vanishing of the inflationary vacuum energy density
(e.g., a tuning of the inflaton potential or some kind of
waterfall transition), whereas in our case this reason is
already inherent to the fine-tuning of the CC in the course
of spontaneous R symmetry breaking at the end of
inflation.

C. Ingredients for a realistic model of Polonyi inflation

The above reasoning is just a rough sketch. To construct
a realistic model of Polonyi inflation, we need to be more
specific. This pertains, first of all, to the kind of R
symmetry that we have in mind. Naively, our first attempt
might be to protect hWi by means of a global Uð1ÞR
symmetry. On general grounds, quantum gravity is, how-
ever, expected to explicitly break all global symmetries (see
[36] and references therein), so that a globalUð1ÞR does not
appear to be a viable possibility. Meanwhile, gauging a
continuous R symmetry is a subtle issue that easily results
in conflicts with anomaly constraints at low energies (see
[37] for a recent discussion). This leaves us with a discrete
gauged (i.e., anomaly-free [38]) R symmetry, ZR

N , as a
unique choice to ensure the vanishing of the superpotential
at early times.
Interestingly enough, such a discrete R symmetry readily

comes with a number of other advantages in the context of
SUSY phenomenology: (i) A discrete R symmetry prevents
too-rapid proton decay via perilous dimension-5 operators
[39], (ii) it may give rise to an accidental approximate
global Peccei-Quinn symmetry and, thus, help in solving
the strong CP problem [40,41], and (iii) it may account for
the approximate global continuous R symmetry which is
required to realize stable [42] or metastable [43] SUSY-
breaking vacua in a large class of models of dynamical
supersymmetry breaking (DSB). Moreover, if we restrict
ourselves to the special case of a ZR

4 symmetry, R symmetry
can also help us in solving the μ problem [44] in the
minimal supersymmetric standard model (MSSM). Any
discrete R symmetry suppresses the bilinear Higgs mass
term (i.e., the μ term) in the superpotential. Only in the case

3Note that the relation betweenm3=2 andHinf in our scenario is
conceptually quite different from other inflation models, such as,
e.g., the one in [4], where Hinf ≃m3=2 on purely phenomeno-
logical grounds. In our case, Hinf ≃m3=2 is a property of the
low-energy effective Lagrangian of our Universe that ensures that
we live in a vacuum with an almost zero CC.
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of a ZR
4 symmetry, we are, in addition, allowed to include a

Higgs bilinear term in the Kähler potential, K ⊃ HuHd (see
[41] and references therein for an extended discussion of
this point). We are then able to generate the μ term in the
course of R symmetry breaking [45], which directly relates
the μ parameter to the gravitino mass.4 It is for this reason
that we will assume a discrete ZR

4 symmetry in the
following.
For our purposes, it will not be necessary to specify the

origin of this ZR
4 symmetry. But it is interesting to note that

orbifold compactifications of the heterotic string have the
ability to yield discrete R symmetries in the low-energy
effective theory. In this case, the discrete R symmetry at low
energies is nothing but a remnant of the higher-dimensional
Lorentz symmetry that survives the compactification of the
internal space (for early as well as more recent work on this
topic, see [47] and [48], respectively). We also mention that
the special case of a discrete ZR

4 symmetry has received
particular attention in the context of orbifold compactifi-
cations in recent years [49]. The assumption of a discrete
ZR
4 symmetry in the low-energy effective theory is, there-

fore, well motivated and stands theoretically on a sound
footing.
Second of all, inflation is more than just a pure dS phase.

It represents a stage of quasi-dS expansion, in the course of
which the Hubble parameter slowly varies. We, thus, need
to specify the dynamics of supersymmetry breaking more
precisely and check whether the corresponding Polonyi
potential is, in fact, suitable for slow-roll inflation. Here, we
shall work within the framework of dynamical supersym-
metry breaking [50], in which supersymmetry is assumed
to be broken by the dynamics of a strongly coupled SUSY
gauge theory. This gives us the advantage that the SUSY
breaking scale ΛSUSY is generated dynamically via dimen-
sional transmutation. As far as supersymmetry breaking
is concerned, we will, therefore, not have to rely on any
dimensionful input parameters. Instead, ΛSUSY and, thus,
the energy scale of inflation, Λinf , will be controlled by the
dynamical scale Λ of the SUSY-breaking hidden sector,

ΛSUSY ≡ Λinf ∼ Λ: ð4Þ

In this sense, our inflation model should be regarded as a
variant of dynamical inflation [51–53], as we assume the
energy scale of inflation to be generated by strong
dynamics. Similarly, our model is closely related to natural
inflation [54], which treats the inflaton as an axionlike field
that is likewise subject to a scalar potential generated by
nonperturbative dynamics (for recent dynamical implemen-
tations of natural inflation in field theory, see [55]), as well

as to modulus inflation [56], where one identifies the
inflaton as a (composite) modulus in the effective low-
energy regime of strongly coupled gauge theories.
In our case, the role of the inflaton is played by the scalar

component of the chiral Polonyi field Φ, which breaks
supersymmetry via its nonzero F-term. In global super-
symmetry and at the classical level, the scalar Polonyi
potential is exactly flat and, thus, an ideal starting point
for the realization of inflation. At the quantum level and
in supergravity, the Polonyi potential, however, receives
corrections, which may or may not spoil the flatness of the
potential. Here, the SUGRA corrections lead, in particular,
to the notorious η problem [57], which typically requires a
parameter fine-tuning at the level of 1…10% or so. The
quantum and gravity corrections to the effective scalar
potential scale with the coupling strengths of the Yukawa
interactions between the Polonyi field and matter fields, λ,
as well as with the coefficients of the higher-dimensional
Polonyi terms in the effective Kähler potential, ϵ,
respectively. In order to assess the prospects of successful
Polonyi inflation, one, therefore, has to study the viability
of inflation as a function of the parameters λ and ϵ and
identify those parameter ranges that lead to consistency
with the observational data on the cosmic microwave
background (CMB) [58].

D. Our setup: Minimal model based on two strongly
coupled SUð2Þ gauge theories

To this end, we will present in this paper a minimal
realization of the idea of Polonyi inflation. Our model is
based on two strongly coupled SUð2Þ hidden gauge
sectors (featuring two quark/antiquark pairs each), which
we take to be responsible for the dynamical breaking of
supersymmetry and R symmetry, respectively. We supple-
ment both sectors with an appropriate number of gauge
singlet fields, so that the SUSY-breaking sector becomes
identical to the simplest version of the Izawa-Yanagida-
Intriligator-Thomas (IYIT) DSB model [59], while the
R-symmetry-breaking sector turns into a strongly coupled
SQCD theory with a quantum mechanically deformed
moduli space and field-dependent quark masses [60].
More precisely, we assume the quark masses in the
R-symmetry-breaking sector to be controlled by the VEV
of a singlet, which we call P.
Inflation is then driven by the SUSY-breaking vacuum

energy density in the IYIT sector, which results in an
inflaton potential equivalent to that of supersymmetric
F-term hybrid inflation (FHI) [61], including corrections
from supergravity [62] as well as from higher-dimensional
terms in the tree-level Kähler potential [63,64]. This is
reminiscent of the inflation models presented in [6]
and [51]. The model in [51], however, corresponds to a
reduced version of the IYIT model with fewer singlets,
which leads to the vanishing of the inflationary vacuum
energy at the end of inflation. Contrary to our approach, it,

4This solution to the μ problem is not to be confused with the
Giudice-Masiero mechanism [46], which relates the generation of
the μ term to the spontaneous breaking of supersymmetry rather
than to R symmetry breaking.
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thus, does not establish a connection between inflation and
supersymmetry breaking. Meanwhile, the model in [6]
identifies a different singlet field, other than the Polonyi
field, as the inflaton. This allows the author of [6] to
separate the scales of inflation and supersymmetry breaking
by imposing a hierarchy among the Yukawa couplings of
the inflaton and the SUSY-breaking field. We, on the other
hand, will show how to implement inflation into the full
IYIT model, sticking to the notion that the best motivated
inflaton candidate in the IYIT model is still the Polonyi
field itself. An important consequence of this approach is
that, in our case, F-term hybrid inflation does not end in a
waterfall transition in the inflationary sector. Instead, we
simply retain the inflationary vacuum energy density at low
energies, which then continues to act as the vacuum energy
density associated with the spontaneous breaking of super-
symmetry. This also means that our “waterfall-transition-
free” scenario of F-term hybrid inflation does not suffer
from the usual production of topological defects, such as
cosmic strings in the case of a Uð1Þ waterfall transition,
which would otherwise exert some serious phenomeno-
logical pressure on our model (see, e.g., [65]).
We assume that the SUSY-breaking sector and the

R-symmetry-breaking sector only communicate with each
other via interactions in the Kähler potential (i.e., not via
interactions in the superpotential). This is sufficient to
stabilize the scalar field P during inflation at hPi ¼ 0 by
means of its Hubble-induced mass. During inflation, the
(fermionic) quarks in the R-symmetry-breaking sector are,
therefore, massless and the discrete ZR

4 symmetry remains
unbroken in this sector. As anticipated, the superpotential
then lacks a constant term during inflation, which relieves
the inflationary dynamics from the most dangerous gravi-
tational corrections in supergravity. In particular, the
inflaton potential is free of the notorious “tadpole term”
linear in the inflaton field [7,65,66]. Towards the end of
inflation, the Hubble-induced mass of the scalar field P
decreases. Adding an appropriately chosen superpotential
for the field P, we can use this fact to trigger a waterfall
transition in the R-symmetry-breaking sector at small
inflaton field values. The field P then acquires a large
VEV and the quarks in the R-symmetry-breaking sector
become very massive. Consequently, the R-symmetry-
breaking sector turns into a pure super-Yang-Mills (SYM)
theory and R symmetry becomes spontaneously broken via
gaugino condensation [67]. This external waterfall tran-
sition is associated with the breaking of a Z2 parity, which
is, however, only an approximate symmetry. For this
reason, we do not have to fear the production of topological
defects (i.e., domain walls) during the waterfall transition in
the R-symmetry-breaking sector.
After these introductory remarks, we are now in the

position to present our analysis. The remainder of this paper
is organized as follows. In the next section, we will show
how the IYIT DSB model may give rise to dynamical

F-term hybrid inflation. Here, we will first argue why the
original Polonyi model [68] of supersymmetry breaking is
not sufficient for a successful realization of Polonyi
inflation, even if we assume zero constant in the super-
potential during inflation. We, therefore, conclude that we
only have a chance of successfully realizing Polonyi
inflation in the presence of radiative corrections—which
leads us to consider the IYIT model as a possible UV
completion of the original Polonyi model. We then derive
the scalar potential of F-term hybrid inflation in the IYIT
model and discuss its embedding into supergravity. As an
interesting aside, we demonstrate that Polonyi inflation is
incompatible with the concept of an approximate shift
symmetry in the inflaton direction [69]. Instead, it turns out
that Polonyi inflation requires a near-canonical Kähler
potential. In Sec. III, we expand on our mechanism of
late-time R symmetry breaking, showing how a small
inflaton field value may trigger gaugino condensation in
a separate hidden sector. Related to that, we comment on
the backreaction of the R-symmetry-breaking sector on the
inflationary dynamics and discuss how the two sectors of
supersymmetry and R symmetry breaking have to conspire
to yield a zero CC in the true vacuum after inflation.
In Sec. IV, we turn to the phenomenological implications
of our scenario. Here, we identify the viable region in
parameter space that leads to agreement with the latest
Planck data on the inflationary CMB observables [58]. As
we are able to show, a scalar spectral index of ns ≃ 0.968
can be easily achieved for an Oð1Þ Yukawa coupling,
λ≃ 2, and a slightly suppressed coefficient in the nonca-
nonical Kähler potential, ϵ≃ 0.2. The amplitude of the
scalar power spectrum, As, fixes the dynamical scale of the
SUSY-breaking sector to a value close to the unification
scale, Λ≃ 1 × 1016 GeV, suggesting that our setup may
eventually be part of a grand unified theory (GUT). As a
characteristic feature of Polonyi inflation, we highlight the
fact that the relation between the gravitino mass and the
inflationary Hubble rate in Eq. (3) directly translates into a
one-to-one correspondence between the gravitino mass
m3=2 and the tensor-to-scalar ratio r,

m3=2 ≃ πffiffiffi
2

p ðrAsÞ1=2MPl ∼ 1012 GeV

�
r

10−4

�
1=2

: ð5Þ

At this point, it is interesting to note that the observed
value of the scalar spectral amplitude, As ∼ 10−9, might be
the result of anthropic selection [70]. Together with the
paradigm of slow-roll inflation (which implies r ≪ 1), the
anthropic value of As could, therefore, explain why the soft
SUSYmass scale is so much higher than the electroweak or
TeV scale. Moreover, we point out in Sec. IV that, after
inflation, the Polonyi field mostly decays into gravitinos.
Polonyi inflation is, thus, followed by a phase of gravitino
domination [71], which leads to reheating around temper-
atures of Oð108Þ GeV. This paves the way for thermal
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wino dark matter as well as thermal leptogenesis [72]
enhanced by resonance effects [73].
Appendix A contains some technical details regarding

the derivation of the effective inflaton potential. In par-
ticular, we show how the one-loop corrections to the
effective potential may be obtained, to leading order, from
an effective Kähler potential. In Appendix B, we explain in
more detail why Polonyi inflation in the IYIT model does
not work, if the superpotential already contains a constant
term from the very beginning. This completes our argument
that, in the context of our minimal model, successful
Polonyi inflation requires (i) radiative corrections, (ii) a
near-canonical Kähler potential, and (iii) late-time R
symmetry breaking. Among all possible choices regarding
(i) the type of interactions that the Polonyi field participates
in, (ii) the shape of the Kähler potential, and (iii) the
chronology of supersymmetry and R symmetry breaking,
this leave one unique possibility for how to realize Polonyi
inflation.

II. DYNAMICAL INFLATION IN THE IYIT
SUPERSYMMETRY BREAKING MODEL

A. Inflation in the original Polonyi model
and the need for radiative corrections

The Polonyi model [68] is the simplest O’Raifeartaigh
model of supersymmetry breaking via a nonvanishing
F-term. Its superpotential consists of a tadpole term and
a constant,

W ¼ μ2Φþ w: ð6Þ

Here, Φ denotes the chiral Polonyi field, μ is the scale of
supersymmetry breaking and w is a constant that breaks R
symmetry and which determines the potential energy
density in the ground state. For a canonical Kähler potential
and fine-tuning w, so that it takes the particular value
w0 ¼ ð2 − ffiffiffi

3
p Þμ2MPl, this model has a Minkowski vacuum

at hΦi ¼ ð ffiffiffi
3

p
− 1ÞMPl, in which supersymmetry is broken

by the Polonyi F-term, jFΦj ¼ μ2. It has been known for a
long time that the scalar potential for the Polonyi field
around this vacuum is unfortunately too steep to support
slow-roll inflation [30]. In Appendix B, we review and
extend this argument, showing for various choices of the
Kähler potential that, with w ¼ w0 from the very beginning,
the Polonyi model does not give rise to inflation. We
consider, in particular, a canonical Kähler potential sup-
plemented by higher-dimensional corrections as well as
Kähler potentials featuring an approximate shift symmetry
either along the real or the imaginary axis in the complex
plane. In none of the cases under consideration inflation
is viable—either because we fail to satisfy the slow-roll
conditions or because the scalar potential does not exhibit a
global Minkowski vacuum in the first place.

This immediately raises the question whether inflation
might perhaps become possible in the Polonyi model, if
we impose a discrete R symmetry at high energies, so that
w ¼ 0 initially. Let us address this question for a canonical
Kähler potential supplemented by a higher-dimensional
correction,5

K ¼ Φ†Φþ ϵ

ð2!Þ2
�
Φ†Φ
MPl

�
2

þOðϵ2;M−4
Pl Þ; ϵ≲ 1: ð7Þ

Here, we assume that the Kähler potential is always
dominated by the canonical term, K ⊃ Φ†Φ, also at
field values above the Planck scale. An exhaustive study
of arbitrary choices for the Kähler potential is beyond
the scope of this paper. Under this assumption, the
scalar potential always picks up a SUGRA correction,
V ∝ eK=M

2
Pl , which spoils the flatness of the potential at

super-Planckian field values. For this reason, we only have
a chance of realizing slow-roll inflation at field values
below the Planck scale. For the Kähler potential in Eq. (7),
the scalar potential in supergravity then takes the following
form:

VðφÞ ¼ V0

�
1 −

ϵ

2

�
φ

MPl

�
2

þ 1

8

�
1 −

7ϵ

2
þ 8ϵ2

3

��
φ

MPl

�
4

þOðφ6Þ
�
;

V0 ¼ μ4; ð8Þ

where the real scalar field φ denotes the canonically
normalized radial component of the complex Polonyi scalar
~ϕ ¼ ~φ=

ffiffiffi
2

p
ei~θ contained in Φ (see Sec. II D) and where we

have introduced V0 as the SUSY-breaking vacuum energy
density at φ ¼ 0. From the form of the scalar potential in
Eq. (8), it is evident that, even with w being set to zero,
the Polonyi model fails to yield successful inflation.
For instance, if we choose ϵ to be negative, the field φ
is driven towards the origin by a positive mass squared,
similarly as in chaotic inflation [34]. Inflation may then
take place at small field values close to the origin—but not
in accord with the observational data. To see this, consider
the slow-roll parameters ε and η,

5In Sec. II D, we will discuss the same question for an
approximately shift-symmetric Kähler potential. In this case,
inflation turns out be unfeasible because, with the superpotential
being given as W ¼ μ2Φ, the −3 exp ½K=M2

Pl�jWj2=M2
Pl SUGRA

term in the scalar potential induces a tachyonic mass for the
Polonyi field. This results in a global AdS minimum.
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ε ¼ M2
Pl

2

�
V 0

V

�
2

; η ¼ M2
Pl
V 00

V
;

V 0 ¼ dV
dφ

; V 00 ¼ d2V
dφ2

: ð9Þ

Independent of the sign of ϵ, we have η ≥ −ϵ. For
negative ϵ, the slow-roll parameter η is, therefore, bound
to be positive, while the slow-roll parameter ε turns out to
be negligibly small during inflation, ε ≪ jηj. According
to the slow-roll formula for the scalar spectral index,
ns ¼ 1þ 2η� − 6ε�, we will then always obtain a blue-
tilted scalar spectrum (ns > 1). In view of the latest best-fit
value for ns reported by the Planck Collaboration, nobss ¼
0.9677� 0.0060 [58], such a spectrum is clearly ruled out
by the observational data. On the other hand, if we choose ϵ
to be positive, the Polonyi field acquires a tachyonic mass
around the origin and inflation proceeds from small to large
field values, similarly as in new inflation [2]. It is then hard
to imagine how the generation of the constant w in the
superpotential should be triggered, after a sufficient amount
of inflation, at field values close or even above the Planck
scale. But more than that, even if we assume that this
problem could somehow be solved, the scalar potential in
Eq. (8) still does not lead to an acceptable phenomenology.
In new inflation, the scalar spectral index turns out to be
bounded from above, ns ≲ 0.95 [74,75], which deviates
from the observed value by at least 3σ. Therefore, also for
ϵ > 0, we fail to reach consistency with the observatio-
nal data.
In summary, we conclude that the bare Polonyi model

based on the superpotential in Eq. (6)—and for reasonable
Ansätze regarding the shape of the Kähler potential—does
not allow for a successful realization of slow-roll inflation.
In respect of this null result, two comments are in order.
(i) We emphasize that our analysis of the Polonyi Kähler
potential in this paper does notmount up to a general no-go
theorem. In the most general case, the Kähler potential for
the Polonyi field is given by an arbitrary function F of the
field Φ and its conjugate, K ¼ M2

PlFðΦ=MPl;Φ†=MPlÞ. In
absence of any other scale, it is, in particular, clear thatMPl
can be the only relevant scale in the Kähler potential. It may
then well be that certain fine-tuned functions F do allow for
successful inflation in the Polonyi model, after all (see, e.g.,
[76] for a discussion of fine-tuned Kähler potentials in the
context of SUGRA models of inflation). In the following,
we will, however, ignore the possibility of such a biasedly
chosen Kähler potential and focus on the usual suspects:
Kähler potentials that are either near-canonical or approx-
imately shift-symmetric. (ii) The fact that we are unable to
realize successful inflation in the bare Polonyi model is not
a serious problem, as the Polonyi model is not expected to
be a fundamental description of spontaneous supersym-
metry breaking, anyway. It should rather be seen as the
effective theory resulting from some UV dynamics that

provide a dynamical explanation for the origin of the
parameters μ and w in Eq. (6). From this perspective, it
is then more likely than not that the Polonyi field is not only
subject to its gravitational self-interaction, but that it also
participates in Yukawa interactions with heavy matter fields
in the UV theory. In the corresponding effective Polonyi
model at low energies, these matter fields are integrated out,
so that they no longer appear in the superpotential. But their
couplings to the Polonyi field still yield radiative correc-
tions to the scalar potential in Eq. (8), which affect the
inflationary dynamics. In such a modified setup, i.e., in the
original Polonyi model supplemented by radiative correc-
tions, successful Polonyi inflation may, therefore, very well
be an option. In the following, we will construct a minimal
extension of the Polonyi model where this is indeed the
case. We shall consider a minimal UV completion of the
Polonyi model—consisting of two strongly coupled SUð2Þ
sectors that account for the dynamical origin of the
parameters μ and w, respectively—and demonstrate that,
in the presence of radiative corrections, successful Polonyi
inflation is indeed feasible for a natural choice of parameter
values.

B. Dynamical supersymmetry breaking
in the low-energy regime of the IYIT model

One of the simplest ways to generate the SUSY breaking
scale μ in Eq. (6) is to identify the Polonyi field as part of
the IYIT model—the simplest vectorlike model of dynami-
cal supersymmetry breaking [59]. In its most general
formulation, the IYIT model is based on a strongly coupled
SpðNÞ gauge theory featuring Nf ¼ N þ 1 pairs of “quark
fields” Ψi that transform in the fundamental representation
of SpðNÞ. The gauge dynamics of this model are associated
with a dynamical scale Λ, which denotes the energy scale
at which the SpðNÞ gauge coupling formally diverges.
The low-energy effective theory below the dynamical scale
exhibits a quantum moduli space of degenerate super-
symmetric vacua, which is spanned by Nfð2Nf − 1Þ
gauge-invariant composite flat directions (or “meson
fields”) Mij,

Mij ≃ 1

ηΛ
hΨiΨji; i; j ¼ 1; 2;…; 2Nf: ð10Þ

Here, the parameter η is a dimensionless numerical factor,
which ensures the canonical normalization of the meson
fields Mij at low energies. Naive dimensionful analysis
(NDA) [77] leads us to expect that η should be of Oð4πÞ
and, for definiteness, we will, therefore, simply set η ¼ 4π
in the following. The quantum moduli space of the IYIT
model is subject to the following constraint pertaining to
the meson VEVs:
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PfðMijÞ≃
�
Λ
η

�
2

; ð11Þ

which represents the quantum mechanically deformed
version of the classical constraint PfðMijÞ ¼ 0 [60]. In
order to break supersymmetry in the IYIT model, one has to
lift the flat directions Mij, so that Eq. (11) is longer
compatible with a vanishing vacuum energy density.
This is readily done by coupling the quark pairs ΨiΨj to
a corresponding number of SpðNÞ singlet fields, Zkl, in the
tree-level superpotential,

Wtree
IYIT ¼ 1

4
λklijZklΨiΨj; Zkl ¼ −Zlk;

λklij ¼ −λklji ¼ λlkji ; i; j; k; l ¼ 1; 2;…; 2Nf; ð12Þ

where λklij denotes a matrix of Yukawa couplings with at
most Nfð2Nf − 1Þ independent eigenvalues. These
Yukawa couplings induce Dirac mass terms for the meson
and singlet fields at low energies,

Weff
IYIT ≃ 1

4
λklij

Λ
η
ZklMij; ð13Þ

so that the singlet F-term conditions, λklijM
ij ¼ 0, are incom-

patible with the deformed moduli constraint, PfðMijÞ ≠ 0.
Supersymmetry is then broken à la O’Raifeartaigh via
nonvanishing F-terms.
In global supersymmetry and for all Yukawa couplings in

Eq. (12) being equal, λklij ¼ λδki δ
l
j, the anomaly-free global

flavor symmetry GF of the IYIT model is given as follows:

GF ¼ SUð2NfÞ × Z2Nf
×Uð1ÞR: ð14Þ

Here, the discrete Z2Nf
symmetry is the anomaly-free

subgroup of the anomalous Uð1Þ that is contained in the
full flavor symmetry at the classical level, Uð2NfÞ×
Uð1ÞR ≅ SUð2NfÞ ×Uð1Þ ×Uð1ÞR. Under the Z2Nf

sym-
metry, all quarks carry charge 1, while the singlet fields carry
charge −2. Meanwhile, the presence of the global continu-
ous R symmetry is characteristic for a large class of DSB
models [42]. UnderUð1ÞR, the quark and singlet fields carry
charges 0 and 2, respectively. In the SUSY-breaking vacuum
of the IYIT model, where hMi ≠ 0 and hZi ¼ 0, R sym-
metry, therefore, remains unbroken. As a global symmetry,
the continuous R symmetry of the IYIT model is, of course,
only an approximate symmetry, which we expect to be
broken by quantum gravitational effects [36]. On the other
hand, recall that we assume the discrete subgroup ZR

4 ⊂
Uð1ÞR to be gauged (see our discussion in Sec. I C). This
protects the quality of the Uð1ÞR symmetry, and it is
reasonable to assume that all gravity-inducedUð1ÞR-break-
ing effects in the IYIT sector are suppressed. In the
following, we will, therefore, stick to the effective

superpotential in Eq. (13) and neglect the possibility of
small R symmetry-breaking corrections.
From now on, let us restrict ourselves to the simplest

version of the IYIT model: a strongly coupled Spð1Þ ≅
SUð2Þ gauge theory featuring four matter fields Ψi and six
singlet fields Zkl. The non-Abelian flavor symmetry
SUð2NfÞ then corresponds to a global SUð4Þ, under which
Mij and Zkl transform as six-dimensional antisymmetric
rank-2 tensor representations. Here, note that SUð4Þ is the
double cover of SOð6Þ. This allows us to rewrite the meson
and singlet fields as vector representations of SOð6Þ,

0
BBBBBBBBB@

X0

X1

X2

X3

X4

X5

1
CCCCCCCCCA

¼ 1ffiffiffi
2

p

0
BBBBBBBBB@

þ1ðM12 þM34Þ
−1ðM13 −M24Þ
þ1ðM14 þM23Þ
−iðM14 −M23Þ
−iðM13 þM24Þ
þiðM12 −M34Þ

1
CCCCCCCCCA
;

0
BBBBBBBBB@

S0
S1
S2
S3
S4
S5

1
CCCCCCCCCA

¼ 1ffiffiffi
2

p

0
BBBBBBBBB@

þ1ðZ12 þ Z34Þ
−1ðZ13 − Z24Þ
þ1ðZ14 þ Z23Þ
þiðZ14 − Z23Þ
þiðZ13 þ Z24Þ
−iðZ12 − Z34Þ

1
CCCCCCCCCA
: ð15Þ

As we will see shortly, it will turn out to be convenient to
study the SUSY-breaking dynamics of the IYIT sector in
terms of this “SOð6Þ language” rather than in terms of the
original “SUð4Þ language”.
Trading the mesons Mij for the new fields Xa, the

Pfaffian constraint in Eq. (11) can be written as

PfðMijÞ≡ 1

2
ðX · XÞ≡ 1

2

X5
a¼0

XaXa

≡ 1

2
ðXaÞ2 ≃

�
Λ
η

�
2

; ð16Þ

which defines a sphere in the six-dimensional space
spanned by the six meson coordinates Xa. An elegant
way to enforce this constraint is to directly incorporate it
into the effective superpotential [59,60],

Wdyn
eff ≃ κ

η
Λ2TCðxaÞ; CðxaÞ ¼ 1

2
ðxaÞ2 − 1;

xa ¼ Xa

Λ=η
: ð17Þ

Here, the field T denotes a Lagrange multiplier, the
corresponding F-term condition of which, CðxaÞ ¼ 0, is
nothing but a reformulation of the moduli constraint in
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Eq. (16). The physical status of the field T is unfortunately
rather unclear and depends on whether (uncalculable)
strong-coupling effects induce a kinetic term for T or
not. If the field T should be physical, it might represent a
dynamical glueball field, T ∼ hggi, and the dimensionless
coupling constant κ in Eq. (17) would be expected to take
some value of Oð1Þ. In that case, the Pfaffian constraint in
Eq. (16) would be satisfied only approximately, depending
on the competition between the different F-term conditions
that enter into the determination of the true ground state. If,
on the other hand, T should be unphysical, we would have
to treat it as a mere auxiliary field. In that case, the Pfaffian
constraint should be satisfied exactly, which would require
us to eventually take the limit κ → ∞ in our analysis. In the
following, we will suppose that the Lagrange multiplier
field T is, indeed, a physical (glueball) field and set κ ¼ 1
for definiteness.6

In terms of the fields Xa and Sa, the effective tree-level
superpotential takes the following form:

Wtree
eff ≃ λa

η
ΛSaXa; ð18Þ

where we assume, without loss of generality, the Yukawa
couplings λa to be ordered by size, λb ≤ λbþ1 for all
b ¼ 0;…; 4. Note that we will refer to the smallest
Yukawa coupling, λ0, simply as λ in the following,
λ≡ λ0. For generic values of the six Yukawa couplings
λa, the non-Abelian flavor symmetry is completely broken,

λa all different ⇒ GF ¼ SOð6Þ × Z4 ×Uð1ÞR
→ Z4 ×Uð1ÞR: ð19Þ

The total effective superpotential is given by the sum of
Wdyn

eff in Eq. (17) and Wtree
eff in Eq. (18),

Weff ≃ λa
η
ΛSaXa þ κ

η
Λ2TCðxaÞ: ð20Þ

We mention once more that, as a consequence of the
nonrenormalization theorem, the effective superpotential
does not receive radiative corrections in perturbation theory
[23]. Given this form of the total superpotential and
assuming a quadratic Kähler potential for all meson and
singlet fields, the global minimum of the resulting F-term
scalar potential is located at

hX0i ¼ �
ffiffiffi
2

p
ð1 − ζÞ1=2 Λ

η
;

hS0i ¼ ∓ ffiffiffi
2

p �
1 − ζ

ζ

�
1=2

hTi;

hXni ¼ hSni ¼ 0; n ¼ 1;…; 5; ð21Þ

where hTi is undetermined at tree level. The sign ambiguity
is a consequence of the Z4 flavor symmetry [see Eq. (19)].
Moreover, the parameter ζ measures how well the
deformed moduli constraint is satisfied,

ζ ¼ hjCðxaÞji ¼
�
λ

κη

�
2

¼ λ2

16π2
: ð22Þ

For perturbative values of the Yukawa coupling λ, i.e., for
λ ∼ 1 or smaller, we have ζ ≪ 1, which tells us that the
deformed moduli constraint is fulfilled almost exactly. On
the other hand, for nonperturbative values of λ, i.e., for λ as
large as λ ∼ 4π, the parameter ζ becomes of Oð1Þ,
indicating that the constraint function CðxaÞ significantly
deviates from zero. To put this result into perspective, we
must remember that, for nonperturbative values of the
Yukawa coupling, incalculable corrections to the effective
Kähler potential due to strong-coupling effects become
important. In fact, as pointed out by Chacko et al., these
nonperturbative corrections are only negligible as long as
λ ≪ 4π [79]. We can, therefore, trust our above analysis,
based on a canonical Kähler potential, only as long as λ
remains in the perturbative regime. For this reason, we will,
from now on, only consider λ values at most as large as
λmax ≃ 4, so that we may always maintain a hierarchy
among λ and η (i.e., so that λ=η≲ 10−0.5). For the parameter
ζ, this then means that it can take values at most as large as
ζmax ≃ 0.1. This translates into the statement that the
moduli constraint is always satisfied in our analysis—up
to a deviation of at most 10%, hjCðxaÞji≲ 0.1.
In passing, we also mention that the scalar potential

exhibits a saddle point at the origin in field space as well as
two saddle points along each direction Xn in moduli space.
Here, the loci of the saddle points away from the origin
have the same functional form as hX0i and hS0i in Eq. (21),
the only difference being that λ in Eq. (22) needs to be
exchanged with the respective Yukawa coupling λn. The
low-energy vacuum along the X0 axis, therefore, not only
marks the global (and only local) minimum of the scalar
potential, it is also the stationary point at which the
deformed moduli constraint is fulfilled best.
In the true vacuum, supersymmetry is broken by the

nonvanishing F-terms of the fields S0 and T,

hjFS0 ji ¼
ffiffiffi
2

p
ð1 − ζÞ1=2λ

�
Λ
η

�
2

;

hjFT ji ¼ ζ1=2λ

�
Λ
η

�
2

: ð23Þ
6For an extended discussion of this point, see also [41,78].
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The F-term of the meson field X0, on the other hand, (which
seems to be nonzero at first sight) cancels,

hjFX0 ji ¼ λ

η
ΛhS0i þ κηhTihX0i

¼
�
λ

η
− κζ1=2

�
ΛhS0i ¼ 0: ð24Þ

In order to identify the mass eigenstates around the true
vacuum, we now shift the field X0 by its VEV,

X0 ¼ hX0i þ Ξ0; ð25Þ

and rotate the SUSY-breaking fields S0 and T by their
mixing angle β,

�
Φ

Σ

�
¼

�
cos β −sin β
sin β cos β

��
S0
T

�
;

tan β ¼ hjTji
hjS0ji

¼ 1ffiffiffi
2

p
�

ζ

1 − ζ

�
1=2

: ð26Þ

After these field transformations, the effective superpoten-
tial for Φ, Σ, Ξ0, Sn, and Xn reads as follows:

Weff ≃ μ2Φþm0ΣΞ0 þmnSnXn

− ðκΦΦ − κΣΣÞ
�
1

2
ðΞ0Þ2 þ 1

2
ðXnÞ2

�
; ð27Þ

which is (apart from the missing constant termw) exactly of
the form anticipated at the end of Sec. II A.
First of all, note that the first term on the right-hand side

of Eq. (27), μ2Φ, is nothing but the dynamical realization of
the SUSY-breaking tadpole term in Eq. (6) within the IYIT
model. The field Φ is, thus, to be identified as the chiral
Polonyi field which breaks supersymmetry via its nonzero
F-term,

hjFΦji ¼ μ2; μ ¼ ð2 − ζÞ1=4λ1=2 Λ
η
; ð28Þ

where the parameter μ denotes again the SUSY breaking
scale. In this sense, Eqs. (27) and (28) show that the
IYIT model serves, indeed, as a viable UV completion
for at least half the Polonyi model: The SUSY-breaking
dynamics of the IYIT model manage to provide a
dynamical explanation for the SUSY breaking scale μ.
However, as the IYIT model preserves R symmetry in its
ground state, it is not capable of accounting for the
origin of the R symmetry-breaking constant w in the
Polonyi superpotential.
Second of all, the effective superpotential in Eq. (27)

contains (also as envisaged at the end of Sec. II A) Yukawa
couplings between the Polonyi field Φ and a number of
massive matter fields, Ξ0 and Xn. Here, the meson masses,

m0 andmn, follow from Dirac mass terms together with the
singlet fields Σ and Sn,

m0 ¼
m
r0
; mn ¼

m
rn

; m ¼ κ1=2Φ μ ¼ λ
Λ
η
;

r0 ¼
�

ζ

2 − ζ

�
1=2

¼ sin β; rn ¼
λ

λn
; ð29Þ

where we have introduced the flavor-independent mass
scale m as well as the respective ratios r0 and rn between
this scale m and the masses m0 and mn. From the fact that
m ¼ κ1=2Φ μ [see Eq. (31) below], it immediately follows that
the scale m represents the amount of SUSY-breaking mass
splitting within the respective meson and singlet multiplets
that is induced by the tadpole term in Eq. (27), see
Appendix A 1 for details. Given the definition of ζ in
Eq. (22) and recalling that we assume λ to be the smallest
among all Yukawa couplings, λ ≤ λn, we also find that the
ratios r0 and rn are bounded from above,

r0 ¼
m
m0

≤ 1; rn ¼
m
mn

≤ 1; ð30Þ

so that the SUSY-breaking mass splitting m never exceeds
the supersymmetric Dirac masses ma. Moreover, for the
parameter range of interest, λ≲ 4 and λn ≲ 4π, the ratio r0
always turns out to be the smallest, r0 < rn, which leads to
the interesting (and to some extent counterintuitive) result
that the zeroth flavor, i.e., the flavor with the smallest
Yukawa coupling, ends up being stabilized the most. In
addition to that, the Ξ0 flavor is also singled out by the fact
that its Dirac mass partner is none of the original singlet
fields Sa, but the linear combination Σ that we introduced in
Eq. (26) and which, for small values of ζ, mostly consists of
the Lagrange multiplier field T. This also explains why, for
large κ (and, hence, small ζ), the Ξ0 mass m0 diverges. In
this limit, the Pfaffian constraint is fulfilled exactly, which
results in the decoupling of T and removes one meson
multiplet (i.e., Ξ0) from the spectrum.
Next to the Polonyi field Φ, also the “stabilizer field” Σ

couples to the meson fields Ξ0 and Xn. Here, the strengths
of the respective Yukawa couplings, κΦ and κΣ, are given by
κη and the mixing angle β,

κΦ ¼ sin β κη ¼ λ

ð2 − ζÞ1=2 ;

κΣ ¼ cos β κη ¼
�
2

ζ

�
1=2

�
1 − ζ

2 − ζ

�
1=2

λ: ð31Þ

Just like the mass m0, the Yukawa coupling κΣ diverges in
the limit κ → ∞. This is a trivial consequence of its
proportionality to κη. As for the Polonyi coupling κΦ, this
divergence is, however, canceled out by the sin β factor. In
contrast to κΣ, the coupling κΦ, therefore, always remains
finite. In the limit κ → ∞, it reproduces, in particular, the
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Yukawa coupling of the singlet S0 at energies above the
dynamical scale,

Wtree
IYIT ⊃

λffiffiffi
2

p S0ðΨ1Ψ2 þΨ3Ψ4Þ: ð32Þ

Finally, we mention that the four new parameters μ,m0, κΦ,
and κΣ introduced in Eq. (27) are not linearly independent.
In fact, they must be dependent, as they can all be expressed
in terms of the three old parameters λ, Λ, and κ. By making
use of Eqs. (28), (29), and (31), one easily convinces
oneself that

μ2 ¼ κΦ
κ2Φ þ κ2Σ

m2
0: ð33Þ

In order to see how the superpotential in Eq. (27) may
give rise to Polonyi inflation, it is instructive to forget about
the Yukawa couplings of the field Σ for a moment and to
rewrite Eq. (27) as follows:

Weff ≃ κΦΦ

�
v2 −

1

2
ðΞ0Þ2 þ 1

2
ðXnÞ2

�

þm0ΣΞ0 þmnSnXn þ…; ð34Þ

where the ellipsis stands for the Yukawa couplings involv-
ing the stabilizer field Σ and where we have introduced the
mass scale v,

v ¼ m
κΦ

¼ ð2 − ζÞ1=2 Λ
η
: ð35Þ

Remarkably enough, the first part of the superpotential in
Eq. (34) has the same form as the superpotential of
supersymmetric F-term hybrid inflation [61] based on
SOð6Þ. In the context of this interpretation, the Polonyi
field plays the role of the chiral inflaton singlet, while the
meson fields Ξ0 and Xn act as a multiplet of FHI waterfall
fields that transform in the vector representation of SOð6Þ.
The mass scale v is then to be identified as the energy scale
of the waterfall transition at the end of inflation, while the
mass splitting m should be understood as the tachyonic
mass of the FHI waterfall fields at Φ ¼ v. We note that it is
this picture that the authors of [51] arrive at. In their model,
no other singlets except for the Polonyi field Φ are
introduced. The meson fields Ξ0 and Xn, therefore, lack
their Dirac mass partners, so that the resulting effective
superpotential is exactly identical to the one of F-term
hybrid inflation. This allows the authors of [51] to realize
F-term hybrid inflation at large inflaton field values,
jΦj > v, where the flatness of the inflaton potential is
lifted by logarithmic loop corrections.
In our case, the situation at large field values is quite

similar, as wewill discuss shortly, but at small field values, it
is drastically different. The second part of the superpotential

in Eq. (34) introduces explicit Dirac mass terms for the
“would-be waterfall fields” Ξ0 and Xn that are absent in
standard F-term hybrid inflation (as well as in the model in
[51]). Accounting for the presence of these Dirac masses
in the low-energy effective theory, the tachyonic waterfall
massm is always compensated [see Eq. (30)], so that none of
themeson fields ever becomes destabilized. Because of that,
the total superpotential in Eq. (34) fails to give rise to a
waterfall transition and, even in the low-energy vacuum,
we retain the vacuum energy density resulting from the
nonzero Polonyi F-term,V0 ¼ hjFΦji2 ¼ μ4. As anticipated
in Sec. I D, this is a characteristic feature of our construction,
in which we intend to use one and the same vacuum energy
density for driving inflation and breaking supersymmetry.
Moreover, independent of the symmetry group under which
the meson fields transform, the absence of the waterfall
transition automatically implies that the end of inflation is
not accompanied by the production of topological defects.
This may be regarded as a significant phenomenological
advantage of our scenario over standard F-term hybrid
inflation.

C. Pseudomodulus potential in global supersymmetry

To the best of our knowledge, the superpotential in
Eq. (34) has not been considered as the dynamical origin of
inflation, so far. Here, part of the reason certainly is that
successful inflation based on Eq. (34) is bound to require a
rather high SUSY breaking scale μ. As explained in the
Introduction, in supergravity, this necessitates a large
constant in the superpotential to cancel the CC in the true
vacuum, which then spoils slow-roll inflation (see
Sec. I A). In the rest of this paper, we will, however, show
that the superpotential in Eq. (34) can yield successful
Polonyi inflation after all, if we generate the constant in the
superpotential only towards the end of inflation. To this
end, we shall now examine the effective one-loop potential
for the complex Polonyi scalar ϕ ¼ φ=

ffiffiffi
2

p
eiθ in global

supersymmetry more closely. In the next sections, we will
then turn to the embedding of the IYIT model into
supergravity (see Sec. II D) as well as to the generation
of the constant term in a separate hidden sector (see
Sec. III).
The Yukawa interactions between the Polonyi field Φ

and the meson fields Ξ0 and Xn in Eq. (27) lead to radiative
corrections to the Polonyi potential, V1−loopðφÞ, that may
be calculated according to the Coleman-Weinberg (CW)
formula for the effective one-loop potential [80]. The
details of our calculation may be found in Appendix A;
in the following, we will merely summarize our results.
Generally speaking, the effective potential may be divided
into two regimes: (i) At large field values, all of the meson
fields acquire a large inflaton-dependent Majorana mass
MðφÞ ¼ κΦjϕj. ForMðφÞ ≫ ma, the supersymmetric Dirac
masses ma in Eq. (27) are, hence, negligible and the
effective potential takes the usual logarithmic form as in
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standard F-term hybrid inflation, V1−loopðφÞ ∝ m4 lnMðφÞ.
(ii) On the other hand, at small Polonyi field values, such
that MðφÞ ≪ ma, the Dirac masses ma become more
relevant. Integrating out the “heavy fields” then leads to
a quadratic Polonyi potential around the origin,
V1−loopðφÞ ∝ m2M2ðφÞ. We note that, as has been shown
for the first time in [79], the effective potential around the
origin has positive curvature. The low-energy vacuum at
hΦi ¼ 0 is, therefore, indeed stable. Moreover, we find
that, at large as well as at small field values, the effective
potential scales with the soft SUSY-breaking mass scale m,
i.e., the smallest mass scale in our model [see Eq. (30)].
This illustrates how supersymmetry succeeds in protecting
the inflaton potential from picking up too-large radiative
corrections [25].
To quantify the above statements, it is convenient to

introduce the following mass ratios:

RaðφÞ¼
MðφÞ
ma

; MðφÞ¼ κΦjϕj ¼
λ

ð2−ζÞ1=2
φffiffiffi
2

p : ð36Þ

For large values of RaðφÞ, we then obtain a logarithmic
one-loop potential, while for small values of RaðφÞ, the
one-loop corrections take a quadratic form. This behavior
can be captured by studying the effective potential as a
function of a single order parameter xðφÞ, the geometric
mean of all ratios RaðφÞ,

xðφÞ ¼
�Y

a

RaðφÞ
�

1=NX ¼ MðφÞ
m̄

;

m̄ ¼
�Y

a

ma

�
1=NX

; NX ¼ 6: ð37Þ

Here, NX ¼ 6 counts the number of meson fields in the
IYIT sector, while m̄ stands for the geometric mean of
all explicit mass parameters in Eq. (27). In this sense,
m̄ denotes the “supersymmetric mass scale” of the IYIT
sector, i.e., a characteristic value for the nonperturbatively
generated Dirac masses in the low-energy effective theory.
In the following, we will set m̄ to the dynamical scale Λ,
for definiteness,

m̄ ¼ Λ: ð38Þ

This mainly serves the purpose to account, in an effective
way, for heavy composite states with masses around the
dynamical scale Λ that we expect to be present, but which
we can unfortunately not explicitly describe in terms of our
perturbative language at low energies. Formally, we can
always set m̄ to Λ in our calculation by choosing an
appropriate value for the effective heavy-flavor Yukawa
coupling ~λ,

m̄¼m1=6
0 ~m5=6; ~m¼ ~λ

Λ
η
; ~λ¼ ðλ1λ2λ3λ4λ5Þ1=5: ð39Þ

By fixing ~λ at a nonperturbative value, we are, therefore,
able to enforce our designated value for m̄,

~λ ¼
�
r0
λ

�
1=5

η6=5 ≃ η: ð40Þ

The value of xðφÞ indicates whether the Dirac massesma
are negligible or not and, thus, decides whether we are in
the logarithmic or the quadratic part of the effective
potential. The transition between both regimes takes place
at field values close to what we shall refer to as the critical
field value φc,

xðφcÞ ¼ 1 ⇔ MðφcÞ ¼ m̄ ⇒ φc ¼
ffiffiffi
2

p m̄
κΦ

: ð41Þ

This implies that the order parameter xðφÞ can also be
regarded as the ratio of the actual and the critical field
value, xðφÞ ¼ φ=φc. Far away from the critical field value,
i.e., at xðφÞ ≪ 1 and xðφÞ ≫ 1, we now find the following
expressions for the effective potential (see Appendix A for
details):

xðφÞ≪1⇒VLE
1−loopðφÞ¼

1

2
m2

effφ
2þOðx4Þ;

xðφÞ≫1⇒VHE
1−loopðφÞ¼

NX

16π2
m4 lnxðφÞþOðx−4Þ;

ð42Þ

with meff denoting the effective one-loop mass of the
Polonyi field around the origin,7

m2
eff ¼ ð2 ln 2 − 1ÞNeff

X ðraÞ
κ2Φ
16π2

m2;

Neff
X ðraÞ ¼

X
a

ωðraÞ; ωðraÞ ≈ r2a: ð43Þ

Here, Neff
X ðraÞ counts the effective number of mesons that

contribute to the effective Polonyi mass. The full functional
form of Neff

X ðraÞ is a sum of complicated loop factors
ωðraÞ. To good approximation, these loop functions,
however, happen to coincide with the mass ratios ra
squared, ωðraÞ ≈ r2a. We can write the result in Eq. (42)

7A similar expression has been derived for the first time in
[79]. Our result differs from the one in [79] to the extent that we
allow for nonzero ζ (and, hence, nonzero r0), which means that
we do not necessarily enforce the moduli constraint exactly. The
calculation in [79], on the other hand, is based on the assumption
that the moduli constraint is fulfilled exactly, so that r0 ≡ 0. For a
recent derivation and discussion of the effective Polonyi mass in
SUð4Þ language, see [41,78].
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more compactly, if we make use of the following two
potential energy scales:

Λ4
LE ¼

X
a

m4

16π2
ð2 ln 2 − 1Þ

�
m̄
ma

�
2

¼ 1

2
m2

effφ
2
c;

Λ4
HE ¼

X
a

m4

16π2
¼ NX

m4

16π2
: ð44Þ

The effective potential far away from the critical field value
φc then takes the following form (see Fig. 1):

V1−loopðφÞ ≈
�
Λ4
LEx

2ðφÞ ; x ≪ 1

Λ4
HE ln xðφÞ ; x ≫ 1

;

xðφÞ ¼ φ

φc
¼ jϕj

Λ=κΦ
: ð45Þ

The crucial question which we need to answer in the
following is: Can we use either the low-energy or the
high-energy part of this effective potential to realize
successful Polonyi inflation? Let us first investigate
whether inflation might occur in the quadratic part close
to the origin. As we know from standard chaotic inflation
[34], the effective inflaton mass then needs to take a
value of Oð1013Þ GeV to ensure the correct normaliza-
tion of the scalar power spectrum. This requires the
coupling λ to take a value at least as large λ≃ 0.2,
since otherwise the dynamical scale Λ would have to be
super-Planckian,

meff ≃ 1013 GeV

�
λ

0.2

�
3
�

Λ
MPl

�
þOðλ5Þ: ð46Þ

At the same time, we know that chaotic inflation requires
a large super-Planckian field excursion to yield a suffi-
cient number of e-folds. The scalar perturbations probed
in CMB observations, e.g., cross outside the Hubble
horizon at a field value φ� ∼ 15MPl. However, in the
context of our SUSY-breaking model, this large field
range does not “fit” into the low-energy part of the
effective potential. This follows from the fact that, for
λ≃ 0.2 and Λ≃MPl, the critical field value φc only
becomes as large as φc ≃ 10MPl,

φc ≃ 10MPl

�
0.2
λ

��
Λ
MPl

�
þOðλÞ: ð47Þ

Therefore, to raise φc, so as to make the field range
required for chaotic inflation fit into the quadratic part of
the effective potential, φc ≳ φ�, we would have to go to
smaller values of λ. But then, we are either forced to push
Λ beyond the Planck scale or we fail to reproduce the
correct scalar spectral amplitude. This eliminates the
possibility of Polonyi inflation in the low-energy part of
the effective potential, which is why we will focus on
inflation in the logarithmic part of the effective potential
from now on.
Before continuing, we, however, point out that inflation

close to the origin might become possible, after all, if we
relax our assumptions. That is, if we allowed for values of
the dynamical scale as large as, say, Λ ∼ ð8πÞ1=2MPl, we
would, in fact, be able to raise φc above φ�. If we then
trusted the full effective potential also at field values close
to φc (see Fig. 1), inflation in the transitioning regime
between the quadratic and the logarithmic part of the
effective potential might become feasible. Such a scenario
would promise to interpolate between the predictions of
chaotic inflation and F-term hybrid inflation, so that we
would expect it to result in interesting predictions for the
tensor-to-scalar ratio, r ∼ 0.1. Because of the uncertainties
involved in such a scenario, we, however, do not pursue this
idea any further in this paper and leave a more detailed
study for future work. In closing, we remark that a similar
model of subcritical hybrid inflation, based on a dynami-
cally generated D-term [78], may be found in [81]. This
model illustrates how to realize chaotic inflation after the
waterfall transition of D-term hybrid inflation.
Let us now turn to the possibility of inflation in the

logarithmic part of the effective potential. As we will show,
in this part of the potential, successful Polonyi inflation is
indeed feasible. To be on the safe side, we will limit our
analysis in the following to field values that are larger than
the critical field value by at least half an order of magnitude,
φ≳ 100.5φc. We do so because the effective Polonyi
potential may receive nonperturbative corrections around
φ ∼ φc that we do not have under control. In fact, around
the critical field value, the inflaton-dependent mass MðφÞ
drops below the dynamical scale Λ [see Eq. (41)]. This

FIG. 1. Effective CW potential for the Polonyi field, V1−loop, as
a function of the order parameter x for λ ¼ 1, see Eq. (45). The
potential energy scales ΛLE and ΛHE are given in Eq. (44). For
values x ∼ 1, we can only have limited trust in our perturbative
result because of potentially important strong-coupling effects at
energies close to the dynamical scale Λ.
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triggers the IYIT sector to transition from the high-energy
quark-gluon regime into the low-energy meson regime.
During this mesonic phase transition, the IYIT quarks
become confined in the composite mesons and the
strongly coupled SUð2Þ gauge group becomes completely
broken by the nonzero squark VEVs hΨ1Ψ2i and hΨ3Ψ4i
that contribute to the meson VEV hX0i [see Eqs. (15) and
(21)],8

hΨ1Ψ2i ¼ hΨ3Ψ4i ≠ 0 ⇒ SUð2Þ → 1: ð48Þ

Thanks to the fact that the SUð2Þ symmetry is sponta-
neously broken down to “nothing,” no topological defects
are formed during the confining phase transition [82]. We
emphasize that this is an important phenomenological
feature of the IYIT model based on SUð2Þ, as it allows for
the particular breaking pattern SUð2Þ → 1. In summary,
our scenario of Polonyi inflation, therefore, crucially
differs from ordinary F-term hybrid inflation in the
following respect: While ordinary F-term hybrid inflation
ends in a waterfall transition—in the course of which
the inflationary vacuum energy density is “eaten up” by
the FHI waterfall fields and which potentially leads to the
production of troublesome topological defects—our sce-
nario of Polonyi inflation undergoes a confining quark-
meson phase transition that conserves the inflationary
vacuum energy density and that does not lead to the
production of topological defects.

D. Embedding into supergravity and choice
of the Kähler potential

In supergravity, the flatness of the tree-level Polonyi
potential in global supersymmetry, VðφÞ ¼ V0 ¼ μ4, is not
only lifted by the radiative corrections in Eq. (45), but also
by gravitational corrections (see our discussion at the end
of Sec. I C). In our case, these SUGRA corrections turn out
to be rather mild for basically two reasons: (i) Since the
superpotential in Eq. (27) only contains terms linear in Φ,
the tree-level SUGRA mass of the Polonyi field acciden-
tally cancels, as long as we assume a canonical Kähler
potential. As far as the embedding into supergravity is
concerned, this represents an important advantage of
F-term hybrid inflation (and of our model) over alternative
models that do feature higher powers of the inflaton field in
the superpotential. (ii) Since we intend to realize Polonyi
inflation in the logarithmic part of the effective potential,
we will consistently work with sub-Planckian field values.
Our scenario of Polonyi inflation will, hence, turn out to be
a small-field model of inflation. Accordingly, the SUGRA
corrections in our model are bound to be less significant
than in alternative large-field models of inflation.

The total scalar potential for the complex Polonyi field
~ϕ ⊂ Φ in supergravity now reads,9

Vð ~ϕÞ ¼ VFð ~ϕÞ þ V1−loopðj ~ϕjÞ; ð49Þ
with V1−loop being given in Eq. (45) and where VF denotes
the tree-level F-term potential in supergravity,

VF ¼ jFj2 − 3 exp

�
K
M2

Pl

� jWj2
M2

Pl

: ð50Þ

Here, jFj denotes the norm of the generalized F-term vector
F i induced by the Kähler metric Ki

|̄,

jFj ¼ ðF · F �Þ1=2; F · F � ¼ F iKi
|̄F �̄

| ;

Ki
|̄ ¼ ∂2K

∂ϕi∂ϕ�̄
|
: ð51Þ

The individual components of the F-term vector F i are
proportional to the conjugate of Kähler-covariant deriva-
tives of the superpotential, ðDjWÞ�, multiplied by the
inverse of the Kähler metric, Ki

|̄,

F i ¼ −Ki
|̄ exp

�
K

2M2
Pl

�
ðDjWÞ�; Ki

|̄ ¼ ðK−1Þi|̄;

DiW ¼ ∂W
∂ϕi þ

W
M2

Pl

∂K
∂ϕi : ð52Þ

After integrating out the heavy fields Ξ0, Xn, Σ, and Sn in
Eq. (27), the effective superpotential of the IYIT sector
reduces to the SUSY-breaking tadpole term for the Polonyi
field [see Eq. (6)],

Weff ≃ μ2Φ: ð53Þ
Meanwhile, the tree-level Kähler potential K is not

unambiguously defined. At first sight, there are several
well-motivated choices for K that come into question. For
instance, we might think that an approximately shift-
symmetric Kähler potential could help in keeping the
SUGRA corrections small,10

K ¼ � 1

2
ðΦ� Φ†Þ2∓ ϵ

2
ðΦ∓Φ†Þ2 þOðϵ2;M−2

Pl Þ;
ϵ ≪ 1: ð54Þ
Depending on the sign choice, the real-valued (not canoni-
cally normalized) inflaton field ~φ is then identified either as
the real (−) or the imaginary (þ) part of the complex scalar

8Here, hΨ1Ψ2i ¼ hΨ3Ψ4i follows from the fact that the linear
combination X5 vanishes in the vacuum, hX5i ¼ 0.

9The field ~ϕ is not necessarily canonically normalized, which
we indicate by placing a tilde on top of the symbol ϕ.

10A shift symmetry in the direction of the Polonyi field can
never be an exact symmetry, as it is always explicitly broken by
the superpotential, Weff ≃ μ2Φ, and the radiative corrections in
the scalar potential [see Eq. (45)]. For this reason, we expect that,
also in the tree-level Kähler potential, the shift symmetry should
be explicitly broken.
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~ϕ ⊂ Φ. Likewise, the real-valued (not canonically normal-
ized) scalar inflaton partner ~σ (i.e., the “sinflaton”) corre-
sponds to the imaginary (−) or the real (þ) part of the
complex scalar ~ϕ ⊂ Φ. As long as we do not assume an
exact shift symmetry in the Kähler potential (i.e., ϵ≡ 0), ~φ
and ~σ need to be canonically normalized,

φ ¼ ð1þ ϵÞ1=2 ~φ; σ ¼ ð1þ ϵÞ1=2 ~σ: ð55Þ
Unlike in the case of a canonical Kähler potential, the
SUGRA F-term potential VF now contains nonzero tree-
level masses for the inflaton and its scalar partner. At the
origin in field space, we find

m2
φ ¼ −

1 − ϵ

ð1þ ϵÞ2
3μ4

M2
Pl

; m2
σ ¼ þ 1 − ϵ

ð1þ ϵÞ2
3μ4

M2
Pl

: ð56Þ

For ϵ ≪ 1, the inflaton direction is, hence, tachyonic. If we
forget about the radiative corrections V1−loop for a moment,
this immediately implies that Polonyi inflation based on
an approximately shift-symmetric Kähler potential is
impossible—which completes our argument in Sec. II A
(see footnote 5). On the other hand, taking the radiative
corrections into account, we may hope that the effective
inflaton mass meff around the origin could possibly
compensate the tachyonic tree-level mass mφ and, thus,
stabilize the vacuum at φ ¼ 0. It is clear that this will not be
easy, since mφ in Eq. (56) is typically very large,

jmφj≃ 8 × 1015 GeV

�
λ

0.2

��
Λ
MPl

�
2

þOðϵ; λ3Þ: ð57Þ

In order to sufficiently suppress it, we need to go to smaller
values of the dynamical scale Λ. Requiring that the total
inflaton mass at the origin be nontachyonic, m2

φþm2
eff > 0,

we find [see Eq. (46)],

Λ≲ 3 × 1015 GeV

�
λ

0.2

�
2

: ð58Þ

For such small values of the dynamical scale, the critical
field value φc is clearly sub-Planckian [see Eq. (41)]. As
discussed in the previous section, this eliminates the
possibility of realizing inflaton in the quadratic part of
the potential close to the origin. Our only remaining hope,
therefore, is to realize inflation at field values φ≳ φc. To
this end, it is important that the total scalar potential does
not exhibit a local minimum above the critical field value—
otherwise the inflaton will never reach the origin and
inflation would never end. But as it turns out, exactly
such a local minimum is always present.
The point is that the quadratic part of the effective

potential can only compensate the tachyonic tree-level
mass up to field values of OðφcÞ. At the same time, the
gradient of the tree-level potential only turns positive at
very large field values, φ ≥ φmin ∝ MPl=ϵ, where φmin
denotes the position of a global AdS vacuum. As long

as φc ≲ φmin, the gradient of the total inflaton potential is,
therefore, guaranteed to turn negative in between φc and
φmin—which indicates the presence of a local minimum. To
evaluate the relation between φc and φmin more precisely,
consider the tree-level inflaton potential for σ ¼ 0,

VFðφÞ ¼ exp

�
ϵ

1þ ϵ

φ2

M2
Pl

��
v0 þ

1

2
M2

φφ
2 þ λφ

4!
φ4

�
; ð59Þ

with the three parameters v0, Mφ, and λφ being given as
follows:

v0 ¼
μ4

1þ ϵ
; M2

φ ¼ −
3 − ϵ

1þ ϵ

v0
M2

Pl

;

λφ ¼ 24

�
ϵ

1þ ϵ

�
2 v0
M4

Pl

: ð60Þ

The local minimum in the SUGRA tree-level potential,
φmin, is then located at

φmin ¼
�
1þ ϵ

ϵ

�
1=2

½ð1þ sgnðϵÞÞa − 1�1=2MPl;

a ¼ −
ϵ

1þ ϵ

6

λφ

M2
φ

M2
Pl

; ð61Þ

so that the AdS vacuum energy density takes the following
value:

Vmin ¼ − exp

�
ϵ

1þ ϵ

φ2
min

M2
Pl

��
3 − ϵ

2jϵj − 2

�
v0: ð62Þ

Given the above expression for φmin, we find that, in the
entire parameter space of interest (λ=η≲ 10−0.5 and
jϵj≲ 10−0.5), φc and φmin are always separated by at least
one order of magnitude, φc=φmin ≲ 0.1. In the shift-
symmetric limit, ϵ → 0, the AdS vacuum disappears, in
particular, altogether, φmin → ∞, so that the total inflaton
potential becomes unbounded from below. In summary,
this shows that the effective potential manages to compen-
sate the tachyonic tree-level mass only for too small a field
range. It only “bends around” the tachyonic part of the tree-
level potential up to φ ∼ φc, while it should actually do this
up to field values that are at least ten times as large,
φ ∼ φmin ≳ 10φc. This finally completes our argument that
Polonyi inflation is incompatible with an approximate shift
symmetry in the Kähler potential, independent of whether
we account for the presence of radiative corrections
or not.11

11Note that this conclusion does not hold for ordinary F-term
hybrid inflation. As has been shown in [83], F-term hybrid
inflation can, in fact, be successfully embedded into supergravity
based on a shift-symmetric Kähler potential—provided that
supersymmetry is broken at a high scale and broken in a different
sector. That is, once the inflaton is not identified as the SUSY-
breaking Polonyi field, the inflaton may receive a large soft mass
that compensates its tachyonic tree-level mass.
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This result leaves a near-canonical tree-level Kähler
potential as the best possible choice,

K ¼ Φ†Φþ ϵ

ð2!Þ2
�
Φ†Φ
MPl

�
2

þOðϵ2;M−4
Pl Þ: ð63Þ

Of course, simply assuming a canonical Kähler potential,
K ¼ Φ†Φ, would represent an even more minimal choice.
In that case, the Polonyi field would not “equip itself” with
a Hubble-induced mass (see our discussion at the beginning
of this section) and we would not have to fear any
dangerous SUGRA corrections. But such a scenario is
rather unlikely. Terms featuring higher powers of Φ†Φ are
not forbidden by any symmetry and, hence, we cannot
exclude their presence in the Kähler potential. Quite the
contrary, we rather expect that they are the unavoidable
consequence of radiative corrections in quantum gravity
that manifest themselves as Planck-suppressed operators in
the low-energy effective theory. The only open question
regarding the higher-dimensional terms in the Kähler
potential pertains to the size of their coefficients. The
leading correction to the canonical Kähler potential, e.g.,
results in an inflaton mass squared ofm2

φ ¼ −3ϵH2
inf , which

shifts the slow-roll parameter η by Δη ¼ −ϵ. Therefore, if ϵ
is of Oð1Þ, as one might naively expect, we would
encounter the η problem [57]. This tells us that the
coefficient ϵ needs to be suppressed, ϵ≲ 0.1, which
introduces a parameter fine-tuning at the level of
1…10%. In the following, we will not speculate what
the physical reason for this fine-tuning might be and simply
assume that ϵ is sufficiently small. We merely remark that
there is a number of models in the literature that attempt to
explain why ϵ ends up being suppressed. For instance, a
small coefficient ϵ may be the result of a sub-Planckian
cutoff scale, M� ≲ 0.1MPl, in the sector giving rise to the
higher-dimensional term in Eq. (63) [84] (see [85] for a
realization of this idea in string theory), or ϵ may be small
because it is, for one reason or another, suppressed by NDA
factors of Oð4πÞ [52].
Having defined the Kähler potential, we now need

to canonically normalize the complex Polonyi field
~ϕ ¼ ~φ=

ffiffiffi
2

p
ei~θ. Here, we will restrict ourselves to normal-

izing the radial component ~φ only, as the complex phase ~θ
will be irrelevant during inflation. The canonically nor-
malized field φ is then given as

φð ~φÞ¼
Z

d ~φ

� ∂2K

∂ ~ϕ∂ ~ϕ�

�
1=2

¼ ~φ

�
1þ ϵ

12

�
~φ

MPl

�
2

þOðϵ2Þ
�
: ð64Þ

This relation is readily inverted, which provides us with an
expression for ~φ in terms of φ,

~φðφÞ ¼ φ

�
1 −

ϵ

12

�
φ

MPl

�
2

þOðϵ2Þ
�
: ð65Þ

We are now in the position to write down the full tree-level
SUGRA potential VF for φ and ~θ. In doing so, we shall first
use the full Polonyi superpotential in Eq. (6) for illustrative
purposes (i.e., we will add a constant w to the effective
superpotential, although w ¼ 0 in the IYIT model).
Equation (50) then yields

VFðφ; ~θÞ ¼ c0 þ c1φ cos ~θ þ c2
2
φ2 þ c3

3!
φ3 cos ~θ

þ c4
4!

φ4 þOðφ5Þ; ð66Þ

where the coefficients c0, c1, c2, c3, and c4 are given as
follows:12

c0 ¼ V0 − 3
w2

M2
Pl

; c1 ¼ −2
ffiffiffi
2

p w
M2

Pl

V1=2
0 ;

c2 ¼ −ϵ
V0

M2
Pl

− 2
w2

M4
Pl

; c3 ¼ −3
ffiffiffi
2

p �
1þ ϵ

6

�
w
M4

Pl

V1=2
0 ;

c4 ¼ 3

�
1 −

7ϵ

2
þ 8ϵ2

3

�
V0

M4
Pl

− 3

�
1þ ϵ

6

�
w2

M6
Pl

: ð67Þ

This form of the scalar potential illustrates the impact of the
constant term in the superpotential, W ⊃ w. Not only does
w induce a dependence on the phase ~θ of the complex
inflaton field (thereby introducing odd powers of the radial
component φ in the scalar potential), it also results in a
large tachyonic tree-level mass. In Appendix B 1, we show
that this potential is always too steep for slow-roll inflation.
Moreover, we note that the potential in Eq. (66) is similar to
the tree-level potential of F-term hybrid inflation.
Equation (66) yields the SUGRA FHI tree-level potential
up to Oðφ4Þ, if we make the following replacements:

c0 → c0 þ 3
w2

M2
Pl

; c1 → c1; c2 → c2 þ 3
w2

M4
Pl

;

c3 → c3; c4 → c4 þ 9

�
1 −

ϵ

6

�
w2

M6
Pl

; ð68Þ

where the constant w is to be understood as a measure for
the gravitino mass, w ¼ m3=2M2

Pl. In F-term hybrid infla-
tion, the functional dependence of the scalar potential on
the phase of the complex inflaton field is, therefore, exactly
the same as in the full Polonyi model (see [65] for the first
analysis that properly treats F-term hybrid inflation as a

12A dimension-6 operator in the Kähler potential,
K ⊃ ϵ0=ð3!Þ2ðΦ†ΦÞ3=M4

Pl, only contributes to the coefficient of
the quartic inflaton term, c4 → c4 − 3=2ϵ0V0=M4

Pl. This effect is
negligibly small, which is why wewill set ϵ0 ¼ 0 in the following.
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two-field model in the complex plane). By contrast, the soft
inflaton mass is no longer tachyonic in F-term hybrid
inflation, but identical to the gravitino mass. Meanwhile,
the change in the coefficient c4 is suppressed by m2

3=2=M
2
Pl

and, thus, irrelevant. Furthermore, it is worthwhile
pointing out that F-term hybrid inflation is not compatible
with the idea of a gravitino mass as large as the inflati-
onary Hubble rate. Instead, m3=2 and Hinf must always
maintain a hierarchy of at least three orders of magnitude,
m3=2 ≲ 10−3Hinf , since otherwise slow-roll inflation
becomes spoiled by too large SUGRA corrections [65].
This is in contrast to our scenario of Polonyi inflation,
where m3=2 and Hinf are related to each other at a
fundamental level and, in fact, equal to each other
[see Eq. (3)].
Let us now turn to the scalar potential of our inflationary

scenario. For our purposes, the constant w needs to be zero
during inflation. The total inflaton potential for Polonyi
inflation, therefore, follows from the sum of the logarithmic
one-loop potential in Eq. (45) and VF in Eq. (66) evaluated
for w ¼ 0,

VðφÞ ¼ V0 −
ϵ

2

V0

M2
Pl

φ2 þ 1

8

�
1 −

7ϵ

2
þ 8ϵ2

3

�
V0

M4
Pl

φ4

þ Λ4
HE ln

�
φ

φc

�
þOðx−4;φ6Þ: ð69Þ

This inflaton potential is identical to the potential of F-term
hybrid inflation (including corrections from supergravity
and a noncanonical Kähler potential) in the limit of a
vanishing gravitino mass [64].

III. SPONTANEOUS R SYMMETRY BREAKING
AFTER THE END OF INFLATION

A. Implications of broken R symmetry for R parity
and the gravitino mass

In the previous section, we have seen what it takes to
identify the SUSY-breaking Polonyi field Φ as the chiral
inflaton field. We considered three different types of
radiative corrections to the scalar Polonyi potential (none,
quadratic corrections, logarithmic corrections), two differ-
ent shapes of the tree-level Kähler potential (approximately
shift-symmetric and near-canonical), and two different
choices for the constant in the superpotential (w ¼ 0 and
w ≠ 0)—and we found only one possible combination of
“model ingredients” that could not be ruled out immedi-
ately: the Polonyi model supplemented by logarithmic
radiative corrections in combination with a near-canonical
Kähler potential and w ¼ 0 during inflation.
In the following, we will focus on this scenario and

present a dynamical model that illustrates how the constant
in the superpotential, W ⊃ w, may be generated at the end
of inflation. As we will see, the constant w then represents

(not the only one, but) the dominant contribution to the
VEV of the superpotential in the low-energy vacuum,
hWi≃ w. Consequently, w turns out to be the main source
of spontaneous R symmetry breaking at low energies. This
is the reason why, throughout the entire paper, we refer to
the generation of the constant term in the superpotential
after inflation also as the spontaneous breaking of R
symmetry at late times. Technically speaking, this is not
quite correct, as, globally, R symmetry is already sponta-
neously broken during inflation by the VEVof the Polonyi
field,

hΦi ≠ 0 ⇒ ZR
4 → ZR

2 : ð70Þ

This is because Φ carries R charge 2. What we actually
mean by speaking of late-time R symmetry breaking is,
therefore, not the spontaneous breaking of R symmetry
from a global perspective, but only the spontaneous break-
ing of R symmetry in the sector responsible for the
generation of the constant term w. From the perspective
of the low-energy effective theory, the process of late-time
R symmetry breaking then amounts to the (explicit) break-
ing of R symmetry at the level of the Lagrangian by means
of a constant in the superpotential, as opposed to the
(spontaneous) breaking of R symmetry at the level of a
scalar field VEV during inflation. Here, it is important to
note that the latter kind of R symmetry breaking mostly
vanishes in the true vacuum after inflation, whereas the
former kind of R symmetry also remains at low energies.
Likewise, we shall refer to the sector responsible for the
generation of the constant w (i.e., the sector responsible for
R symmetry breaking at low energies) as the R-symmetry-
breaking sector for short. We also point out that the
temporary breaking of R symmetry by the VEV of the
inflaton field is, in fact, mandatory from a phenomeno-
logical point of view. Otherwise, the spontaneous breaking
of R symmetry during the generation of the constant w
would result in the production of domain walls at the end of
inflation, which would render our scenario phenomeno-
logically unviable [86].13

Similar to the Polonyi VEV, the constant w also breaks
the ZR

4 symmetry down to a ZR
2 parity,

w ≠ 0 ⇒ ZR
4 → ZR

2 ; ð71Þ

so that, during inflation as well as in the low-energy
vacuum after inflation, the only discrete symmetry that
remains globally unbroken corresponds to an exact ZR

2 .
Interestingly enough, this parity is suited to be identified as

13If the inflationary dynamics did not break R symmetry (in the
context of some other model), R symmetry would need to be
broken in a separate sector way before the end of inflation, to
make sure that all domain walls are sufficiently diluted. Such an
alternative scenario provides a different explanation for why
supersymmetry is necessarily broken at a high scale [87].
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the R parity of the MSSM, PR [88]. Here, note that R parity
is not a proper R symmetry in the actual sense, as it is
equivalent to matter parity, PM, which is a non-R symmetry
[31]. Our model, therefore, automatically offers a possible
explanation for the origin of R parity in the MSSM. In
contrast to other models, it does not depend on extra
continuous symmetries, such as a global or local Uð1ÞB−L,
that would leave behind PM ≅ PR as a discrete remnant
subgroup after spontaneous symmetry breaking.
Given the above sources of R symmetry breaking during

and after inflation, the physical gravitino mass m3=2 varies
as a function of time. In general, m3=2 is controlled by the
VEV of the superpotential,

m3=2 ¼ exp

� hKi
2M2

Pl

� hWi
M2

Pl

; W ¼ Weff þ w: ð72Þ

During inflation, the constant w vanishes and, thus, m3=2

turns out to be roughly proportional to the Polonyi field
value. Meanwhile, after inflation, m3=2 is dominated by the
contribution from the constant w. In order to tune the CC to
zero, we have to require that m3=2 eventually takes the
following value:

m3=2 ¼
Λ2
SUSYffiffiffi
3

p
MPl

; ΛSUSY ¼ hjFji1=2: ð73Þ

This condition can always be satisfied by fine-tuning the
constant w to the particular value w0,

w0 ¼ exp

�
−

hKi
2M2

Pl

�
MPlffiffiffi
3

p hjFjiw¼w0
− hWeffi: ð74Þ

Here, it is important to note that the SUSY-breaking F-term
jFj also depends on the constant w via the covariant
derivative of the superpotential [see Eq. (52)]. For this
reason, the above relation is, in fact, only an implicit
definition of w0, which, in principle, still needs to be solved
for w0. In practice, the dependence of jFj on w is, however,
negligible in most cases, so that the right-hand side of
Eq. (74) readily yields the required value for w. In the
following, we shall now show how the constant w may be
generated after inflation (see Secs. III B and III C) and
discuss under which conditions it may be successfully
matched with the desired value w0, so that the CC vanishes
at low energies (see Sec. III D).

B. Gaugino condensation in a mass-deformed strongly
coupled hidden sector

The simplest way to break R symmetry via strong
dynamics is to make use of dynamical gaugino condensa-
tion in a pure SYM theory [67]. For instance, in a strongly
coupled pure SYM theory based on SUðNcÞ and associated
with a dynamical scale Λ0, gaugino condensation results in

an R-symmetry-breaking constant w of OðΛ03Þ. Let us now
illustrate how we can use this property for our purposes.
Our starting point is supersymmetric quantum chromo-

dynamics (SQCD): a strongly coupled SUðNcÞ gauge
theory with Nc colors and Nf < 3Nc flavors, where each
flavor consists of a quark/antiquark pair fQi; Q̄ig. We will
constrain the viable values for Nc and Nf shortly. For the
moment, however, let us stay as general as possible and
leave the concrete values of Nc and Nf unspecified. We
assume that all quark/antiquark pairs are a priori massless,
i.e., we do not introduce any bare mass terms of the form
miQiQ̄i in the tree-level superpotential. Instead, we sup-
pose that all of the Nf flavors share a Yukawa coupling
with some SUðNcÞ singlet field P, which, thus, results in
field-dependent masses for all flavors,

WR ¼ ciPQiQ̄i: ð75Þ

Here, the coefficients ci denote dimensionless Yukawa
couplings of Oð1Þ. By varying the VEVof the singlet field
P, we are then able to control the quark mass matrix,MQ, in
our SQCD theory,

MQ ¼ diagfMQig ¼ diagfcihPig: ð76Þ

As long as P is stabilized at the origin, hPi ¼ 0, all
quarks are massless and the SQCD sector remains what it
is: an SUðNcÞ gauge theory with Nf dynamical flavors,
described by a quantum moduli space at low energies
[60].14 On the other hand, once P acquires a large VEV, all
flavors become heavy and can be integrated out. This mass
deformation transforms the SQCD sector into a pure SYM
theory, in which R symmetry is spontaneously broken:
First, R symmetry is broken down to ZR

2Nc
due to SUðNcÞ

instantons. Then, the discrete ZR
2Nc

symmetry is broken
further down to ZR

2 via gaugino condensation. This results
in the eagerly anticipated constant term w in the effective
superpotential,

WR
eff ¼ w ¼ 1

~η2
Nc

~Λ3
eff : ð77Þ

Here, ~η is a dimensionless “fudge factor” that encompasses
all numerical factors entering into the expression for w
except for Nc and ~Λ3

eff . Based on NDA, we again expect ~η
to be of Oð4πÞ, which is why we will set ~η ¼ 4π in the
following, for definiteness. Meanwhile, ~Λeff denotes the
effective dynamical scale of the SYM theory after integrat-
ing out all heavy flavors. We obtain an expression for ~Λeff

14During inflation, the scalar quark/antiquark fields acquire
Hubble-induced masses. In the special case of Nf < Nc, these
stabilize the runaway directions on the quantum moduli space
induced by the nonperturbative Affleck-Dine-Seiberg (ADS)
superpotential [50,89].

KAI SCHMITZ and TSUTOMU T. YANAGIDA PHYSICAL REVIEW D 94, 074021 (2016)

074021-18



by matching the running of the SUðNcÞ gauge coupling
constant ~g at the respective heavy-quark mass thresholds,

~Λ3Nc
eff ¼ M̄

Nf

Q
~Λ3Nc−Nf ; ð78Þ

where ~Λ denotes the dynamical scale of the original high-
energy theory and where M̄Q represents the effective quark
mass scale, i.e., the geometric mean of all quark mass
eigenvalues MQi ,

M̄Q ¼
�Y

i

MQi

�
1=Nf ¼ ðdetMQÞ1=Nf ¼ c̄hPi;

c̄ ¼
�Y

i

ci

�
1=Nf

: ð79Þ

In the following, we will set c̄ (the geometric mean of all
Yukawa couplings ci) to c̄ ¼ 1, for simplicity. For given
values of Nc and Nf, the constant w in Eq. (77) then ends

up being a function of hPi and ~Λ,

w ¼ Nc

16π2
hPiNf=Nc ~Λ3−Nf=Nc : ð80Þ

Here, hPi ¼ M̄Q must be larger than ~Λ to ensure that the
heavy quark flavors can be integrated out perturbatively in
the high-energy theory. Our result for w in Eq. (80) is,
therefore, bounded from above,

~Λ≲ hPi ⇒ w≲ wmax ¼
Nc

16π2
hPi3: ð81Þ

The dynamical scale of the high-energy theory, ~Λ, is
generated via dimensional transmutation and, hence, solely
depends on the value of the SUðNcÞ gauge coupling
constant ~g at the Planck scale,

~Λ ¼ MPl exp

�
−
8π2

b
1

~g2ðMPlÞ
�
; b ¼ 3Nc − Nf: ð82Þ

We assume the SUðNcÞ beta function coefficient b to be
positive, which means that ~Λ can basically take any desired
value below the Planck scale. For a given VEV hPi, the
constant w can then be tuned simply by varying the value of
the gauge coupling constant ~g at the UV cutoff scale. From
this perspective, the fine-tuning of the CC in the true
vacuum turns into an issue that pertains to the UV boundary
conditions of the low-energy effective theory. It is no longer
a problem within the low-energy effective theory itself.
How can we now apply these results in the context of

Polonyi inflation? The crucial idea is to relate the value of
the VEV hPi to the inflationary dynamics. We must make
sure that the singlet P is stabilized at hPi ¼ 0 during
inflation and that it becomes destabilized only towards the

end of inflation. In other words, we need to achieve a
situation in which small inflaton field values trigger a mass
deformation of the SQCD sector, M̄Q ¼ 0 → M̄Q ≠ 0, so
that this sector turns into a pure SYM theory and sponta-
neously breaks R symmetry via gaugino condensation. This
approach shares some similarities with the models pre-
sented in [90], in which small inflaton field values trigger
the mass generation in a separate Intriligator-Seiberg-Shih
(ISS) sector [43], which then spontaneously breaks super-
symmetry. Moreover, our scenario of R symmetry breaking
should be compared with the approaches in [74,91] and
[92]. In [74,91], inflation ends in a supersymmetric, but R-
symmetry-breaking ground state, while in [92], R sym-
metry is broken by a “field-dependent constant” term in the
superpotential that only becomes large at the end of
inflation.

C. Triggering a late-time mass deformation
by a small inflaton field value

We can realize the scenario described in the previous
section by introducing the following superpotential:

WP ¼ αY

�
v2P −

1

2
P2

�
þ β

3!
Y3: ð83Þ

Here, Y is a singlet field that carries R charge 2, α and β are
dimensionless coupling constants, and vP is a mass scale. It
is tempting to speculate that also the scale vP might be
dynamically generated in a strongly coupled hidden sector,
similar to the scale v in Eq. (35). However, for our
purposes, it will not be necessary to specify its origin.
Instead, we will treat it as a hard dimensionful input scale,
the only one in our model. Before we explain in more detail
howWP allows us to give a VEV to the field P at the end of
inflation, let us examine for which values of Nc and Nf the
superpotential in Eq. (83) is consistent with the (approxi-
mate) global symmetries of the theory in the first place.
Promoting these global symmetries to gauge symmetries
(and/or assuming that they are at least sufficiently protected
by other gauge symmetries), we will then be able to narrow
down the viable choices for Nc and Nf.
The superpotential in Eq. (75) is invariant under an

anomaly-free global Uð1ÞB × Z2Nf
×Uð1ÞR flavor sym-

metry, under which the fields Qi, Q̄i, P, and Y are charged
as follows:

Qi Q̄i P Y

Uð1ÞR 1 − Nc=Nf 1 − Nc=Nf 2Nc=Nf 2
Uð1ÞB 1=3 −1=3 0 0
Z2Nf

1 1 −2 0

As mentioned earlier, in the pure SYM theory after
integrating out the heavy quarks, the continuous Uð1ÞR
is broken to a discrete ZR

2Nc
symmetry by SUðNcÞ instan-

tons. This immediately suggests to set the number of colors
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Nc to 2, so that the global ZR
2Nc

symmetry of the pure SYM
theory can be identified with our gauged ZR

4 symmetry.15

According to the above table, the operator YP2 in Eq. (83)
then only complies with the exact ZR

2Nc
≡ ZR

4 symmetry, if
we choose the number of flavors Nf to be either 1 or 2,

½YP2�R ¼ 2þ 4Nc

Nf
¼ 2 mod 2Nc ⇒ Nf ¼ 1; 2: ð84Þ

On second sight, Nf ¼ 1 is, however, not a viable option.
In that case, the R charge of the field P vanishes, ½P�R ¼ 0,
so that we cannot prevent the unwanted operator YP from
popping up in the superpotential. Also the approximate
discrete Z2Nf

≡ Z2 flavor symmetry cannot help us in this
situation, since the singlet field P is required to transform
even, ½P�Z2

¼ 0, under this parity. At the same time, the
singlet field Y must also transform even, ½Y�Z2

¼ 0, to allow
for the presence of the Y tadpole term in Eq. (83). The
discrete Z2 flavor symmetry, therefore, does not allow us to
eliminate the operator YP, as long as we want to keep the Y
tadpole term. This leaves us with the following unique
choice for Nc and Nf:

Nc ¼ 2; Nf ¼ 2; ð85Þ

which results in exactly the same matter and gauge field
content as in the IYIT sector.
For Nc ¼ Nf ¼ 2, the singlet field P carries R charge 2.

From the perspective of R symmetry, the fields P and Y are,
hence, indistinguishable from each other, so that, next to
the three wanted operators Y, YP2, and Y3, the three
unwanted operators P, PY2, and P3 are also allowed to
appear in the superpotential. We are, therefore, led to
impose the Z2Nf

≡ Z4 flavor symmetry as an approximate
symmetry—which we assume to be protected by some
exact gauge symmetry in the UV.16 This approximate Z4

acts on the fields P and Y again as a Z2 parity—the crucial
difference to the Nf ¼ 1 case being that, now, P transforms
odd, ½P�Z2

¼ 1, while Y still transforms even, ½Y�Z2
¼ 0. By

virtue of this Z2 parity, the coefficients of the unwanted
operators P, PY2, and P3 then end up being suppressed.
Moreover, we emphasize the importance of the fact that the
Z4 symmetry is only an approximate symmetry. If it was an
exact symmetry, its spontaneous breaking at the end of
inflation would result in the formation of dangerous
domain walls. As the Z4 symmetry is, however, bound
to be explicitly broken (e.g., by the suppressed Z2-odd
operators P, PY2, and P3), we are safe from running into
this problem.
Given the superpotential in Eq. (83), let us now dem-

onstrate how it enables us to trigger a mass deformation of
the R-symmetry-breaking sector towards the end of infla-
tion. The first thing to note is that the superpotential in
Eq. (83) results in two tachyonic mass eigenstates in global
supersymmetry,

Global SUSY : m2
p� ¼ �α2v2P; m2

y� ¼ �αβv2P; ð86Þ

where p� and y� denote the real scalar degrees of freedom
(DOFs) contained in P and Y, respectively. These masses,
however, receive corrections in supergravity that may
render them nontachyonic,

m2
p�ðφÞ¼�α2v2Pþ

�
VðφÞ
M2

Pl

þΔVP

M2
Pl

�
þΔm2

p�ðφÞ;

ΔVP¼α2v4P;

m2
y�ðφÞ¼�αβv2Pþ

�
VðφÞ
M2

Pl

þOðM−4
Pl Þ

�
þΔm2

y�ðφÞ:

ð87Þ

Here, the corrections proportional to VðφÞ are nothing
but the usual Hubble-induced masses that scalar fields
typically acquire during inflation. Apart from that, we
collect all further corrections that explicitly depend on φ
in the field-dependent mass contributions Δm2

p�ðφÞ and

Δm2
y�ðφÞ. Just like the Hubble-induced masses, these

corrections result from the F-term tree-level potential in
supergravity.
As an important aside, we point out that the Hubble-

induced masses in Eq. (87) are, in fact, sensitive to higher-
dimensional operators in the Kähler potential between the
fields P and Y and the Polonyi field,

Kmix ¼ FPðΦ=M�;Φ†=M�ÞjPj2
þ FYðΦ=M0�;Φ†=M0�ÞjYj2 ð88Þ

where FP and FY denote two unknown functions of Φ and
Φ† and where M� and M0� represent appropriate cutoff
scales. Note that such couplings between P, Y, and Φ in the

15Here, we suppose some kind of Kähler interaction between
the two hidden sectors, such as, e.g., K ⊃ ϵ0ΦP† þ H:c:, that
relates R symmetry transformations in the one sector to R
symmetry transformations in the other sector. Besides that, we
assume the coefficients of these mixing operators to be negligibly
small for all practical purposes, ϵ0⋘1. Thismight, e.g., be achieved
if the cross terms in the Kähler potential are suppressed by (several
powers of) a large cutoff scale.

16If we did not identify the ZR
2Nc

of the pure SYM theory with
our anomaly-free ZR

4 , i.e., if we allowed for Nc > 2 (while
keeping Nf ¼ 2 fixed), we would not be forced to impose any
additional approximate flavor symmetry. In that case, the ZR

2Nc

alone would suffice to restrict the set of allowed operators to Y
and YP2 (meaning that the Y3 term would be suppressed). Such a
scenario would, however, not present an advantage over the
Nc ¼ 2 case. Either way, we have to assume a sufficiently intact
global symmetry. While for Nc ¼ 2 the Z4 needs to be imposed
as an approximate symmetry, the ZR

2Nc
itself would need to be

play the role of an approximate symmetry for Nc > 2. We will,
therefore, ignore this possibility in the following.
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Kähler potential are the only relevant means of commu-
nication between the SUSY-breaking sector and the R-
symmetry-breaking sector in our model. For instance, we
could imagine that both sectors only communicate with
each other via gravitational interactions. In that case, the
scales M� and M0� should be identified as the Planck
scale. Alternatively, we may assume that the R-symmetry-
breaking sector couples to the SUSY-breaking sector via
the exchange of heavy messenger particles of mass Mmess.

Then, Mð0Þ
� would have to be identified as a typical mass

scale of the messenger sector, Mð0Þ
� ∼Mmess. To illustrate

the effect of the Kähler potential in Eq. (88), let us suppose
that the leading-order contributions to FP and FY take the
following form:

Kmix ¼ ϵP
jΦj2jPj2
M2�

þ ϵY
jΦj2jYj2
M2�

þ…: ð89Þ

Such “mixing terms” shift the Hubble-induced masses in
Eq. (87). Consider, e.g., the mass of p−,

m2
p−ðφÞ⊂VðφÞ

M2
Pl

→

�
1−ϵP

M2
Pl

M2�
þϵ2P

2

M4
Pl

M4�

φ2

M2
Pl

þ…

�
VðφÞ
M2

Pl

; ð90Þ

where the ellipsis stands for further, subdominant correc-
tions. m2

pþ and m2
y� are modified in a similar way. For

negative coefficients ϵP and ϵY , these corrections may help
establish a strong hierarchy between the masses mp� and
my� on the one hand and the inflationary Hubble rate Hinf

on the other hand,

−ϵP;Y
M2

Pl

M2�
≫ 1 ⇒ jmp�j; jmy�j ≫ Hinf ; ð91Þ

so as to make sure that, during inflation, all of the scalar
fields p� and y� are sufficiently stabilized. At the same
time, it is clear that the Kähler potential in Eq. (88)
significantly complicates the analysis of the R-symmetry-
breaking sector. For presentational purposes, we will,
therefore, neglect the effect of Kmix in the following. We
have checked explicitly that, accounting for the exemplary
Kähler potential in Eq. (89), all results remain quantita-
tively the same—the only difference being the hierarchy in
Eq. (91). In this sense, all results in this and the following
section should be regarded as approximate results that
convey the general flavor of our mechanism of late-time R
symmetry breaking. An exact numerical study including a
more systematic treatment of the functions FP and FY
in Eq. (88) is left for future work. For our purposes,
it is merely important to remember that the masses of
the fields p� and y� during inflation may be further

increased by adding higher-dimensional terms to the
Kähler potential.
The idea now is to choose the coupling constants α and β

such that the scalar DOF p− is stabilized during inflation,
turning tachyonically unstable only at a certain (small)
inflaton field value φ0,

φ ≥ φ0 ⇒m2
pþðφÞ> 0; m2

p−ðφÞ ≥ 0; m2
y�ðφÞ> 0;

φ< φ0 ⇒m2
pþðφÞ> 0; m2

p−ðφÞ< 0; m2
y�ðφÞ> 0: ð92Þ

To determine the required values for α and β in order to
implement such a scenario, we first note that the field-
dependent mass m2

p− in Eq. (87) vanishes at φ ¼ 0 for the
following choice of α:

m2
p−ð0Þ ¼ −α20v2P þ V0

M2
Pl

þ α20v
4
P

M2
Pl

¼ 0

⇒ α0 ¼
μ2

vPðM2
Pl − v2PÞ1=2

: ð93Þ

In other words, for α ¼ α0, the Hubble-induced mass
compensates the tachyonic mass, −α2v2P, for all field
values during inflation, i.e., as long as φ > 0, and only
at the origin the scalar p− becomes massless. At the same
time, we need to make sure that the scalar DOFs contained
in Y are stabilized at all times. This is achieved by requiring
that their respective masses in global supersymmetry,
�αβv2P, are always outweighed by the Hubble-induced
mass, even at the origin, where the Hubble-induced mass is
smallest,

jαβv2Pj <
V0

M2
Pl

⇒ jβj < β0 ¼
V0

αv2PM
2
Pl

: ð94Þ

As long as this condition is satisfied, the fieldY is stabilized
at a nonzero VEV,17

hYi ¼ αv2Pμ
2

m2
yþM

2
Pl

φffiffiffi
2

p þOðφ5Þ; ð95Þ

which induces a positive Majorana mass for the field P via
the waterfall superpotential in Eq. (83),

mp�ðφÞ ⊃ αhYi: ð96Þ

This field-dependent mass is contained in Δm2
p�ðφÞ in

Eq. (87) and, similarly as in ordinary F-term hybrid
inflation, it helps to stabilize the field P during inflation.

17In global supersymmetry, the VEV hYi vanishes during and
after inflation. In supergravity, the scalar potential, however,
contains a tadpole term linear in yþ (due to the nonzero F-term of
the field Y) that displaces hYi from the origin.
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Only at the end of inflation,Δm2
p�ðφÞ and, in particular, the

mass term in Eq. (96) vanish, so that P has a chance of
becoming unstable.
Let us now study the inflaton-dependent mass correc-

tions in Eq. (87) more closely. In doing so, it turns out to be
convenient to use α0 and β0 as reference values for α and β.
To this end, we define

a ¼
�
α

α0

�
2

¼ α2v2P − α2v4P=M
2
Pl

V0=M2
Pl

;

b ¼ β

β0
¼ αβv2P

V0=M2
Pl

: ð97Þ

The field-dependent shiftΔm2
p−ðφÞ in the mass of the scalar

DOF p− can then be written as follows:

Δm2
p−ðφÞ ¼

�
1−

2a
ð1þ bÞ2

�
1−

a
2
þ 7b

4
þ b2

2

�
þOðM−2

Pl Þ
�

×
V0

M2
Pl

φ2

2M2
Pl

þOðφ4Þ: ð98Þ

The parameter a is supposed to be chosen, such that the
total mass m2

p− vanishes at φ ¼ φ0,

m2
p−ðφ0Þ ¼ ð1 − aðφ0ÞÞ

V0

M2
Pl

þ 1

2
m2

eff

�
φ0

MPl

�
2

þ Δm2
p−ðφ0Þ ¼ 0: ð99Þ

For φ0 ≪ MPl, this condition yields a quadratic equation
for aðφ0Þ, which has two independent solutions,

a1ðφ0Þ ¼ 1þ 1

2

m2
effφ

2
0

V0

−
3b

4ð1þ bÞ2
�
φ0

MPl

�
2

þOðφ4
0Þ;

a2ðφ0Þ ¼ 2ð1þ bÞ2
�
MPl

φ0

�
2

þOðφ0
0Þ: ð100Þ

Here, the first solution is close to unity, a1ðφ0Þ ≈ 1, so that
αðφ0Þ ¼ a1=2ðφ0Þα0 ≈ α0. For a ¼ a1ðφ0Þ, the Hubble-
induced mass V=M2

Pl cancels the tachyonic mass,
−α2v2P, to good precision and the field-dependent correc-
tion Δm2

p−ðφ0Þ nearly vanishes on its own. The second
solution is, by contrast, much larger, a2ðφ0Þ ≫ 1. In that
case, the individual contributions to m2

p−ðφ0Þ do not vanish
independently. Instead, all contributions are large, have
different signs, and simply happen to cancel each other at
φ ¼ φ0. As we will see further below, the solution a2 will
turn out to be unviable for phenomenological reasons. For
now, we will, however, remain impartial and treat both
solutions on the same footing.
Combining our results in Eqs. (93), (94), (97), and (100),

we eventually obtain our final expressions for the parameter
α. Again, we find two solutions,

α1ðφ0Þ ¼
1

vP

V1=2
eff ðφ0Þ

ðM2
Pl − v2PÞ1=2

−
3βφ2

0

8ðM2
Pl − v2PÞ

þOðβ2;φ4
0Þ;

Veffðφ0Þ ¼ V0 þ
1

2
m2

effφ
2
0;

a2ðφ0Þ ¼
2V0ffiffiffi

2
p

vPμ2ðM2
Pl − v2PÞ1=2φ0=MPl − 2βv2PM

2
Pl

þOðφ0
0Þ: ð101Þ

These expressions mark one of the main results in this
paper: Provided that the parameter α in the superpotential
WP in Eq. (83) takes either of these two values, the scalar
field p− becomes unstable, once the inflaton field φ reaches
the value φ0 at the end of inflation or after inflation. This
demonstrates how varying the value of the parameter α puts
us in the position to control the time at which R symmetry
is spontaneously broken via gaugino condensation at the
end of inflation. For small values of β and vP (such that
β ≪ β0 and vP ≪ MPl), the solutions for α in Eq. (101)
reduce to more compact expressions,

α1ðφ0Þ ≈
V1=2
eff ðφ0Þ
vPMPl

; a2ðφ0Þ ≈
ffiffiffi
2

p
μ2

vPφ0

: ð102Þ

As evident from Eq. (101), the first solution, α ¼ α1ðφ0Þ,
depends only weakly on the field value φ0. In fact, for
given values of all other free parameters (μ, λ, vP,
and β), matching α with α1ðφ0Þ for a reasonable value
of φ0 requires some amount of fine-tuning. To first
approximation, all values α1ðφ0Þ correspond to the refer-
ence value α0, their variation with φ0 being a subdominant
effect,

α1ðφ0Þ ≈ α0 ≃ μ2

vPMPl

≃ 4 × 10−6
�

μ

1015 GeV

�
2
�
1017 GeV

vP

�
: ð103Þ

In the context of our model, this is, however, not a problem.
Recall that the ultimate purpose of the superpotentialWP in
Eq. (83) is to help us in addressing the CC problem. From
that point of view, it is expected that some (if not all) of the
parameters involved in determining the final value of the
CC end up being subject to some amount of fine-tuning. In
addition, we emphasize that the value of α may have an
important impact on the time when inflation ends. In
regions of space (or the “string landscape”) where α takes
too small a value, gaugino condensation never occurs, i.e.,
inflation never ends. On the other hand, in regions of space
where α takes too large a value, the constant in the
superpotential, W ⊃ w, is already generated at early times.
Inflation then only lasts for a few e-folds or does not take
place at all. Universes in which α matches α1ðφ0Þ for a
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reasonable value of φ0, i.e., universes in which inflation
lasts for a long but finite time interval, therefore, eventually
occupy the largest spatial volume among all postinfla-
tionary universes. This might explain why, in habitable
universes, α appears to be fine-tuned.
Finally, we evaluate the total p− massm2

p− in Eq. (87) for
the two solutions for α in Eq. (101),

α → α1 ⇒ m2
p−ðφÞ ¼

�
1

2
m2

eff −
3b

4ð1þ bÞ2
V0

M2
Pl

þOðM−4
Pl Þ

�

×
φ2 − φ2

0

M2
Pl

þOðφ4Þ;

α → α2 ⇒ m2
p−ðφÞ ¼

�
2ð1þ bÞ2 V0

φ2
0

þOðM−2
Pl Þ

�

×
φ2 − φ2

0

φ2
0

þOðφ4Þ; ð104Þ

which nicely illustrates how the scalar DOF p− turns
tachyonic, once the inflaton field φ reaches the value φ0. In
this sense, Polonyi inflation does end in a “waterfall
transition,” after all. But, instead of taking place in the
inflaton sector itself, this transition occurs in separate
hidden sector. The inflaton and waterfall sectors are,
therefore, separated in our model, which allows us to bring
together two phenomena that would otherwise mutually
exclude each other: (i) Inflation in a scalar potential
equivalent to that of ordinary F-term hybrid inflation and
(ii) supersymmetry breaking at a very high scale. For a
discussion of the tension between these two phenomena
and a possible resolution in the context of string theory,
see [93]. We note that, in contrast to [93], our scenario
represents a fully field-theoretic construction.
In closing, we also mention that, adding the particular

Kähler potential in Eq. (89), the expressions for mp− in
Eq. (104) remain quantitatively the same. The only effect of
Kmix is that it increases the overall magnitude of the terms
in square brackets in Eq. (104). We have explicitly checked
numerically that, if we choose ϵP;Y ∼ −1, M� ∼ 1017 GeV,
and M�0 ∼MPl in Eq. (89), our first solution for mp−

exceeds the inflationary Hubble rate for all times during
inflation, mp− ≫ Hinf . At the same time, for field values
slightly below φ≃ φ0, the absolute value of mp− is again
much larger than the Hubble rate, mp− ≪ −Hinf . This
ensures that the scalar field p− quickly reaches the
minimum of the scalar potential. Meanwhile, all other
scalars always have masses that are large compared to Hinf ,
so that they are safely stabilized at the origin. A possible
interpretation of these numerical findings is to suppose the
existence of an other strongly coupled hidden gauge sector
around the scaleM� ∼ 1017 GeV. If the singlet P is the only
field that is strongly coupled to this new dynamical sector
(meaning that Y and Φ are only weakly coupled), simple
arguments from NDA automatically result in a Kähler

potential of just the desired form.18 In particular, such new
strong dynamics do not induce a dangerous jΦj4=M2� term
in the Kähler potential (which would otherwise spoil slow-
roll inflation), as long as the Polonyi field is only weakly
coupled to the new sector. However, we emphasize that this
picture of a new gauge sector around M� ∼ 1017 GeV is
just a simple example to illustrate what additional dynamics
could possibly lead to a cutoff scale ofOð1017Þ GeV in the
jΦj2jPj2 operator in the noncanonical Kähler potential
Kmix. From the perspective of our model, the main
consequence of Kmix in Eq. (89) is that it provides us with
the ability to increase the absolute value as well as the
gradient of mp− as a function of φ. Apart from that, our
simplified analysis based on Kmix ¼ 0 captures all relevant
aspects of our mechanism of R symmetry breaking. For this
reason, we leave a more detailed study of Kmix and its UV
origin for future work.

D. Backreaction on inflation and low-energy
ground state after inflation

The “waterfall superpotential” WP in Eq. (83) not only
triggers a mass deformation in the R-symmetry-breaking
sector, it also results in Planck-suppressed corrections to
the inflaton potential in Eq. (69). During inflation, i.e., as
long as w ¼ 0, the scalar Polonyi potential now reads

VðφÞ ¼ C0 þ
C2

2
φ2 þ C4

4!
φ4 þOðφ−6Þ; ð105Þ

where the coefficients C0, C2, and C4 correspond to the
coefficients c0, c2, and c4 in Eq. (67) evaluated at w ¼ 0
and multiplied by correction factors that stem from the
R-symmetry-breaking sector,

C0 ¼ ð1þ νÞc0jw¼0; C2 ¼
�
1 −

b
1þ b

ν

ϵ

�
c2jw¼0;

C4 ¼
�
1þ

�
3þ 32b

3
þ 79b2

6
þ 6b3 þ b4 þOðϵ; νÞ

�

×
ν

ð1þ bÞ4
�
c4jw¼0: ð106Þ

Here, we have introduced the parameter ν to measure the
relative importance of these new corrections,

18For ϵP < 0, the kinetic term for the fieldP becomes singular at
φ≃M�, as long aswe only assume theKähler potential in Eq. (89).
For this reason, we expect additional higher-dimensional
operators in FP to become important around φ≃M�, which
regulate the kinetic term for P [see Eq. (88)]. Here, one simple
solution is to assume that FP as a function of φ simply saturates
at a maximal negative value,FP → −F0 > −1, around field values
of OðM�Þ, so that the prefactor of the kinetic term for P always
remains positive, K ⊃ ð1þ FPÞP†P → ð1 − F0ÞP†P. At large
field values, φ≳M�, the field P is then stabilized by the field-
dependent mass in Eq. (96), while for φ0 ≲ φ≲M�, it is stabilized
by the terms in Eq. (90).
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ν ¼ ΔVP

V0

¼ α2v4P
μ4

; ð107Þ

which is nothing but the ratio of the Y andΦ F-terms during
inflation, ν ¼ jFY=FΦj. To make sure that the R-symmetry-
breaking sector does not disturb the inflationary dynamics,
we have to require that ν is sufficiently small. In view of the
expression for C2 in Eq. (106), we have to demand in
particular that

ν ≪ ϵ; ð108Þ

since otherwise the inflaton field will receive too large a
Hubble-induced mass, m2

φ ∼ 3νH2
inf . This constraint then

translates into upper bounds on the mass scale vP in the
R-symmetry-breaking sector,

α ¼ α1ðφ0Þ ⇒ vP ≪ vmax;1
P ¼ ϵ1=2MPl;

α ¼ α2ðφ0Þ ⇒ vP ≪ vmax;2
P ¼ ϵ1=2φ0ffiffiffi

2
p ð1þ bÞ : ð109Þ

The scale vP is a free parameter, which suggests that we
should actually always be able to satisfy these bounds. At
the end of this section, we will, however, see that the upper
bound vmax;2

P turns out to be too restrictive, so that only our
first solution, α ¼ α1ðφ0Þ, remains phenomenologically
viable.
To get there, we first need to examine the true vacuum

after the end of inflation as well as the tuning of the CC in
more detail. In global supersymmetry, the VEVs of the
fields Φ, Y, and P are found to be

Global SUSY : hΦi¼ 0; hYi¼ 0; hPi¼
ffiffiffi
2

p
vP: ð110Þ

The fluctuations around the true vacuum are, therefore,
described by the following superpotential:

W ¼ μ2Φ −
ffiffiffi
2

p
αvPYP0 −

α

2
YP02 þ β

3!
Y3 þ w; ð111Þ

where P0 denotes the singlet field P shifted by its VEV in
global supersymmetry, P →

ffiffiffi
2

p
vP þ P0. Equation (111)

tells us that, from the perspective of global supersym-
metry, the F-term of the field Y completely vanishes in the
true vacuum, so that the Polonyi field Φ remains as the
only SUSY-breaking field. In addition, we find that
the fields Y and P now share a common supersymmetric
Dirac mass. In global supersymmetry, the scalar mass
eigenvalues at low energies are consequently given as
follows:

Global SUSY : mϕ ¼ meff ; my ¼ mp ¼
ffiffiffi
2

p
αvP; ð112Þ

where ϕ, y, and p stand for the complex scalars contained
in the chiral fields Φ, Y, and P0, respectively.
In order to find the SUGRA corrections to the VEVs in

Eq. (110) and the masses in Eq. (112), we expand the full
SUGRA scalar potential up to second order in the fluctua-
tions ϕ, y, and p,

Vðϕ; y; pÞ ¼ c0 þ cϕðϕþ ϕ�Þ þ cyðyþ y�Þ
þ cpðpþ p�Þ þm2

ϕjϕj2 þm2
yjyj2 þm2

pjpj2
þm2

ϕyðϕy� þ ϕ�yÞ þm2
ϕpðϕp�

þ ϕ�pÞ þm2
ypðyp� þ y�pÞ þ…: ð113Þ

Here, the coefficients of the linear terms (cϕ, cy, cp), the
masses around the true vacuum (mϕ,my,mp), and the mass
mixing parameters (mϕy, mϕp, myp) take, to leading order,
the following form:

cϕ≃−2
μ2w
M2

Pl

; cy≃−2
αv2Pw
M2

Pl

;

cp≃
ffiffiffi
2

p vPV0

M2
Pl

−2
ffiffiffi
2

p vPw2

M4
Pl

; m2
ϕ≃m2

eff−ϵ
V0

M2
Pl

−2
w2

M4
Pl

;

m2
y≃2α2v2Pþ

V0

M2
Pl

−2
w2

M4
Pl

; m2
p≃2α2v2Pþ

V0

M2
Pl

−2
w2

M4
Pl

;

m2
ϕy≃−2

αv2Pμ
2

M2
Pl

; m2
ϕp≃−2

ffiffiffi
2

p vPμ2w
M4

Pl

;

m2
yp≃−6

ffiffiffi
2

p αv3Pw
M4

Pl

: ð114Þ

Given that ν ≪ 1 [see Eqs. (107) and (108)], the mass
mixing among ϕ, y, and p turns out be negligible.
Setting the off-diagonal masses mϕy, mϕp, and myp in
Eq. (113) to zero, we then arrive at the following simple
expressions for the VEVs of the fields Φ, Y, and P in
supergravity:

hΦi≃−
cϕ
m2

ϕ

; hYi≃−
cy
m2

y
; hPi≃ ffiffiffi

2
p

vP−
cp
m2

p
; ð115Þ

which results in the following vacuum energy density:

hVi≃ c0 þ cϕhΦi þ cyhYi þ cpðhPi −
ffiffiffi
2

p
vPÞ;

c0 ¼ V0 − 3
w2

M2
Pl

; ð116Þ

where the inflaton term, cϕhΦi, clearly constitutes the
largest correction to the leading c0 term. In order to
make the CC hVi vanish, we have to fine-tune the
constant w, so that it takes the following value:
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w0 ≃ 1ffiffiffi
3

p ð1 − γÞμ2MPl; γ ¼ 2m02
3=2

m2
eff − ϵV0=M2

Pl þ 2m02
3=2

;

m0
3=2 ¼

μ2ffiffiffi
3

p
M2

Pl

: ð117Þ

Here, m0
3=2 denotes the “asymptotic gravitino mass” in

the limit hΦi → 0. The physical gravitino mass, on the
other hand, follows from plugging our results for w0 as
well as for the field VEVs into Eq. (72),

m3=2 ≃ exp

�hΦi2
2M2

Pl

��
1 − γffiffiffi

3
p þ hΦi

MPl

�
μ2

MPl
;

hΦi≃
ffiffiffi
3

p
γ

1 − γ þ γ2
MPl ≈

4

3

ffiffiffi
3

p
γMPl: ð118Þ

As evident from Eq. (118), the parameter γ controls the
size of the Polonyi VEV in the true vacuum. In fact, it is a
convenient measure for the relation between the individual
contributions to the “asymptotic inflaton mass” m0

ϕ in the
limit hΦi → 0. In that limit, we have m3=2 → m0

3=2, γ → 0,
and mϕ → m0

ϕ, with the asymptotic inflaton mass m0
ϕ being

given as follows:

m02
ϕ ¼ m2

ϕ;0 þm2
ϕ;w; m2

ϕ;0 ¼ m2
eff − ϵ

V0

M2
Pl

;

m2
ϕ;w ¼ −2m02

3=2: ð119Þ

Here, mϕ;0 denotes the effective inflaton mass close to the
origin for w ¼ 0, whereas mϕ;w represents the correction to
m0

ϕ in the true vacuum, i.e., the correction appearing after
the generation of the constant w. Making use of these
definitions, we recognize that γ parametrizes nothing else
than the following ratio:

γ ¼ jmϕ;wj2
jmϕ;0j2 þ jmϕ;wj2

: ð120Þ

In order to stabilize the Polonyi field at a sub-Planckian
field value after the end of inflation, hΦi ≪ MPl, we have to
require that the additional SUGRA correction generated in
the course of late-time R symmetry breaking, mϕ;w, always
remains smaller than the effective one-loop mass meff ,

hΦi ≪ MPl ⇔ γ ≪ 1 ⇔ m0
3=2 ≪ meff : ð121Þ

We remark that this requirement is a consequence of the
fact thatmeff andm0

3=2 are controlled by the same dynamics,
i.e., by the dynamical scale Λ and the Yukawa coupling λ.
These two masses are, therefore, potentially of the same
order of magnitude, in which case the SUGRA correction
mϕ;w threatens to destabilize the minimum of the effective

potential in global supersymmetry. For this reason, we have
to explicitly impose the requirement m0

3=2 ≪ meff as an
extra condition. Once this condition is satisfied, our results
in Eqs. (114), (117), and (118) simplify considerably. For
small values of γ, we find

w0 ≃ μ2MPlffiffiffi
3

p ; m3=2 ≃m0
3=2; m2

ϕ ≃m2
eff − 2m2

3=2;

m2
y ≃ 2α2v2P þm2

3=2; m2
p ≃m2

y: ð122Þ

In combination with Eqs. (114) and (115), these results lead
to simple expressions for hΦi, hYi, and hPi that are valid for
γ ≪ 1. Neglecting all effects of OðγÞ and OðϵÞ wherever
possible, we obtain

hΦi≃ 2
ffiffiffi
3

p
m2

3=2

m2
eff − 2m2

3=2

MPl; hYi≃ 2αvPm3=2

2α2v2P þm2
3=2

vP;

hPi≃
�
1 −

m2
3=2

2α2v2P þm2
3=2

� ffiffiffi
2

p
vP: ð123Þ

These expressions are the SUGRA counterpart to the VEVs
in Eqs. (110) and represent our final results for hΦi, hYi,
and hPi. In this vacuum, also the fields Y and P have
nonzero F-terms. These F-terms are suppressed compared
to the Polonyi F-term by a factor of OðvP=MPlÞ and are,
hence, negligible.
The masses m0

3=2 and meff scale as follows with the
Yukawa coupling λ and the dynamical scale Λ,

meff ≃ 4 × 1010 GeV

�
λ

0.2

�
3
�

Λ
1016 GeV

�
;

m0
3=2 ≃ 4 × 1010 GeV

�
λ

0.2

��
Λ

1016 GeV

�
2

: ð124Þ

For a fixed value of Λ, the requirement that meff must
exceed m0

3=2 then results in a lower bound on λ,

m0
3=2 ≲meff ⇒ λ≳ 0.2

�
Λ

1016 GeV

�
1=2

: ð125Þ

But this is not the end of the story. We must also make sure
that the final Polonyi VEV, hφi, lies below the critical field
value φc, so as to stay in the quadratic part of the effective
potential close to the origin,

hφi≲ φc: ð126Þ

Otherwise, the mass term in the effective potential dis-
appears altogether and the Polonyi field rolls back to field
values of the order of the Planck scale. This requirement
yields an even stronger bound on λ,
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hφi ≲ φc ⇒ λ≳ 1.0

�
Λ

1016 GeV

�
1=3

: ð127Þ

Together with the requirement of perturbativity, this limits
the range of viable λ values to 1≲ λ≲ 4.
Having determined the position of the true vacuum after

inflation in field space, we are now finally in the position to
link the R-symmetry-breaking sector to the IYIT sector. In
order to tune the CC in the true vacuum to zero, the constant
w generated in the R-symmetry-breaking sector [see
Eq. (80)] needs to be matched with the value w0 dictated
by the IYIT sector [see Eq. (122)]. For Nc ¼ Nf ¼ 2, we
have

w≃m3=2M2
Pl ≃ 1

8π2
hPi ~Λ2; w0 ≃ μ2MPlffiffiffi

3
p ; ð128Þ

which results in a condition on the dynamical scale ~Λ in the
R-symmetry-breaking sector,

w ¼ w0 ⇒ ~Λ≃
�
8π2ffiffiffi
3

p μ2MPl

hPi
�

1=2

: ð129Þ

This solution for ~Λ is only consistent as long as it is smaller
than the heavy-quark mass scale M̄Q ¼ hPi, i.e., as long as
the gaugino condensation scale is smaller than heavy-quark
mass scale, w≲ wmax [see Eq. (81)]. This requirement can
be reformulated as an upper bound on the SUSY breaking
scale μ,

~Λ≲ hPi ⇒ μ ≲
� ffiffiffi

3
p

8π2
hPi3
MPl

�1=2

: ð130Þ

In supergravity, hPi follows from Eq. (123). Depending on
our choice for α, we find two solutions,

hPi≃
�
1 −

1

1þ 6a

� ffiffiffi
2

p
vP

≃ ffiffiffi
2

p
vP ×

�
6=7 ; a ¼ a1ðφ0Þ≃ 1

1 ; a ¼ a2ðφ0Þ ≫ 1
: ð131Þ

Together with the limits on the scale vP in Eq. (109), these
relations imply upper bounds on Λ,

α ¼ α1ðφ0Þ

⇒ Λ≲ 2 × 1018 GeV

�
ϵ

0.2

�
3=4

�
1

λ

�
1=2

�
vP

vmax;1
P

�
3=2

;

α ¼ α2ðφ0Þ

⇒ Λ≲ 3 × 1014 GeV

�
ϵ

0.2

�
3=4

�
1

λ

�
1=2

�
vP

vmax;2
P

�
3=2

×

�
1

1þ b

�
3=2

�
φ0

1016 GeV

�
3=2

: ð132Þ

Once this condition is satisfied, there always exists a
sufficiently small value of ~Λ that allows us to tune the
CC to zero (so that w ¼ w0, while at the same time
~Λ≲ hPi). We, however, note that the upper bound on Λ
in the case of the second solution is too severe. For such a
small dynamical scale, the vacuum energy density during
inflation does not suffice to account for the scalar spectral
amplitude As. The requirement of successful Polonyi
inflation, therefore, singles out the fine-tuned first solution
α ¼ α1ðφ0Þ ≈ α0.

IV. PHENOMENOLOGICAL IMPLICATIONS

A. Properties of the scalar potential driving inflation

We now have everything at our disposal that we need to
study the phenomenological implications of our model. As
argued in Sec. II D, the scalar potential driving inflation
takes the following form [see Eq. (69)]:

VðφÞ ¼ V0 þ
1

2
m2

φφ
2 þ λφ

4!
φ4 þ Λ4

HE ln
φ

φc
; ð133Þ

where V0 and Λ4
HE are given in Eqs. (8) and (44),

respectively, and where m2
φ and λφ follow from Eq. (67),

V0 ¼ μ4; m2
φ ¼ −ϵ

V0

M2
Pl

¼ −3ϵHinf ;

λφ ¼ 3

�
1 −

7ϵ

2
þ 8ϵ

3

�
V0

M4
Pl

; Λ4
HE ¼ NX

m4

16π2
: ð134Þ

This scalar potential is identical to the inflaton potential of
F-term hybrid inflation (including corrections from super-
gravity and a noncanonical Kähler potential) in the limit of
a vanishing gravitino mass. Its implications for the infla-
tionary CMB observables have been studied for the first
time in [64]. In the following, we shall review the aspects of
this inflationary scenario that are most relevant for our
purposes and summarize the predictions for the inflationary
CMB observables in our notation.
First of all, we note that the potential in Eq. (133) has an

inflection point at the following field value:
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φflex ¼
1

λ1=2φ

½−m2
φ þ ðm4

φ þ 2λφΛ4
HEÞ1=2�1=2;

V 00ðφflexÞ ¼ 0: ð135Þ

A priori, the sign of the potential gradient at φ ¼ φflex is
undetermined. In particular, the inflection point at φ ¼ φflex
turns into a saddle point, V 0ðφflexÞ ¼ 0, once the following
relation is satisfied:

3m4
φ − 2λφΛ4

HE ¼ 0: ð136Þ
This condition can be fulfilled by setting the coefficient ϵ to
a particular critical value ϵ0,

ϵ0 ¼
12ρ

21ρþ ð57ρ2 þ 72ρÞ1=2 ¼
12λ

21λþ ð45λ2 þ 384π2Þ1=2 ;

ρ ¼ Λ4
HE

V0

; ð137Þ

which solely depends on the size of the Yukawa coupling λ.
For λ values of Oð1Þ, the critical coefficient ϵ0 takes values
of Oð0.1Þ. Once we have ϵ > ϵ0, the potential gradient at
φ ¼ φflex is negative, V 0ðφflexÞ < 0, whereas, for ϵ < ϵ0,
the potential gradient at φ ¼ φflex is positive, V 0ðφflexÞ > 0.
For ϵ > ϵ0, the scalar potential, therefore, exhibits a local
minimum (þ) as well as a local maximum (−) in the
vicinity of φflex,

ϵ≥ϵ0⇒φmin;max¼
ffiffiffi
3

p

λ1=2φ

�
−m2

φ�
1ffiffiffi
3

p ð3m4
φ−2λφΛ4

HEÞ1=2
�
1=2

;

φmax≤φflex≤φmin: ð138Þ

Note that these two field values become identical, once the
condition in Eq. (136) is satisfied,

ϵ ¼ ϵ0 ⇒ φmin ¼ φflex ¼ φmax

¼
�
−3m2

φ

λφ

�
1=2 ≃ ϵ1=20 MPl: ð139Þ

The presence of two local extrema in the scalar potential
may be regarded as a disadvantage, as it requires the initial
inflaton field value, φini, to be smaller than φmax. For one
thing, this requirement may necessitate some amount of
fine-tuning, φini ≃ φmax, so as to achieve a sufficient
number of e-folds of inflation. For another thing, the
constraint φini ≤ φmax is not compatible with the notion
that inflation is expected to descend from a “Planck epoch,”
during which the inflaton field, the potential energy density,
and all other relevant quantities take values of the order of
the Planck scale. For these reasons, we consider the option
ϵ > ϵ0 less likely than the alternative possibility ϵ < ϵ0. We
can take this argument even one step further by making the
explicit assumption that, for one reason or another, φini is
necessarily larger than the Planck scale, φini ≳MPl. Under

this assumption, ϵ must be smaller than ϵ0, as the inflaton
would otherwise get trapped in the false vacuum at
φ ¼ φmin. From this perspective, the critical coefficient
ϵ0 plays the role of an upper bound on ϵ, which decides
whether the inflaton field has a chance of reaching the true
vacuum or not. In Fig. 2, we plot the scalar potential in
Eq. (133) for an ϵ value that is slightly smaller than the
critical value ϵ0. In this case, the scalar potential features a
flat plateau around φ ∼ φflex, which gives rise to successful
inflation in accord with the observational data.
Last but not least, we note that the scalar potential in

Eq. (133) only allows for slow-roll inflation within a
limited range of field values. The slow-roll conditions,
ε ≪ 1 and η ≪ 1 [see Eq. (9)], are only satisfied in the
interval φþ

sr ≤ φ ≤ φ−
sr, where the two boundary values φ�

sr
are given as follows19:

φ�
sr ¼

1

λ1=2φ

½−M2
� þ ðM4

� þ 2λφΛ4
HEÞ1=2�1=2;

M� ¼
�
m2

φ � jηmaxj
Vðφ�

srÞ
M2

Pl

�
1=2

: ð140Þ

Here, jηmaxj denotes the maximally allowed absolute value
of the slow-roll parameter η. The slow-roll parameter ε is,
by comparison, always subdominant during inflation,
ε ≪ jηj. For definiteness, we will use jηmaxj ¼ 10−0.5 in
the following. Finally, we also mention that, if we formally
take the limit jηmaxj → 0 in Eq. (140), the expression for φ�

sr
in Eq. (140) reduces to our result for φflex in Eq. (135).
For the parameter region of interest, 1≲ λ≲ 4 [see

Eq. (127)], the field value φþ
sr is always larger than the

critical value field φc associated with the quark-meson

FIG. 2. Inflaton potential in the inflection-point regime
(ϵ < ϵ0). Here, the values for the free parameters in the inflaton
sector have been chosen as in the benchmark scenario discussed
in Sec. IV D: Λ≃ 1.26 × 1016 GeV, λ≃ 1.66, and ϵ≃ 0.204.

19In principle, Eq. (140) represents an implicit definition of
φ�
sr , as M� depends on Vðφ�

srÞ. In practice, this dependence is,
however, very weak, Vðφ�

srÞ ≈ V0, so that the right-hand side of
Eq. (140) readily yields the desired values of φ�

sr .
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phase transition in the IYIT model. Inflation, therefore,
always ends, once φ reaches φþ

sr . That is, inflation ends
because the slow-roll conditions become violated, and not
because of a sudden phase transition (such as the one in the
R-symmetry-breaking sector) triggered by a small inflaton
field value. Correspondingly, the number of e-folds of
slow-roll inflation, Ne, in dependence of the inflaton field
value is always given by the following integral:

NeðφÞ ¼
Z

φ

φþ
sr

dφ0

MPl

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
2εðφ0Þp ; ð141Þ

where Ne is defined such that it counts the remaining
number of e-folds until the end of inflation. In the
following, we will work in the approximation that the
number of e-folds in between the end of slow-roll inflation
and the onset of reheating is negligible. This is to say that
we assume all scalar fields to settle at their respective VEVs
sufficiently fast, once slow-roll inflation has ended. Solving
the integral in Eq. (141) and inverting the relation
Ne ¼ NeðφÞ then provides us with the inflaton field value
as a function of the number of e-folds, φ ¼ φðNeÞ. For the
purposes of this paper, we perform these steps numerically.

B. Inflationary CMB observables

The function φðNeÞ is exactly what we need to determine
our predictions for the CMB observables (the scalar
spectral amplitude As, the scalar spectral index ns, as well
as the tensor-to-scalar ratio r),

As¼
1

24π2ε�

V�
M4

Pl

; ns¼ 1þ2η�−6ε�; r¼ 16ε�: ð142Þ

Here, the asterisk indicates that all quantities are to
be evaluated at φ� ¼ φðN�

eÞ, where N�
e ≃ 55 denotes

the required number of e-folds during slow-roll inflation.
According to the latest results of the Planck Collaboration,
the 95% confidence intervals for these observables are
given as follows [58]:

Aobs
s ¼ e3.062�0.029 × 10−10 ≃ 2 × 10−9;

nobss ¼ 0.9677� 0.0060; r < 0.11: ð143Þ

The scalar potential in Eq. (133) is basically controlled by
three free parameters: the dynamical scale Λ, the Yukawa
coupling λ, and the coefficient in the higher-dimensional
Kähler potential, ϵ. This parametric freedom always allows
us to choose Λ, such that we succeed in reproducing the
correct normalization of the scalar power spectrum,
As ≃ Aobs

s . After fixing Λ in this way, we then have to
deal with two free parameters—λ and ϵ (see also the
discussion at the end of Sec. I C)—which leaves us with the
task of studying the predictions for the inflationary CMB
observables as functions of λ and ϵ.
The outcome of our analysis is shown in Fig. 3. Both

panels of Fig. 3 indicate where in parameter space our
prediction for ns falls into the observed 2σ range.

FIG. 3. Viable region in the parameter space spanned by the Yukawa coupling λ and the coefficient in the noncanonical Kähler
potential, ϵ. Here, the ϵ values on the vertical axis are normalized by the critical values ϵ0, see Eq. (137). For λ≲ 1, the VEV of the
Polonyi field begins to exceed the critical field value φc, see Eq. (127), whereas for λ ≳ 3, the Polonyi field begins to take super-
Planckian values during inflation [this follows from Eq. (141)]. The black contours respectively indicate the values of Λ (left panel) and
m3=2 (right panel) required to obtain the correct scalar spectral amplitude, As ≃ Aobs

s .
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Interestingly enough, we are able to reproduce the observed
value nobss only in the “inflection-point regime” (ϵ < ϵ0), in
which the scalar potential does not exhibit any local
extrema close to the inflection point at φ ¼ φflex. In the
“hilltop regime” (ϵ > ϵ0), on the other hand, the scalar
spectral index always turns out to be small, ns ≲ 0.94. If we
adopt the notion that the critical coefficient ϵ0 should, in
fact, be regarded as an upper bound on ϵ (because the
inflaton would otherwise get trapped in a false vacuum),
this result entails the following interesting observation:
Maybe the coefficient ϵ has, for one reason or another, the
tendency to saturate its upper bound from below, ϵ≃ ϵ0.
The coefficient ϵmight, e.g., be intrinsically ofOð1Þ, and it
only ends up being slightly suppressed, ϵ≃ 0.2, because it
is bounded from above. Alternatively, ϵ might tend to be
close to ϵ0, because such a parameter choice leads to a
particularly flat potential and, hence, to a particularly long
period of inflation (i.e., to a large spatial volume in which
ϵ≃ ϵ0). But anyhow, no matter what the origin of this fine-
tuning is, the point is this: once we suppose that there is a
physical reason that singles out ϵ values close to ϵ0, we are
automatically led to values of ns close to the observed
value. Or, put differently, it is an intriguing coincidence that
the observed value of ns is reproduced just in the vicinity of
the only special point on the ϵ axis. One could have
expected that successful inflation would require ϵ≃ ϵ0. But
then it would not have been guaranteed that the resulting
values of ns would end up being close to nobss .
Another interesting coincidence pertains to the required

value of the dynamical scale Λ. As evident from the left
panel of Fig. 3, the scale Λ needs to take values very close
to the scale of grand unification,

Λ ∼ 1016 GeV: ð144Þ

This suggest the fascinating possibility that the scales of
supersymmetry breaking, inflation, and grand unification
might, in fact, all be unified,

ΛSUSY ≡ Λinf ≡ ΛGUT: ð145Þ

A trivial condition for this kind of “triple unification” is that
the energy scales of inflation and supersymmetry breaking
are identical to each other. The unification of the three
scales ΛSUSY, Λinf , and ΛGUT can, thus, only be realized in
the context of Polonyi inflation and in no other inflation
model. In this paper, we have not made any attempt to
embed our model into a larger GUT framework. More work
on the possible connection between Polonyi inflation and
grand unification is, therefore, certainly needed. As evident
from the right panel of Fig. 3, the gravitino turns out to be
superheavy in our model,

m3=2 ∼ 1012 GeV: ð146Þ

As already pointed out in the Introduction [see Eq. (5)], the
gravitino mass is directly related to our prediction for the
tensor-to-scalar ratio r (this relation readily follows from
m3=2 ≃Hinf in our model),

r≃ 2 × 10−5
�

m3=2

1012 GeV

�
2

: ð147Þ

The experimental confirmation of this relation is certainly
challenging—but if it should be accomplished, it would
represent an unequivocal smoking-gun signal for Polonyi
inflation, i.e., for a close link between the dynamics of
supersymmetry breaking and inflation.

C. Neutralino dark matter and thermal leptogenesis

In the minimal framework of pure gravity mediation,
gravitino masses of Oð1012Þ GeV typically result in
MSSM gaugino masses M ~g; ~w; ~b of Oð1010Þ GeV,

M ~g; ~w; ~b ∼
m3=2

16π2
∼ 1010 GeV; ð148Þ

where the suppression by the loop factor 1=ð16π2Þ is a
consequence of anomaly mediation [11,94]. Here, the wino
~w typically ends up being the lightest gaugino. At tree level,
the gaugino masses vanish in our model. To see this, recall
that the Polonyi field Φ carries R charge 2. Couplings
between the Polonyi field and the SM gauge fields of the
form ΦWαWα are, thus, forbidden in the superpotential.
After inflation, the Polonyi field predominantly decays into
gravitinos (via the jΦj4 term in the effective Kähler
potential [95]), so that inflation is followed by a phase
of gravitino domination in our scenario [71]. The non-
thermal wino production in gravitino decays then easily
overcloses the universe [96]. To achieve an acceptable
present-day wino abundance, we, therefore, have to assume
that the wino mass is somehow suppressed. Fortunately,
this is possible in the context of pure gravity mediation,
where the gaugino masses in Eq. (148) also receive
threshold corrections from Higgsino loops [13,14].
These loop corrections are potentially of the same order
of magnitude as the anomaly-mediated masses. The differ-
ent contributions to the wino mass can, in particular, cancel,
so that the mass M ~w is reduced down to20

20Alternatively, the wino mass may be reduced via gauge
mediation [71]. We also mention that, in split-SUSY spectra [97],
anomaly-mediated gaugino masses are absent altogether. In this
case, gaugino masses may be as small as m3

3=2=M
2
Pl ∼ 1 GeV,

which would even require some extra mass contributions. A split-
SUSY spectrum may, e.g., be achieved, if supersymmetry break-
ing is a pure SUGRA effect [98]. It is an interesting open question
how to realize a split-SUSY spectrum in the context of DSB
models à la IYIT. We leave this question for future work. For
now, we simply assume that the contribution toM ~w from anomaly
mediation ends up being canceled by another mass contribution
of equal magnitude and opposite sign.

DYNAMICAL SUPERSYMMETRY BREAKING AND LATE- … PHYSICAL REVIEW D 94, 074021 (2016)

074021-29



M ~w ∼ 3 TeV: ð149Þ

We shall assume that this is the case for anthropic
reasons. In case the wino mass is in the TeV range,
the wino reaches thermal equilibrium after reheating and
eventually represents an excellent candidate for dark
matter in the form of weakly interacting massive particles
(WIMPs). Larger wino masses, on the other hand, result
in an overabundance of dark matter, thereby making our
Universe hostile for life.
The phase of gravitino domination after Polonyi inflation

ends once the gravitino begins to decay into the massless
fields of the MSSM. Here, the corresponding gravitino
decay rate is given as [71]

Γ3=2 ≃ 193

384π

m3
3=2

M2
Pl

≃ 30 MeV
�

m3=2

1012 GeV

�
3

: ð150Þ

The reheating temperature reached during gravitino decay,
Trh, then takes the following value:

Trh≃
�

90

π2g�

�
1=4 ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ3=2MPl

p

≃1×108 GeV

�
m3=2

1012GeV

�
3=2

; ð151Þ

where g� ¼ 915=4 denotes the effective number of
relativistic DOFs in the MSSM at high temperatures.
Contrary to many other inflation models, the reheating
temperature after Polonyi inflation is, therefore, not a
free parameter, which is controlled by the unknown
strength of the inflaton couplings to matter. Trh rather
follows directly from the universal decay rate of the
gravitino, which only depends on the gravitino mass. As
the gravitino mass is, in turn, more or less fixed by the
amplitude of the scalar power spectrum in Polonyi
inflation (see Fig. 3), we arrive at the interesting result
that Polonyi inflation makes a definite prediction for
the reheating temperature: Trh ∼ 108 GeV. Remarkably
enough, this is not far away from the temperature that is
needed for the successful realization of thermal lepto-
genesis [72]. In its simplest form, thermal leptogenesis
requires the reheating temperature to be at least of
Oð109Þ GeV. But resonance effects in the case of mildly
degenerate heavy-neutrino mass spectrum easily increase
the efficiency of thermal leptogenesis also at lower
temperatures [73]. The generation of the baryon asym-
metry of the Universe after Polonyi inflation may, thus,
very well be accounted for by thermal leptogenesis.

D. Benchmark scenario

Finally, we shall illustrate our findings by means of a
concrete example. To this end, we will now consider the

following point in parameter space, which may be regarded
as a representative benchmark scenario:

Λ≃ 1.26 × 1016 GeV; λ≃ 1.66; ϵ≃ 0.204: ð152Þ

For this choice of λ, the critical coefficient ϵ0 is given by
ϵ0 ≃ 0.205 [see Eq. (137)]. Our choice of ϵ is, therefore,
fine-tuned in the sense that it deviates from ϵ0 only by half a
percent or so. For the parameter values in Eq. (152), we
then obtain the following predictions for the inflationary
CMB observables:

As≃2.14×10−9; ns≃0.968; r≃6.01×10−6; ð153Þ

where the values for As and ns coincide with the exper-
imental best-fit values by construction. Next to the param-
eters Λ, λ, and ϵ (which represent the free parameters
in the SUSY-breaking sector), we also need to specify
the parameters in the R-symmetry-breaking sector, i.e., the
coefficients α and β as well as the energy scale vP [see
Eq. (83)]. Here, the scale vP is required to take a value
within a finite interval,

5.3 × 1016 GeV≲ vP ≲ 1.1 × 1018 GeV: ð154Þ

We recall that the lower bound on vP is a consequence of
the requirement that the heavy-quark mass scale in the
R-symmetry-breaking sector should always exceed the
dynamical scale, hPi ≳ ~Λ [see Eq. (130)], while the upper
bound on vP follows from the requirement that the
dynamics of the R-symmetry-breaking sector should have
no noticeable effect on inflation, vP ≪ ϵ1=2MPl [see
Eq. (109)]. In the following, we shall use the geometric
mean of the two boundary values in Eq. (154) as a
characteristic value for vP,

v̄P ≃ 2.41 × 1017 GeV: ð155Þ

For the VEVs hPi and hYi as well as for the dynamical
scale ~Λ, we then obtain [see Eqs. (82) and (123)]

hPi≃ 2.9 × 1017 GeV
�
vP
v̄P

�
;

hYi≃ 1.2 × 1017 GeV

�
vP
v̄P

�
;

~Λ≃ 3.0 × 1016 GeV

�
v̄P
vP

�
1=2

: ð156Þ

Similarly, we find the following relations for the two
reference values α0 and β0 [see Eqs. (93) and (94)]:

α0 ≃ 4.0 × 10−6
�
v̄P
vP

�
; β0 ≃ 4.0 × 10−6

�
v̄P
vP

�
: ð157Þ
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The actual value of α is given by a1=21 ðφ0Þα0 [see Eq. (100)],
wherea1ðφ0Þvaries as a function ofφ0, i.e., the Polonyi field
value at the onset of gaugino condensation in the R-
symmetry-breaking sector. Allowing for φ0 values in the
range 0≲ φ0 ≲ φc, the functiona1ðφ0Þ roughly takes values
between 1.00 and 1.02. Up to deviations of the order of one
percent or so, the coefficient α, therefore, coincides with the
reference value α0. Meanwhile, the coefficient β can be
freely chosen, as long as we respect the constraint jβj ≲ β0.
The parameter values in Eqs. (152), (155), and (157) now

completely fix the numerical properties of our benchmark
scenario. In Table I, we give an overview of all the resulting
numerical values for the various energy scales and field
values of interest in our model. Table I, thus, provides an
example for a possible realization of our model, which
illustrates how to achieve successful Polonyi inflation as
well as spontaneous R symmetry breaking at late times in
the context of strongly coupled gauge theories.

V. CONCLUSIONS AND OUTLOOK

The large value of the SM Higgs boson mass as well
as the null result of SUSY searches at the LHC call for

a paradigm shift in our expectations towards the role of
supersymmetry in nature. From the perspective of string
theory, dark matter, and grand unification, supersym-
metry still represents a well-motivated extension of the
standard model. But in view of the recent experimental
data, we now begin to realize that supersymmetry’s
main purpose may actually not lie in stabilizing the
electroweak scale. Instead, it now appears more likely
that supersymmetry is, in fact, spontaneously broken at
a scale much higher than the electroweak scale. This
opens up a whole range of new phenomenological
possibilities.
As we have demonstrated in this paper, the spontaneous

breaking of supersymmetry at a high scale, Λ ∼ 1016 GeV,
may, e.g., offer a dynamical explanation for the occur-
rence of cosmic inflation in the early universe. We have
dubbed the ensuing inflationary scenario Polonyi infla-
tion, as it identifies cosmic inflation as a natural by-
product of spontaneous supersymmetry breaking in an
effective Polonyi model. Generally speaking, the key idea
of our proposal is to obtain inflation from the Polonyi
superpotential,

TABLE I. Numerical results for a number of important energy scales, masses and field values in the context of the benchmark scenario
discussed in Sec. IV D. The input parameter values used in this scenario are listed in Eqs. (152), (155), and (157). Quantities labeled with
a star (*) are evaluated for vP ¼ v̄P. Their scaling with vP is indicated in Eqs. (156) and (157).

Quantity Symbol Value (GeV) Reference

Energy and mass scales in the SUSY-breaking sector

Dynamical scale Λ 1.3 × 1016 Eq. (10)
Effective supersymmetric mass scale m̄ 1.3 × 1016 Eq. (37)
Soft SUSY-breaking mass scale m 1.7 × 1015 Eq. (29)
SUSY breaking scale μ 1.5 × 1015 Eq. (28)
Energy scale of inflation V1=4

� 1.5 × 1015 Eq. (142)
Effective potential energy scale at large field values ΛHE 7.4 × 1014 Eq. (44)
Effective potential energy scale at small field values ΛLE 5.9 × 1014 Eq. (44)
Effective Polonyi mass around the origin meff 3.2 × 1013 Eq. (43)
Gravitino mass m3=2 5.6 × 1011 Eq. (72)
Inflationary Hubble rate Hinf 5.6 × 1011 Eq. (2)

Energy and mass scales in the R-symmetry-breaking sector

VEV of the field P in the true vacuum* hPi 2.9 × 1017 Eq. (123)
Characteristic value for the scale vP v̄P 2.4 × 1017 Eq. (155)
Gaugino condensation scale ~Λeff 6.4 × 1016 Eq. (78)
VEV of the field Y in the true vacuum* hYi 1.2 × 1017 Eq. (123)
Dynamical scale* ~Λ 3.0 × 1016 Eq. (82)
Constant term in the superpotential w1=3 1.5 × 1016 Eq. (77)
Mass of the field P in the true vacuum* mp 1.5 × 1012 Eq. (122)
Mass of the field Y in the true vacuum* my 1.5 × 1012 Eq. (122)

Important Polonyi field values during and after inflation

Beginning of slow-roll inflation φ−
sr 1.04MPl Eq. (140)

Location of the inflection point φflex 0.72MPl Eq. (135)
Field value N�

e ¼ 55 e-folds before the end of inflation φ� 0.70MPl Eq. (141)
End of slow-roll inflation φþ

sr 0.43MPl Eq. (140)
Critical field value φc 1.5 × 1016 Eq. (41)
Polonyi VEV in the true vacuum hφi 3.6 × 1015 Eq. (123)
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W ¼ μ2Φþ w; ð158Þ

with the Polonyi superfield Φ breaking supersymmetry
via its nonvanishing F-term, hjFΦji ¼ μ2, and acting as
the chiral inflaton field at the same time. In the context of
Polonyi inflation, spontaneous supersymmetry breaking
and cosmic inflation are nothing but two sides of the
same coin: Inflation is driven by the vacuum energy
density associated with the spontaneous breaking of
supersymmetry and the scalar inflaton is identified as
the complex Polonyi field, i.e., the pseudoflat direction in
the scalar potential of the SUSY-breaking sector. This
connection between supersymmetry breaking and infla-
tion results in several characteristic parameter relations
that cast a new light on well-known quantities. In Polonyi
inflation, the Hubble rate during inflation, e.g., is equal to
the gravitino mass at low energies,

Hinf ≃m3=2 ∼ 1012 GeV: ð159Þ

This implies that the amplitude of the primordial density
fluctuations, δρ=ρ, scales with m3=2,

δρ

ρ
¼ A1=2

s ¼
ffiffiffi
2

p

π

1

r1=2
m3=2

MPl

∼ 10−5
�
10−4

r

�
1=2

�
m3=2

1012 GeV

�
: ð160Þ

There are indications that the observed value of δρ=ρ
might be the result of anthropic selection [70]. Given
typical values of the tensor-to-scalar ratio r in slow-roll
inflation, the above relation then points towards very
large values of the gravitino mass. In Polonyi inflation,
the ultimate reason why supersymmetry is broken at a
high scale, therefore, consists in the necessity of repro-
ducing the anthropic value of δρ=ρ. The general concept
of Polonyi inflation, thus, not only yields an answer to
the question “Why inflation?,” it also explains why
supersymmetry is necessarily broken at a very high scale.
Moreover, we point out that m3=2 ∼ 1012 GeV is an
interesting result in view of the stability of the SM
Higgs potential. Recall that, solely within the standard
model, the Higgs quartic coupling (most likely) turns
negative at energies around Oð1011…12Þ GeV [99]. This
instability can be remedied by supersymmetry—as long
as the soft sparticle masses are at most of Oð1012Þ GeV.
In this sense, our result for m3=2 turns out to saturate the
upper bound on the gravitino mass implied by vacuum
stability. This may or may not be a coincidence.
In this paper, we have constructed a minimal model that

illustrates how the idea of Polonyi inflation may be realized
in the context of strongly coupled supersymmetric gauge
theories. Our construction consists of two separate hidden

sectors that respectively account for the dynamical origin of
the parameters μ and w in Eq. (158). Here, one hidden
sector is identical to the simplest version of the IYIT model
of dynamical supersymmetry breaking. This sector con-
tains the Polonyi field Φ and is responsible for the
generation of the SUSY-breaking parameter μ via strong
dynamics. The other hidden sector features the same matter
content as the SUSY-breaking sector, but contains fewer
singlet fields. The masses of the matter fields in this sector
are controlled by the VEV of a singlet field P. At early
times, hPi vanishes. At this time, the constant in the
superpotential, W ⊃ w, is zero. As we are able to show,
the effective scalar potential for the Polonyi field at this
stage then takes the same form as the inflaton potential of
ordinary F-term hybrid inflation in the limit of a vanishing
gravitino mass. It is this potential that gives rise to the
actual period of Polonyi inflation.21 At small Polonyi field
values after the end of slow-roll inflation, the Hubble-
induced mass for the field P decreases—until, at a certain
field value, P becomes tachyonically unstable. This insta-
bility results in a waterfall transition in the R-symmetry-
breaking sector, such that hPi ≠ 0. The second hidden
sector then turns into a pure SYM theory, in which R
symmetry is broken via gaugino condensation. In conse-
quence of that, the constant term w appears in the super-
potential. Here, the final value of w needs to be fine-tuned,
such that the CC in the true vacuum vanishes.
To sum up, we conclude that our effective Polonyi model

results in an inflationary scenario similar to ordinary F-term
hybrid inflation, apart from a few key differences: (i) All
corrections to the scalar potential proportional to m3=2 are
missing in our model. (ii) This means, in particular, that the
scalar potential does not contain any odd powers of the
inflaton field. Because of that, the inflaton potential does
not depend on the complex phase of the inflaton field,
as it is usually the case in F-term hybrid inflation.
(iii) Moreover, in our scenario, the low-energy value of
the gravitino mass, m3=2, is not bounded from above by the
inflationary Hubble rate. In Polonyi inflation, these two
scales are, in fact, equal to each other,m3=2 ≃Hinf , whereas
in F-term hybrid inflation we have to demand that
m3=2 ≲ 10−3Hinf , so as to ensure that the slow-roll con-
ditions do not get violated. (iv) In Polonyi inflation, the
inflaton sector does not undergo a waterfall phase transition
at the end of inflation. Instead, the inflationary vacuum
energy density continues to act as the vacuum energy
density associated with the spontaneous breaking of super-
symmetry after inflation. (v) Meanwhile, small inflaton
field values trigger a (harmless) waterfall phase transition in
a separate hidden sector, in the course of which only an

21It is amusing to note that the scalar potential of Polonyi
inflation is identical to the potential of F-term hybrid inflation in
the special limit m3=2 → 0—albeit, in the true vacuum at low
energies, m3=2 is exceptionally large in our model.
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approximate global Z2 symmetry becomes broken. In
contrast to F-term hybrid inflation, Polonyi inflation,
therefore, does not suffer from the production of dangerous
topological defects at the end of inflation.
In the present paper, we have only touched on the

phenomenological implications of our model and more
work is certainly needed. For one thing, the study of the
inflationary phase may still be further refined. As it turns
out, inflation takes place at field values only shortly below
the Planck scale in our model. Inflaton terms of Oðφ6Þ in
the scalar potential may, therefore, have a noticeable effect
on the predictions for the inflationary CMB observables.
We do not expect these terms to change our conclusions
qualitatively. But quantitatively, they may be relevant. For
another thing, the end of inflation and the subsequent
reheating phase require a closer examination. Here, it
would be interesting to study the implications of different
interactions between the two hidden sectors in the Kähler
potential more comprehensively. Also, the actual dynamics
of reheating deserve further investigation. Our model does
not suffer from the usual Polonyi problem, as the decay of
the Polonyi field is identified with the first stage of the
reheating process itself. But besides that, a dedicated study
of reheating tracking the expansion of the universe during
the transition to the radiation-dominated era as well as the
oscillatory motion of all scalar fields is needed. Here,
particular attention should be paid to the study of all
possible decay modes of the Polonyi field as well as of the
gravitino. A better understanding of reheating would then
enable us to better assess the prospects of successful
thermal leptogenesis. Finally, the phenomenological impli-
cations of our model at low energies need to be explored in
more detail. As examples of observational signatures at low
energies, we merely mention two interesting possibilities:
(i) In our scenario, a wino LSP with an anthropically
selected mass around 3 TeV accounts for dark matter. This
wino can be searched for in direct- and indirect-detection
experiments. In addition, the almost mass-degenerate
chargino may be seen in the form of macroscopic charged
tracks in collider experiments. All in all, our model predicts
that the neutral and the charged wino are the only sparticles
that should show up at low energies. All other sparticles
have masses of at least Oð1010Þ GeV and are, thus,
expected to be decoupled from low-energy phenomenology
for the most part. (ii) Moreover, the discrete ZR

4 symmetry
that we use to forbid the constant term in the superpotential
at early times predicts the existence of vectorlike matter
fields charged under the SM gauge group, which cancel the
SM contributions to the ZR

4 gauge anomalies. These
vectorlike matter fields may have masses within the reach
of collider experiments, which would allow to probe our
assumption of an anomaly-free R symmetry at accessible
energies.
Last but not least, one should attempt to implement our

idea of Polonyi inflation into other dynamical models. It

would be interesting to assess which other DSB models
apart from the IYIT model might serve as a UV completion
of the inflationary dynamics. In addition to that, a more
systematic study of the Polonyi Kähler potential—beyond
near-canonical and approximately shift-symmetric Kähler
potentials—would be desirable. Maybe there are particular
(exotic) choices for the Kähler potential that render it
unnecessary to supplement the tree-level Polonyi model
with radiative corrections, as we have done it in this paper.
Likewise, our model of late-time R symmetry breaking may
be extended or supplemented by alternative means to
generate the constant term in the superpotential at the end
of inflation.As an alternative to our scenario,which employs
thewaterfall fieldP, one might consider a direct coupling of
the Polonyi field to the gauge fields of a strongly coupled
pure SYM theory via the gauge-kinetic function,

L ⊂
Z

d2θ
1

4

�
1

g20
þ Φn

ϕn
0

�
WαWα þ H:c:; n ¼ 1; 2;…:

ð161Þ

For appropriately chosen values of the parameters g0 and ϕ0

and the integer n, the SYM theory is weakly coupled during
inflation, returning to the strongly coupled regime only at the
end of inflation. This results in gaugino condensation and,
hence, late-time R symmetry breaking at jϕj≲ ϕ0. We will
give a more careful discussion of this mechanism in the
context of Polonyi inflation elsewhere. Furthermore, gau-
gino condensation in a pure SYM theory is not the only way
to break R symmetry and other possibilities should be
considered as well. Eventually, the model presented in this
paper may only be regarded as a first step towards a new
understanding of the close relation between inflation and
spontaneous supersymmetry breaking. The concept of
Polonyi inflation leads us into uncharted territory and we
are convinced that, exploring these new avenues, we will
encounter both big surprises and valuable insights.
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APPENDIX A: EFFECTIVE SCALAR POTENTIAL
FOR THE POLONYI/INFLATON FIELD

In this appendix, we give the details of our derivation of
the effective one-loop potential, V1−loop, for the Polonyi
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field ϕ ¼ φ=
ffiffiffi
2

p
eiθ, i.e., the pseudoflat scalar direction in

the IYIT DSB model, see Eqs. (42), (43), (44), and (45) in
Sec. II C. The starting point of our computation is the
Coleman-Weinberg formula for the effective one-loop
potential [80], which takes the following form in super-
symmetric theories:

V1−loopðφÞ ¼
1

64π2
STr

�
M4ðφÞ

�
ln
�
M2ðφÞ
Q2

�
þ c

��
:

ðA1Þ

Here, Q is the renormalization scale and c denotes a
dimensionless constant that is introduced for notational
convenience. We note that Q and c are only defined up to
the following transformation:

c → cþ Δc; Q → eΔc=2Q; ðA2Þ

so that the constant c can always be removed by a finite
renormalization. Equation (A1) now tells us that the
potential V1−loop is given as the supertrace (STr) of a
specific function of the mass matrix M, which encom-
passes all bosonic and fermionic mass eigenvalues in the
presence of a nonvanishing Polonyi field background. In a
first step, we, therefore, need to determine the full mass
spectrum of the IYIT sector.

1. Mass spectrum of the low-energy effective theory

Apart from the Polonyi field Φ (which is massless at tree
level in global supersymmetry), the IYIT sector of our
model consists of six meson flavors, Ξ0 and Xn, and six
singlet fields, Σ and Sn. The scalar and fermionic masses
for these chiral multiplets follow from the effective tree-
level superpotential in Eq. (27). For an arbitrary back-
ground value of the Polonyi field φ, we find the following
scalar mass eigenvalues:

M2
aðφ;p;qÞ¼m2

aþ
1

2
ðM2ðφÞþqm2Þþp

2
½ðM2ðφÞþqm2Þ2

þð2maMðφÞÞ2�1=2; ðA3Þ

where a ¼ 0 refers to the zeroth flavor, i.e., to the fields Ξ0

and Σ, while a ¼ 1;…; 5 refers to the n other flavors, i.e.,
to the fields Xn and Sn. Moreover, the discrete parameter
p ¼ �1 distinguishes between the two different types of
particles involved, i.e., between mesons (p ¼ þ1) and
singlets (p ¼ −1), while the parameter q ¼ �1 accounts
for the soft mass splitting within each complex scalar,�m2,
in consequence of spontaneous supersymmetry breaking.
In this respect, Eq. (A3) serves as an illustration of our
statement in Sec. II B, where we note that the mass
parameter m plays the role of the soft SUSY-breaking
mass scale in the IYIT model, see the discussion below
Eq. (29). By setting the soft massm to zero, we then readily

obtain the mass eigenvalues of the fermionic components in
the meson and singlet multiplets,

m ¼ 0 ⇒ ~M2
aðφ;pÞ ¼ m2

a þ
1

2
M2ðφÞ þ p

2
½M4ðφÞ

þ ð2maMðφÞÞ2�1=2: ðA4Þ
For φ ≠ 0, all scalar and fermionic masses are different
from each other (as long as none of the Dirac massesma are
identical). Away from the origin, the meson and singlet
fields, therefore, give rise to, in total, 24 real scalars and 12
Majorana fermions. At the origin, M2

aðφ;p; qÞ and
~M2
aðφ;pÞ reduce to

MðφÞ ¼ 0 ⇒ M2
að0;p; qÞ ¼ m2

a þ
1

2
ðpþ qÞm2;

M2
að0;p; qÞ ¼ m2

a; ðA5Þ
which illustrates that, for φ ¼ 0, half of the real scalars and
all of the Majorana fermions pair up to form complex
scalars and Dirac fermions, respectively. At φ ¼ 0, we then
end up with 12 real and 6 complex scalars as well as with 6
Dirac fermions. Here, the complex scalars and the Dirac
fermions are, in particular, composed half of mesonic and
half of singlet DOFs.
Furthermore, we note that none of the masses

M2
aðφ;p; qÞ and ~M2

aðφ;pÞ ever turn tachyonic,22 which
means that the meson and singlet fields always remain
stabilized at the origin. This should be compared with
the situation in ordinary F-term hybrid inflation, where the
masses of the FHI waterfall fields correspond to (the
nonzero values of) M2

aðφ;p; qÞ and ~M2
aðφ;pÞ in the limit

of zero Dirac masses,

ma ¼ 0 ⇒

M2
aðφ;p; qÞ ¼

1

2
ðM2ðφÞ þ qm2Þ

þ p
2
jM2ðφÞ þ qm2j → M2ðφÞ þ qm2;

~M2
aðφ;pÞ ¼

1

2
ð1þ pÞM2ðφÞ → M2ðφÞ: ðA6Þ

In this case, the scalar mass eigenstates corresponding
to q ¼ −1 are tachyonically unstable, once MðφÞ < m.
This instability is absent in our “waterfall-transition-free”
version of F-term hybrid inflation.
Finally, before moving on and presenting our results for

the effective Polonyi potential, let us state approximate
expressions for M2

aðφ;p; qÞ and ~M2
aðφ;pÞ that are valid at

small and large values of the Polonyi field, respectively, and
which will become useful later on. In the low-energy

22A necessary and sufficient condition for M2
aðφ;p; qÞ ≥ 0 is

that the soft SUSY-breaking mass scale m does not exceed any of
the supersymmetric Dirac masses: ma ≥ m for all flavors a,
which is always satisfied in our model, see Eq. (30).
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regime close to the origin in field space, i.e., at small values
of the order parameter, xðφÞ ¼ φ=φc ≲ 1 [see Eq. (37)], we
find

xðφÞ≲1⇒

M2
aðφ;p;qÞ¼m2

a

�
1þp

M2ðφÞ
m2

�

þq
2
ðpþqÞðM2ðφÞþqm2ÞþOðx4Þ; ðA7Þ

~M2
aðφ;pÞ ¼ m2

a þ
1

2
M2ðφÞ þ pmaMðφÞ þOðx3Þ;

which reduces to the expressions in Eq. (A5) in the limit
φ → 0. Conversely, in the high-energy regime, at large
values of xðφÞ, the masses M2

aðφ;p; qÞ and ~M2
aðφ;pÞ may

be approximated as follows:

xðφÞ≳ 1 ⇒

M2
aðφ;p; qÞ ¼

1

2
ð1þ pÞðM2ðφÞ þ 2m2

a þ qm2Þ

− p
m2

aðm2
a þ qm2Þ

M2ðφÞ þOðx−4Þ; ðA8Þ
~M2
aðφ;pÞ ¼

1

2
ð1þ pÞðM2ðφÞ þ 2m2

aÞ − p
m4

a

M2ðφÞ
þOðx−4Þ:

In this regime, the meson masses (p ¼ þ1) asymptoti-
cally approach the usual expressions from F-term hybrid
inflation, see Eq. (A6), while the singlet masses (p ¼ −1)
only acquire suppressed masses of Oðm2

a=MÞ. Here, note
that the small singlet masses in the large-field regime
are the result of a seesaw mechanism of a sort: For a
large Majorana mass MðφÞ, the Dirac masses ma become
suppressed by a factor of Oðma=MÞ. This is exactly
what happens in the usual seesaw mechanism, which
explains the small masses of the SM neutrinos as the
outcome of large Majorana and small Dirac neutrino
masses [100].

2. Coleman-Weinberg one-loop effective potential

We are now in the position to calculate the effective one-
loop potential for the scalar Polonyi field. The full result for
V1−loop follows from Eqs. (A1), (A3), and (A4) and takes a
rather complicated form. For this reason, we refrain from
explicitly writing down the full expression for V1−loop, and
merely refer to Fig. 1, where we plot the exact result for
V1−loop as a function of the order parameter xðφÞ. Instead,
let us now evaluate V1−loop for specific field values of
interest. For instance, at the origin, we find

V1−loopð0Þ ¼
m4

32π2

�
NX

�
ln

�
m̄2

Q2

�
þ c

�
þ
X
a

LðraÞ
�
;

ðA9Þ

where NX ¼ 6 counts the number of meson flavors in
the IYIT model, m̄ ¼ Λ denotes the effective super-
symmetric mass scale in the IYIT sector [see Eqs. (37)
and (38)], and where L is a loop function that needs
to be evaluated at the respective mass ratios ra [see
Eq. (29)],

LðraÞ ¼
1

2

�
1þ 1

r2a

�
2

lnð1þ r2aÞ þ
1

2

�
1 −

1

r2a

�
2

lnð1 − r2aÞ

¼ 3

2
þOðr4aÞ: ðA10Þ

Note that this result for V1−loopð0Þ can also be obtained
by plugging the masses in Eq. (A5) into the CW formula.
The function L is nearly constant over its entire
domain, 2 ln 2 ¼ Lð1Þ ≤ LðraÞ ≤ Lð0Þ ¼ 3=2, and, thus,
well approximated by LðraÞ ≈ 3=2. This motivates the
following choices for Q and c:

Q ¼ m̄; c ¼ −
3

2
: ðA11Þ

For these values of the renormalization scale Q and the
constant c, the tree-level vacuum energy density of the
IYIT model, V0 ¼ hjFΦji2 ¼ μ4, receives a small negative
shift ΔV0 of Oðm8=m4

aÞ,

ΔV0 ¼ V1−loopð0Þ ¼ −NX
m4

32π2

�
3

2
−

1

NX

X
a

LðraÞ
�
:

ðA12Þ

This correction to the vacuum energy density and, hence,
the ratio jΔV0j=V0, are bounded from above,

jΔV0j ≤ NX
m4

32π2

�
3

2
− 2 ln 2

�
;

jΔV0j
V0

≲ 10−3ð1þ r20Þλ2: ðA13Þ

Here, we have used that L takes its smallest value in the
limit ra → 1, where L → 2 ln 2. For perturbative values of
the Yukawa coupling, λ≲ 4, we can, therefore, safely
neglect the radiative correction ΔV0.
Having fixed Q and c, let us now study the effective

potential for extreme values of the order parameter,
i.e., for xðφÞ ≪ 1 and xðφÞ ≫ 1. Below the critical field
value, the inflaton-induced mass MðφÞ is smaller than the
supersymmetric Dirac masses ma. At energies below ma,
the “heavy” meson flavors can then be integrated out,
which results in a quadratic potential for φ around the
origin,

VLE
1−loopðφÞ ¼

1

2
m2

effφ
2 þOðx4Þ; ðA14Þ
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where meff denotes the effective Polonyi mass at one-loop
level [see also Eq. (43) and footnote 7],

m2
eff ¼ ð2 ln 2 − 1ÞNeff

X ðraÞ
κ2Φ
16π2

m2;

Neff
X ðraÞ ¼

X
a

ωðraÞ: ðA15Þ

Here, ω represents a loop function that acts as a normalized
weight, 0 ≤ ω ≤ 1, for each meson flavor,

ωðraÞ ¼
lðraÞ

2 ln 2 − 1
;

lðraÞ ¼
1

2

�
1þ 1

r2a

�
2

lnð1þ r2aÞ −
1

2

�
1 −

1

r2a

�
2

lnð1 − r2aÞ

−
1

r2a
: ðA16Þ

Evaluated at the mass ratio ra, the function ω quantifies the
contribution from the respective meson flavor to meff .
Correspondingly, the sum over all factors ωðraÞ yields
the effective number of flavors, Neff

X , that contribute to the
effective Polonyi mass. Moreover, we note that, over its
entire domain, 0 ≤ ra ≤ 1, the function ω is well approxi-
mated by ωðraÞ ≈ r2a. This allows us to rewrite V1−loop in
the following way:

VLE
1−loopðφÞ¼

m2

16π2
M2ðφÞ

X
a

lðraÞþOðx4Þ

≈ð2ln2−1Þ m2

16π2
M2ðφÞ

X
a

r2aþOðx4Þ

¼ð2ln2−1Þ m4

16π2
X
a

R2
aðφÞþOðx4Þ;

ðA17Þ

which provides us with a couple of alternative expres-
sions for V1−loop. For instance, the first line of Eq. (A17)
makes explicit the dependence of the effective potential
on the two mass scales m and MðφÞ at small field values,
V1−loopðφÞ ∝ m2M2ðφÞ. It is interesting to note that this
result for the effective potential can also be obtained by
plugging the approximate expressions for the scalar and
fermionic masses in Eq. (A7) into the CW formula in
Eq. (A1). Meanwhile, the third line of Eq. (A17)
illustrates how V1−loop may be expressed as a function
of the ratios RaðφÞ ¼ MðφÞ=ma [see Eq. (36)]. In this
case, the effective potential turns out to be given by the
fourth power of the soft SUSY-breaking mass, m4, times
a function of the SUSY-preserving mass parameters
MðφÞ and ma, V1−loopðφÞ ∝ m4fðRaÞ. The expressions
for V1−loop in Eq. (A17), therefore, comply with the
expectation that, in supersymmetric theories, the effective

potential ought to be proportional to the soft SUSY-
breaking mass scale m [25]. Moreover, we can write
V1−loop in the small-field regime directly as a function of
the order parameter,

VLE
1−loopðφÞ ¼ Λ4

LEx
2ðφÞ þOðx4Þ; ðA18Þ

where we have introduced ΛLE as the effective potential
energy scale at small field values,

Λ4
LE ¼ m2m̄2

16π2
X
a

lðraÞ

≈ ð2 ln 2 − 1Þ m4

16π2
X
a

�
m̄
ma

�
2

: ðA19Þ

Finally, let us examine the effective Polonyi potential at
small field values in the limit of small supersymmetry
breaking, i.e., for a small soft SUSY-breaking mass m in
comparison to large SUSY-preserving Dirac masses,
m ≪ ma. This limit is best quantified in terms of the
geometric mean of all mass ratios ra, which we will refer
to as the hierarchy parameter y in the following [see
Eq. (29)]:

y ¼
�Y

a

ra

�
1=NX ¼ m

m̄
; ðA20Þ

which can take values between 0 and 1 [see Eq. (30)].
Here, y ¼ 0 corresponds to the SUSY-preserving limit,
while y ¼ 1 represents the case of maximal supersym-
metry breaking. From Eqs. (29) and (38), it immediately
follows that the hierarchy parameter y is, in fact, nothing
but an alternative measure for the strength of the Yukawa
coupling of the Polonyi field to the IYIT matter fields,

y ¼ λ

η
: ðA21Þ

That is, for perturbative values of the Yukawa coupling
λ, supersymmetry is only mildly broken in the meson
and singlet multiplets in the IYIT sector, while in the
strongly coupled limit, i.e., for nonperturbative values of
the Yukawa coupling λ, the effect of supersymmetry
breaking is maximal. In passing, we mention that the
parameter y also quantifies the ratio between the order
parameter of our model, xðφÞ, and the order parameter
of the waterfall transition in ordinary F-term hybrid
inflation, RðφÞ,

xðφÞ ¼ yRðφÞ; RðφÞ ¼ MðφÞ
m

¼ jϕj
v

¼ φffiffiffi
2

p
v
: ðA22Þ

In the limit of maximal supersymmetry breaking, both
order parameters, therefore, coincide with each other. In
all other cases, we have RðφÞ > xðφÞ. This implies that,

KAI SCHMITZ and TSUTOMU T. YANAGIDA PHYSICAL REVIEW D 94, 074021 (2016)

074021-36



for y < 1, the mesonic phase transition in the IYIT model
(see Fig. 1) takes place around a critical field value,
φ ∼ φc, that is parametrically larger than the critical field
value associated with the waterfall transition in F-term
hybrid inflation, φ ¼ ffiffiffi

2
p

v. Let us now turn to the limit of
small supersymmetry breaking. For small values of y, i.e.,
for small mass ratios ra, the weight function ω in
Eq. (A16) can be approximated as follows:

ωðraÞ ¼
r2a

3ð2 ln 2 − 1Þ þOðr6aÞ: ðA23Þ

The effective potential V1−loop and the potential energy
scale ΛLE at small field values then reduce to

VLE
1−loopðφÞ ¼

m4

48π2
X
a

R2
aðφÞ þOðx4; y8Þ;

Λ4
LE ¼ m4

48π2
X
a

�
m̄
ma

�
2

þOðy8Þ: ðA24Þ

We will come back to these results in Sec. A 3.
Next, we shall examine the effective Polonyi potential

for large values of the order parameter xðφÞ. In the large-
field regime, xðφÞ ≳ 1, the IYIT matter fields acquire a
large field-dependent mass, such that their “bare” super-
symmetric masses ma become irrelevant, MðφÞ≳ma.
Integrating out the matter fields then results in the usual
logarithmic effective potential known from ordinary F-term
hybrid inflation,

VHE
1−loopðφÞ ¼ NX

m4

16π2
ln xðφÞ þOðx−4Þ;

xðφÞ ¼ φ

φc
¼ MðφÞ

m̄
: ðA25Þ

At large field values, the dependence of the effective
potential on the mass scales m and MðφÞ is, therefore,
of the form V1−loopðφÞ ∝ m4 lnMðφÞ. Up to corrections of
Oðx−2Þ, we are able to reproduce this result by inserting the
approximate masses in Eq. (A8) into the CW formula in
Eq. (A1). Moreover, we can read off the effective potential
energy scale in the large-field regime, ΛHE, from Eq. (A25),

VHE
1−loopðφÞ ¼ Λ4

HE ln xðφÞ þOðx−4Þ;

Λ4
HE ¼ NX

m4

16π2
; ðA26Þ

which is again of Oðm4Þ. Last but not least, we can rewrite
the effective potential as a function of the mass ratios
RaðφÞ, which provides us with a large-field counterpart to
the small-field result in Eq. (A24),

VHE
1−loopðφÞ ¼

m4

16π2
X
a

lnRaðφÞ þOðx−4Þ: ðA27Þ

3. Reformulation in terms of an effective
Kähler potential

At tree level, the F-term scalar potential is determined by
two input functions, the superpotential W and the Kähler
potential K. Here, the superpotential does not receive any
radiative corrections in perturbation theory according to the
SUSY nonrenormalization theorem [23]. The Kähler
potential, on the other hand, is renormalized, which allows
one to rewrite parts of the effective action in the form of an
effective Kähler potential. We shall now demonstrate how
this applies to our results in the previous section. First, we
note that, schematically, the full result for V1−loop in
Eq. (A1) is of the following form:

V1−loopðφÞ¼
m4

16π2
X∞
n¼0

fnðRaÞ
x4nðφÞ y

4n

¼ m4

16π2
f0ðRaÞþOðy8Þ; ðA28Þ

where the order parameter xðφÞ ¼ MðφÞ=m̄ and the mass
ratios Ra ¼ MðφÞ=ma denote the ratios of supersymmetric
mass scales, while the hierarchy parameter y ¼ m=m̄
quantifies the ratio between the soft SUSY-breaking mass
scale m and the effective supersymmetric mass scale m̄.
The above expression for V1−loop, thus, illustrates that the
effective potential represents a power series in y4, the
coefficients of which are functions of SUSY-preserving
mass parameters. From our results in Eqs. (A24) and (A27),
we can read off the coefficient function f0ðRaÞ belonging
to the leading-order contribution to V1−loop,

f0ðRaÞ ¼
8<
:

P
a

1
3
R2
aðφÞ þOðx4Þ ; x ≪ 1

P
a
lnRaðφÞ þOðx−4Þ ; x ≫ 1

: ðA29Þ

As we are now going to show, this result for the function
f0ðRaÞ can be reproduced by supplementing the tree-level
Kähler potential, Ktree, by an effective one-loop Kähler
potential, K1−loop,

Keff ¼ Ktree þ K1−loop ðA30Þ

where Ktree and K1−loop are respectively given as follows
[24,101]:

Ktree¼Φ†Φ;

K1−loop¼−
1

32π2
Tr

�
~M† ~M

�
ln

� ~M† ~M
Q2

�
−c0

��
:

ðA31Þ
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Here, ~M denotes the fermionic mass matrix, which is
identical to the Hessian of the superpotential, and c0 is a
numerical constant that we will determine shortly. In global
supersymmetry, the effective Kähler potential in Eq. (A30)
results in the following F-term scalar potential for the
Polonyi field ϕ ¼ φ=

ffiffiffi
2

p
eiθ,

Vapprox
eff ðφÞ ¼

�∂2Keffðϕ;ϕ�Þ
∂ϕ∂ϕ�

�−1���� ∂WeffðϕÞ
∂ϕ

����
2

; ðA32Þ

where the effective superpotential consists of the Polonyi
tadpole term, Weff ≃ μ2Φ, such that

���� ∂WeffðϕÞ
∂ϕ

����
2

¼ μ4 ¼ V0: ðA33Þ

It is important to note that the scalar potential in Eq. (A32)
is only an approximation of the full effective potential. To
see this, let us expand the inverse Kähler metric in powers
of the loop factor κ2Φ=ð16π2Þ,

�∂2Keffðϕ;ϕ�Þ
∂ϕ∂ϕ�

�−1

¼ 1 −
∂2K1−loopðϕ;ϕ�Þ

∂ϕ∂ϕ� þO
��

κ2Φ
16π2

�
2
�
: ðA34Þ

The leading contribution to Vapprox
eff then yields what we

shall refer to as the truncated effective potential,

V trunc
eff ðφÞ ¼

�
1 −

∂2K1−loopðϕ;ϕ�Þ
∂ϕ∂ϕ�

����� ∂WeffðϕÞ
∂ϕ

����
2

: ðA35Þ

This truncated effective potential coincides with the full
effective potential up to corrections of Oðy8Þ,

V0 þ V1−loopðφÞ ¼ V trunc
eff ðφÞ þOðy8Þ: ðA36Þ

An explicit proof of this relation is given by Intriligator,
Seiberg, and Shih in Appendix A.5 of [43]. For an earlier
discussion of the effective action in supersymmetric the-
ories, see [102]. From the relation in Eq. (A36), it is evident
that the truncated potential V trunc

eff is only a good approxi-
mation of the actual (true) effective potential, as long as the
effect of spontaneous supersymmetry breaking is small,
i.e., as long as y ≪ 1. Otherwise, the Oðy8Þ corrections in
Eq. (A36) become important. These radiative corrections—
while present in the full expression for V1−loop in
Eq. (A1)—cannot be captured by the effective Kähler
potential. One example for such a correction is, e.g., the
shift in the tree-level vacuum energy density, ΔV0 [see
Eq. (A12)], which is proportional tom4r4a ¼m8=m4

a∼m4
ay8

and which cannot be explained in terms of an effective
Kähler potential. Instead, the shift in the vacuum energy
density ΔV0 and all other Oðy8Þ corrections follow from

an effective potential for the auxiliary component of the
Polonyi multiplet, Φjθ2 ¼ FΦ. This effective auxiliary field
potential contains higher-order terms in FΦ and is only
negligible, once the effect of supersymmetry breaking is
nothing but a small correction to the otherwise super-
symmetric dynamics [102]. Fortunately, this is exactly the
case in our model, since the soft SUSY-breaking mass scale
m is always the smallest mass parameter in the IYIT sector
[see Eq. (30)].
Let us now derive an explicit expression for the one-loop

Kähler potential K1−loop. To do so, we first need to promote
the fermionic masses in Eq. (A4) to functions of the chiral
Polonyi superfield Φ,

~M2
aðφ;pÞ →

1

2
ðAa þ pBaÞ; Aa ¼ κ2ΦΦ

†Φþ 2m2
a;

Ba ¼ ½κ2ΦΦ†Φðκ2ΦΦ†Φþ 4m2
aÞ�1=2: ðA37Þ

These masses then need to be inserted into the general
expression for K1−loop in Eq. (A31),

K1−loop¼−
1

32π2
X
a

�
Aa

�
ln

�
m2

a

Q2

�
þc0

�

þBa

�
1

2
ln
�
1þBa

Aa

�
−
1

2
ln
�
1−

Ba

Aa

���
:

ðA38Þ

Note that this result forK1−loop is independent of the SUSY-
breaking mass scale m. Put differently, the effective Kähler
potential “does not know anything about supersymmetry
breaking.” It is, thus, clear that V trunc

eff (or Vapprox
eff for that

purpose) can approximate the full effective potential only
up to Oðy4Þ. We shall now study K1−loop as a function of
XðΦ†ΦÞ, the superfield analog of the order parameter xðφÞ,

XðΦ†ΦÞ ¼
�
Φ†Φ
φ2
c=2

�
1=2

: ðA39Þ

Close to the origin, XðΦ†ΦÞ ≪ 1, the effective one-loop
Kähler potential consists of the following terms:

K1−loop ¼ ΔK0 − NX
κ2Φ
32π2

�
ln

�
m̄2

Q2

�
þ c0 þ 2

�
Φ†Φ

þOðX2Þ; ðA40Þ

where the first term, ΔK0, denotes a constant shift in the
VEV of Kähler potential that does not have any conse-
quences in global supersymmetry and that is negligible in
supergravity, ΔK0 ≪ M2

Pl,

ΔK0 ¼ −
1

16π2
X
a

m2
a

�
ln

�
m2

a

m̄2

�
− 2

�
: ðA41Þ
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Meanwhile, the second term in Eq. (A40) represents a shift
in the canonical kinetic term of the Polonyi field. In the
following, we will choose the renormalization scale Q and
the constant c0 as follows,

Q ¼ m̄; c0 ¼ −2; ðA42Þ

so that this term exactly vanishes (i.e., so that the Polonyi
field Φ remains canonically normalized).
The first relevant correction to Ktree in the small-field

regime, XðΦ†ΦÞ≲ 1, is then of OðX 2Þ,

KLE
1−loop ¼ −

1

64π2
X
a

1

3

�
κ2ΦΦ

†Φ
ma

�
2

þOðX 4Þ: ðA43Þ

This form of the Kähler potential nicely reflects the fact, at
small field values, the radiative corrections to the Polonyi
potential follow from integrating out “heavy” meson fields
with masses ma. In terms of the order parameter superfield
XðΦ†ΦÞ, the one-loop Kähler potential in Eq. (A43) reads
as follows:

KLE
1−loop ¼ −

1

4V0

Λ4
LEX

2ðΦ†ΦÞΦ†ΦþOðX4Þ;

Λ4
LE ¼ m4

48π2
X
a

�
m̄
ma

�
2

; ðA44Þ

where the expression for the effective potential energy scale
ΛLE is the identical to the one that we obtained in Sec. A 2
in the limit of small supersymmetry breaking, see
Eq. (A24). In this sense, KLE

1−loop indeed reproduces the
effective one-loop potential in the small-field regime up to
corrections of Oðy8Þ,

V trunc
eff ðφÞ ¼ V0 þ Λ4

LEx
2ðφÞ þOðx4Þ: ðA45Þ

Meanwhile, for large values of the Polonyi field,
XðΦ†ΦÞ ≳ 1, the one-loop Kähler potential reduces to

KHE
1−loop ¼ −NX

κ2Φ
32π2

�
ln

�
κ2ΦΦ

†Φ
m̄2

�
− 2

�
Φ†Φþ ΔK0

0

þOðX−4Þ; ðA46Þ

which represents a logarithmic renormalization of the
kinetic term. Here, ΔK0

0 is a correction to the VEV of
the Kähler potential, which is meaningless in global
supersymmetry and irrelevant in supergravity,

ΔK0
0 ¼ −

1

16π2

�
ln

�
κ2ΦΦ

†Φ
m̄2

�
− 1

�X
a

m2
a: ðA47Þ

Again, we may rewrite the one-loop Kähler potential in
terms of the order parameter superfield XðΦ†ΦÞ,

KHE
1−loop ¼ −

1

V0

Λ4
HEðlnXðΦ†ΦÞ − 1ÞΦ†ΦþOðX−4Þ;

Λ4
HE ¼ NX

m4

16π2
; ðA48Þ

which reproduces V1−loop and the potential energy scale
ΛHE in the large-field regime, see Eq. (A26),

V trunc
eff ðφÞ ¼ V0 þ Λ4

HE ln xðφÞ þOðx−4Þ: ðA49Þ

We, therefore, conclude that our results for KLE
1−loop and

KHE
1−loop in Eqs. (A43) and (A46) indeed suffice to describe

the radiative corrections to the Polonyi potential, as long as
the effect of supersymmetry breaking remains small,
y ≪ 1. In the limit of large supersymmetry breaking,
y → 1, the full information on the radiative corrections
is, however, only contained in the effective one-loop
potential in Eq. (A1).

APPENDIX B: VIABILITY OF INFLATION
IN THE CASE OF EARLY R SYMMETRY

BREAKING

In the main text, we study inflation in an effective
Polonyi model that is based on the effective superpotential
Weff ≃ μ2Φ, a near-canonical Kähler potential and loga-
rithmic radiative corrections. In particular, we assume that
the constant term in the superpotential, W ⊃ w, which
allows one to tune the CC in the true vacuum to zero, is
generated only after inflation. In this appendix, we are now
going to show that (for all Kähler potentials of interest) this
assumption is, indeed, inevitable. That is, in contrast to the
main text, we are now going to assume that the constant w
takes its low-energy value already from the very beginning,
w ¼ w0. We then study the prospects of realizing successful
inflation in the Polonyi model for different choices of the
Kähler potential (near-canonical and approximately shift-
symmetric), finding that, for w ¼ w0 during inflation,
Polonyi inflation is always bound to fail. Either the
Polonyi potential turns out to be too steep to support
slow-roll inflation or there does not even exist a global
Minkowski vacuum. Of course, our analysis does not
represent a general no-go theorem, as some intricate choice
for the Kähler potential may render inflation in the Polonyi
model viable, after all [76].23 But for our purposes, as we
intend to focus on simple forms of the Kähler potential,

23In single-field helical-phase inflation, the phase of the
Polonyi field, θ ¼ argϕ, may play the role of the inflaton
[103]. This scenario requires a particular tuning of the Kähler
potential, in order to stabilize the radial component of the
complex Polonyi field, φ ¼ ffiffiffi

2
p jϕj, and eventually results in

inflationary predictions that are equivalent to those of natural
inflation [54].
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these results suffice to convince us that successful Polonyi
inflation is better off if R symmetry is broken at late times.

1. Canonical Kähler potential plus
higher-dimensional corrections

We first consider the full Polonyi superpotential in
combination with a near-canonical Kähler potential,

W ¼ μ2Φþ w;

K ¼ Φ†Φþ ϵ

ð2!Þ2
�
Φ†Φ
MPl

�
2

þOðϵ2;M−4
Pl Þ;

ϵ≲ 1: ðB1Þ

Apart from the subdominant higher-dimensional correction
(parametrized in terms of the parameter ϵ), this is nothing
but the original Polonyi model [68]. For now, let us assume
that this model does not receive any radiative corrections
from Yukawa couplings between Φ and some (heavy)
matter fields. Given the above Kähler potential, the com-
plex scalar contained in the chiral Polonyi field, ~ϕ ⊂ Φ,

~ϕ ¼ ~φffiffiffi
2

p ei~θ; ðB2Þ

is not canonically normalized. The Polonyi phase,
~θ ¼ arg ~ϕ, is always stabilized at ~θ ¼ 0, so that we can
neglect it in the following. Meanwhile, the properly
normalized radial component φ is given as follows:

φ ¼
Z

d ~φ

� ∂2K

∂ ~ϕ∂ ~ϕ�

�
1=2

¼ ~φ

�
1þ ϵ

12

�
~φ

MPl

�
2

þOðϵ2Þ
�
: ðB3Þ

The vacuum energy density in the global minimum
vanishes, once the constant w is fine-tuned to

w0 ¼ ð2 −
ffiffiffi
3

p
Þð1 − ϵþOðϵ2ÞÞμ2MPl: ðB4Þ

For this value of w, the real Polonyi field φ takes the
following value in the true vacuum:

hφi ¼
ffiffiffi
2

p �
ð

ffiffiffi
3

p
− 1Þð1þ ϵÞ − ϵ

6
þOðϵ2Þ

�
MPl: ðB5Þ

Around this vacuum, the Polonyi field has a tree-level mass
of the order of the gravitino mass,

m2
φ ¼ 2

ffiffiffi
3

p
½1 − ð3 −

ffiffiffi
3

p
ÞϵþOðϵ2Þ�m2

3=2; ðB6Þ

where the gravitino mass follows from inserting Eqs. (B4)
and (B5) into the general formula in Eq. (72),

m3=2 ¼ e2−
ffiffi
3

p �
1þ 1

2
ð3 −

ffiffiffi
3

p
ÞϵþOðϵ2Þ

�
μ2

MPl
: ðB7Þ

As it turns out, the scalar potential around the true
vacuum is too steep to support slow-roll inflation. This can
be seen by inspecting the slow-roll parameters ε and η in the
vicinity of φ ¼ hφi,

εðφÞ ¼ 2

�
1

δðφÞ þ
2

ffiffiffi
3

p
− 1

2
ffiffiffi
2

p −
2

ffiffiffi
3

p
− 3

4
ffiffiffi
2

p ϵ

�
2

þ
ffiffiffi
3

p þ 1ffiffiffi
3

p −
5

3
ϵþOðϵ2; δÞ;

ηðφÞ ¼ 2

�
1

δðφÞ þ
2

ffiffiffi
3

p
− 1ffiffiffi
2

p −
2

ffiffiffi
3

p
− 3

2
ffiffiffi
2

p ϵ

�
2

þ 17

2
ffiffiffi
3

p − 4 −
2

3
ð6

ffiffiffi
3

p
− 5ÞϵþOðϵ2; δÞ; ðB8Þ

where δðφÞ parametrizes the displacement from the true
vacuum in units of the Planck scale,

δðφÞ ¼ φ − hφi
MPl

: ðB9Þ

The expressions in Eq. (B8) imply that we only have a
chance of sufficiently suppressing ε and η, if we displace
the inflaton field by some amount ofOðMPlÞ from its VEV.
In the case of such large field displacements, the scalar
potential is, however, severely steepened by SUGRA
corrections. In fact, scanning over the entire Polonyi field
range and evaluating the slow-roll parameters ε and η
numerically, we find that nowhere in field space the scalar
potential is sufficiently flat for slow-roll inflation,

minmax fε; jηjg ∼ 0.3: ðB10Þ

In view of this result, we then also have little hope that
radiative corrections may improve the situation. Instead, we
expect that radiative correction would, overall, rather
increase the magnitude of the slow-roll parameters ε and
η even further. We, thus, arrive at the same conclusion as
the analysis in [30], namely that inflation in the original
Polonyi model, with w ¼ w0 during inflation, does
not work.

2. Approximate shift symmetry along the real axis

Next, we assume that the Kähler potential exhibits an
approximate shift symmetry along the real axis,

W¼μ2Φþw;

K¼ ϵ

2
ðΦþΦ†Þ2−1

2
ðΦ−Φ†Þ2þOðϵ2;M−2

Pl Þ; ϵ≪1:

ðB11Þ
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The complex scalar contained in the chiral Polonyi field,
~ϕ ⊂ Φ, then decomposes as follows:

~ϕ ¼ 1ffiffiffi
2

p ð ~φþ i ~σÞ; ðB12Þ

where ~φ and ~σ denote the (not canonically normalized)
inflaton field and its scalar partner (i.e., the “sinflaton”),
respectively. First, we note that, in the limit of an exact shift
symmetry, this theory does not admit a Minkowski vacuum.
For ϵ ¼ 0, the only stationary point of the scalar potential is
located at

h ~φi ¼ −
ffiffiffi
2

p w
μ2

; h ~σi ¼ 0; ðB13Þ

so that the Polonyi tadpole term “eats up” the constant w.
At this stationary point, we, therefore, have hWi ¼ 0,
which implies unbroken R symmetry and, hence, zero
gravitino mass. But more importantly, this point in field
space corresponds to a dS state, as the vacuum energy
density does not vanish, hVi ¼ μ4. On top of that, it is not
even stable, as the ~φ direction acquires a tachyonic
mass, m2

φ ¼ −3μ4=M2
Pl.

We can remedy this situation and distort the scalar
potential by slightly breaking the shift symmetry in the
~φ direction, i.e., by allowing for small nonzero values of ϵ.
This stabilizes the stationary point in Eq. (B13) and allows
for the possibility of a global Minkowski vacuum. In
addition, a slightly broken shift symmetry in the Kähler
potential appears to be more natural, anyway, as the
superpotential already breaks the shift symmetry explicitly.
The canonically normalized fields φ and σ are then given as
follows:

φ ¼ ð1þ ϵÞ1=2 ~φ; σ ¼ ð1þ ϵÞ1=2 ~σ: ðB14Þ
For ϵ ≠ 0, the model exhibits a global Minkowski vacuum
at a super-Planckian value of the inflaton field,

hφi ¼ 1þ ϵ

ϵ

� ffiffiffi
3

p
ffiffiffi
2

p −
�

ϵ

1þ ϵ

�
1=2

�
MPl; hσi ¼ 0: ðB15Þ

We note that this solution is only consistent as long as ϵ is
positive. Moreover, it becomes unphysical in the limit of an
exact shift symmetry, i.e., for ϵ → 0. This is also the reason
why, in contrast to Sec. B 1, we now refrain from expand-
ing our results in powers of the small parameter ϵ. In order
to tune the vacuum energy density in the vacuum to zero,
the constant w needs to take the following value:

w0 ¼ −
1ffiffiffi
2

p
ϵ

� ffiffiffi
3

p
ffiffiffi
2

p ð1þ ϵÞ1=2 − 2ϵ1=2
�
μ2MPl; ðB16Þ

which also diverges for ϵ → 0. As we are able to read
off from Eqs. (B15) in (B16), the relation between h ~φi
and w in Eq. (B13) now no longer applies. Thanks
to the slightly broken shift symmetry, we now have

h ~φi ¼ ð1þ ϵÞ−1=2hφi ¼ −
ffiffiffi
2

p
w=μ2 þ ϵ−1=2, which results

in a nonzero gravitino mass,

m3=2 ¼
1ffiffiffi
2

p
ϵ1=2

exp

�
ϵ

2ð1þ ϵÞ
hφi2
M2

Pl

�
μ2

MPl
: ðB17Þ

The field φ then acquires a nontachyonic mass of the order
of the gravitino mass,

m2
φ ¼ 2

ffiffiffi
3

p �
2ϵ

1þ ϵ

�
3=2

m2
3=2: ðB18Þ

Again, the scalar potential around the true vacuum is too
steep for slow-roll inflation. In the vicinity of φ ¼ hφi, the
slow-roll parameters ε and η [as functions of δðφÞ ¼
ðφ − hφiÞ=M2

Pl] are now given as

εðφÞ ¼ 2

�
1

δðφÞ þ
ffiffiffi
3

p
ffiffiffi
2

p −
ϵ1=2

2

�2
þOðϵÞ;

ηðφÞ ¼ 2

�
1

δðφÞ þ
ffiffiffi
6

p
− ϵ1=2

�
2

−
ffiffiffi
6

p
ð

ffiffiffi
6

p
− 2ϵ1=2Þ þOðϵÞ: ðB19Þ

A numerical scan of the full expressions for ε and η over the
entire field range reveals that both parameters are always of
Oð1Þ or larger and, hence, always too large for slow-roll
inflation. Similarly as in the case of a near-canonical Kähler
potential, we do not expect that radiative corrections could
improve this situation. We, therefore, conclude that, assum-
ing an approximate shift symmetry along the real axis in the
Kähler potential, inflation based on the full Polonyi super-
potential is unfortunately not an option.

3. Approximate shift symmetry along
the imaginary axis

Finally, let us examine what happens if we replace the
approximate shift symmetry along the real axis by an
approximate shift symmetry along the imaginary axis. As
we will see shortly, in this case, we find a stationary point at
hφi ¼ 0, similarly as in Sec. II D. For that reason, our
analysis in this section will resemble the discussion in
Sec. II D much more closely than our analysis in the
previous section. But, first things first. Now, we supplement
the Polonyi potential by a Kähler potential of the following
form:

W ¼ μ2Φþ w;

K ¼ 1

2
ðΦþ Φ†Þ2 − ϵ

2
ðΦ − Φ†Þ2 þOðϵ2;M−2

Pl Þ: ðB20Þ

The (not canonically normalized) inflaton field ~φ and the
(not canonically normalized) sinflaton field ~σ then corre-
spond to the imaginary and the real part of the complex
scalar ~ϕ ⊂ Φ, respectively,
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~ϕ ¼ 1ffiffiffi
2

p ð ~σ þ i ~φÞ; ðB21Þ

As in the previous section, the canonically normalized
fields φ and σ are related to ~φ and ~σ as follows:

φ ¼ ð1þ ϵÞ1=2 ~φ; σ ¼ ð1þ ϵÞ1=2 ~σ: ðB22Þ
Now we find a stationary point at a Planckian value of the
sinflaton field rather than the inflaton field,

hφi¼ 0; hσi¼ ð1þ ϵÞ1=2
�
1−

ffiffiffi
3

p
ffiffiffi
2

p ð1þ ϵÞ1=2
�
MPl: ðB23Þ

The vacuum energy density at this stationary point van-
ishes, once w takes the following value,

w0 ¼ −
� ffiffiffi

2
p

−
ffiffiffi
3

p

2
ð1þ ϵÞ1=2

�
μ2MPl: ðB24Þ

We then obtain for the gravitino mass as well as for the
inflaton mass around this stationary point,

m3=2 ¼
1ffiffiffi
2

p exp

�
1

2ð1þ ϵÞ
hσi2
M2

Pl

�
μ2

MPl
;

m2
φ ¼

�
4 − 2

ffiffiffi
3

p �
2

1þ ϵ

�
3=2

�
m2

3=2: ðB25Þ

None of the above quantities diverges in the limit of an
exact shift symmetry. In contrast to the previous section, the
limit ϵ → 0, therefore, does not take us out of the physical
regime. At the same time, independent of whether ϵ is
exactly zero or just small, ϵ ≪ 1, we find that the inflaton
direction in field space turns out to be tachyonic, m2

φ < 0.
The stationary point at φ ¼ 0, therefore, does not represent
the global minimum of the scalar potential. Instead, the
scalar potential is either unbounded from below (for ϵ ¼ 0)
or it exhibits a global AdS vacuum (for ϵ ≠ 0) at a large
inflaton field value φmin ∝ MPl=ϵ. It is obvious that the
former case does not represent a viable setting for inflation.
For this reason, we shall focus on the latter case in the
following and argue that in this case, too, inflation cannot
be successfully realized. Here, our argument will closely
follow the discussion in Sec. II D. First, let us consider the
scalar potential for the inflaton field φ with the sinflaton
field σ being fixed at σ ¼ hσi,

VðφÞ ¼ exp

�
ϵ

1þ ϵ

φ2

M2
Pl

��
1

2
m2

φφ
2 þ λφ

4!
φ4

�
;

λφ ¼ 48ϵ2

ð1þ ϵÞ3
m2

3=2

M2
Pl

: ðB26Þ

We assume that the shift symmetry the Kähler potential
in Eq. (B20) is only slightly broken, ϵ ≪ 61=3 − 1, so that
m2

φ < 0, and we assume that the potential is not
unbounded from below, ϵ ≠ 0, so that λφ > 0. Under
these assumptions, the inflaton potential exhibits a global
AdS vacuum at

φmin ¼
�
1þ ϵ

ϵ

�
1=2

½ð1þ a2Þ1=2 − ð1 − aÞ�1=2MPl;

a ¼ −
ϵ

1þ ϵ

6

λφ

m2
φ

M2
Pl

: ðB27Þ

At this field value, the scalar potential takes the following
value:

Vmin ¼ − exp½ð1þ a2Þ1=2 − ð1 − aÞ�½ð1þ a2Þ1=2 − 1�

×
4

1þ ϵ
m2

3=2M
2
Pl; ðB28Þ

which represents the vacuum energy density in the global
AdS minimum. Similarly as in Sec. II D, we may hope
that there might be a chance to lift this AdS vacuum by
radiative corrections. But as it turns out, this attempt to
stabilize the inflaton potential fails for the same reason as
in Sec. II D. Within the parameter ranges of interest, jϵj ≲
10−0.5 and λ=η≲ 10−0.5, we always find a hierarchy
among the critical field value φc and the position of
the AdS vacuum, φc=φmin ≲ 0.1. The quadratic radiative
corrections close to the origin, therefore, fail to stabilize
the inflaton potential all the way up to φ ¼ φmin. In
consequence of that, we always end up with a local
minimum in between φc and φmin. Inflation taking place
in the logarithmic part of the effective potential then
always “gets stuck” and the inflaton has no chance of
reaching the Minkowski vacuum at the origin (see also
our discussion in Sec. II D).
This completes our argument that inflation based on the

Polonyi superpotentialW ¼ μ2Φþ w—with the constantw
being set to its final value w ¼ w0 already from the very
beginning—works neither for a near-canonical nor for an
approximately shift-symmetric Kähler potential. It is this
conclusion that leads us to resort to studying inflation in
combination with late-time R symmetry breaking in the
main text. And indeed, successful Polonyi inflation turns
out to be feasible, once w vanishes during inflation.
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