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We consider the HZ associated production at the 14 TeV LHC in the littlest Higgs model (LHM) and
study the corrections of the transverse momentum resummation and threshold resummation at the next-to-
leading logarithmic (NLL) accuracy and the fixed-order prediction at the QCD next-to-leading order (NLO)
including the contribution from the one-loop-induced gg-fusion channel. The QCD NLOþ NLL effects on
the integrated cross section and the distributions of transverse momentum and invariant mass of the HZ
system for the HZ production in the LHM are discussed. The distributions of transverse momentum and
invariant mass of the HZ system are evaluated by means of the transverse momentum resummation and
threshold resummation, respectively. We estimate their scale uncertainties and find that the predictions
obtained at the QCD NLOþ NLL accuracy are much more reliable than those using the pure NLO
approach. We see also that the relative deviation between the results in the LHM and the standard model is
considerably reduced by the resummation effects, but still observable.
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I. INTRODUCTION

Since the Higgs boson discovery at the CERN Large
Hadron Collider (LHC) in 2012[1,2], establishing the
properties of the Higgs boson, especially its couplings to
the standard model (SM) particles, has been one of the
primary missions of the current LHC run. Furthermore, the
so-called naturalness problem is still a haunting nightmare
and is the driving force for new physics beyond the SM.
The littlest Higgs model (LHM) is a prominent realiza-

tion of the little Higgs mechanism, which is proposed to
ameliorate the fine-tuning problem [3–5]. In the LHM, a
global SUð5Þ symmetry and a locally gauged subgroup
G1 ⊗ G2 ¼ ½SUð2Þ1 ⊗ Uð1Þ1� ⊗ ½SUð2Þ2 ⊗ Uð1Þ2� are
introduced. The global symmetry SUð5Þ is broken into
its subgroup SOð5Þ at the scale f. In the meantime, the
local gauge symmetry ½SUð2Þ ⊗ Uð1Þ�2 is broken into its
diagonal subgroup SUð2ÞL ⊗ Uð1ÞY spontaneously, which
is identified as the SM electroweak gauge group. It is well
known that the SM gauge bosons and the top quark
contribute quadratic divergent terms to the Higgs boson
mass. In the LHM, several heavy gauge bosons (W�

H, ZH,
and AH) and one heavy vectorlike quark (T) are introduced
to cancel these quadratic divergences at the one-loop level.
These additional heavy particles might exhibit signatures at
the LHC.
The associatedHZ production is one of themost important

Higgs production channels at hadron colliders, and it is a
direct process to investigate the HZZ coupling. There have
already been thorough efforts for precise predictions of

the pp → HZ þ X process. The next-to-leading-order
(NLO) QCD and electroweak (EW) corrections have been
calculated in Refs. [6–8]. The next-to-next-to-leading order
(NNLO) QCD corrections also have been performed in
Refs. [9,10].
However, the fixed-order calculation is reliable only

when all the scales are of the same order of magnitude. At
the phase space boundaries, for example, when the HZ
system is produced with small pT;HZ or with invariant mass
approaching the partonic center-of-mass energy, i.e.,
z ¼ M2

HZ=ŝ ∼ 1, the coefficients of the perturbative expan-
sion in αs are enhanced by powers of large logarithms
lnmðM2

HZ=p
2
T;HZÞ or lnmð1 − zÞ=ð1 − zÞ, which spoil the

convergence of the fixed-order predictions. In order to
obtain reliable results at the boundaries of the phase space,
these large logarithms need to be resummed. The transverse
momentum resummation technique [11–13] is proposed
for the summation of the large logarithms of the type
lnmðM2

HZ=p
2
T;HZÞ, and the threshold resummation tech-

nique [14–16] for the summation of the large logarithms
of the type lnmð1 − zÞ=ð1 − zÞ.
The transverse momentum resummation and the thresh-

old resummation effects for HZ production at the LHC in
the SM were presented in Refs. [17,18]. The calculation for
the NNLO QCD corrections to the SM Higgs boson
production in association with a Z-boson at hadron
colliders has been implemented by O. Brein et al. [9].
They find that the contribution from the lowest order gg-
fusion channel at the LHC is more important than the other
QCD NNLO corrections toHZ production. The QCD NLO
calculation of the HZ production at the LHC within the
framework of the LHM was provided in our previous work
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[19], where the effects of the LHM up to the QCD NLO
from the qq annihilation channel were investigated, but the
contribution from the gg-fusion channel was absent.
In this work, we study the effects of the littlest Higgs

model on theHZ production at the QCDNLO and the next-
to-leading-logarithmic (NLL) level including the lowest
contribution from the gg-fusion channel. We organize the
paper as follows. In Sec. II, we give a glance at the LHM
theory. In Sec. III, we briefly describe the leading order
(LO) and the QCD NLO calculation strategy, and reca-
pitulate the well-known formalism of the transverse
momentum resummation and the threshold resummation.
The numerical analyses and discussions are presented in
Sec. IV, where some numerical results of the integrated
cross section and differential cross section by adopting the
transverse momentum resummation and the threshold
resummation are provided. Finally, a short summary is
given. The related Feynman rules for the coupling vertices
in the LHM are collected in the appendix.

II. BRIEF REVIEW OF THE LHM

The LHM is based on an SUð5Þ=SOð5Þ nonlinear sigma
model. The vacuum expectation value (VEV) breaks the
global SUð5Þ symmetry into its subgroup SOð5Þ and at the
same time breaks the local gauge symmetry ½SUð2Þ1 ⊗
Uð1Þ1� ⊗ ½SUð2Þ2 ⊗ Uð1Þ2� into its diagonal subgroup
SUð2ÞL ⊗ Uð1ÞY , which is identified as the electroweak
gauge group in the SM. The gauge fields W0μ and B0μ
associated with the broken local gauge symmetries and the
SM gauge fields can be expressed as follows:

Wμ ¼ sWμ
1 þ cWμ

2; W0μ ¼ −cWμ
1 þ sWμ

2; ð2:1Þ

Bμ ¼ s0Bμ
1 þ c0Bμ

2; B0μ ¼ −c0Bμ
1 þ s0Bμ

2; ð2:2Þ

where s ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c2

p
, s0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − c02

p
, and c, c0 are given by

c ¼ g1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g21 þ g22

p ; c0 ¼ g01ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g021 þ g022

p : ð2:3Þ

At the scale f, the SM gauge bosons remain massless,
while the heavy gauge bosons acquire masses of order f.
The W and B are identified as the SM gauge bosons, with
couplings of g ¼ g1s ¼ g2c and g0 ¼ g01s

0 ¼ g02c
0. The

electroweak symmetry breaking gives the masses for the
SM gauge bosons and induces further mixing between
the light and heavy gauge bosons. We denote the light
gauge boson mass eigenstates asW�

L , ZL, and AL (i.e.,W�,
Z, and γ) and the new heavy gauge boson mass eigenstates
as W�

H, ZH, and AH. The masses of these gauge bosons to
the order of v2=f2 are given by [20]

M2
W� ¼M2

W�
L
¼ m2

W

�
1−

v2

f2

�1
6
þ 1

4
ðc2 − s2Þ2

�
þ 4

v02

v2

�
;

M2
Z ¼M2

ZL
¼ m2

Z

�
1−

v2

f2

�
1

6
þ 1

4
ðc2 − s2Þ2

þ 5

4
ðc02 − s02Þ2 − χ2

2

��
;

M2
γ ¼ 0; ð2:4Þ

M2
W�

H
¼ m2

W

	
f2

s2c2v2
− 1



;

M2
ZH

¼ m2
ZC

2
W

	
f2

s2c2v2
− 1 −

χHS2W
s02c02C2

W



;

M2
AH

¼ m2
ZS

2
W

	
f2

5s02c02v2
− 1þ χHC2

W

4s2c2S2W



; ð2:5Þ

with

χ¼ 4fv0

v2
; χH ¼ 5SWCW

2

scs0c0ðc2s02þ s2c02Þ
5C2

Ws
02c02−S2Ws

2c2
; ð2:6Þ

where mZ ¼ gv=ð2CWÞ, CW ¼ cos θW ¼ mw
mz
, θW is the

Weinberg angle, and v0 and v are the VEVs of the scalar
SUð2ÞL triplet and doublet, respectively.

III. CALCULATION SETUP

In this section, we present the configuration of the
calculation. First, we give a quick overlook of the LO
and the NLO calculations, then recapitulate formulism
about the transverse momentum resummation and the
threshold resummation at the NLL accuracy, for which
we refer to Refs. [21,22]. We denote the inclusive hard-
scattering HZ production process in hadronic collisions as

AðPAÞ þ BðPBÞ → Hðp3Þ þ Zðp4Þ þ X; ð3:1Þ

whereH and Z with four-momenta p3 and p4 are produced
by a collision of the two protons A and B with four-
momenta PA and PB separately. X denotes the hadronic
remnant of the collision.

A. LO and NLO calculations

At the Born level, the HZ system is produced through

qðp1Þ þ qðp2Þ → Hðp3Þ þ Zðp4Þ; ðq ¼ u; d; c; s; bÞ;
ð3:2Þ

where p1 and p2 denote the four-momenta of incoming
partons. Our calculation shows that the relative difference
between the integrated cross sections obtained by adopting
mb ¼ 4.25 GeV and mb ¼ 0 GeV is less than 0.01% for
HZ production at the 14 TeV LHC. That is because of the
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smallness of the bottom-quark density in the proton
compared with other light quarks. Thus we ignore all
the quark masses of the u, d, c, s, and b quark in our
calculations. It can be estimated that the LO cross section
of the subprocess (3.2) is of order α2ew. From the
Feynman diagram of the LO subprocesses in Fig. 1,
we can see that the cross section for qq → HZ in the
LHM contains potential resonant contributions due to the
diagrams with exchange of heavy gauge bosons, ZH or
AH. To dispose of the singularities due to these reso-
nances, the decay widths of ZH and AH are introduced.
We adopt the unitary gauge, and the other calculation
details can be found in Ref. [19].
Our total NLO QCD correction includes the pure NLO

QCD correction and the additional contribution from the
one-loop-induced gg-fusion channel, where the pure NLO
QCD correction to the pp → qq → HZ þ X process
consists of the following contributions: the virtual cor-
rections and the corresponding renormalization counter-
terms, the real gluon and real light-quark emission
corrections, and the contributions of parton distribution
function (PDF) counterterms that absorb part of the
collinear singularities of the real gluon and real quark
contributions. We use the dimensional regularization
method to regularize both the ultraviolet (UV) and the
infrared (IR) singularities and adopt the modified min-
imal substraction (MS) renormalization scheme. To sub-
tract the IR singularities arising from the real gluon
emission contributions, we adopt the two cutoff phase
space slicing method [23]. The four-momentum of the
emitted gluon is denoted as p5. An arbitrary soft cutoff δs
is introduced to split the phase space of the
real gluon emission subprocess into two parts, the soft
gluon region (E5 ≤ δs

ffiffiffî
s

p
=2) and the hard gluon region

(E5 > δs
ffiffiffî
s

p
=2). In addition, another cutoff δc is intro-

duced to separate the hard gluon region into a hard
collinear (HC) region (ŝ15 or ŝ25 ≤ δcŝ) and a hard
noncollinear (HC) region (ŝ15 and ŝ25 > δcŝ) where
ŝij ¼ ðpi þ pjÞ2. The real light-quark emission subpro-
cesses are treated similarly.
We also adopt the dipole subtraction [24] methods to

deal with the IR singularities, and find perfect agreement
between the two results. We also checked the NLO QCD

corrected total cross section for the HZ production in the
SM by comparing the results obtained using our programs
and MadGraph package [25] separately, and the two
calculations agree with each other very well.
Although the cross section at the lowest order for the

loop-induced gluon-gluon fusion subprocess gg → HZ is
of α2ewα2s order, of which αs is an order higher than the QCD
NLO contribution from the qq → HZ subprocess, the
former contribution is non-negligible due to the high
luminosity of the gluon at the LHC. From Ref. [9] we
know also that with MH ¼ 125 GeV, the NNLO QCD
correction to the Drell-Yan channel qq → HZ at the 14 TeV
LHC increases the K factor by a mere 1%, while the K-
factor enhancement from the gg → HZ channel is about
10%. Consequently, we include the lowest contribution
from the gg → HZ subprocess within the SM and the LHM
in the QCD corrected total cross sections and kinematic
distributions for the pp → HZ þ X process, but ignore the
other QCD NNLO corrections. The additional Feynman
diagrams in the LHM are plotted in Fig. 2 except for the
analogical diagrams in the SM. In the additional one-loop
diagrams in the framework of the LHM there is included
the internal heavy gauge boson (AH, ZH) and the top quark
partner T. The total one-loop amplitude M1−loop

gg is IR and
UV finite. The detailed calculation of the gluon-gluon-
induced contribution is similar to the analogical evaluation
in Ref. [26]. We checked the total cross section for the
pp → gg → HZ þ X process in the SM at the 14 TeV LHC
by using our programs and MadGraph separately, and find
the results agree with each other.

B. Resummation formalisms

We denoteM and pT as the invariant mass and transverse
momentum of the HZ system, respectively. By means of
the QCD factorization theorem, the inclusive double-
differential cross section for the pp → HZ þ X process
can be written as [21]

M2
d2σAB

dM2dp2
T
ðτÞ

¼
X
ab

Z
1

0

dxadxbdzfa=Aðxa; μ2FÞfb=Bðxb; μ2FÞδ

×

	
z −

τ

xaxb



½zdσ̂abðz;M2; p2

T; μ
2
FÞ�; ð3:3Þ

where pa;b ¼ xa;bPA;B, fa=Pðx; μ2FÞ (a ¼ u, d, c, s, b) is the
PDF of proton, which describes the probability to find a
parton a with momentum fraction xa in proton P at the
factorization scale μF. σ̂ab is the partonic cross section. τ ¼
M2=S (S is the hadronic center-of-mass energy squared)
and z ¼ M2=ŝ (ŝ is the partonic center-of-mass energy
squared). We define the Mellin moments of the quantities
F ¼ σAB, σ̂ab, fa=A and fb=B through the Mellin transform

FIG. 1. The LO Feynman diagram for the partonic process
qq̄ → HZ in the LHM, where V¼Z;ZH;AH , and q¼u, d, c, s, b.
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FðNÞ ¼
Z

1

0

yN−1FðyÞdy; ð3:4Þ

with y ¼ τ; z; xa, and xb, respectively. We can rewrite the
differential cross section Eq. (3.3) in Mellin N space as

M2
d2σAB

dM2dp2
T
ðN − 1Þ

¼
X
ab

fa=AðN; μ2FÞfb=BðN; μ2FÞσ̂abðN;M2; p2
T; μ

2
F; μ

2
RÞ:

ð3:5Þ

Under the form of Eq. (3.5), we can carry out the
resummations of the large logarithmic terms arising in
the small transverse momentum and/or the production
threshold regions up to all orders in αs effectively.

1. NLL transverse momentum resummation

In order to take resummation for the large logarithmic
contributions arising at small pT region, while not violating
the transverse momentum conservation, the transverse
momentum resummation procedure has to be achieved
in the impact-parameter space [12]. Therefore, a Bessel
transform should be applied. The partonic cross section at

NLL accuracy in Eq. (3.5) can then be expressed by
performing the inverse Bessel transform with respect to
the impact-parameter b as

σ̂NLLab ðN;M2; p2
T; μ

2
F; μ

2
RÞ ¼

Z
∞

0

db
b
2
J0ðbpTÞ

× σ̂NLLab ðN;M2; b2; μ2F; μ
2
RÞ;
ð3:6Þ

where J0 is the zeroth-order Bessel function. The impact-
parameter b and pT are conjugated variables. Up to the
NLL, the resummed partonic cross section in the ðN; bÞ
space can be expressed as [21]

σ̂NLLab ðN;M2; b2; μ2F; μ
2
RÞ

¼
X

a0;a00;b0;b00
Uð1Þ

a0aðN; 1=b2; μ2FÞUð1Þ
b0b

× ðN; 1=b2; μ2FÞCa00a0 ðN; 1=b2Þ
× Cb00b0 ðN; 1=b2ÞHa00b00 ðM2; μ2RÞ
× exp½Ga00b00 ðb2;M2; μ2RÞ�; ð3:7Þ

where Uð1Þ
a0a are evolution operator matrices that evolve the

PDFs from the scale μF to the scale 1=b with b ¼ beγE=2

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 2. The additional Feynman diagrams in the LHM of the gluon-gluon fusion gg → HZ subprocess, where VH ¼ ZH; AH,
V ¼ Z; ZH; AH , q ¼ u; d; c; s; t; b, and T represents the extra top quark partner introduced in the LHM. The SM-like Feynman diagrams
for the gg → HZ subprocess and the diagrams with exchanging of the external gluons are not shown.
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(γE is the Euler number).1 The hard function HabðM2; μ2RÞ
is independent of the impact parameter and can be
expanded in powers of αs. There are freedoms to separate
different contributions into various Hab, Gab, and Cab
functions, which reflects the choice of the resummation
scheme [11]. As recommended by Ref. [21], we choose the
“physical” resummation scheme where the function Hab is
free from any logarithmic terms and Gab and Cab are free
from any hard contributions, which means they are both
universal functions. At the NLL accuracy, the hard function
is expressed as

HabðM2; μ2RÞ ¼ σ̂ð0Þab ðM2Þ
�
1þ αs

2π
A0

�
; ð3:8Þ

where σ̂ð0Þab is the Born cross section and A0 is the IR-finite
part of the renormalized virtual contribution. The expres-
sion of A0 can be read out from

σ̂VabðM2; μ2RÞ ¼
αsðμ2RÞ
2π

	
4πμ2R
M2



ϵ Γð1 − ϵÞ
Γð1 − 2ϵÞ σ̂

ð0Þ
ab ðM2Þ

×

�
A−2

ϵ2
þA−1

ϵ
þA0

�
: ð3:9Þ

At the NLL accuracy, the universal functions Cab appearing
in Eq. (3.7) are expressed as

CabðN; μ2RÞ ¼ δab þ
αsðμ2RÞ
2π

�
π2

6
Caδab − γð1Þ;ϵab ðNÞ

�
;

ð3:10Þ
where the QCD color factors are Cq ¼ CF and Cg ¼ CA,

and γð1Þ;ϵab ðNÞ represent the Oðαs; ϵÞ parts of the Altarelli-
Parisi splitting kernels in Mellin space. As mentioned
above, the Sudakov form factor Gab in Eq. (3.7) is chosen
to be free from any hard contribution. At the NLL accuracy,
it can be expanded as [27,28]

Gabðb2;M2; μ2RÞ ¼ gð1Þab ðλÞ ln ðM2b2Þ þ gð2Þab

	
λ;
M2

μ2R



;

ð3:11Þ

where λ ¼ β0 ln ðM2b2Þαs=ð2πÞ. The explicit expressions
for Gab can be found in Ref. [21]. The first term in this
expansion collects the leading logarithmic contributions,

gð1Þab ðλÞ ¼
1

2λβ0
ðAð1Þ

a þ Að1Þ
b Þ½λþ lnð1 − λÞ�; ð3:12Þ

and the second term is the next-to-leading pieces
written as

gð2Þab ðλ;M2=μ2RÞ

¼ 1

2β0
½Bð1Þ

a þ Bð1Þ
b � lnð1 − λÞ

þ 1

2β0
½Að1Þ

a þ Að1Þ
b �

�
λ

1 − λ
þ lnð1 − λÞ

�
ln
M2

μ2R

þ β1
2β30

½Að1Þ
a þ Að1Þ

b �
�
λþ lnð1 − λÞ

1 − λ
þ 1

2
ln2ð1 − λÞ

�

−
1

2β20
½Að2Þ

a þ Að2Þ
b �

�
λ

1 − λ
þ lnð1 − λÞ

�
; ð3:13Þ

where the relevant coefficients of the resummation func-
tions Aa and Ba have been expressed as

Að1Þ
a ¼ 2Ca; Að2Þ

a ¼ 2Ca

�	
67

18
−
π2

6



CA −

5

9
Nf

�
;

Bð1Þ
q ¼ −3CF; Bð1Þ

g ¼ −2β0: ð3:14Þ

Here and in further expressions the associated one-loop
coefficient β0 and the two-loop coefficient β1 are defined by

β0 ¼
11

6
CA −

2

3
NfτR;

β1 ¼
1

6
½17C2

A − 5CANf − 3CFNf�; ð3:15Þ

where Nf active quark flavors CA ¼ 3, CF ¼ 4=3, and
τR ¼ 1=2.
In the interest of obtaining the resummed result in the

physical pT space, we adopt the minimal prescription of
Ref. [29] for the inverse Mellin transform and the pre-
scription presented in Ref. [30] for the inverse Bessel
transform.
In order to avoid double counting of the logarithmic

terms in QCD NLO and QCD NLL calculation and to
obtain faithful results in all kinematical regions, the
summation of the QCD NLO corrected distribution,
dσNLOAB =dpT , and QCD NLL resummed distribution,
dσNLLAB =dpT , have to be consistently subtracted by the
overlap part dσoverlapAB =dpT , i.e.,

dσNLOþNLL
AB

dpT
¼ dσNLOAB

dpT
þ dσNLLAB

dpT
−
dσoverlapAB

dpT
; ð3:16Þ

which we call the QCDNLOþ NLL corrected distribution.
In the above equation, the NLL resummed contribution
dσNLLAB =dpT is obtained after inserting Eq. (3.6) into
Eq. (3.5) and performing relevant integration and trans-
forms. The dσoverlapAB =dpT is obtained by expanding the
NLL resummed contribution to fixed order of αs.

1The introduction of eγE=2 is to simplify the algebraic
expression of G and the choice is purely conventional [11].
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2. NLL threshold resummation

In the threshold region, the partonic cross section in
Eq. (3.5) can be refactorized into an exponential form at
NLL accuracy as

σ̂NLLab ðN;M2; μ2F; μ
2
RÞ

¼
X
a0;b0

Uð1Þ
a0aðN;M2=N2; μ2FÞUð1Þ

b0bðN;M2=N2; μ2FÞ

× ~Ha0b0 ðM2; μ2RÞ exp½ ~Ga0b0 ðN2;M2; μ2RÞ�; ð3:17Þ

where the transverse momentum has been integrated over
and N ¼ NeγE . The one-loop approximation of the QCD

evolution operator Uð1Þ
ab drives the behavior of the parton-

into-parton density functions with the energy and encom-
passes collinear radiation [31]. The hard function ~Hab and
the Sudakov form factor ~Gab can be computed perturba-
tively. Recently we learned that Eq. (3.17) at the NLL
accuracy can be improved by applying the collinear
improvement procedure [22], which includes and resums
the subleading terms coming from the universal collinear
radiation of the initial state partons at the NLL [32–35].
In Eq. (3.17) we have already applied the collinear
improvement procedure [22]. The hard function ~Hab and
the Sudakov form factor ~Gab at the NLL accuracy are
expressed as

~HabðM2; μ2RÞ ¼ ~Hð0Þ
ab ðM2; μ2RÞ þ

αs
2π

~Hð1Þ
ab ðM2; μ2RÞ;

~GabðN;M2; μ2RÞ ¼ ~gð1Þab ðλÞ lnN þ ~gð2Þab

	
λ;
M2

μ2R



; ð3:18Þ

where λ ¼ β0 lnNαs=ð2πÞ. The LO and NLO parts of the
Hab function read

~Hð0Þ
ab ðM2;μ2RÞ¼ σ̂ð0Þab ðM2Þ;

~Hð1Þ
ab ðM2;μ2RÞ¼ σ̂ð0Þab ðM2Þ

�
A0þ

π2

6
ðAð1Þ

a þAð1Þ
b Þ

�
: ð3:19Þ

The arguments of the leading and next-to-leading loga-
rithmic contributions to the Sudakov form factor ~Gab
depend, in addition to the reduced Mellin variable, on
the one-loop coefficient of the QCD beta function β0 which
is given as in Eq. (3.15).
The coefficients ~gð1Þab and ~gð2Þab of the function ~Gab in

Eq. (3.18) include the resummations of the leading and
next-to-leading logarithmic contributions from soft and
collinear radiations. In the MS renormalization scheme,
they are explicitly given by [22]

~gð1Þab ðλÞ ¼
1

2λβ0
½Að1Þ

a þ Að1Þ
b �½2λþ lnð1 − 2λÞ�; ð3:20Þ

~gð2Þab

	
λ;
M2

μ2R



¼ −

1

2β20
½Að2Þ

a þ Að2Þ
b �½2λþ lnð1 − 2λÞ�

þ 1

β0
½Bð1Þ

a þ Bð1Þ
b � lnð1 − 2λÞ

þ 1

2β0
½Að1Þ

a þ Að1Þ
b �½2λþ lnð1 − 2λÞ� lnM

2

μ2R

þ β1
2β30

½Að1Þ
a þ Að1Þ

b �

×

�
2λþ lnð1 − 2λÞ þ 1

2
ln2ð1 − 2λÞ

�
:

ð3:21Þ

There the relevant coefficients of the resummation func-
tions Aa and Ba are already expressed in Eq. (3.14).
To obtain results in the invariant mass space, the inverse

Mellin transform needs to be applied to Eq. (3.16). We still
choose the minimal prescription in Ref. [29] for the inverse
Mellin transform. In analogy to the QCD NLOþ NLL
corrected transverse momentum distribution, the QCD
NLOþ NLL corrected invariant mass distribution is
obtained as

dσNLOþNLL
AB

dM
¼ dσNLOAB

dM
þ dσNLLAB

dM
−
dσoverlapAB

dM
: ð3:22Þ

In the above equation, the NLL resummed contribution
dσNLLAB =dM is obtained by performing the integration over
pT for Eq. (3.5), inserting Eq. (3.17) into Eq. (3.5),
and performing inverse Mellin transform. dσoverlapAB =dM is
obtained by expanding the NLL resummed contribution to
the order of αs. From Eq. (3.22) we can also obtain the
QCD NLOþ NLL corrected total cross section after
performing the integration over M.

IV. NUMERICAL ANALYSIS

A. Input parameters

The input parameters in the numerical calculations are as
follows. The q quarks (q ¼ u, d, c, s, b) are taken as
massless. We used the Gμ scheme for the fine-structure
constant, i.e., the electromagnetic coupling constant α is
derived from the Fermi coupling constant αGμ

¼ ffiffiffi
2

p
GμM2

W

ð1 −M2
W=M

2
ZÞ=π. The SM parameters are taken as [36]

MW ¼ 80.385 GeV; MZ ¼ 91.1876 GeV;

Mt ¼ 173.21 GeV; Gμ ¼ 1.1663787 × 10−5 GeV−2:

ð4:1Þ
The light neutral Higgs mass is taken as

MH ¼ 125 GeV, and the Weinberg mixing angle in the
SM is obtained from S2W ¼ 1 −M2

W=M
2
Z. The vacuum

expectation value of the Higgs doublet is chosen as
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v ¼ 246 GeV. The CT10 and CT10nlo PDFs are adopted
in the LO and NLO=NLOþ NLL calculations, respec-
tively. The strong coupling constant αs provided by the
CT10 PDFs [37] is used in the calculation. To make
theoretical predictions for integrated cross sections, we
take three distinct value sets for the LHM parameters
considering the constraints of the electroweak precision
data on LHM parameters [38,39]. We fix χ ¼ 0.5, R ¼ 1,
and the other input LHM parameters are chosen repre-
sentatively in three parameter cases, in order to show the
effects of these parameters. Namely, (1) case A, c ¼ 0.5,
c0 ¼ 0.22, and f ¼ 4 TeV; (2) case B, c ¼ 0.3, c0 ¼ 0.3,
and f ¼ 4.5 TeV; (3) case C, c ¼ 0.8, c0 ¼ 0.4, and
f ¼ 5 TeV. This analysis provides us crucial information
to test the experimental possibility for the HZ production
process in the LHM context. The corresponding heavy
gauge bosons and the T-even partner of the top quark have
masses MZH

¼ 3024.1 GeV, MAH
¼ 1462.5 GeV, and

MT ¼ 5632.8 GeV for case A; MZH
¼ 5147.5 GeV,

MAH
¼ 1232.7 GeV, and MT ¼ 6337.0 GeV for case B;

and MZH
¼ 3406.1 GeV, MAH

¼ 1068.5 GeV, and MT ¼
7041.1 GeV for case C.

B. Total cross section

We include the one-loop-induced gg-fusion channel
contribution in the QCD corrected integrated cross sections
in both the SM and LHM. The QCD NLOþ NLL
corrected total cross section is obtained by performing
the integration for Eq. (3.22) over HZ invariant mass M,
and combining with the one-loop-induced gg-fusion chan-
nel contribution. For simplicity we set the factorization and
renormalization scales being equal (μR ¼ μF ¼ μ) and in
the total cross section calculation we fix the scale μ as the
central value of μ0 ¼ MZ þMH if there is no other state-
ment. We list the LO, QCD NLO, NLOþ NLL corrected
total cross sections, and the contributions from the gg-
fusion partonic process for the HZ production with the
three LHM parameter cases at the 14 TeV LHC in Table I.
We can see from the table that the gg-fusion contribution is
numerically relevant in the predicted cross section, even
more important than the NLL resummation effect in the
QCD NLOþ NLL calculation. In further calculations and
analyses we fix case A values for c, c0, and f parameters.

The LO, QCD NLO, and NLOþ NLL corrected inte-
grated cross sections for the HZ production in the LHM at
the 14 TeV LHC as the functions of the factorization/
renormalization scale are depicted in Fig. 3, where the scale
μ varies from 0.2 to 5μ0. The dotted curve is for the LO
cross section, the dashed curve is for the NLO QCD
corrected cross section, and the solid curve is for the
QCD NLOþ NLL corrected cross section. Normally for a
process involving pure electroweak interaction subpro-
cesses at the LO, one does not expect a significant scale
uncertainty improvement at the QCD NLO. But Fig. 3
shows clearly that the NLO QCD correction reduces
obviously the scale dependence of the total cross section,
and the QCD NLOþ NLL correction improves the scale
uncertainty even better than the pure QCD NLO correction.
Except for the theoretical scale uncertainty, there is

another uncertainty of the PDF, which is associated with
the experimental data adopted to build the PDF fits. The
PDF uncertainty is normally not improved by high-order
evaluation procedure. The CT10 collaboration uses the
Hessian method to estimate the PDF experimental uncer-
tainty by propagating the experimental uncertainties on the
fitted data and leads to the production of orthogonal
eigenvector PDF sets corresponding to a 90% confidence
level [40]. The PDF errors on the cross section are then
obtained by the following formulas,

ΔσPDFþ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

½max ðσþi − σ0; σ−i − σ0; 0Þ�2
s

; ð4:2Þ

ΔσPDF− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

½max ðσ0 − σþi; σ0 − σ−i; 0Þ�2
s

; ð4:3Þ

TABLE I. The LO, QCD NLO, and NLOþ NLL corrected
total cross sections predicted in the LHM for the HZ production
at the

ffiffiffi
S

p ¼ 14 TeV LHC. The contribution from the gg-fusion
subprocess is also listed independently. Case A, case B, and case
C represent different LHM parameter sets.

Cross section (pb) σLO σNLO σNLOþNLL σgg

Case A 0.807(1) 1.007(1) 1.001(1) 0.072(1)
Case B 0.808(1) 1.010(1) 1.004(1) 0.072(1)
Case C 0.787(1) 0.989(1) 0.984(1) 0.072(1)

FIG. 3. The factorization/renormalization scale dependence of
the total cross sections of the HZ production in the LHM at the
14 TeV LHC. The dotted, dashed, and solid curves are for the LO,
NLO, and NLOþ NLL, respectively.
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where the number of eigenvector directions in the CT10 fit
is n ¼ 26, and σ0 is the cross section calculated with the
best fit PDF set. In our calculations of the PDF uncertainty,
we use CT10 PDF sets to figure out the PDF uncertainty as
the deviation range of the total cross section.
We list in Table II the integrated total cross sections and

the corresponding errors in the LHM and the SM at the
14 TeV LHC. There we list also the cross sections
contributed by the one-loop-induced gg-fusion partonic
process, σggLHM and σggSM. In the table, the upper and lower
errors mean the upper and lower limitations from the scale
error and the PDF error, respectively. The scale error
limitations are defined by varying μ from 0.5 to 2μ0.
The central values represent the total cross section with
μ ¼ μ0. From the data for both the LHM and SM in the
table we can see again that the NLO QCD correction
reduces the total theoretical error of the total cross section,
and the total error is further reduced by including both the
QCD NLO and NLL corrections. These numerical results
demonstrate that the scale uncertainty of the QCD NLO
corrected total cross section is less than the LO one, while
the QCD NLOþ NLL correction reduces more signifi-
cantly the scale uncertainty than the QCD NLO correction.
Furthermore, we find that the scale uncertainty including
the QCD NLO correction is mainly contributed by the
lowest order gg-fusion subprocess. If discarding the gg-
fusion correction, the QCD NLO and NLOþ NLL scale
uncertainties would be decreased further. In this table the
LO, QCD NLO, and NLOþ NLL relative deviations (δ)
of the LHM predicted total cross sections from the
corresponding ones in the SM are defined as

δLO ¼ σLHMLO − σSMLO
σSMLO

;

δNLO ¼ σLHMNLO − σSMNLO
σSMNLO

;

δNLOþNLL ¼ σLHMNLOþNLL − σSMNLOþNLL

σSMNLOþNLL

: ð4:4Þ

The relative deviations listed in the table show that the
QCD NLO correction reduces δLO obviously, while the
QCD NLOþ NLL correction decreases the NLO relative

deviation slightly. We conclude that (1) the theoretical
scaleþ PDF uncertainty of the total cross section can be
improved by including both the QCD NLO correction and
the NLL threshold resummation; (2) the QCD NLOþ NLL
correction decreases the relative deviation from the SM
total cross sections obviously, but the LHM effect in theHZ
production process is still observable after taking the QCD
NLOþ NLL effects into account in precision study.
In Table III we list the total cross sections in the LHM

and the corresponding relative deviations after applying a
lower cut on HZ invariant mass (Mcut) to demonstrate the
way to promote the possibility for finding LHM evidence.
The table shows that in the range of 250 GeV ≤ Mcut ≤
400 GeV the QCD NLO corrections to the LO cross
sections are always positive and the NLOþ NLL correc-
tions reduce slightly the corresponding NLO corrected
ones. The results of δ in Table III show that the LO, NLO,
and NLOþ NLL relative deviations [defined in Eq. (4.4)]
increase rapidly as the low cut Mcut goes up. For example,
we can read out that the relative deviation δNLOþNLL is
about 12.4% for Mcut ¼ 250 GeV and increases to 71.2%
for Mcut ¼ 400 GeV. That means the new physics sign of
the LHM becomes more obvious if we take a large enough
lower cut on the HZ invariant mass.

TABLE II. The LO, QCD NLO, and NLOþ NLL corrected total cross sections and the relative deviations of the
cross sections predicted in the LHM from that in the SM for the HZ production at the

ffiffiffi
S

p ¼ 14 TeV LHC. The
contribution from the gg-fusion subprocess is also listed independently. For each result, the central values represent
the total cross section obtained by taking μ ¼ μ0; the first error is due to scale uncertainty in the scale range of
0.5μ0 ≤ μ ≤ 2μ0, and the second error is due to the PDF uncertainty.

Cross section LO NLO NLOþ NLL gg fusion

σLHM (pb) 0.807þ0.018þ0.023
−0.022−0.025 1.007þ0.023þ0.027

−0.016−0.027 1.001þ0.018þ0.027
−0.016−0.027 0.072þ0.019þ0.003

−0.014−0.003
σSM (pb) 0.731þ0.023þ0.021

−0.029−0.022 0.927þ0.023þ0.023
−0.014−0.026 0.924þ0.018þ0.023

−0.016−0.026 0.073þ0.019þ0.003
−0.014−0.003

δ 10.4% 8.6% 8.3% −1.5%

TABLE III. The LO, QCD NLO, and NLOþ NLL corrected
total cross sections and the corresponding relative deviations for
the pp → HZ þ X process at the 14 TeV LHC with different
values of the lower cut (Mcut) on the invariant mass.

McutðGeVÞ
Cross section 250 300 350 400

σLHMLO (fb) 587.66(5) 354.13(1) 241.68(1) 184.49(2)

σSMLO (fb) 506.96(3) 266.65(1) 150.56(1) 91.06(1)

δLO 15.9% 32.8% 60.5% 102.6%

σLHMNLO (fb) 752.8(8) 474.9(4) 328.3(3) 238.6(4)

σSMNLO (fb) 666.5(7) 380.9(1) 229.8(1) 137.3(2)

δNLO 12.9% 24.7% 42.9% 73.8%

σLHMNLOþNLL (fb) 746.6(8) 469.8(4) 323.6(3) 234.0(4)

σSMNLOþNLL (fb) 664.3(7) 379.8(1) 229.0(1) 136.7(2)

δNLOþNLL 12.4% 23.7% 41.3% 71.2%
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C. Transverse momentum distribution

Now we turn to the transverse momentum distribution
of the HZ production within the LHM in the NLOþ NLL
QCD. Here we denote the transverse momentum of the
HZ system simply as pT . As we know, the ratio of
σgg=σNLO is only about 7% as shown in Table I, and the
one-loop-induced gg-fusion channel does not provide
contribution to the pT distribution due to the conservation
of the transverse momentum of the final HZ system.
Therefore, it is justified to consider only the contribution
from the dominant qq annihilation channel with the
NLOþ NLL QCD accuracy in the following discussion
of pT distribution. The NLOþ NLL QCD corrected pT
distribution is obtained by using Eq. (3.16). In calculating
the pT distributions of the HZ system, we identify the
unphysical scale μ ¼ μF ¼ μR with μ0 ¼ MZ þMH unless
there is another statement. In Fig. 4 we show the QCD
NLO corrected, the NLL resummed, the overlapped part,
and the QCD NLOþ NLL corrected HZ transverse
momentum distributions in the LHM at the 14 TeV
LHC. We can see that the overlapped pT distribution
and the QCD NLO corrected distributions are in good
agreement particularly in the low pT region, but as pT
becomes larger, the discrepancy between the two results
becomes more obvious; for example, at pT ¼ 100 GeV
the discrepancy reaches 16%. We see also that the QCD
NLO corrected distribution shows divergence tendency at
the low pT region, while the QCD NLOþ NLL corrected
distribution exhibits a finite and physical behavior having
a peak around 5 GeV in low pT area. From this respect, we
can conclude that after taking account of the resummation
effects the pT distribution will be more reliable.

To estimate the scale uncertainty of differential cross
sections, we define the scale uncertainty in a usual way
from the variation of the factorization/renormalization
scale, where the scale varies around the central value μ0 ¼
MZ þMH from 1

2
to 2μ0. In Fig. 5 we plot the transverse

momentum distributions of the HZ production with the
corresponding scale uncertainties within the LHM at the
14 TeV LHC. It shows that the QCD NLO corrected
distribution exhibits a much wider band than the QCD
NLOþ NLL corrected distribution, which means that the
QCD NLOþ NLL corrected distribution owns a better
theoretical scale uncertainty. In Table IV, we list the results
for the relative scale uncertainty for some typical pT with
its definition as

ηðpTÞ ¼
max ½ dσdpT

ðμÞ� −min ½ dσdpT
ðμÞ�

dσ
dpT

ðμ0Þ
;

	
μ ∈

�
1

2
μ0; 2μ0

�

: ð4:5Þ

From the table, we can read out ηðpT ¼ 15 GeVÞ ¼ 18%
and 3% and ηðpT ¼ 50 GeVÞ ¼ 21% and 8% for the
QCD NLO and NLOþ NLL corrected distributions,
respectively. The relative scale uncertainty for the QCD
NLO corrected pT distribution is always larger than the
QCD NLOþ NLL corrected pT distributions in the listed
range. We conclude that the differential cross section of pT
obtained at the QCD NLOþ NLL accuracy is much more
reliable than those at QCD NLO.
To describe the relative deviation of the pT distributions

in the LHM from the corresponding SM predictions, we
define

FIG. 4. The transverse momentum distributions of the HZ
production within the LHM at the 14 TeV LHC. The QCD NLO
corrected distribution is drawn with a blue dashed curve, the
overlapped distribution with a red dotted curve, the QCD NLL
resummed distribution with a red dashed curve, and the QCD
NLOþ NLL corrected distribution with a black full curve.

FIG. 5. The HZ transverse momentum distributions and the
related scale uncertainty of the HZ production in the LHM at the
14 TeV LHC. The QCD NLO corrected pT distribution range is
shown as the gray band and the QCD NLOþ NLL corrected
distribution range as the red band with the scale varying in the
range of ½1

2
μ0; 2μ0�.
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δðpTÞ ¼
ð dσ
dpT

Þ
LHM

− ð dσ
dpT

Þ
SM

ð dσ
dpT

Þ
SM

: ð4:6Þ

In Fig. 6, the upper panel provides the HZ transverse
momentum distributions for the HZ production at the
14 TeV LHC in the LHM and the SM, and the lower
panel shows the corresponding relative deviations δðpTÞ.
We see from the figure that the QCD NLO corrected pT
distribution in the LHM is larger than that in the SM and
both curves share a similar shape. From the upper panel of
Fig. 6, we find that after resummation procedure, the
NLOþ NLL corrected pT distributions in both the LHM
and the SM are convergent in the low pT range as expected.
We can see clearly from the lower panel of Fig. 6 that the
resummation correction exerts an obvious effect on the
HZ transverse momentum distribution. We can read out
from the figure that the relative deviation of the QCD
NLO corrected distribution varies from 12% to 32% with
the increment of pT in the plotted range, while after
resummation δðpTÞ is evidently reduced to the range of

5% ∼ 20%. That implies that the LHM effect on the HZ
transverse momentum distribution could be even harder
to measure, but still observable if taking into account
the QCD NLOþ NLL correction in precision search for
the LHM.

D. Invariant mass distribution

In this subsection we discuss the threshold resummation
effect on the invariant mass distribution. For the spectra in
the invariant mass M, we fix the scale to be the invariant
mass of the HZ system (μ ¼ μF ¼ μR ¼ MZH), and denote
the HZ-system invariant mass as M for simplicity in the
following invariant mass distribution analysis. The QCD
NLOþ NLL corrected invariant mass distribution is
obtained via Eq. (3.22) and added together with the
contribution from the one-loop-induced gg-fusion channel.
We plot the LO and NLOþ NLL corrected HZ invariant
mass distributions for the HZ invariant mass in the LHM
and SM at the 14 TeV LHC in Fig. 7, and the corresponding
contributions from the one-loop-induced gg-fusion sub-
process are also plotted independently. We can see that the
contributions from the gg-fusion channel are much smaller
than the corresponding differential cross sections, and their
contributing proportions are less than 10% in the plotted
range. The figure shows that with the increment of M, the
LO and NLOþ NLL corrected differential cross sections in
both the LHM and the SM decrease significantly except in
the vicinities of the two resonances for the LHM distribu-
tions, i.e., at M ∼ 1500 GeV and M ∼ 3000 GeV, respec-
tively. Furthermore, the difference between the invariant
mass distributions in the LHM and the SM becomes
considerably larger, particularly in the two resonant
regions, as the invariant mass M grows up.

FIG. 6. The HZ transverse momentum distributions for the
pp → HZ þ X process in the SM and the LHM (in the upper
panel) and the corresponding relative deviations (in the lower
panel) at the 14 TeV LHC.

TABLE IV. The relative scale uncertainties of the pT distribu-
tion of the pp → HZ þ X process in the LHM at the 14 TeV
LHC for some typical values of pT . The relative scale uncertainty
is defined in Eq. (4.5).

pTðGeVÞ ηNLOð%Þ ηNLOþNLLð%Þ
5 17 8
10 17 6
15 18 3
20 18 3
50 21 8
100 21 19

FIG. 7. The LO and NLOþ NLL corrected HZ invariant
mass distributions for the HZ production in the SM and the
LHM at the 14 TeV LHC. The contribution parts from the gg-
fusion subprocess among the NLOþ NLL corrected distributions
are shown independently.
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In Fig. 8 we depict the HZ invariant mass distributions
with the scale uncertainty ranges for the HZ production in
the LHM at the 14 TeV LHC, where we define the scale
uncertainty range of the differential cross section of HZ
invariant mass by μ varying in the range of μ ∈ ½1

2
M; 2M�.

In the figure the LO distribution is drawn as the gray band,
the NLO distribution as the red band, and the NLOþ NLL
corrected distribution as the blue band. Each of the HZ
invariant mass distribution bands exhibits two peaks at
the positions around M ∼ 1500 GeV and M ∼ 3000 GeV,
respectively. Those peaks come from the diagrams for the
pp → HZ þ X process in the LHM that involve exchange
of the AH and ZH boson, separately. The uncertainty of the
LO distribution is evidently the largest as expected, and the
uncertainty of the NLOþ NLL corrected results is reduced
visibly compared with the NLO distribution, especially in
the large HZ invariant mass region. From this respect, we
can conclude that in studying the HZ invariant mass
distribution for the pp → HZ þ X process, the NLOþ
NLL corrected prediction is more reliable than both the
LO and the NLO corrected ones.

V. SUMMARY

In this paper, we calculate the QCD NLOþ NLL effects
on the HZ production in the LHM at the 14 TeV LHC
including the contribution from the one-loop-induced gg-
fusion channel. We provide the total cross sections, the
transverse momentum, and invariant mass distributions for
HZ associated production by combining the QCD NLO
corrections obtained by means of perturbative QCD with
the resummation of the large logarithmic contributions

arising in the small pT area and the region close to the
production threshold. We estimate the theoretical errors for
the predictions of the total cross section and kinematic
distributions, and find that the QCD NLOþ NLL correc-
tion improves the scale uncertainties of the LO and pure
QCD NLO corrected results. Therefore, we believe that the
QCD NLOþ NLL corrected predictions are more reliable
than the LO and NLO ones. We also show the deviations
between the LHM and the SM predictions by providing the
transverse momentum and invariant mass distributions in
both models up to the QCD NLOþ NLL precision. We see
from the distributions that the QCD NLOþ NLL correc-
tion obviously suppresses the relative deviation between
the LHM and the SM predictions in the HZ production
process, but the LHM signature at the QCD NLOþ NLL
accuracy would be still observable in precision searches.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural
Science Foundation of China (Grants No. 11275190,
No. 11375171, No. 11405173, and No. 11535002).

APPENDIX RELATED LHM COUPLINGS

The Feynman rules for the coupling vertices in unitary
gauge within the LHM related to our work are presented in
this appendix. The couplings of the neutral gauge bosons to
quarks are expressed in the form as iγμðgLPL þ gRPRÞ
where PL;R ≡ 1

2
ð1 ∓ γ5Þ. The explicit expressions for gL

and gR are given below.

gZUU
L ¼ −

e
2SWCW

�
1 −
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2
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4

15
−
2

3
c02


��
; ðA4Þ

FIG. 8. The LO, QCD NLO, and NLOþ NLL corrected HZ
invariant mass distributions with the scale varying in the range of
½1
2
M; 2M� for the HZ production in the LHM at the 14 TeV LHC.

The LO invariant mass distribution range is shown as the gray
band, the QCD NLO corrected invariant mass distribution range
is shown as the red band, and the QCD NLOþ NLL corrected
invariant mass distribution range is shown as the blue band.
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2s0c0CW
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gZHUU
L ¼ ec
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L ¼ −
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R ¼ 0; ðA7Þ
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gZHtt
L ¼ ec
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5

R2

ð1þ R2Þ


; ðA13Þ

gZHTT
L ¼ Oðv2=f2Þ; gZHTT

R ¼ Oðv2=f2Þ: ðA14Þ

The couplings between the Higgs boson and quarks are
expressed as

gHtt ¼ −i
Mt

v

�
1 −

s20
2
þ v
f
s0ffiffiffi
2

p −
2

3

v2

f2

þ v2

f2
R2

1þ R2

	
1þ R2

1þ R2


�
; ðA15Þ

gHTt ¼ Mt

v
v
f

	
1þ R2

1þ R2



PR þ

	
Mt

v
R



PL; ðA16Þ

gHtT ¼ −
Mt

v
v
f

	
1þ R2

1þ R2



PL −

	
Mt

v
R



PR; ðA17Þ

gHTT ¼ −i
Mt

v
v
f
R

	
1þ R2

1þ R2



; ðA18Þ

where s0 ¼
ffiffi
2

p
2

v
f χ, R is input parameters introduced in the

LHM, and the mass of the extra top quark partner is
expressed asMT ¼ Mtf

v
1þR2

R . U andD represent the up-type
(U ¼ u, c, t) and down-type (D ¼ d, s, b) quarks,
respectively. The couplings between neutral gauge boson
and Higgs boson are expressed as

gHZZ ¼ ie2vgμν
2S2WC

2
W

�
1 −

v2

f2

�
1

3
−
3

4
χ2 þ 1

2
ðc2 − s2Þ2

þ 5

2
ðc02 − s02Þ2

��
; ðA19Þ

gHZAH ¼ −
ie2vgμν
2SWC2

W

c02 − s02

2s0c0
;

gHZZH ¼ −
ie2vgμν
2S2WCW

c2 − s2

2sc
: ðA20Þ

The partial decay widths for VH → ff and VH → ZH
(VHðVH ¼ ZH; AHÞ) can be expressed as [41]

ΓðVH → ffÞ ¼ Nc

12π
½ðgVHff

v Þ2ð1þ 2rfÞ

þ ðgVHff
a Þ2ð1 − 4rfÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4rf

p
MVH

;

ðA21Þ

ΓðVH → ZHÞ ¼ ðgVHÞ2
192π

ffiffiffi
λ

p
½ð1þ rZ − rHÞ2 þ 8rZ�MVH

;

ðA22Þ

where Nc ¼ 3 is the color factor, gVHff
v ¼

ðgVHff
R þ gVHff

L Þ=2, gVHff
a ¼ ðgVHff

R − gVHff
L Þ=2, gAH ¼

g0ðc02 − s02Þ=ð2c0s0Þ, gZH ¼ gðc2 − s2Þ=ð2csÞ, λ ¼ 1þ
r2Z þ r2H − 2rZ − 2rH − 2rZrH, and ri ¼ X2

i =M
2
VH

ðXi ¼
mf;MZ;MHÞ. Since in our investigated parameter space
the VH → TT and VH → TtðTtÞ decays are kinematically
forbidden, we assume that the total decay width ΓVH

ðVH ¼
ZH; AHÞ is the sum of ΓðVH → ffÞ and ΓðVH → ZHÞ,
where f ¼ u; d; c; s; b; t, e; μ; τ; νe; νμ; ντ.
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