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We present the CoLoRFulNNLO method to compute higher order radiative corrections to jet cross
sections in perturbative QCD. We apply our method to the computation of event shape observables in
electron-positron collisions at NNLO accuracy and validate our code by comparing our predictions to
previous results in the literature. We also calculate for the first time jet cone energy fraction at NNLO.
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I. INTRODUCTION

The strong coupling αs is one of the most important
parameters of the standard model. A clean environment for
determining αs is the study of event shape distributions in
electron-positron collisions. Particularly well suited for this
task are quantities related to three-jet events, as the leading
term in a perturbative description of such observables is
already proportional to the strong coupling. Accordingly,
three-jet event shapes were measured extensively, especially
at LEP [1–4]. The precision of experimental measurements
calls for an equally precise theoretical description of these
quantities. Because the strong interactions occur only in the
final state, nonperturbative QCD corrections are restricted to
hadronization and power corrections. These corrections can
be determined either by extracting them from data by
comparison to Monte Carlo predictions or by using analytic
models. Hence, the precision of the theoretical predictions is
mostly limited by the truncation of the perturbative expan-
sion in the strong coupling.
Current state-of-the-art computations include next-to-

next-to-leading order (NNLO) predictions for the three-jet
event shapes of thrust, heavy jet mass, total and wide jet
broadening, C-parameter and the two-to-three jet transition
variable y23 [5,6], as well as oblateness and energy-energy
correlation [7]. Next-to-leading order (NLO) predictions

for the production of up to five jets [8–12] (and up to seven
jets in the leading color approximation [13]) are also
known. Moreover, logarithmically enhanced contributions
to event shapes can be resummed at up to next-to-next-to-
leading logarithmic (NNLL) accuracy [14–18] and even at
next-to-next-to-next-to-leading logarithmic (N3LL) accu-
racy for some observables [19,20].
In addition to its phenomenological relevance, three-jet

production in electron-positron collisions is also an ideal
testing ground for developing general tools and techniques
for higher-order calculations in QCD. The straightforward
evaluation of radiative corrections in QCD is hampered by
the presence of infrared singularities in intermediate stages of
the calculation which cancel in the final physical results for
these observables. Nevertheless, they must be regularized,
and their cancellation has to be made explicit before any
numerical computation can be performed. This turns out to
be rather involved for fully differential cross sections at
NNLO, and constructing a method to regularize infrared
divergences has been an ongoing task for many years
[21–53].
In this paper we present a general subtraction scheme to

compute fully differential predictions at NNLO accuracy,
calledCoLoRFulNNLO(CompletelyLocal subtRactions for
Fully differential predictions at NNLO accuracy) [41–51].
The method uses the known universal factorization proper-
ties of QCD matrix elements in soft and collinear limits
[54–62] to construct completely local subtraction terms
which regularize infrared singularities associated with unre-
solved real emission.Virtual contributions are rendered finite
by adding back the subtractions after integration and sum-
mation over the phase space and quantum numbers (color
and flavor) of the unresolved emission. We have worked out
the method completely for processes with a colorless initial
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state and involving any number of colored massless particles
in the final state. We validate our method and code by
computing NNLO corrections to three-jet event shape
variables and comparing our predictions to those available
in the literature [5,6]. We also present here for the first time
the computation of the jet cone energy fraction (JCEF) at
NNLO accuracy. We note that the CoLoRFulNNLOmethod
has already been successfully applied to compute NNLO
corrections to differential distributions describing the decay
of a Higgs boson into a pair of b-quarks [63], as well as to the
computation of oblateness and energy-energy correlation in
eþe− → 3 jet production [7].
The paper is structured as follows: After introducing our

notation and conventions in Sec. II, we present the
CoLoRFulNNLOmethod in Sec. III. In Sec. IV we describe
the application of the general framework to the specific case
of three-jet production. In particular, we show that the double
virtual contribution is free of singularities. Our predictions
for event shape observables follow in Sec. V. We draw our
conclusions and give our outlook in Sec. VI.

II. NOTATIONS AND CONVENTIONS

A. Phase space and kinematics

The phase space measure in d ¼ 4 − 2ϵ dimensions for a
total incoming momentum Qμ and n massless outgoing
particles reads

dϕnðQ2Þ≡ dϕnðpμ
1;…; pμ

n;QμÞ

¼
�Yn
i¼1

ddpi

ð2πÞd−1 δþðp
2
i Þ
�
ð2πÞd

× δðdÞðpμ
1 þ � � � þ pμ

n −QμÞ: ð2:1Þ

Throughout the paper, we use yik to denote twice the dot-
product of two momenta, scaled by the total momentum
squared Q2. For example,

yik ¼
2pi · pk

Q2
¼ sik

Q2
and yiQ ¼ 2pi ·Q

Q2
: ð2:2Þ

We also introduce the combination

Yik;Q ¼ yik
yiQykQ

ð2:3Þ

for later convenience.

B. Matrix elements

We use the color and spin space notation of ref. [64]
where the renormalized matrix element for a given process
with n particles in the final state, jMni, is a vector in color
and spin space, normalized such that the squared matrix
element summed over colors and spins is given by

jMnj2 ¼ hMnjMni: ð2:4Þ

The renormalized matrix element has the following formal
loop expansion

jMni ¼ jMð0Þ
n i þ jMð1Þ

n i þ jMð2Þ
n i þ � � � ; ð2:5Þ

where the superscript denotes the number of loops. We
always consider matrix elements computed in conventional
dimensional regularization (CDR) with MS subtraction.
We introduce the following notation to indicate color-
correlated squared matrix elements (obtained by the inser-

tionof color chargeoperators between hMðl1Þ
n j and jMðl2Þ

n i):

hMðl1Þ
n jMðl2Þ

n i ⊗ Ti · Tk ¼ hMðl1Þ
n jTi · TkjMðl2Þ

n i;
hMðl1Þ

n jMðl2Þ
n i ⊗ fTi · Tk;Tj · Tlg

¼ hMðl1Þ
n jfTi · Tk;Tj · TlgjMðl2Þ

n i: ð2:6Þ

The color charge algebra for the product
P

aðTiÞaðTkÞa ≡
Ti · Tk is

Ti · Tk ¼ Tk · Ti; if i ≠ k and T2
i ¼ Ci; ð2:7Þ

where Ci is the quadratic Casimir operator in the represen-
tation of particle i. We use the customary normalization
TR ¼ 1=2, and so CA ¼ 2TRNc ¼ Nc in the adjoint and
CF ¼ TRðN2

c − 1Þ=Nc ¼ ðN2
c − 1Þ=ð2NcÞ in the fundamen-

tal representation.

C. Ultraviolet renormalization

In massless QCD renormalized amplitudes jMni are
obtained from the corresponding unrenormalized ampli-
tudes jAni by replacing the bare coupling αBs with the
dimensionless renormalized coupling αs ≡ αsðμÞ computed
in the MS scheme and evaluated at the renormalization
scale μ,

αBs μ
2ϵ
0 S

MS
ϵ ¼ αsμ

2ϵ

�
1−

αs
4π

β0
ϵ
þ
�
αs
4π

�
2
�
β20
ϵ2

−
β1
2ϵ

�
þOðα3s Þ

�
;

ð2:8Þ

where

β0 ¼
11CA

3
−
4nfTR

3
;

β1 ¼
34

3
C2
A −

20

3
CATRnf − 4CFTRnf ; ð2:9Þ

and SMS
ϵ ¼ ð4πÞϵ expð−ϵγEÞ corresponds to MS subtrac-

tion, with γE ¼ −Γ0ð1Þ the Euler–Mascheroni constant.
Although the factor ð4πÞϵ expð−ϵγEÞ is often abbreviated as
Sϵ in the literature, we reserve the latter to denote
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Sϵ ¼
ð4πÞϵ

Γð1 − ϵÞ ; ð2:10Þ

which emerges in the integration of the angular part of the
phase space in d ¼ 4 − 2ϵ dimensions. If the loop expan-
sion of the unrenormalized amplitude is written as

jAmi ¼ ð4παsBÞ
q
2

�
jAð0Þ

m i þ αBs
4π

jAð1Þ
m i

þ
�
αBs
4π

�
2

jAð2Þ
m i þ Oðα3s Þ

�
; ð2:11Þ

(with q ¼ m − 2, where m is the number of massless
final-state partons in the Born process), then using the
substitution in Eq. (2.8), the relations between the renor-
malized and the unrenormalized amplitudes are given as
follows:

jMð0Þ
m i ¼ Cðμ; μ0; q; ϵÞjAð0Þ

m i; ð2:12Þ

jMð1Þ
m i ¼ Cðμ; μ0; q; ϵÞ

αs
4π

��
μ2

μ20

�
ϵ

ðSMS
ϵ Þ−1jAð1Þ

m i

−
q
2

β0
ϵ
jAð0Þ

m i
�

ð2:13Þ

and

jMð2Þ
m i ¼ Cðμ; μ0; q; ϵÞ

�
αs
4π

�
2
��

μ2

μ20

�
2ϵ

ðSMS
ϵ Þ−2jAð2Þ

m i

−
qþ 2

2

β0
ϵ

�
μ2

μ20

�
ϵ

ðSMS
ϵ Þ−1jAð1Þ

m i

þ q
2

�
qþ 2

4

β20
ϵ2

−
β1
ϵ

�
jAð0Þ

m i
�
; ð2:14Þ

where

Cðμ; μ0; q; ϵÞ ¼ ð4παsÞ
q
2

�
μ2

μ20

�q
2
ϵ

ðSMS
ϵ Þ−q

2: ð2:15Þ

The role of the factors of ðμ2=μ20Þϵ is to change the
regularization scale to the renormalization scale so that
the renormalized amplitudes in Eqs. (2.12)–(2.14) only
depend on μ. Furthermore, after the IR poles are canceled in
a fixed order computation, we may set ϵ ¼ 0; therefore, the

factors of ðμ2=μ20Þϵ and SMS
ϵ inCðμ; μ0; q; ϵÞ do not give any

contribution, so we may perform the replacement

Cðμ; μ0; q; ϵÞ → ð4παsÞ
q
2: ð2:16Þ

III. JET PRODUCTION IN CoLoRFulNNLO

We consider the production of m jets from a
colorless initial state as in, e.g., Higgs boson decay or

electron-positron annihilation into hadrons. In perturbative
QCD the cross section for this process is given by an
expansion in powers of the strong coupling αs. At NNLO
accuracy we retain the first three terms in this expansion

σ ¼ σLO þ σNLO þ σNNLO þ � � � : ð3:1Þ

The leading order contribution is simply given by the
integral of the fully differential Born cross section dσBm ofm
final-state partons over the available m-parton phase space
defined by the observable J, (often called jet function)

σLO½J� ¼
Z
m
dσBmJm: ð3:2Þ

Here and in the following, Jm denotes the value of the
infrared-safe observable J evaluated on a final state with m
partons.

A. The NLO Correction

The NLO correction is a sum of the real radiation and
one-loop virtual terms,

σNLO½J� ¼
Z
mþ1

dσRmþ1Jmþ1 þ
Z
m
dσVmJm; ð3:3Þ

both divergent in four dimensions. These two contributions
can be made finite simultaneously by subtracting and
adding back a suitably defined approximate cross section
dσR;A1

mþ1,

σNLO½J� ¼
Z
mþ1

½dσRmþ1Jmþ1 − dσR;A1

mþ1Jm�d¼4

þ
Z
m

�
dσVm þ

Z
1

dσR;A1

mþ1

�
d¼4

Jm: ð3:4Þ

Several prescriptions are available for the explicit con-
struction of the approximate cross section [42,47,64–66].
Specifically in the CoLoRFulNNLO framework, it is
written as

dσR;A1

mþ1 ¼
1

2s
dϕmþ1ðQ2ÞA1jMð0Þ

mþ1j2; ð3:5Þ

where the approximate matrix element for processes with
mþ 1 partons in the final state is given by [42,43],

A1jMð0Þ
mþ1j2¼

Xmþ1

r¼1

2
4Xmþ1

i¼1
i≠r

1

2
Cð0;0Þir −

�
Sð0;0Þ
r −

Xmþ1

i¼1
i≠r

CirS
ð0;0Þ
r

�#
:

ð3:6Þ

On the right-hand side of Eq. (3.6), Cð0;0Þir and Sð0;0Þ
r denote

counterterms which regularize the ~pijj~pr collinear limit and
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the pμ
r → 0 soft limit in arbitrary dimensions. The role of

the CirS
ð0;0Þ
r soft-collinear counterterm is to make sure that

no double subtraction takes place in the overlapping soft-
collinear phase space region. These counterterms were all
defined explicitly in Refs. [42,43]. In our convention the

indices of Cð0;0Þir are not ordered, Cð0;0Þir ¼ Cð0;0Þri . As the sums
in Eq. (3.6) over i and r are likewise not ordered, the factor
of 1

2
is needed so that we count each collinear limit precisely

once. Finally, the meaning of the superscript ðl1;l2Þ is the
following: The corresponding counterterm involves the
product of an l1-loop unresolved kernel (an Altarelli–
Parisi splitting function or a soft eikonal current) with an
l2-loop squared matrix element (in color or spin space).
Specifically, (0,0) means that in these subtraction terms a
tree level collinear or soft function acts on a tree level
reduced matrix element. Such superscripts appear also for
other counterterms throughout the paper.
Importantly, the approximate matrix element in Eq. (3.6)

takes into account all color and spin correlations in infrared
limits, and hence, it is a completely local and fully
differential regulator of the real emission matrix element
over the mþ 1-particle phase space. The complete locality
of the subtraction is a necessary condition for the regular-
ized real contribution,

σNLOmþ1½J� ¼
Z
mþ1

½dσRmþ1Jmþ1 − dσR;A1

mþ1Jm�d¼4; ð3:7Þ

to be well defined in four dimensions. As pointed
out long ago [64], when the subtraction terms are not fully
local, for instance because spin correlations in gluon
decay are neglected, the evaluation of the differenceR
mþ1 ½dσRmþ1Jmþ1 − dσR;A1

mþ1Jm�d¼4
usually involves double

angular integrals of the type
R
1
−1 dðcos θÞ

R
2π
0 dϕ cosϕ=

ð1 − cos θÞ where ϕ is the azimuthal angle. These integrals
are ill defined. If their numerical integration is attempted,
one can obtain any answer whatsoever (including the
correct one) depending on the details of the integration
procedure. (The correct answer is obtained by performing
the integral analytically before going to four dimensions:R
1
−1 dðcos θÞsin−2ϵθ

R
2π
0 dϕsin−2ϵϕ cosϕ=ð1 − cos θÞ ¼ 0.)

Thus nonlocal subtractions alone are not sufficient to define
σNLOmþ1½J� correctly. Rather, the definition must be supple-
mented by the precise specification of an integration
procedure which must be shown to give the correct
numerical values for all integrals that are finite away from
d ¼ 4, but whose four-dimensional value is ill defined. As
in CoLoRFulNNLO, the subtractions are completely local,
Eq. (3.7) is well defined in four dimensions as it is and may
be computed with whatever numerical procedure is most
convenient. These remarks apply also to the regularized
double real and real-virtual cross sections in Eqs. (3.14) and
(3.15) which enter the NNLO correction.

Turning to the virtual contribution, the Kinoshita–Lee–
Nauenberg (KLN) theorem ensures that the integral of the
approximate cross section precisely cancels the divergences
of the virtual piece for infrared-safe observables, so adding
back what we have subtracted from the real correction, the
virtual contribution becomes finite as well. We have
performed the integration of the various subtraction terms
analytically in Ref. [42], and here, we only quote the result,
which can be written as,Z

1

dσR;A1

mþ1 ¼ dσBm ⊗ Ið0Þ1 ðfpgm; ϵÞ; ð3:8Þ

where the ⊗ product is defined in Eq. (2.6) and the
insertion operator is in general given by [42]1

Ið0Þ1 ðfpgm; ϵÞ ¼
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵXm
i¼1

"
Cð0Þ
1;i ðyiQ; ϵÞT2

i

þ
Xm
k¼1
k≠i

Sð0Þ;ði;kÞ1 ðYik;Q; ϵÞTi · Tk

#
: ð3:9Þ

The variables Qμ, yiQ and Yik;Q were defined in Sec. II A.

The kinematic functions Cð0Þ
1;i ðyiQ; ϵÞ and Sð0Þ;ði;kÞ1 ðYik;Q; ϵÞ

have been computed as Laurent expansions in ϵ in
Ref. [42]. They are needed up to finite terms in a
computation at NLO accuracy and up to Oðϵ2Þ in a
computation at NNLO accuracy. We present these kin-
ematic functions explicitly up to OðϵÞ in Appendix A,
which is sufficient for checking the cancellation of the ϵ-
poles at NNLO analytically. We note that there is no one-to-
one correspondence between the unintegrated subtraction
terms in Eq. (3.6) and the kinematic functions that appear in
Eq. (3.9). The latter are obtained from the former by
integrating over the unresolved momentum as well as
summing over all unobserved quantum numbers (color
and flavor) and organizing the result in color and flavor

space. Loosely speaking, the integrated form of Cð0Þir enters

Cð0Þ
1;i and that of S

ð0Þ
r enters Sð0Þ;ði;kÞ1 . We are, however, free to

assign the integrated form of CirS
ð0Þ
r to either of the

integrated counterterms. This final organization was per-
formed differently in Ref. [42] and in this paper. In

Ref. [42] we grouped the integrated form of CirS
ð0Þ
r into

Sð0Þ;ði;kÞ1 , while here we find it more convenient to group it

into Cð0Þ
1;i . Before moving on, let us present the universal

pole structure of Ið0Þ1 ðfpgm; ϵÞ for an arbitrary number m of
final-state partons:

1The expansion parameter in Ref. [42] was chosen αs=SMS
ϵ

implicitly, with the harmless factor 1=SMS
ϵ suppressed. For the

sake of clarity we reinstate the factor 1=SMS
ϵ here, as well as in all

other insertion operators in Eqs. (3.34), (3.35), (3.37) and (3.39).
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Ið0Þ1 ðfpgm;ϵÞ¼
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ

×
Xm
i¼1

�
−
1

ϵ2
Xm
k¼1
k≠i

Ti ·Tkþ
1

ϵ
γfi

�
y−ϵik þOðϵ0Þ:

ð3:10Þ

It is straightforward to check that the poles of this
expression coincide with those of the Iðfpg; ϵÞ operator
of Ref. [64], hence

R
1 dσ

R;A1

mþ1 as given in Eq. (3.8) correctly
cancels all ϵ-poles of the virtual cross section dσVm. Thus,
the regularized virtual contribution,

σNLOm ½J� ¼
Z
m

�
dσVm þ

Z
1

dσR;A1

mþ1

�
d¼4

Jm; ð3:11Þ

is finite and integrable in four dimensions.

B. The NNLO Correction

The NNLO correction to the cross section is a sum of
three contributions, the tree level double real radiation, the
one-loop plus a single radiation and the two-loop double
virtual terms,

σNNLO½J� ¼
Z
mþ2

dσRRmþ2Jmþ2 þ
Z
mþ1

dσRVmþ1Jmþ1

þ
Z
m
dσVVm Jm; ð3:12Þ

which are all divergent in four dimensions. In the
CoLoRFulNNLO method, we render these terms finite
by the rearrangement

σNNLO½J� ¼
Z
mþ2

dσNNLOmþ2 þ
Z
mþ1

dσNNLOmþ1 þ
Z
m
dσNNLOm ;

ð3:13Þ
where,

dσNNLOmþ2 ¼ fdσRRmþ2Jmþ2 − dσRR;A2

mþ2 Jm

− ½dσRR;A1

mþ2 Jmþ1 − dσRR;A12

mþ2 Jm�gd¼4; ð3:14Þ

dσNNLOmþ1 ¼
��

dσRVmþ1þ
Z
1

dσRR;A1

mþ2

�
Jmþ1

−
�
dσRV;A1

mþ1 þ
�Z

1

dσRR;A1

mþ2

�
A1

�
Jm

�
d¼4

; ð3:15Þ

dσNNLOm ¼
�
dσVVm þ

Z
2

�
dσRR;A2

mþ2 − dσRR;A12

mþ2

�

þ
Z
1

�
dσRV;A1

mþ1 þ
�Z

1

dσRR;A1

mþ2

�
A1

��
d¼4

Jm:

ð3:16Þ

The right-hand sides of Eqs. (3.14) and (3.15) are integrable
in four dimensions by construction [41,43,44], while the
integrability in four dimensions of Eq. (3.16) is ensured by
the KLN theorem.
Equation (3.14) includes the double real (RR) contribu-

tion that is singular whenever one or two partons become
unresolved. In order to regularize the two-parton singular-
ities, we subtract an approximate cross section,

dσRR;A2

mþ2 ¼ 1

2s
dϕmþ2ðQ2ÞA2jMð0Þ

mþ2j2; ð3:17Þ

where the double unresolved approximate matrix element
for processes with mþ 2 partons in the final state is [43]

A2jMð0Þ
mþ2j2¼

Xmþ2

r¼1

Xmþ2

s¼1

�Xmþ2

i¼1
i≠r;s

�
1

6
Cð0;0Þirs þ

Xmþ2

j¼1
j≠i;r;s

1

8
Cð0;0Þir;js

þ1

2

�
CSð0;0Þ

ir;s −CirsCS
ð0;0Þ
ir;s −

Xmþ2

j¼1
j≠i;r;s

Cir;jsCS
ð0;0Þ
ir;s

�

−CSir;sS
ð0;0Þ
rs −

1

2
CirsS

ð0;0Þ
rs þCirsCSir;sS

ð0;0Þ
rs

þ
Xmþ2

j¼1
j≠i;r;s

1

2
Cir;jsS

ð0;0Þ
rs

�
þ1

2
Sð0;0Þ
rs

�
: ð3:18Þ

The functions Cð0;0Þirs , Cð0;0Þir;js , CS
ð0;0Þ
ir;s and Sð0;0Þ

rs in Eq. (3.18)
are subtraction terms which regularize the ~pijj~prjj~ps triple
collinear, the ~pijj~pr, ~pjjj~ps double collinear, the ~pijj~pr,
pμ
s → 0 one collinear, one soft (collinear þ soft) and the

pμ
r → 0, pμ

s → 0 double soft limits. The rest of the counter-
terms appearing in Eq. (3.18) account for the double or
triple overlap of limits; hence, multiple subtractions are
avoided in overlapping double unresolved regions. The role
of each specific counterterm is suggested by the notation.

For instance, CirsCS
ð0;0Þ
ir;s accounts for the triple collinear

limit of the collinear þ soft counterterm, with the rest of the
counterterms having similar interpretations. All functions
appearing in Eq. (3.18) were defined explicitly in Ref. [43].
The factors of 1

6
, 1
8
, etc., in Eq. (3.18) appear so that each

limit is counted precisely once, since the collinear indices
of counterterms, and the sums over them are not ordered in
our convention.
After subtracting the double unresolved approximate

cross section, the difference

dσRRmþ2Jmþ2 − dσRR;A2

mþ2 Jm ð3:19Þ
is still singular in the single unresolved regions of phase
space. To regularize it, we also subtract

dσRR;A1

mþ2 ¼ 1

2s
dϕmþ2ðQ2ÞA1jMð0Þ

mþ2j2; ð3:20Þ
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where A1 has been defined in Eq. (3.6). To avoid
double subtraction in overlapping single and double
unresolved regions of phase space, we must also
consider

dσRR;A12

mþ2 ¼ 1

2s
dϕmþ2ðQ2ÞA12jMð0Þ

mþ2j2; ð3:21Þ

where the iterated single unresolved approximate matrix
element reads

A12jMð0Þ
mþ2j2

¼
Xmþ2

t¼1

�Xmþ2

k¼1
k≠t

1

2
CktA2jMð0Þ

mþ2j2

þ
�
StA2jMð0Þ

mþ2j2 −
Xmþ2

k¼1
k≠t

CktStA2jMð0Þ
mþ2j2

��
;

ð3:22Þ

with the three terms above given by [43],

CktA2¼
Xmþ2

r¼1
r≠k;t

�
CktC

ð0;0Þ
ktr þCktCS

ð0;0Þ
kt;r −CktCktrCS

ð0;0Þ
kt;r

−CktCrktS
ð0;0Þ
kt þ

Xmþ2

i¼1
i≠r;k;t

�
1

2
CktC

ð0;0Þ
ir;kt −CktCir;ktCS

ð0;0Þ
kt;r

��

þCktS
ð0;0Þ
kt ; ð3:23Þ

StA2 ¼
Xmþ2

r¼1
r≠t

�Xmþ2

i¼1
i≠r;t

�
1

2
ðStC

ð0;0Þ
irt þ StCS

ð0;0Þ
ir;t − StCirtCS

ð0;0Þ
ir;t Þ

− StCirtS
ð0;0Þ
rt − StCSir;tS

ð0;0Þ
rt þ StCirtCSir;tS

ð0;0Þ
rt

�

þ StS
ð0;0Þ
rt

�
; ð3:24Þ

CktStA2 ¼
Xmþ2

r¼1
r≠k;t

�
CktStC

ð0;0Þ
krt

þ
Xmþ2

i¼1
i≠r;k;t

�
1

2
CktStCS

ð0;0Þ
ir;t − CktStCSir;tS

ð0;0Þ
rt

�

− CktStCkrtS
ð0;0Þ
rt − CktStCrktS

ð0;0Þ
kt þ CktStS

ð0;0Þ
rt

�

þ CktStS
ð0;0Þ
kt : ð3:25Þ

The notation in Eqs. (3.23)–(3.25) above serves to suggest
the interpretation of the various terms. For instance,

CktC
ð0;0Þ
ktr in Eq. (3.23) accounts for the ~pkjj~pt single

collinear limit of the Cð0;0Þktr triple collinear counterterm,

while, for example, StC
ð0;0Þ
irt in Eq. (3.24) represents the

counterterm appropriate to the pμ
t → 0 soft limit of Cð0;0Þirt .

Clearly, A12jMð0Þ
mþ2j2 cancels the single unresolved singu-

larities of the double unresolved subtraction term

A2jMð0Þ
mþ2j2 by construction. Moreover, very importantly,

A12jMð0Þ
mþ2j2 cancels at the same time the double unre-

solved singularities of the single unresolved subtraction

termA1jMð0Þ
mþ2j2, as shown in Ref. [43]. Hence, the overlap

of single and double unresolved subtractions is properly
taken into account. All of the counterterms appearing in
Eqs. (3.23)–(3.25) were defined in Ref. [43] explicitly. As
before, the collinear indices and sums over them in
Eqs. (3.23)–(3.25) are not ordered, so factors of 1

2
appear

at various instances. The combination of terms appearing in
Eq. (3.14) was shown to be integrable in all kinematic
limits in Ref. [43]. Thus, the regularized double real
contribution to the m-jet cross section is finite and can
be computed numerically in four dimensions for any
infrared-safe observable.
Turning to Eq. (3.15), it describes the emission at

one loop of one additional parton, the real-virtual (RV)
contribution. In addition to explicit ϵ-poles coming
from the one-loop matrix element, the RV contribution
has kinematical singularities when the additional par-
ton becomes unresolved. The explicit poles are can-
celed by the integral of the single unresolved
subtraction term in the double real emission contribu-
tion to the full NNLO cross section, which is simply
given by Eqs. (3.8) and (3.9) after the obvious
replacement of m → mþ 1

Z
1

dσRR;A1

mþ2 ¼ dσRmþ1 ⊗ Ið0Þ1 ðfpgmþ1; ϵÞ: ð3:26Þ

As shown above in Eq. (3.10) the combination,

dσRVmþ1 þ
Z
1

dσRR;A1

mþ1 ð3:27Þ

is finite in ϵ. Nevertheless, Eq. (3.27) is still singular
in the single unresolved regions of phase space and
requires regularization. We achieve this by subtracting
two suitably defined approximate cross sections,
dσRV;A1

mþ1 and ðR1 dσRR;A1

mþ2 ÞA1 . First, we consider

dσRV;A1

mþ1 ¼ 1

2s
dϕmþ1ðQ2ÞA12ℜhMð0Þ

mþ1jMð1Þ
mþ1i; ð3:28Þ

which matches the kinematic singularity structure of
dσRVmþ1. The general definition of the real-virtual coun-
terterm is [44]
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A12ℜhMð0Þ
mþ1jMð1Þ

mþ1i

¼
Xmþ1

r¼1

�Xmþ1

i¼1
i≠r

1

2
Cð0;1Þir þ

�
Sð0;1Þ
r −

Xmþ1

i¼1
i≠r

CirS
ð0;1Þ
r

��

þ
Xmþ1

r¼1

�Xmþ1

i¼1
i≠r

1

2
Cð1;0Þir þ

�
Sð1;0Þ
r −

Xmþ1

i¼1
i≠r

CirS
ð1;0Þ
r

��
: ð3:29Þ

The basic organization of this subtraction in terms of
unresolved limits is identical to the tree level single unre-
solved counterterm in Eq. (3.6). However, in Eq. (3.29) we
have terms with tree level collinear or soft functions multi-
plying (in color or spin space) one-loop matrix elements
(those with the (0,1) superscript), as well as terms with one-
loop collinear or soft functions multiplying tree level matrix
elements (denotedwith the (1,0) superscript). This reflects the
structure of infrared factorization of one-loop QCD matrix
elements [59–62]. The functions appearing in Eq. (3.29) are
defined explicitly in Ref. [44].
Then, we consider the counterterm,�Z
1

dσRR;A1

mþ2

�
A1 ¼ 1

2s
dϕmþ1ðQ2ÞA1ðjMð0Þ

mþ1j2 ⊗ Ið0Þ1 Þ;

ð3:30Þ
which regularizes the kinematic singularities of

R
1 dσ

RR;A1

mþ2 .
This counterterm is given by [44]

A1ðjMð0Þ
mþ1j2 ⊗ Ið0Þ1 Þ

¼
Xmþ1

r¼1

�Xmþ1

i¼1
i≠r

1

2
Cð0;0⊗IÞ
ir þ

�
Sð0;0⊗IÞ
r −

Xmþ1

i¼1
i≠r

CirS
ð0;0⊗IÞ
r

��

þ
Xmþ1

r¼1

�Xmþ1

i¼1
i≠r

1

2
CR×ð0;0Þir þ

�
SR×ð0;0Þ
r −

Xmþ1

i¼1
i≠r

CirS
R×ð0;0Þ
r

��
:

ð3:31Þ

The structure of this subtraction in terms of unresolved
limits is again the same as the tree level single unresolved
counterterm in Eq. (3.6). However, we have two types of
terms for each limit, labeled by the different superscripts.
The reason is the following. This counterterm is con-
structed from factorization formulæ describing the behavior
of the product of a QCD squared matrix element times the

Ið0Þ1 insertion operator of Eq. (3.9) in the collinear and soft
limits. (The existence of a universal collinear factorization

formula for the product jMð0Þ
mþ1j2 ⊗ Ið0Þ1 is not guaranteed

by the factorization properties of QCD matrix elements.
The requirement that such a formula exists puts highly non-

trivial constraints on the form of Ið0Þ1 , i.e., on the specific
definition of the single unresolved approximate cross
section. See Sec. 4.1.1 of Ref. [44] for a discussion of
this point.) These factorization formulae were computed in
Ref. [44] and turn out to be sums of two pieces. Both pieces
involve the product of a tree level collinear or soft function
times a tree level matrix element. One piece is further

multiplied by the Ið0Þ1 insertion operator appropriate to the
reduced matrix element, while the other is multiplied
by a well-defined scalar (in color space) remainder function
R. The superscripts on the various terms in Eq. (3.31) are
meant to reflect this structure. The combination of terms
appearing in Eq. (3.15) is both free of ϵ-poles and
integrable in all kinematically singular limits [44].
Hence, the regularized real-virtual contribution to the m-
jet cross section is finite and can be computed numerically
in four dimensions for any infrared-safe observable.
Finally, the two-loop double virtual (VV) contribution to

the NNLO corrections appears in Eq. (3.16). The VV
contribution has explicit infrared poles that cancel against
the poles of the four integrated counterterms, which are
shown in Eq. (3.16). The integral of the real-virtual
counterterms [the last two terms of Eq. (3.16)] was
computed in Refs. [45,46,48] and can be written as

Z
1

dσRV;A1

mþ1 ¼ dσVm ⊗ Ið0Þ1 ðfpgm; ϵÞ þ dσBm ⊗ Ið1Þ1 ðfpgm; ϵÞ ð3:32Þ

and

Z
1

�Z
1

dσRR;A1

mþ2

�
A1 ¼ dσBm ⊗

�
1

2
fIð0Þ1 ðfpgm; ϵÞ; Ið0Þ1 ðfpgm; ϵÞg þ Ið0;0Þ1;1 ðfpgm; ϵÞ

�
: ð3:33Þ

The insertion operator Ið0Þ1 is given in Eq. (3.9), while Ið1Þ1 and Ið0;0Þ1;1 have the following color decompositions:

Ið1Þ1 ðfpgm; ϵÞ ¼
�
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ
�
2X

i

�
Cð1Þ
1;i ðyiQ; ϵÞCAT2

i þ
X
k≠i

Sð1Þ;ði;kÞ1 ðYik;Q; ϵÞCATiTk

þ
X
k≠i

X
l≠i;k

Sð1Þ;ði;k;lÞ1 ðYik;Q; Yil;Q; Ykl;Q; ϵÞ
X
a;b;c

fabcTa
i T

b
kT

c
l

�
ð3:34Þ
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and

Ið0;0Þ1;1 ðfpgm; ϵÞ ¼
�
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ
�
2X

i

�
Cð0;0Þ
1;1;i ðyiQ; ϵÞCAT2

i þ
X
k≠i

Sð0;0Þ;ði;kÞ1;1 ðYik;Q; ϵÞCATiTk

�
: ð3:35Þ

Again, there is no one-to-one correspondence between the unintegrated double unresolved subtraction terms in Eqs. (3.29)
and (3.31) and the kinematic functions that appear in Eqs. (3.34) and (3.35). The latter are obtained from the former after
integration over unresolved momenta and summation over unobserved colors and flavors. This remark applies also to the
rest of the insertion operators discussed below.
The integral of the iterated single unresolved counterterm [the third term of Eq. (3.16)] was evaluated in Ref. [49]

yielding the result Z
2

dσRR;A12

mþ2 ¼ dσBm ⊗ Ið0Þ12 ðfpgm; ϵÞ: ð3:36Þ

The insertion operator has five contributions according to the possible color structures,

Ið0Þ12 ðfpg; ϵÞ ¼
�
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ
�
2
�Xm

i¼1

�
Cð0Þ
12;iðyiQ; ϵÞT2

i þ
Xm
j¼1
j≠i

Cð0Þ
12;ijðyiQ; yjQ; Yij;Q; ϵÞT2

j

�
T2
i

þ
Xm
j;l¼1
l≠j

�
Sð0Þ;ðj;lÞ12 ðYjl;Q; ϵÞCA þ

Xm
i¼1

CSð0Þ;ðj;lÞ12;i ðyiQ; Yij;Q; Yil;Q; Yjl;Q; ϵÞT2
i

�
Tj · Tl

þ
Xm
i;k¼1;
k≠i

Xm
j;l¼1;
l≠j

Sð0Þ;ði;kÞðj;lÞ12 ðYik;Q; Yij;Q; Yil;Q; Yjk;Q; Ykl;Q; Yjl;Q; ϵÞfTi · Tk;Tj · Tlg
�
: ð3:37Þ

Finally, the integration of the collinear-type contributions to the double unresolved counterterm [the second term of
Eq. (3.16)] was performed in Ref. [50]. The soft-type contributions to the same integral were presented in Ref. [51]. We findZ

2

dσRR;A2

mþ2 ¼ dσBm ⊗ Ið0Þ2 ðfpgm; ϵÞ; ð3:38Þ

where the structure of the insertion operator Ið0Þ2 is identical to Ið0Þ12 in color space,

Ið0Þ2 ðfpg; ϵÞ ¼
�
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ
�
2
�Xm

i¼1

�
Cð0Þ
2;i ðyiQ; ϵÞT2

i þ
Xm
j¼1
j≠i

Cð0Þ
2;ijðyiQ; yjQ; Yij;Q; ϵÞT2

j

�
T2
i

þ
Xm
j;l¼1
l≠j

�
Sð0Þ;ðj;lÞ2 ðYjl;Q; ϵÞCA þ

Xm
i¼1

CSð0Þ;ðj;lÞ2;i ðyiQ; Yij;Q; Yil;Q; Yjl;Q; ϵÞT2
i

�
Tj · Tl

þ
Xm
i;k¼1;
k≠i

Xm
j;l¼1;
l≠j

Sð0Þ;ði;kÞðj;lÞ2 ðYik;Q; Yij;Q; Yil;Q; Yjk;Q; Ykl;Q; Yjl;Q; ϵÞfTi · Tk;Tj · Tlg
�
: ð3:39Þ

The kinematic functions entering the various insertion
operators in Eqs. (3.9), (3.34), (3.35), (3.37) and (3.39)
have been expanded in ϵ. The coefficients of the poles in
these Laurent expansions have been computed fully ana-
lytically. The resulting expressions are rather lengthy and
involve, in addition to logarithms, dilogarithms and trilo-
garithms of rational arguments in the variables yiQ and
Yjk;Q. For the finite parts, we computed analytically all
terms that diverge logarithmically on the boundaries of the
phase space (i.e., when yiQ → 0 and/or Yjk;Q → 0), while

the remaining regular contributions were computed numeri-
cally. We stress that our method is generic, and we can
construct counterterms for processes with an arbitrary
number m of jets in the final state. The only missing
ingredients are the corresponding two-loop matrix ele-
ments, and currently, only the two-loop matrix elements for
two and three-jet production are available. Since the poles
of all integrated counterterms are known analytically, we
can demonstrate explicitly that the regularized double
virtual contribution to the m-jet cross section is finite
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and free of ϵ-poles. For m ¼ 2, this was done in Ref. [63],
while the m ¼ 3 case is discussed in the next section.

IV. ELECTRON-POSITRON ANNIHILATION
INTO THREE JETS

We consider eþe− → 3 jet production through the
exchange of a photon or a Z boson of momentum Q in
the s channel. Through NNLO in QCD, this production
cross section receives contributions from the following
partonic subprocesses:

LO γ�=Z�ðQÞ→qðp1Þþqðp2Þþgðp3Þ Tree level
NLO γ�=Z�ðQÞ→qðp1Þþqðp2Þþgðp3Þþgðp4Þ Tree level

γ�=Z�ðQÞ→qðp1Þþqðp2Þþq0ðp3Þþq0ðp4Þ Tree level
γ�=Z�ðQÞ→qðp1Þþqðp2Þþqðp3Þþqðp4Þ Tree level
γ�=Z�ðQÞ→qðp1Þþqðp2Þþgðp3Þ One-loop

NNLO γ�=Z�ðQÞ→qðp1Þþqðp2Þþgðp3Þ
þgðp4Þþgðp5Þ

Tree level

γ�=Z�ðQÞ→qðp1Þþqðp2Þþq0ðp3Þ
þq0ðp4Þþgðp5Þ

Tree level

γ�=Z�ðQÞ→qðp1Þ
þqðp2Þþqðp3Þþqðp4Þþgðp5Þ

Tree level

γ�=Z�ðQÞ→qðp1Þþqðp2Þþgðp3Þþgðp4Þ One-loop
γ�=Z�ðQÞ→qðp1Þþqðp2Þþq0ðp3Þþq0ðp4Þ One-loop
γ�=Z�ðQÞ→qðp1Þþqðp2Þþqðp3Þþqðp4Þ One-loop
γ�=Z�ðQÞ→qðp1Þþqðp2Þþgðp3Þ Two-loop

where we show the four-momenta of the particles in
parentheses. The tree level matrix elements for the pro-
duction of five jets were first obtained in Refs. [67–69],
while the one-loop corrections to four-jet production have
been computed in Refs. [59,70–72]. The two-loop matrix
elements for γ�=Z� → qqg are also available both in
squared matrix element form [73] and as helicity ampli-
tudes [74]. In the CoLoRFulNNLO framework the sub-
traction terms correctly account for all spin and color
correlations in the various infrared limits. Hence, we also
need the three-parton and four-parton matrix elements
including color and/or spin correlations. When there are
only three partons in the final state, the color correlations
factorize completely [see Eq. (4.6)], so computing the
color-correlated three-parton matrix elements is trivial at
any loop order. This is no longer the case for the four-parton
matrix elements. In our computation, we only need the
four-parton color-correlated matrix elements at tree-level,
and these are given in Ref. [72].2 The required spin-
correlated matrix elements on the other hand are rather
easy to implement starting from helicity amplitudes.
The sum of the three-, four- and five-parton contributions

is finite for any infrared-safe observable, but the four- and
five-parton contributions to three-jet observables contain
infrared singularities associated with unresolved real

emission, which must be subtracted and canceled against
the infrared singularities coming from loop integrals in the
three- and four-parton final states. We accomplish this
cancellation with the CoLoRFulNNLO method as outlined
in the previous section.

A. eþe− → 3 jet production at NLO

It is instructive to spell out the computation of the NLO
correction in some detail. The four-parton real emission
contribution to the differential cross section for three-jet
production is

dσR4 ¼ 1

2s
dϕ4ðQ2Þ

X
q

�
1

2!
jMð0Þ

qqggj2 þ
X
q0≠q

jMð0Þ
qqq0q0 j2

þ 1

ð2!Þ2 jM
ð0Þ
qqqqj2

�
: ð4:1Þ

The integral over the phase space is divergent in four
dimensions because of the singularities in the regions
where one parton is collinear and/or soft. In order to
regularize those singularities, we subtract

dσR;A1

4 ¼ 1

2s
dϕ4ðQ2Þ

X
q

�
1

2!
A1jMð0Þ

qqggj2

þ
X
q0≠q

A1jMð0Þ
qqq0q0 j2þ

1

ð2!Þ2A1jMð0Þ
qqqqj2

�
; ð4:2Þ

where the approximate matrix elements are defined in
Eq. (3.6). The counterterms are explicitly defined in
Refs. [42,43] in a form that is immediately suitable for
inclusion in a general purpose computer code. By generat-
ing sequences of phase space points tending to each
infrared limit, we have checked that the sum of subtractions
correctly reproduces the real emission differential cross
section point-by-point in any single unresolved region of
phase space. As a consequence the difference

dσNLO4 ≡ dσR4 J4 − dσR;A1

4 J3; ð4:3Þ

is integrable in four dimensions, and the regularized real
contribution can be computed using whatever numerical
procedure is most convenient.
Turning to the three-parton virtual contribution, we have

dσV3 ¼ 1

2s
dϕ3ðQ2Þ

X
q

2ℜhMð0Þ
qqgjMð1Þ

qqgi: ð4:4Þ

Equation (4.4) contains explicit ϵ-poles coming from the
one-loop matrix element. These poles are canceled by
adding back the approximate cross section that we have
subtracted from the real correction in integrated form which
can be written as in Eq. (3.8) (with m ¼ 3)

2Note a misprint in Eqs. (B.11)–(B.13) of Ref. [75]: The 2, 3
and 4 indices of theMik

0 ,M
ik
x andMik

xx matrices should be cyclicly
permuted, ð2; 3; 4Þ → ð4; 2; 3Þ.

JET PRODUCTION IN THE COLORFULNNLO METHOD: … PHYSICAL REVIEW D 94, 074019 (2016)

074019-9



Z
1

dσR;A1

4 ¼ dσB3 ⊗ Ið0Þ1 ðfpg3; ϵÞ: ð4:5Þ

The insertion operator Ið0Þ1 is given in Eq. (3.9). For three-jet
production, as there are only three partons in the final state,
the color connections that appear in the generic case in
Eq. (3.9) factorize completely,

T1 · T2 ¼
CA

2
− CF and T1 · T3 ¼ T2 · T3 ¼ −

CA

2
:

ð4:6Þ

Thus,

Ið0Þ1 ðfpg3; ϵÞ ¼
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ

fCF½Cð0Þ
1;qðy1Q; ϵÞ

þ Cð0Þ
1;qðy2Q; ϵÞ − 2Sð0Þ;ð1;2Þ1 ðY12;Q; ϵÞ�

þ CA½Cð0Þ
1;gðy3Q; ϵÞ þ Sð0Þ;ð1;2Þ1 ðY12;Q; ϵÞ

− Sð0Þ;ð1;3Þ1 ðY13;Q; ϵÞ − Sð0Þ;ð2;3Þ1 ðY23;Q; ϵÞ�g:
ð4:7Þ

Using Eq. (3.10) (or the expressions in Appendix A), it is
straightforward to check that

Ið0Þ1 ðfpg3; ϵÞ

¼ αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ
�
2CF þ CA

ϵ2

þ 1

ϵ

�
ðCA − 2CFÞ ln y12 − CAðln y13 þ ln y23Þ

þ 11

6
CA þ 3CF −

2

3
nfTR

�
þ Oðϵ0Þ

�
ð4:8Þ

and that the combination

dσNLO3 ≡
�
dσV3 þ

Z
1

dσR;A1

4

�
J3 ð4:9Þ

is free of ϵ-poles. Thus, Eq. (4.9) is finite in four
dimensions and the regularized virtual contribution can
be computed using standard numerical techniques for any
infrared-safe observable.

B. eþe− → 3 jet production at NNLO

Turning to the NNLO correction, we consider first the
double real emission contribution to the differential cross
section for three-jet production,

dσRR5 ¼ 1

2s
dϕ5ðQ2Þ

X
q

�
1

3!
jMð0Þ

qqgggj2 þ
X
q0≠q

jMð0Þ
qqq0q0gj2

þ 1

ð2!Þ2 jM
ð0Þ
qqqqgj2

�
: ð4:10Þ

The integral over the phase space is divergent in four
dimensions because of infrared singularities in regions of
phase space where one or two partons are collinear and/or
soft. In order to regularize those singularities, we subtract
approximate cross sections dσRR;A2

5 , dσRR;A1

5 and dσRR;A12

5 as
explained in Sec. III B. The counterterms are defined in
Ref. [43] explicitly, in a form directly suited for imple-
mentation into a general purpose computer code. We have
checked in all kinematic limits that the difference

dσNNLO5 ≡ dσRR5 J5 − dσRR;A2

5 J3 − dσRR;A1

5 J4 þ dσRR;A12

5 J3

ð4:11Þ

is integrable in four dimensions by generating sequences of
phase space points tending to each infrared limit. Hence,
the double real emission differential cross section is
regularized point-by-point in phase space. The complete
locality of the subtractions then ensures that the integral of
Eq. (4.11) is well defined and finite in four dimensions for
any infrared-safe observable and can be computed with any
suitable numerical technique.
The real-virtual contribution to the differential cross

section is

dσRV4 ¼ 1

2s
dϕ4ðQ2Þ

X
q

�
1

2!
2ℜhMð0Þ

qqggjMð1Þ
qqggi

þ
X
q0≠q

2ℜhMð0Þ
qqq0q0 jMð1Þ

qqq0q0 i

þ 1

ð2!Þ2 2ℜhMð0Þ
qqqqjMð1Þ

qqqqi
�
: ð4:12Þ

Equation (4.12) contains explicit ϵ-poles coming from the
one-loop matrix element, and furthermore, it is divergent in
phase space regions where a parton becomes unresolved.
The explicit poles are canceled by the integral of the single
unresolved subtraction term in the double real emission
contribution to the full NNLO cross section,

R
1 dσ

RR;A1

5 .
The calculation in Ref. [42] for general m assures us that
the combination

dσRV4 þ
Z
1

dσRR;A1

5 ð4:13Þ

is finite in ϵ. [Of course, this can be checked explicitly
using Eq. (3.10) or the expressions in Appendix A as well.]
However, Eq. (4.13) is still singular in the single unresolved
regions of phase space. We regularize these singularities by
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subtracting the approximate cross sections dσRV;A1

4 and
ðR1 dσRR;A1

5 ÞA1 as discussed in Sec. III B. The explicit
definitions of the counterterms in Ref. [44] can be
straightforwardly implemented into a computer code in a
general way. It is then easy to check numerically that the
combination

dσNNLO4 ≡
�
dσRV4 þ

Z
1

dσRR;A1

5

�
J4

−
�
dσRV;A1

4 þ
�Z

1

dσRR;A1

5

�
A1

�
J3 ð4:14Þ

is both free of ϵ-poles and integrable in all kinematically
singular limits in four dimensions (as usual, by generating
sequences of phase space points tending to all infrared
limits). Thus, since the subtractions are fully local, the
regularized real-virtual contribution to the three-jet differ-
ential cross section is well defined and finite and can be
computed numerically in four dimensions for any infrared-
safe observable.
Finally, the double virtual contribution to the differential

cross section reads

dσVV3 ¼ 1

2s
dϕ3ðQ2Þ

X
q

ðjMð1Þ
qqgj2 þ 2ℜhMð0Þ

qqgjMð2Þ
qqgiÞ

ð4:15Þ

and contains explicit ϵ-poles coming from the two-loop
matrix element and the square of the one-loop matrix
element. The structure of these poles was presented
explicitly in Ref. [73] which we reproduce here using
our conventions for the notation:

jMð1Þ
qqgj2þ2ℜhMð0Þ

qqgjMð2Þ
qqgi

¼2ℜhMð0Þ
qqgjMð1Þ

qqgi⊗2ℜIð1ÞqqgðϵÞ− jMð0Þ
qqgj2⊗2ðℜIð1ÞqqgðϵÞÞ2

þjMð0Þ
qqgj2⊗

�
e−ϵγE

Γð1−2ϵÞ
ϵΓð1−ϵÞðβ0þ2ϵKÞℜIð1Þqqgð2ϵÞ

−
β0
ϵ
ℜIð1ÞqqgðϵÞþ

Sϵ
SMS
ϵ

1

2ϵ
ð2HqðnfÞþHgðnfÞÞ

�

þOðϵ0Þ; ð4:16Þ

where the universal constants are

K ¼
�
67

18
−
π2

6

�
CA −

10

9
TRnf ; ð4:17Þ

HqðnfÞ¼CACF

�
13ζ3
2

þ245

216
−
23π2

48

�
þC2

F

�
−6ζ3−

3

8
þπ2

2

�

þCFnfTR

�
π2

12
−
25

54

�
; ð4:18Þ

HgðnfÞ ¼ C2
A

�
ζ3
2
þ 5

12
þ 11π2

144

�
− CAnfTR

�
205

54
þ π2

36

�

− CFnfTR þ 20

27
n2f T

2
R; ð4:19Þ

and the three-parton insertion operator is

Ið1Þqqgðs12; s13; s23; μ2; ϵÞ

¼ αs
4π

Sϵ
SMS
ϵ

�
1

ϵ2
X3
i¼1

X3
k¼1
k≠i

�
μ2

−sik

�
ϵ

Ti · Tk −
1

ϵ
ð2γq þ γgÞ

�
;

ð4:20Þ

with

γq ¼
3

2
CF and γg ¼

β0
2
: ð4:21Þ

The signs of the imaginary parts of the ð−sikÞ−ϵ factors are
fixed by the usual sik þ iε prescription on the Feynman-
propagators,

�
μ2

−sik

�
ϵ

¼
�

μ2

jsikj
�

ϵ
�
1þ

�
iπϵ −

π2

2
ϵ2
�
ΘðsikÞ þ Oðϵ3Þ

�
:

ð4:22Þ

Hermitian conjugation flips the sign of the imaginary parts.
We note that the poles of this operator are closely related to

those of the Ið0Þ1 ðfpg3; ϵÞ operator of Eq. (4.8):

Ið0Þ1 ðfpg3; ϵÞ ¼ −2ℜIð1Þqqgðs12; s13; s23; μ2; ϵÞ þ Oðϵ0Þ:
ð4:23Þ

The infrared poles of the double virtual cross section
cancel against the poles of the four integrated approximate
cross sections in the sum [see Eq. (3.16)]

dσNNLO3 ≡
�
dσVV3 þ

Z
2

h
dσRR;A2

5 − dσRR;A12

5

i

þ
Z
1

�
dσRV;A1

4 þ
�Z

1

dσRR;A1

5

�
A1

��
J3: ð4:24Þ

To indicate how this cancellation takes place, we use
Eqs. (3.32), (3.33), (3.36) and (3.38) to write the regular-
ized double virtual cross section in the form

dσNNLO3 ¼ fdσVV3 þ dσB3 ⊗ ½Ið0Þ2 ðϵÞ − Ið0Þ12 ðϵÞ

þ Ið1Þ1 ðϵÞ þ Ið0;0Þ1;1 ðϵÞ þ 1

2
fIð0Þ1 ðϵÞ; Ið0Þ1 ðϵÞg�

þ dσV3 ⊗ Ið0Þ1 ðϵÞgJ3: ð4:25Þ
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The insertion operators appearing in Eq. (4.25) above are
given in terms of kinematic functions in Eqs. (3.9), (3.34),
(3.35), (3.37) and (3.39). We note that Ið0Þ1 appears in
Eq. (4.25) multiplied by itself in the anticommutator on the
second line as well as by the virtual cross section on the

third line. Since both Ið0Þ1 and dσV3 contain up to 1=ϵ2 poles,

Ið0Þ1 must be calculated to Oðϵ2Þ to correctly account for all
finite parts in Eq. (4.25). In order to compute just the poles,

it suffices to expand Ið0Þ1 to OðϵÞ only, as in Appendix A.
We have computed the pole parts of all insertion

operators analytically, which turn out to be very lengthy
expressions already at Oðϵ−2Þ. (The reader can get an idea
of the complexity by using the formulae in Appendix A to

compute the poles of fIð0Þ1 ðϵÞ; Ið0Þ1 ðϵÞg.) However, the ϵ-
poles of the following combination of operators

J2 ≡ Ið0Þ2 − Ið0Þ12 þ Ið1Þ1 þ Ið0;0Þ1;1 þ 1

4
fIð0Þ1 ; Ið0Þ1 g ð4:26Þ

form a remarkably simple expression:

J2ðfpg3; ϵÞ

¼ αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ 1

2ϵ

��
β0 þ 2ϵK − ϵ2β0

π2

4

�
Ið0Þ1 ðfpg3; 2ϵÞ

− β0I
ð0Þ
1 ðfpg3; ϵÞ −

αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ

ð2HqðnfÞ þHgðnfÞÞ
�

þOðϵ0Þ: ð4:27Þ

It is easy to convince oneself that only the universal pole

parts of the Ið0Þ1 operator [given in Eq. (3.10) for general m]
enter the computation of the poles of J2. Furthermore,

looking at the explicit definition of Ið0Þ1 in Eq. (3.9), we see
that the J2 operator in Eq. (4.27) can be written by simply
counting the radiating partons in the event (two quarks and
one gluon in our example). This additive nature of J2,
which is also valid for two-jet production, hints that in
general

J2ðfpgm; ϵÞ

¼ αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ 1

2ϵ

��
β0 þ 2ϵK − ϵ2β0

π2

4

�

× Ið0Þ1 ðfpgm; 2ϵÞ − β0I
ð0Þ
1 ðfpgm; ϵÞ

−
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵXm
i¼1

HfiðnfÞ
�
þ Oðϵ0Þ; ð4:28Þ

although presently we do not have a proof for the validity of
this formula. Using Eqs. (4.16) and (4.27) together with the

explicit expressions for Ið0Þ1 in Appendix A, it is possible to
check explicitly that the combination

dσNNLO3 ¼
�
dσVV3 þ dσB3 ⊗

�
J2ðfpg3; ϵÞ

þ 1

4
fIð0Þ1 ðfpg3; ϵÞ; Ið0Þ1 ðfpg3; ϵÞg

�

þ dσV3 ⊗ Ið0Þ1 ðfpg3; ϵÞ
�
J3; ð4:29Þ

is free of ϵ-poles. Hence, Eq. (4.29) is finite in four
dimensions, and we can compute the regularized double
virtual differential cross section for any infrared-safe
observable numerically.

V. EVENT SHAPES OLD AND NEW

The CoLoRFulNNLO method provides a robust sub-
traction scheme for computing NNLO corrections to
processes with a colorless initial state (for the moment)
and any number of final state jets, provided all necessary
matrix elements are known. We have implemented the
method in a general purpose, automated parton-level
Monte Carlo code which can be used to compute any
infrared-safe observable at NNLO accuracy in eþe− → 3
jets. To demonstrate the validity of our code, we compute
NNLO corrections to six standard event shape variables
(thrust, heavy jet mass, total jet broadening, wide jet
broadening, C-parameter and the two-to-three jet transition
variable y23 in the Durham algorithm) and compare our
predictions to those available in the literature [5,6]. We also
present here for the first time the computation of jet cone
energy fraction (JCEF) at NNLO accuracy. Predictions
from CoLoRFulNNLO at this order in perturbation theory
for oblateness and energy-energy correlation (EEC) were
presented in Ref. [7].

A. Definition of event shapes

Thrust [76,77] is defined as

T ¼ max
~n

�P
ij~n · ~pijP
ij~pij

�
; ð5:1Þ

where the three-vectors ~pi denote the three-momenta of the
partons and ~n defines the direction of the thrust axis, ~nT , by
maximizing the sum on the right-hand side. For massless
particles, thrust is normalized by the center-of-mass energy,P

ij~pij ¼ Q. In general 1=2 ≤ T ≤ 1, with T ¼ 1=2 for
spherically symmetric events, and T → 1 in the case of two
back-to-back jets (the dijet limit). For three-particle events,
we have 2=3 ≤ T ≤ 1.
Heavy jet mass [78–80] is defined by dividing the event

into two hemispheres, HL, HR, by a plane orthogonal to an
axis which can be chosen to be the thrust axis ~nT . Then, the
hemisphere invariant mass is
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M2
i

s
¼ 1

E2
vis

�X
j∈Hi

pj

�
2

; i ¼ L;R; ð5:2Þ

where Evis is the total visible energy measured in the
event, which is equal to the center-of-mass energy in
perturbation theory with massless partons, Evis ¼ Q. The
heavy jet mass is

ρ ¼ max

�
M2

L

s
;
M2

R

s

�
: ð5:3Þ

In the dijet limit, we find ρ → 0. For three-particle events
we have 0 ≤ ρ ≤ 1=3. At leading order in perturbation
theory the distributions of heavy jet mass ρ and τ≡ 1 − T
are identical.
Jet broadening [81,82], like heavy jet mass, is also

defined through the two hemispheres HL, HR. First,
hemisphere broadening is given by

Bi ¼
P

j∈Hi
j ~pj × ~nT j

2
P

j∈Hi
j ~pjj

; i ¼ L;R: ð5:4Þ

The total and wide jet broadening are then defined as

BT ¼ BL þ BR and BW ¼ maxðBL; BRÞ: ð5:5Þ

In the dijet limit, both BT and BW vanish, while for
spherically symmetric events BT ¼ 2BW ¼ π=8. For
three-parton events we have BT , BW ≤ 1=ð2 ffiffiffi

3
p Þ≃ 0.288.

The C-parameter [83,84] is defined through the eigen-
values λ1, λ2, λ3, of the infrared-safe momentum tensor,

Θρσ ¼ 1P
ij~pij

X
i

pρ
i p

σ
i

j~pij
; ρ; σ ¼ 1; 2; 3; ð5:6Þ

where i runs over all final state particles. As Θ is a
symmetric non-negative tensor with unit trace, the eigen-
values λi are real and non-negative, with

P
iλi ¼ 1.

Therefore, 0 ≤ λi ≤ 1, with i ¼ 1, 2, 3. The value of the
C-parameter is then defined as

Cpar ¼ 3ðλ1λ2 þ λ2λ3 þ λ3λ1Þ: ð5:7Þ

In the dijet limit the C-parameter vanishes, while for
spherical events Cpar ¼ 1, so 0 ≤ Cpar ≤ 1. For events with
three-partons in the final state, we have 0 ≤ Cpar ≤ 3=4.
Jet transition variables specify how an event changes

from a n-jet to a (nþ 1)-jet configuration. For example,
given a jet resolution parameter ycut, the two-to-three jet
transition variable y23 [85–88] is defined as the value of ycut
for which an event changes from a two-jet to a three-jet
configuration, within some jet algorithm. Here, we focus on
the Durham algorithm [88], which clusters particles into
jets by computing the variable,

yij ¼
2minðE2

i ; E
2
jÞð1 − cos θijÞ
E2
vis

; ð5:8Þ

for each pair ði; jÞ of particles. The pair with the lowest
value of yij is replaced by a pseudo-particle whose four-
momentum is computed in the E recombination scheme,
i.e., it is simply the sum of the four-momenta of particles i
and j. This procedure is iterated until all pairs have
yij > ycut and the remaining pseudoparticles are the jets.
Finally, jet-cone energy fraction [89] is defined as the

energy deposited within a conical shell of the opening angle
χ between a particle and the thrust axis ~nT , whose direction
is defined to point from the heavy jet mass hemisphere to
the light jet mass hemisphere,

dΣJCEF

d cos χ
¼

X
i

Z
Ei

Q
dσeþe−→iþXδ

�
cos χ −

~pi · ~nT
j~pij

�
: ð5:9Þ

In principle 0° ≤ χ ≤ 180°, but hard gluon emissions
typically contribute only to the region 90° ≤ χ ≤ 180°,
which is plotted in the data [90].

B. Event shapes revisited

In this section we present the predictions of the
CoLoRFulNNLO method for the event shapes considered
also in Refs. [5,6]. To begin, we write the perturbative
expansion of the differential distribution of an event
shape observable O at the default renormalization scale
(not to be confused with the regularization scale of

Sec. II C) μ0 ¼
ffiffiffiffiffiffi
Q2

p
(the total center-of-mass energy) as

1

σ0

dσ
dO

¼ αs
2π

AðOÞþ
�
αs
2π

�
2

BðOÞþ
�
αs
2π

�
3

CðOÞþOðα4s Þ;

ð5:10Þ

where αs ¼ αsðμ0Þ and σ0 is the leading-order perturbative
prediction for the total cross section of the process
eþe− → hadrons. The LO and NLO perturbative coeffi-
cients AðOÞ and BðOÞ for thrust, heavy jet mass, total and
wide jet broadening, C-parameter and the jet transition
variable y23 in the Durham algorithm were computed a long
time ago [91], while predictions for the NNLO coefficients
CðOÞ were presented in [5,6].3 However, experiments
measure the distributions normalized to the total hadronic
cross section, σ, thus physical predictions should be
normalized to that. At the default renormalization scale
μ0, distributions normalized to the total hadronic cross
section can be obtained from the expansion in Eq. (5.10)
above by multiplying with the inverse of

3Since these distributions have 1=O singularities, it is more
convenient to present results for the quantities OCðOÞ, and this
was done in Refs. [5,6] as well as in this paper in Figs. 1–3.

JET PRODUCTION IN THE COLORFULNNLO METHOD: … PHYSICAL REVIEW D 94, 074019 (2016)

074019-13



σ

σ0
¼ 1þ αs

2π
At þ

�
αs
2π

�
2

Bt þ Oðα3s Þ ð5:11Þ

where [92–94]

At ¼
3

2
CF and

Bt ¼ CF

��
123

8
− 11ζ3

�
CA −

3

8
CF þ

�
4ζ3 −

11

2

�
nfTR

�
:

ð5:12Þ

The renormalization scale dependence of a three-jet event
shape distribution normalized to the total hadronic cross
section can be computed as

1

σ

dσðμÞ
dO

¼ αsðμÞ
2π

AðO; μÞ þ
�
αsðμÞ
2π

�
2

BðO; μÞ

þ
�
αsðμÞ
2π

�
3

CðO; μÞ þ Oðα4s ðμ2ÞÞ; ð5:13Þ

where

AðO;μÞ¼AðOÞ;
BðO;μÞ¼BðOÞþðβ0 lnξR−AtÞAðOÞ;
CðO;μÞ¼CðOÞþð2β0 lnξR−AtÞBðOÞ

þ
�
1

2
β1 lnξRþβ20ln

2ξRþA2
t −Bt

�
AðOÞ; ð5:14Þ

with ξR ≡ μ=μ0. Using three-loop running, the scale
dependence of the strong coupling is given by

αsðμÞ
2π

¼ 2

β0t

�
1−

β1
β20t

ln tþ
�
β1
β20t

�
2
�
ln2t− ln t−1þβ0β2

β21

��
;

ð5:15Þ

with t ¼ lnðμ2=Λ2
QCDÞ. The first two coefficients in the

expansion of the β function,

μ2
d
dμ2

αsðμÞ
4π

¼ −
�
αsðμÞ
4π

�
2X∞
n¼0

βn

�
αsðμÞ
4π

�
n
; ð5:16Þ

are presented in Eq. (2.9), while [95]

β2 ¼
2857

54
C3
A −

�
1415

27
C2
A þ 205

9
CACF − 2C2

F

�
TRnf

þ
�
158

27
CA þ 44

9
CF

�
T2
Rnf

2: ð5:17Þ

In order to compare to published predictions, we use
αsðmZÞ ¼ 0.118, corresponding to ΛQCD ¼ 208 MeV.

We present physical predictions at the first three orders in
perturbation theory for the distributions of the six event
shapes in Figs. 1–3. In the upper panels we show our fixed-
order predictions as well as those of the publicly available
code EERAD3 [96], together with the measured data by the
ALEPH Collaboration. We present our predictions at LO
and NLO accuracy as smooth curves and as histograms at
NNLO to represent the numbers of the numerical integra-
tion as precisely as possible. We observe a very good
numerical convergence of our method at NNLO. The bands
in the upper panel correspond to the variation of the
renormalization scale in the range ξR ∈ ½0.5; 2�. In order

FIG. 1. Perturbative predictions for the thrust (τ≡ 1 − T) and
heavy jet mass (ρ) distributions at LO, NLO and NNLO accuracy.
The bands represent the renormalization scale uncertainty of our
predictions corresponding to the range ξR ∈ ½0.5; 2� around the

central value of μ0 ¼
ffiffiffiffiffiffi
Q2

p
. The lower panels show the ratio of

the (updated but unpublished—see text) predictions of Ref. [6]
(SW) and EERAD3 [96] (GGGH) to CoLoRFulNNLO (this
work). The bands on the lower panels show the relative scale
uncertainty of our NNLO results.
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to make the scale dependence at NNLO accuracy more
visible, we show the relative scale uncertainty on the
middle and bottom panels of each figure. It is remarkable
that the relative scale dependence is below 5% for most of
the distributions in the ranges that are most relevant for
measuring the strong coupling. Nevertheless, there is still a
sizable difference between the NNLO predictions and the
data for most of the distributions, which we attribute to
parton shower (or resummation) and to hadronization
effects.
The dependence on the renormalization scale increases

significantly beyond kinematical regions of three-parton
contributions, for instance for τ > 1=3 or Cpar > 3=4, and
thus, those are not shown on the ratio plots. At these three-
parton kinematical limits large logarithms appear inside the
physical region which have to be resummed similarly to the
large logarithms that appear for small values of the event
shapes (at the boundary of the physical region) [97].

As mentioned above, predictions for these six event
shapes were presented in Refs. [5,6]. In order to quantify
the level of agreement across the available perturbative
predictions, we also show the ratio of the (updated but
unpublished—see below) results of Ref. [6] (denoted by
SW) and those of EERAD3 (denoted by GGGH) nor-
malized to ours in the middle and bottom panels of each
figure. Since the published predictions of Ref. [6] are
known to be affected by an issue with the phase space
generation in the code used to compute those results [98],
we have made comparisons to updated but unpublished
results which were provided to us by S. Weinzierl. The
general conclusion one may draw is that our predictions
are in agreement with the updated predictions of SW
except for very small and large (beyond the kinematic
limits at LO) values of the event shapes, up to the
estimated statistical uncertainties. A qualitatively similar

FIG. 2. Same as Fig. 1 for total (BT) and wide (BW) jet
broadening.

FIG. 3. Same as Fig. 1 for the C-parameter (Cpar) and the two-
to-three jet transition parameter (y23) in the Durham clustering
algorithm.
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statement can be made about the comparison to the
GGGH predictions, although the deviations from our
results at small values of event shapes are in general
more pronounced than for the SW predictions. This is

especially apparent for the C-parameter distribution
below Cpar ¼ 0.1.
The level of agreement among the perturbative

predictions can be seen better by looking at the NNLO

FIG. 4. TheOCðOÞ coefficients of the thrust, heavy jet mass, total and wide jet broadening,C-parameter and two-to-three jet transition
variable y23 distributions. Lower panels show the ratio of the (updated but unpublished—see text) predictions of Ref. [6] (SW) and
EERAD3 [96] (GGGH) to CoLoRFulNNLO (this work). The shaded bands on the lower panels represent the relative statistical
uncertainties of our predictions due to Monte Carlo integrations.
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coefficients directly, as shown in Fig. 4. In the figures the
upper panels show the distributions of the NNLO coef-
ficients OCðOÞ, while the middle and bottom panels once
more present the ratios of the results of SW and those of
GGGH normalized to ours. Again, we observe a good
numerical convergence of our method: The relative uncer-
tainties of the Monte Carlo integrations are shown as
shaded bands around the lines at one on the lower panels.
The peaks which appear in the relative uncertainties are
artifacts of the distributions changing sign with the absolute
uncertainties remaining small. The scattered error bars
represent the statistical uncertainties of the Monte Carlo
integrations of the other two predictions.
Examining the plots in Fig. 4, we see that the agreement

is generally quite good between the predictions of SW and
CoLoRFulNNLO and reasonably good between GGGH
and CoLoRFulNNLO. However, the precise comparison to
GGGH predictions is hampered by the somewhat large
integration uncertainties and bin-to-bin fluctuations of
those results. Also, significant deviations among the three
predictions are visible for small and large values of the
event shapes. For example, for τ ¼ 1 − T the differences
between the CoLoRFulNNLO results and the other two
computations grow up to a factor of two for τ > 1=3.
However, in this region, the contribution from three-particle
final states vanishes, and the thrust distribution is deter-
mined by a four-jet final state. Thus, CðτÞ is determined by
the NLO corrections to four-jet production, which have
been known for a long time [8,9] and can also be
computed with modern automated tools such as
MadGraph5_aMC@NLO [99]. We have checked that our
predictions are in complete agreement with those of
MadGraph5_aMC@NLO. The same is true for the tails
of the other distributions beyond their respective kinematic
limits. For small values of the event shapes we have
checked that our predictions agree with the resummed
predictions obtained from SCET [17,20,100] expanded
to Oðαs3Þ.

C. Jet cone energy fraction

The jet cone energy fraction defined in Eq. (5.9) is a
particularly simple and excellent observable for the deter-
mination of the strong coupling. The smallness of hadro-
nization corrections, detector corrections as well as
perturbative corrections allow a specially wide fit range
to be used for the extraction of αs [90]. JCEF was computed
at NLO accuracy for the first time in ref. [89]. Here, we
present the first result for the JCEF distribution at NNLO
accuracy in perturbative QCD for collider energy offfiffiffiffiffiffi
Q2

p
¼ 91.2 GeV. In Fig. 5 we show physical predictions

for JCEF, as well as the measured data by the DELPHI
collaboration. As previously, the uncertainties due to the
variation of the renormalization scale in the range [0.5, 2]
times our default scale choice (the total center-of-mass
energy) are shown as bands on the upper panel. We indicate

the relative scale uncertainty at NNLO on the bottom panel.
To better appreciate the impact of the NNLO corrections,
we show in Fig. 6 the distribution of the NNLO coefficient
CðχÞ directly. Also for these distributions, we observe a
good numerical convergence of our code.
Let us finish the discussion of our results by briefly

commenting on the performance of our code. In Table I we
give representative CPU timings for the various contribu-
tions to the complete NNLO result. These numbers were
obtained on an Intel(R) Xeon(R) CPU E5-2695 v2 proc-
essor running at 2.40 GHz. We used 1.5 × 1010 phase space
points for the double real contribution, 1.5 × 109 phase
space points for the real-virtual contribution and 108 phase
space points for the double virtual contribution to produce
the results of this paper.

FIG. 5. The distribution of jet cone energy fraction (JCEF) at
LO, NLO and NNLO accuracy in perturbative QCD. The bands
represent the variation of the renormalization scale in the range

ξR ¼ μ=μ0 ∈ ½0.5; 2� around the central value of μ0 ¼
ffiffiffiffiffiffi
Q2

p
. The

lower panel shows the relative scale dependence at NNLO
accuracy.

FIG. 6. The distribution of the NNLO coefficient for jet cone
energy fraction (JCEF). The error bars represent the statistical
uncertainty of the Monte Carlo integrations.
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VI. CONCLUSIONS AND OUTLOOK

In this paper we presented the CoLoRFulNNLO frame-
work to compute higher order radiative corrections to jet
cross sections in perturbative QCD. CoLoRFulNNLO is a
completely local and fully differential subtraction scheme
based on the known infrared factorization properties of
QCD matrix elements in soft and collinear limits. Since the
subtraction terms explicitly take all color and spin corre-
lations into account, the regularized real emission terms
(both double real and real-virtual) are well defined and can
be computed in four dimensions with whatever numerical
procedure is deemed most convenient. We have shown
analytically that explicit infrared ϵ-poles coming from loop
amplitudes cancel against the integrated forms of subtrac-
tion terms both in the real-virtual contribution (for any
number of jets) and double virtual contribution (with up to
three jets in the final state).
We have also reported on the computation of NNLO

corrections to three-jet event shape observables in electron-
positron collisions using CoLoRFulNNLO. We observe a
very good numerical convergence of our method, which we
attribute at least in part to the complete locality of the
subtraction terms.
We compared both our physical predictions as well as the

NNLO contribution only with similar predictions published
earlier (in Ref. [96] denoted by GGGH and in Ref. [6]
denoted by SW) for thrust, heavy jet mass, total and wide
jet broadening, the C-parameter and the two-to-three jet
transition variable y23 in the Durham jet clustering algo-
rithm. We find agreement with the updated (unpublished)
predictions of SW within the statistical uncertainty of the
numerical integrations except for very small and large
values of the event shapes, beyond the kinematic limits at
LO. The measured data in these regions are limited by
statistics and so the phenomenological relevance of the
differences is negligible. The same is true for the com-
parison to the physical predictions of GGGH, however the
deviations from our results for small values of event shapes
are generally more pronounced than for the predictions of
SW. This is especially apparent for small values of the C-
parameter, below Cpar ¼ 0.1. When comparing our physi-
cal predictions at the NNLO accuracy to experimental data,
we still find large differences. An important source of
discrepancy is the neglected large logarithmic contributions
which require all-order resummation. Work towards match-
ing the fixed-order predictions to resummed ones is in
progress.

Finally, we have shown for the first time perturbative
predictions for jet cone energy fraction at NNLO, thereby
providing a new observable from which the value of the
strong coupling can be extracted at this accuracy. This
observable has the remarkable property that the NNLO
corrections are very small, and the fairly good agreement
between data and predictions already at NLO become only
marginally better with the inclusion of the NNLO correc-
tions. This stability of the perturbative predictions makes
JCEF a good candidate for the extraction of the strong
coupling.
We emphasize that our framework is not restricted to

three-jet production, but it can be easily applied to study
differential distributions for four- or more jet production
once the necessary two-loop matrix elements become
available. CoLoRFulNNLO is completely worked out for
processes with colorless initial states at present. The
inclusion of initial state radiation is a conceptually straight-
forward although substantial task and is work in progress.
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APPENDIX A: THE Ið0Þ1 INSERTION
OPERATOR UP TO OðϵÞ

We present the Laurent expansion of the kinematic
functions that appear in the Ið0Þ1 ðfpgm; ϵÞ insertion operator
in Eq. (3.9) up to and including OðϵÞ terms. An expansion
to this order is sufficient for demonstrating the cancellation
of the ϵ-poles at NNLO. We have also computed the Oðϵ2Þ
coefficients of the expansions analytically. However, they
are quite lengthy, and we do not display them here.

TABLE I. Typical CPU timings on an Intel(R) Xeon(R) E5-2695 v2 2.40 GHz CPU for the various contributions
to the complete NNLO result.

B V R VV RV RR

No. of PS points 100M 100M 100M 10M 10M 10M
Timing 12 min 8 h 17 min 3 h 24 min 7 h 32 min 21 h 53 min 5 h 26 min
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The integrated soft kinematic function Sð0Þ;ði;kÞ1 ðY; ϵÞ is simply given by
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where

½Sð0Þr �ði;kÞðY; ϵ; y0 ¼ 1; d00 ¼ 3 − 3ϵÞ ¼ −
1

ϵ2
þ
�
lnðYÞ − 11

3

�
1

ϵ

− Li2ð1 − YÞ − 1

2
ln2ðYÞ þ 7

6
π2 þ 11

3
lnðYÞ − 317

18

þ
�
−Li3ð1 − YÞ − Li3ðYÞ þ

1

6
ln3ðYÞ − 1

2
lnð1 − YÞln2ðYÞ − π2 lnðYÞ þ 33ζð3Þ

þ 11

6

�
−2Li2ð1 − YÞ − ln2ðYÞ þ 7

3
π2
�
þ 317 lnðYÞ

18
−
9299

108

�
ϵþ Oðϵ2Þ: ðA8Þ

APPENDIX B: ASYMPTOTIC FORM OF THE J2 INSERTION OPERATOR

We defined the J2 insertion operator in Eq. (4.26) and exhibited its pole structure for three hard partons in the final state in
Eq. (4.27). That is sufficient to check the cancellation of the double virtual ϵ-poles at NNLO. However, in the numerical
integrations over the three-parton phase space one also needs the finite part, which is rather lengthy, and in fact, we have
only computed its asymptotic expansion for small kinematic invariants analytically. Here, we record this expansion and
comment on the remaining regular part, which we compute numerically.
For the Born process eþe− → qqg the J2 operator can be written in the following explicit form:
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which then also defines the finite part F inðJ2ðϵÞÞ unambiguously. We decompose the finite part into an asymptotic piece
which collects all logarithmic contributions that become singular on the borders of the three-parton phase space and a piece
which is regular over the whole phase space, i.e. finite on the borders:

F inðJ2ðϵÞÞ ¼ F inðJasy2 ðϵÞÞ þ F inðJreg2 ðϵÞÞ: ðB2Þ

The asymptotic part can be written as
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We stress that this form as well as the explicit expressions for the asymptotic functions presented below are known to be
appropriate only for eþe− → 3 jet production. The analytic expressions for the asymptotic parts of the kinematic functions
read as follows:
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�

−
4

3
ð2Li2ð1−YÞ lnðxÞþ lnðxÞln2ðYÞÞ−

�
38

3ð1− xÞ5−
2

ð1− xÞ4þ
2

ð1− xÞ3

þ 4

ð1− xÞ2þ
8

1− x
−
16

3

�
Li2ð1− xÞ lnðYÞ− 107ln2ðYÞ

9
þ
�

4

3ð1− xÞ4þ
2

3ð1− xÞ3þ
4

9ð1− xÞ2

þ 1

3ð1− xÞ− 4

�
π2 lnðYÞþ

�
157

18ð1− xÞ5 −
5

3ð1− xÞ4−
53

18ð1− xÞ3þ
16

9ð1− xÞ2þ
35

3ð1− xÞ−
104

9

�
lnðxÞ lnðYÞ

þ 4

1−Y
lnðxÞ lnðYÞþ

�
97

18ð1− xÞ4−
77

36ð1− xÞ3−
17

9ð1− xÞ2þ
145

36ð1− xÞþ
9247

450

�
lnðYÞ

þCA

CF

�
−
4

3
π2ln2ðYÞþ 35ln2ðYÞ

3
− 16ζð3Þ lnðYÞþ 22

9
π2 lnðYÞþ 8ln2ð2Þ lnðYÞ− 224

9
lnð2Þ lnðYÞþ 9629 lnðYÞ

1350

�

þnf
TR

CF

�
4ln2ðYÞ

9
þ 28

9
π2 lnðYÞ− 16ln2ð2Þ lnðYÞþ 448

9
lnð2Þ lnðYÞ− 7474 lnðYÞ

135

�
; ðB7Þ
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CSasy2;gðx;YÞ ¼ 8

�
1

ð1− xÞ5þ 1

��
2Li3ð1− xÞ lnðYÞþLi2ð1− xÞ lnðxÞ lnðYÞþ 2Li3ðxÞ lnðYÞþ lnð1− xÞln2ðxÞ lnðYÞ

−
π2

6
lnðxÞ lnðYÞ− 2ζð3Þ lnðYÞ

�
− 8

�
Li3ð1− xÞ lnðYÞ−Li2ð1−YÞ lnðxÞ lnðYÞ−Li3ð1−YÞ lnðxÞ

− 2Li3ðYÞ lnðxÞ− lnðxÞ lnð1−YÞln2ðYÞþ π2

3
lnðxÞ lnðYÞ− 2ζð3Þ lnðYÞ

�
−
4

3
ð2Li2ð1−YÞ lnðxÞþ lnðxÞln2ðYÞÞ

−
�

34

3ð1− xÞ5−
2

ð1− xÞ4þ
2

ð1− xÞ3þ
4

ð1− xÞ2þ
8

1− x
−
16

3

�
Li2ð1− xÞ lnðYÞ

−
320

3

�
2

ð2− xÞ6−
1

ð2− xÞ5
�
Li2

�
1−

x
2

�
lnðYÞþ

�
4

3ð1− xÞ4þ
2

3ð1− xÞ3þ
4

9ð1− xÞ2þ
1

3ð1− xÞ
�
π2 lnðYÞ

þ
�
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9

�
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�
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27ð2− xÞ3

−
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27ð2− xÞ2 −
5
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�
lnðYÞþnf

TR

CA

�
640

3

�
2

ð2− xÞ6−
1

ð2− xÞ5
�
Li2

�
1−

x
2

�
lnðYÞ

−
8

3ð1− xÞ5Li2ð1− xÞ lnðYÞ−
�

2

3ð1− xÞ5−
4

3ð1− xÞ4−
2

9ð1− xÞ3þ
8

9

�
lnðxÞ lnðYÞ

þ
�

192

ð2− xÞ6−
544

3ð2− xÞ5þ
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3ð2− xÞ4þ
8

3ð2− xÞ3
�
ln
�
x
2

�
lnðYÞþ

�
2

ð1− xÞ4þ
5

3ð1− xÞ3þ
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27ð1− xÞ2

þ 5
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�
lnðYÞ−

�
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3ð2− xÞ5−
40

3ð2− xÞ4−
308

27ð2− xÞ3−
74

27ð2− xÞ2−
5

9ð2− xÞ
�
lnðYÞ

�
: ðB8Þ

We do not have analytic expressions for the regular part. However, computing this piece numerically on a grid over the
three-parton phase space, we find that it is in fact flat across the whole phase space (within the uncertainty of the numerical
integrations). Hence, it can be described by a single number whose numerical value we find to be

F inðJreg2 ðϵÞÞ ¼
�
αs
2π

Sϵ
SMS
ϵ

�
μ2

Q2

�
ϵ
�
2

ð−650Þ ðB9Þ

for Nc ¼ 3, TR ¼ 1=2 and nf ¼ 5.
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