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The “QCD Kondo effect” stems from the color exchange interaction in QCD with non-Abelian property,
and can be realized in a high-density quark matter containing heavy-quark impurities. We propose a novel
type of the QCD Kondo effect induced by a strong magnetic field. In addition to the fact that the magnetic
field does not affect the color degrees of freedom, two properties caused by the Landau quantization in a
strong magnetic field are essential for the “magnetically induced QCD Kondo effect”; (1) dimensional
reduction to 1þ 1-dimensions, and (2) finiteness of the density of states for lowest energy quarks. We
demonstrate that, in a strong magnetic field B, the scattering amplitude of a massless quark off a heavy
quark impurity indeed shows a characteristic behavior of the Kondo effect. The resulting Kondo scale is

estimated as ΛK ≃ ffiffiffiffiffiffiffiffi
eqB

p
α1=3s expf−4π=Ncαs logð4π=αsÞg where αs and Nc are the fine structure constant

of strong interaction and the number of colors in QCD, and eq is the electric charge of light quarks.
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I. INTRODUCTION

In order to understand the long-standing puzzle of
enhanced resistivity in impure metals with decreasing
temperature, J. Kondo proposed in 1964 a theoretical
explanation based on the third-order perturbation theory
of the s − d interaction model [1]. Such anomalous
behaviors of electrons induced by the presence of magnetic
impurities are now called the Kondo effect. While the
essential mechanism of the Kondo effect may be identified
in this first theoretical analysis, a lot of theoretical inves-
tigations have been performed since then to further under-
stand the Kondo effect. It is now recognized that the Kondo
effect provides deep and crucial insights in modern physics.
Indeed, the Kondo effect can be regarded as the first
nontrivial example of renormalization groups showing
the asymptotic freedom, which was found well before
the discovery in QCD in the early 1970s. Among later
developments, we mention the recognition that the orbital
quantum number of localized electrons may play the role of
an internal degrees of freedom [2], analogous to the color
of a quark.
It is well known that the Kondo effect occurs as an

interplay among the following three ingredients [3]: in
addition to the existence of heavy impurities, (i) existence
of a Fermi surface, (ii) quantum fluctuations (loop effect),
and (iii) non-Abelian interaction. In the ordinary Kondo
effect in condensed matter physics, the non-Abelian

interaction corresponds to a (pseudo-)spin flip interaction
between a fermion near the Fermi surface and an impurity.
However, other types of non-Abelian interaction are also
possible. Two of the present authors together with others
have recently proposed the “QCD Kondo effect” in which
non-Abelian interaction is provided by the color exchange
interaction mediated by gluons [4] (see also Ref. [5] for
similar effects induced by contact interaction with color/
isospin exchange property). In this case, the Kondo effect
occurs in a high-density matter made of light quarks
containing heavy quarks as impurities. The authors of
Ref. [4] explicitly showed within perturbative renormali-
zation group of QCD that a logarithmic enhancement
indeed appears in the scattering amplitude of a light quark
near the Fermi surface off the heavy quark impurity, and
computed the Kondo scale (the Landau pole) where the
effective coupling strength between a light quark and an
impurity diverges. It is expected that the QCD Kondo effect
would be relevant in medium-energy heavy ion collisions
and at the core of neutron stars both of which could create
high-density quark matters. Besides, since the QCD Kondo
effect would affect the other many-body phenomena such
as the color superconductivity, it could require modification
of the QCD phase diagram in particular around the high-
density region where heavy quarks start to appear.
We can say that the QCD Kondo effect is a kind of

extension of the conventional Kondo effect, and such a
possibility of extending the notion of the Kondo effect
urges us to further think of other possible types of the
Kondo effect. For example, considering the existence of
the Fermi surface, one finds what is truly essential is the
existence of gapless excitations with finite density of states
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at the lowest energy. Interplay of this feature and the non-
Abelian interaction gives rise to multiple particle-hole
excitations near the Fermi surface and yields the logarith-
mic enhancement of the scattering amplitude. Therefore, if
these conditions are satisfied in a system, one can expect
the Kondo effect to occur. Notice that analogous situation
can be found in other many-body phenomena such as
superconductivity and magnetic catalysis (chiral symmetry
breaking induced by a magnetic field) [6–10] in which,
however, non-Abelian nature of the interaction is an option.
In particular, it was explicitly pointed out in Ref. [8] that
imposing a magnetic field essentially plays the same role
as the Fermi surface does in superconductivity. Thus we
naturally expect that the QCD Kondo effect would be
realized in the presence of a magnetic field.1

Let us briefly explain why imposing a strong magnetic
field plays the same role as forming the Fermi surface. In a
strong magnetic field, motion of a charged particle is
confined to the lowest Landau level (LLL) and is effectively
restricted to the direction of the magnetic field. This
phenomenon is called dimensional reduction, and the
fermions in a strong magnetic field are regarded as in
1þ 1-dimensions. If one considers massless charged fer-
mions in a strong magnetic field, the Landau quantization of
transverse motion leads to a nonzero density of states and a
linear dispersion in themagnetic field direction. The claim of
Ref. [8] is that the magnetic catalysis occurs by the particle-
antiparticle instability at the energy surface E ¼ 0 of the
LLL with finite density of states, which is very similar to the
role played by the Fermi surface in superconductivity. Thus,
one may expect the first ingredient for the Kondo effect
to occur by the presence of a strong magnetic field.
In this paper, we show that the Kondo effect induced

by a strong magnetic field indeed appears in massless
QCD. The following three conditions are necessary:
(i) a strong magnetic field, (ii) quantum fluctuations (loop
effect), and (iii) color exchange interaction mediated by a
gluon. This novel type of the Kondo effect can be referred
to as the “magnetically induced QCD Kondo effect.” As we
approach toward the Fermi energy, the scattering amplitude
encounters the Landau pole which we call the Kondo scale.
It is given by the distance from the Fermi energy as

ΛK ≃ ffiffiffiffiffiffiffiffi
eqB

p
αδs exp

�
−

4π

Ncαs log ð4π=αsÞ
�
; ð1Þ

where eq is the electric charge of the light quark, αs is the fine
structure constant of strong interaction, andNc is the number
of colors.As for the prefactor δ, we get δ ¼ 1=3 in the current
analysis. But the numerical value of δ could depend on

approximations we adopt. Interestingly, this form of the
Kondo scale (1) is quite similar to the dynamical quark mass
mdyn induced by magnetic catalysis in QCD [10].
As we will discuss later, we assume that a light quark

already acquires a dynamical mass mdyn due to the
magnetic catalysis and that the magnetic catalysis itself
is not, or hardly if any, affected by the magnetically induced
QCD Kondo effect. These assumptions would be fine as
long as we are interested in the behavior of scattering
amplitudes with decreasing energy from the high energy
side and in computing the Kondo scale. This is because
mdyn is much smaller than the typical scale of the problemffiffiffiffiffiffiffiffi
eqB

p
and we are allowed to treat the light quarks as

massless. However, taking the possible ambiguities coming
from approximations into account, we may expect that the
similar parametric dependence of ΛK and mdyn suggests
that these two scales could appear in a similar energy scale
and thus leads to a competition between the two phenom-
ena in the energy region around these scales. Consider the
quark-antiquark pairing enhanced by a strong magnetic
field due to magnetic catalysis. If one adds heavy quark
impurities to the system, then owing to the magnetically
induced QCD Kondo effect, the heavy quark impurity
attracts light quarks to inhibit the formation of chiral
condensate. Thus it is expected that the magnetically
induced QCD Kondo effect will weaken the magnetic
catalysis. This competition possibly affects the chiral phase
transition of QCD in the presence of the strong magnetic
fields. We leave this interesting problem as a future issue.
The present paper is organized as follows: In Sec. II, we

first define the setup of massless QCD in strong magnetic
fields with the quark chemical potential and a heavy quark
impurity. Then we compute the scale dependence of the
amplitude for the scattering between the massless quark and
the heavy quark impurity in the presence of a strongmagnetic
field. In Sec. III, based on the one-loop results obtained in
the previous section, we derive the renormalization group
equation for the effective coupling strength and solve it with
an appropriate initial condition. Here, the effective coupling
is defined for the quark-impurity scattering reduced to 1þ 1
dimensions. From the Landau pole of the amplitude, we
estimate the Kondo scale below which the system becomes
nonperturbative. We also discuss its similarities to the gaps
in superconductivity and magnetic catalysis. In Sec. IV, we
discuss possible applications of the magnetically induced
QCD Kondo effect. Finally we summarize our study and
conclude in Sec. V. In the Appendix, we explain how the
dimensional reduction of the scattering amplitude to 1þ 1
dimensions occurs in strong magnetic fields.

II. SCALE DEPENDENCE OF THE SCATTERING
AMPLITUDE IN STRONG MAGNETIC FIELD

Effective picture of low energy excitations is provided by
the renormalization group (RG) equations which describe

1Of course, this applies only when the non-Abelian interaction
is not severely affected by a magnetic field, and thus does
not apply to the conventional Kondo effect by the spin flip
interaction.
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the change of interactions under the change of energy
scales of interest. In particular, if the interactions are weak
enough at the initial energy scales, we are able to compute
the RG equations in perturbation theory. Typical examples
include the color superconductivity [11–13] and the QCD
Kondo effect [4], in both of which the smallness of the
QCD coupling is guaranteed by a large chemical potential
μ, and the RG proceeds toward the Fermi surface (the
lowest energy point). We are going to derive the RG
equation for the magnetically induced QCD Kondo effect.
Notice that, instead of a large chemical potential, we have
now a large magnetic field B. As we will discuss later,
the initial energy scale of the scattering problem can be
taken as the scale of the order of

ffiffiffiffiffiffiffiffi
eqB

p
, and thus the QCD

coupling is small enough to justify the perturbative calcu-
lation. Below, we will perturbatively compute the scattering
amplitude between a light quark and a heavy quark
impurity up to the one loop level and study the scale
dependence of the amplitude, which are then followed by
derivation of the RG equation in the next section.

A. Scales in the problem

It is instructive to summarize the relevant scales in the
problem. We consider a scattering of a light quark off a
heavy quark in a strong magnetic field B. Light quarks in a
strong magnetic field undergo the magnetic catalysis and
acquire a dynamical mass mdyn. It is parametrically much
smaller than

ffiffiffiffiffiffiffiffi
eqB

p
, but increases with increasing B [10]

and thus for sufficiently strong B, we can take
ΛQCD ≪ mdyn ≪

ffiffiffiffiffiffiffiffi
eqB

p
. Gluon propagation also gets

modified in a strong magnetic field through a one loop
diagram of light quarks. As a result, gluons acquire a
“screening mass” mg which is parametrically smaller thanffiffiffiffiffiffiffiffi
eqB

p
by a coupling constant g but is larger than mdyn (see

below for more details). Therefore, in a vacuum under a
strong magnetic field, we find the following hierarchy of
scales: ΛQCD ≪ mdyn ≪ mg ≪

ffiffiffiffiffiffiffiffi
eqB

p
. This is also consis-

tent with the perturbative treatment with a small QCD
coupling αs ≪ 1. In the presence of a Fermi surface, which
is in fact a point with the Landau quantization, we have
another dimensionful parameter, a chemical potential μ or a
Fermi level. We assume that μ ≫ mdyn, so that light quarks
can be treated as massless above the Fermi level. Moreover,
we take μ ≪

ffiffiffiffiffiffiffiffi
eqB

p
so that the gluon screening is pre-

dominantly given by the strong magnetic field. Lastly, we
have a heavy quark mass M, but we take the large mass
limit M → ∞, and M does not appear in the final results.
Let us comment more about the chemical potential.

Although we work with a nonzero value of a chemical
potential, it will turn out that the result is independent of the
chemical potential as long as we treat the light quarks as
massless. This can be easily understood from the following
observation. As we mentioned in the Introduction, a

massless quark (antiquark) in the LLL has a linear
dispersion k0 ¼ �k3 as of 1þ 1-dimensions (see Fig. 1).
For any value of the chemical potential μ, the shape of
dispersion nearby is always the same, and thus we can
absorb the effects of a chemical potential by shifting the
origin of the energy. Thus, the dominant fluctuation leading
to the Kondo effect is the particle-hole excitation near the
Fermi level, but the result is independent of its location.
Thus, a relevant dimensionful parameter that characterizes
scattering processes is the magnetic field strength.2 Since
the magnetic field B always appears as the combination
eqB with eq being the electric charge of light quarks, the
QCD coupling αsðQ2Þ ¼ g2=4π may be evaluated at the
scale given by Q2 ≃ eqB. As long as we consider a strong
magnetic field eqB ≫ Λ2

QCD, we can take the QCD cou-
pling small enough αsðeqBÞ ≪ 1 thanks to the asymptotic
freedom, which justifies a perturbative calculation for the
scattering amplitude.

B. Setup

In order to calculate the scattering amplitude, we use the
QCD Lagrangian for a massless quark and a heavy quark
with a mass M in the presence of an external electromag-
netic field and a chemical potential μ > 0 (for a massless
quark):

LQCDþQED ¼ qðiDþ μγ0ÞqþQðiD −MÞQ −
1

4
FA
μνFAμν;

ð2Þ

where q and Q are light (massless) and heavy quarks,
respectively, and M is the mass of the heavy quark. We
consider the case of one flavor light quark and one heavy
quark, but generalization to multiflavors is straightforward.
The covariant derivative contains both the gluon field
AA
μ ðA ¼ 1;…; NcÞ and the external electromagnetic field

aextμ as Dμ ¼ ∂μ þ igAA
μTA þ ieq=Qaextμ . Here g is the gauge

R+

R+

k

k

3

0

L+

L+

k

k

3

0

FIG. 1. Dispersions of massless quarks in the LLL with right
and left handed chiralities are shown in the k0 − k3 plane where
the magnetic field is imposed in the third (z) direction. The signs
� stand for the eigenvalues of the spin in the z direction.

2The heavy quark mass M is taken to be infinity, and does not
enter the results.
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coupling of strong interaction, and TA is a generator of
the SUðNcÞ group. eq, eQ are electric charges of the
massless and heavy quarks, respectively. In this study,
we only consider a constant magnetic field in the z-

direction ~B ¼ ð0; 0; BÞ. In the Landau gauge, aextμ can be
written as

aextμ ¼ ð0; 0; Bx; 0Þ: ð3Þ

The field strength tensor of the gluon field is given
by FA

μν ¼ ∂μAA
ν − ∂νAA

μ þ igfABCAB
μAC

ν .
In this study, as we already mentioned before, we assume

the following hierarchy: μ ≪
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijeq=QBj

p
≪ M. As for the

light quark, we take the lowest Landau level (LLL)
approximation which should be justified for the massless
quark, while for the heavy quark impurity we regard it as a
free particle3 since the coupling of the heavy quark to the
magnetic field is suppressed by a power of jeQBj=M2 ≪ 1

owing to the condition jeQBj ≪ M2. The fermion propa-
gator of the LLL with a finite chemical potential μ can be
factorized into the longitudinal and the transverse parts as

SLLLðr; r0Þ ¼ S∥ðr∥; r0∥ÞS⊥ðr⊥; r0⊥Þ; ð4Þ

with the longitudinal and transverse components of coor-
dinate rμ∥ ¼ ðt; 0; 0; zÞ and rμ⊥ ¼ ð0; x; y; 0Þ. The transverse
part of the propagator is given by

S⊥ðr⊥; r0⊥Þ ¼
Z

dky
2π

1

π1=2lq
e
− 1

2l2q
fðx−l2qkyÞ2þðx0−l2qkyÞ2g

eikyðy−y0Þ;

ð5Þ

where lq ¼ 1=
ffiffiffiffiffiffiffiffi
eqB

p
corresponds to the Larmor radius of a

charged particle having the electric charge eq in a magnetic
field B. The longitudinal part of the propagator can be
written as

S∥ðr∥; r0∥Þ ¼
Z

d2k∥
ð2πÞ2 e

−ik∥·ðr∥−r0∥Þ ~S∥ðk∥; μÞ ð6Þ

with (ε > 0 is an infinitesimal constant)

~S∥ðk∥; μÞ ¼
i

2ϵk

�
θðk3 − kFÞ

k0 − ðϵþk − iεÞ þ
θðkF − k3Þθðk3Þ
k0 − ðϵþk þ iεÞ

−
θð−k3Þ

k0 − ðϵ−k þ iεÞ
�
ðk0γ0 − k3γ3ÞP0; ð7Þ

where kμ∥ ¼ ðk0; 0; 0; k3Þ with k3 ¼ kz. We have introduced
the energies ϵk ¼ jk3j, ϵ�k ¼ �ϵk − μ, and theFermimomen-
tum kF ¼ μ. P0 is a spin projection operator defined by
P0 ¼ ð1þ iγ1γ2Þ=2. We have also introduced a quark
energy shifted by the chemical potential: k0 ¼ k0 þ μ.
Each term in the curly brace corresponds to particle
(k3 > kF), hole (0 < k3 < kF), and antiparticle (k3 < 0)
contributions, respectively. Notice that the full LLL
propagator (4) is effectively confined to a small region
jr⊥ − r0⊥j≲ lq in the transverse direction. This will lead to
the dimensional reduction of the scattering amplitudes to
(longitudinal) 1þ 1 dimensions.
The gluon propagator gets modified through a quark

one-loop diagram in the presence of both a magnetic field B
and a chemical potential μ. As we alluded before, under the
condition μ ≪

ffiffiffiffiffiffiffiffi
eqB

p
, we will only consider the screening

effect due to the strong magnetic field.4 We employ a
noncovariant gauge for the gluon field, which was adopted
by Gusynin, Miransky and Shovkovy in the context of
magnetic catalysis in QED [9] and QCD [10]. In this gauge,
the gluon propagator in the one-loop approximation with
light quarks from the LLL is given by

DAB
μν ðr; r0jeqBÞ ¼

Z
d2p∥d2p⊥
ð2πÞ4 e−ip∥·ðr∥−r0∥Þþip⊥·ðr⊥−r0⊥Þ

× ~DAB
μν ðp∥; p⊥jeqBÞ ð8Þ

with

~DAB
μν ðp∥; p⊥jeqBÞ ¼ −i

�
g∥μν

p2 − Πðp2⊥; p2
∥Þ

þ g⊥μν
p2

−
p⊥
μ p⊥

ν þ p⊥
μ p

∥
ν þ p∥

μp⊥
ν

p4

�
δAB: ð9Þ

Here, g∥μν ¼ diagð1; 0; 0;−1Þ, g⊥μν ¼ diagð0;−1;−1; 0Þ
are parallel and transverse components of the metric,
and correspondingly, p∥

μ ≡ g∥μνpν ¼ ðp0; 0; 0; p3Þ, p⊥
μ ≡

g⊥μνpν ¼ ð0; p1; p2; 0Þ are the parallel and transverse
momenta with respect to the magnetic field. The explicit
form of Πðp2⊥; p2

∥Þ is given by

Πðp2⊥; p2
∥Þ ¼ þ exp

�
−

p2⊥
2eqB

�
m2

gΠ̂ðp2
∥=m

2
dynÞ; ð10Þ

where we temporarily recovered the dynamical mass mdyn

of the light quarks for later convenience and mg works as
the “gluon mass” [10]:

m2
g ¼

αs
π
eqB: ð11Þ

3The heavy-quark effective theory was adopted in the analysis
of the QCD Kondo effect [4]. However, the use of the heavy-
quark effective theory is in fact not essential and a free propagator
suffices in the present case.

4Namely, the Debye screening mass due to the chemical
potential is much smaller than the magnetic screening mass
mg which will be defined soon.
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The explicit expression for Π̂ðp2
∥=m

2
dynÞ is given in

Refs. [14–20]. It should be emphasized that there is a
strong screening effect in the first term of the gluon
propagator (9) owing to the gluon mass. The propagator
(9) is an analog of that employed in analyses of the
Schwinger model, namely, 1þ 1-dimensional QED [21].
Below, we will compute the scattering amplitude at the

one-loop level for the purpose of deriving the RG equation.
Therefore, the scattering amplitudes are evaluated at a scale
Λ, and the one-loop diagrams correspond to the quantum
fluctuations in the energy scales Λ < E < Λ0. Here, Λ0 is
the initial energy scale of the RG evolution and Λ is the
scale at which we want to know the effective coupling
strength (effective interaction between a light quark and a
heavy impurity reduced to 1þ 1 dimensions). Since these
scales are measured from the Fermi level, the RG evolution
with decreasing Λ corresponds to going down toward the
Fermi level. As for the initial energy scale Λ0, we take the
scale of the order of

ffiffiffiffiffiffiffiffi
eqB

p
because our calculation is based

on the LLL approximation for the light quarks, and this
approximation is valid only up to the scale of the first
Landau level

ffiffiffiffiffiffiffiffi
eqB

p
(recall the energy spectrum of a quark

ϵnðk3Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk3Þ2 þ eqBn

q
for the nth Landau level). This

limitation also applies to the longitudinal momentum k3,
which implies that the initial scale should be taken as a scale
of the order of

ffiffiffiffiffiffiffiffi
eqB

p
. On the other hand, as forΛ, we naively

expect that we are able to go down to the Fermi level
thanks to the hierarchyΛQCD ≪ mdyn ≪ μ ≪ mg ≪

ffiffiffiffiffiffiffiffi
eqB

p
.

However, towhich scalewe can actually go downdepends on
how large is the effective coupling. Indeed, as we will see
below, the effective coupling is small enough as long as Λ
satisfies mdyn; μ ≪ Λ ≤ Λ0, which justifies the perturbative
calculation. Then, we will find that the effective coupling
grows with further decreasing Λ and meets the Landau pole
(the Kondo scale) near the Fermi level.

C. Tree amplitude and 1þ 1 dimensional
effective coupling

Now we compute the amplitude for scattering between a
light (massless) quark near the Fermi level and a heavy
quark impurity. Under the strong magnetic field, the light
quark moves only in the direction parallel to the magnetic
field. In the LLL with eq > 0, the spin of the light quark is
fixed to the magnetic field direction. We set the momentum
of the initial quark as positive direction of the z-axis:
qz > 0. Then, the leading order amplitude as shown in
Fig. 2 is given by (see Appendix for derivation)

−iMLLL
0 ¼ ðigÞ2

Z
d2Q⊥
ð2πÞ2 ½uLLLðq

0
∥ÞγμðTAÞa0auLLLðq∥Þ�

× ~DAB
μν ðq0∥ − q∥; Q⊥jeqBÞe−

Q2⊥
4eqB

× ½UðP0ÞγνðTBÞb0bUðPÞ�; ð12Þ

where the color indices of quarks can take a; a0; b; b0 ¼
1; 2; � � �Nc and Q⊥ is the transverse component of the
gluon momentum. The spinors are defined by uLLLðqÞ ¼
N qðχ↑; ðσzqz=q0Þχ↑Þt with σzχ↑ ¼ þχ↑, and UðPÞ ¼
N Qðξσ; 0Þt with σzξ� ¼ �ξ�. N q and N Q are normaliza-
tion constants. By using these spinors,we finduLLLγμuLLL ¼
uLLLγμuLLL with μ ¼ 0, 3, andUγνU ¼ Uγ0U. Then, in the
gluon propagator (9), only the first term proportional to g∥00
contributes to the amplitude.
Notice that the tree amplitude (12) is defined so that the

transverse momenta q⊥ and q0⊥ of a scattered light quark
are integrated out. Since the external momenta of the heavy
quark impurity do not play any role in our study, we may
regard the tree amplitude (12) as the one projected on the
longitudinal space in 1þ 1 dimensions [22–24]. This
should be contrasted with the QCD Kondo effect at finite
densities [4] and the color superconductivity [11–13],
where one performs the partial wave expansion of the
amplitudes and project on, say, s-wave states. This dimen-
sionally reduced amplitude becomes more evident if we
introduce an effective coupling in 1þ 1 dimensions:

Gðq0∥ − q∥ÞδAB ≡
Z

d2Q⊥
ð2πÞ2 e

−Q2⊥=4eqB

× ½ðigÞ2i ~DAB
00 ðq0∥ − q∥;Q⊥jeqBÞ�

¼ −
g2δAB

ð2πÞ2
Z

d2Q⊥

×
e−Q

2⊥=4eqB

ðq0∥ − q∥Þ2 −Q2⊥ −ΠðQ2⊥; ðq0∥ − q∥Þ2Þ
:

ð13Þ
We have defined the effective couplingG as a dimensionless
quantity, which should be distinguished from the dimen-
sionful coupling naturally introduced in the four-Fermi
interaction. We will come back to this point later. The
numerical value of this 1þ 1 dimensional effective coupling
varies depending on the value of q0∥ − q∥ as we explicitly
demonstrate below.
Similarly to the RG in the QCD Kondo effect at finite

densities [4], we consider the scattering of an off-shell light

FIG. 2. The tree diagram. Solid and double solid lines are
massless and heavy quarks, respectively.
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quark near the Fermi level. Since we are interested in the
scattering amplitude at the scale Λ which is measured from
the Fermi level, we take the momenta of the light quark
of the order of Λ in addition to the Fermi momentum:
q3 ¼ kF þOðΛÞ, as well as q03 ¼ kF þOðΛÞ. Then, we
specify the kinematics for the energies and the momentum
transfer as

q00 ¼ q0 ¼ ϵF; q03 − q3 ≃ Λ; ð14Þ

where the ϵF stands for the Fermi energy: ϵF ¼ kF.
The longitudinal momentum transfer ðq0∥ − q∥Þ2 reads

ðq0∥ − q∥Þ2 ≃ −Λ2: ð15Þ

Since the q0∥ − q∥ dependence of the 1þ 1 dimensional
effective coupling (13) now turns into Λ dependence,5 even
the tree amplitude depends on the scale Λ. As for the
vacuum polarization (10), the asymptotic form of
Π̂ðp2

∥=m
2
dynÞ for jp2

∥j ≫ m2
dyn is given by [9,10]

Π̂ðp2
∥=m

2
dynÞ → 1: ð16Þ

Since Λ ≫ mdyn, we use the asymptotic form (16) of
Π̂ðp2

∥=m
2
dynÞ in our analysis. Then, the vacuum polarization

in Eq. (13) becomes

Πððq0∥ − q∥Þ2 ≃ −Λ2; Q2⊥Þ ¼ e−
Q⊥2

2eqBm2
gΠ̂ð−Λ2=m2

dynÞ

≃ e−
Q⊥2

2eqBm2
g: ð17Þ

Since the denominator of the integrand in Eq. (13) is
now estimated as Λ2 þ e−Q⊥2=2eqBm2

g þQ⊥2 and becomes
∼Λ2 þm2

g in the limit Q⊥ → 0, we separately evaluate the
integral depending on6 whether (I) mg < Λ or (II) Λ < mg.
Performing the integral of the transverse momentum in
Eq. (13), we get the 1þ 1 dimensional effective coupling as

G≃
8<
:

αs log
�
4eqB
Λ2

�
ðIÞ

αs log
�
4eqB
m2

g

�
ðIIÞ

ð18Þ

within the leading log accuracy. The effective coupling in
case (I) explicitly depends on the scale Λ, and so does the

tree amplitude. On the other hand, in case (II), the effective
coupling does not depend on the scale Λ, and the tree
amplitude dose not give a contribution to the RG equation.
As we will immediately see below, we will encounter the

same 1þ 1 dimensional effective coupling G in the next-
to-leading order and, in general, in higher orders. Thus,
what truly matters in the perturbative calculation is the
magnitude of G rather than αs or g which is always small
enough in our calculation. Notice that the G can be taken
small enough if one considers strong magnetic fields [so
that G≃ αs logð1=αsÞ ≪ 1 in case (II) and even smaller in
case (I)]. Thus, as long as we consider a strong magnetic
field, the effective coupling G in Eq. (18) is small enough
and the perturbative calculation is justified.
With the 1þ 1 dimensional effective couplingG, the tree

amplitude (12) is now manifestly expressed with respect to
dimensionally reduced quantities in 1þ 1 dimensions:

−iMLLL
0 ¼ −iG½uLLLðq0∥Þγ0ðTAÞa0auLLLðq∥Þ�

× ½UðP0Þγ0ðTAÞb0bUðPÞ�
¼ −iGðTAÞa0aðTAÞb0b
× ½uLLLðq0∥Þγ0uLLLðq∥Þ�N 2

Qξ
†
σ0ξσ: ð19Þ

In the large mass limit of the heavy quark impurity:
M → ∞, the heavy-quark spin is frozen as ξ†σ0ξσ ¼ δσ0σ
(thus does not play a role in the QCD Kondo effect). This is
the result of the tree amplitude and corresponds to the
leading order contribution with respect to the effective
coupling G.

D. One-loop amplitudes

As for the next-to-leading order, the two one-loop
diagrams depicted in Figs. 3(a) and 3(b) contribute to
the scattering amplitude. Following the method similar to
that for the tree amplitude, we obtain the dimensionally
reduced one-loop amplitude of the diagram (a) as (see the
Appendix for details)

− iMðaÞLLL
1−loop

¼ ðigÞ4
Z

d2k∥
ð2πÞ2 ½uLLLðq

0
∥ÞγμðTAÞa0a00

× ~S∥ðk∥; μÞγνðTBÞa00auLLLðq∥Þ�

×
Z

d2Q0⊥
ð2πÞ2

~DAC
μσ ðq0∥ − k∥; Q0⊥jeqBÞe−

Q02⊥
4eqB

×
Z

d2Q⊥
ð2πÞ2

~DBD
νρ ðq∥ − k∥; Q⊥jeqBÞe−

Q2⊥
4eqBe−i

~Q⊥× ~Q0⊥
2eqB

× ½UðP0ÞγσðTCÞb0b00 ~SHðPþ q − kÞγρðTDÞb00bUðPÞ�;
ð20Þ

5A similar Λ dependence of the gluon exchange interaction
also appears in the context of the color superconductivity with the
color magnetic interaction [12,13].

6As an initial value for the RG equation, we will take Λ ¼ Λ0

of the order of
ffiffiffiffiffiffiffiffi
eqB

p
, but here we allow Λ much smaller thanffiffiffiffiffiffiffiffi

eqB
p

for consistency check with the RG evolution. See
discussion in the next section.
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where kμ ¼ ðk0; ~kÞ ¼ ðk0 þ μ; ~kÞ, and ~SH is the heavy
quark propagator in the momentum space. The two square
brackets (in the first and third lines) correspond to light
and heavy quark lines, respectively, and the second line
corresponds to gluons exchanged between light and heavy
quarks. Again, (apart from the heavy quark part) the
amplitude depends only on longitudinal momenta q∥ and
q0∥ of the scattered light quark. The integration with respect
to k∥ corresponds to the loop integral, while the integrations
over two transverse momenta Q⊥ and Q0⊥ should be
associated with the effective coupling which appeared in
the tree amplitude [see Eq. (13)]. However, we notice the

presence of a phase factor exp ð−i ~Q⊥ × ~Q0
⊥=2eqBÞ which

involves Q⊥ and Q0⊥ and thus makes the two integrations
inseparable. This magnetic phase factor is gauge invariant,
which appears also in the symmetric gauge. In fact, this
phase factor can be neglected in the present approxima-
tion,7 which enables us to identify the integrations over two
transverse momenta in the second line of Eq. (20) with the
effective couplings. The light quark propagator is propor-
tional to the spin projection operator P0, and then we can
use uLLLγμP0γνuLLL ¼ uLLLγμP0γνuLLL. In the large mass
limit: M → ∞, the heavy quark propagator reads

~SHðPþ q − kÞ ¼ i
Pþ q −k̄ −M

∼
i

q00 − k0
Pþ; ð21Þ

with Pþ ¼ ð1þ γ0Þ=2 being the projection operator to
the positive energy spinor. Thus, the vertex structure on
the heavy quark side becomes UðP0ÞγσPþγρUðPÞ ¼
UðP0Þγ0Pþγ0UðPÞ. Again, only the first term of the gluon

propagator (9), proportional to g00, contributes to the
amplitude (20).
Within the approximation of neglecting the magnetic

phase factor, we can express the second line of Eq. (20) in
terms of the 1þ 1 dimensional effective coupling G. This
brings us to the following representation of the one-loop
amplitude of the diagram (a):

−iMðaÞLLL
1−loop ¼ i4T ðaÞ

a0a;b0b

Z
d2k∥
ð2πÞ2

× ½uLLLðq0∥Þγ0ðk0γ0 − k3γ3ÞP0γ0uLLLðq∥Þ�

×
i

2ϵk

�
θðk3 − kFÞ

k0 − ðϵþk − iεÞ þ
θðkF − k3Þθðk3Þ
k0 − ðϵþk þ iεÞ

−
θð−k3Þ

k0 − ðϵ−k þ iεÞ
�

× ðiGÞ2 i

q00 − k0
½UðP0Þγ0Pþγ0UðPÞ�; ð22Þ

where the color factor T ðaÞ
a0a;b0b has been defined as T

ðaÞ
a0a;b0b ¼

ðTAÞa0a00 ðTBÞa00aðTAÞb0b00 ðTBÞb00b. The second line comes
from the light quark propagator ~S∥ðk∥; μÞ in the loop. We
perform the k0 integral with the contour closed in the upper
half of the complex k0 plane. Then, picking up the con-
tribution corresponding to particle excitation of the light
quark (the first term of the light quark propagator), we
find

−iMðaÞLLL
1−loop ≃ iG2T ðaÞ

a0a;b0b

	
uLLLðq0∥Þ

γ0 þ γ3

2
P0uLLLðq∥Þ




× ½UðP0Þγ0Pþγ0UðPÞ�
Z

kFþΛ0

kFþΛ

dk3

2π

1

ϵk − ϵF
;

ð23Þ

where the k3 integral is limited to the higher energy strip
kF þ Λ ≤ k3 ≤ kF þ Λ0 with kF being the Fermi momentum
of the light quark kF ¼ μ. By changing the integral variable
as k3 → K ¼ k3 − kF, we finally arrive at the expression
independent of kF ¼ μ:

(a) (b)

FIG. 3. One-loop diagrams (a) a box diagram, (b) a crossed diagram.

7Roughly speaking, the integration with respect to the trans-
verse momentum Q⊥ can be approximated as

R
d2Q⊥=Q2⊥ with

lower and upper cutoffs given by mg (due to the denominator of
the gluon propagator) and

ffiffiffiffiffiffiffiffi
eqB

p
(due to the Gaussian factor).

Since the phase factor becomes sizable when jQ⊥j; jQ0⊥j ap-
proach to

ffiffiffiffiffiffiffiffi
eqB

p
, it will modify the integration only in the region

around the upper cutoff. The relative importance near the cut-off
region compared to the whole integral indeed becomes negligible
if the ratio m2

g=eqB ∼ αs is small enough, which has been
numerically checked.
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−iMðaÞLLL
1−loop ≃ iG2T ðaÞ

a0a;b0b

	
uLLLðq0∥Þ

γ0 þ γ3

2
P0uLLLðq∥Þ




× ½UðP0ÞPþUðPÞ�
Z

Λ0

Λ

dK
2π

1

K
: ð24Þ

Now we can clearly see that this amplitude has a
logarithmic contribution and does not depend on the
chemical potential. As we already discussed before, with
the linear dispersion of the massless quarks we can
always absorb the information of the Fermi level (the
chemical potential) into the integral variable as we have
just done so.
Next we consider the crossed diagram (b). We basically

follow the same procedure as in the diagram (a), but with
attention on the color index and momentum flow. The
one-loop amplitude of the diagram (b), reduced to 1þ 1
dimensions, can be obtained as

−iMðbÞLLL
1−loop ¼ i4

Z
d2k∥
ð2πÞ2 ½uLLLðq

0
∥Þγ0ðTAÞa0a00

× ~S∥ðk∥; μÞγ0ðTBÞa00auLLLðq∥Þ�
× ðiGÞ2½UðP0Þγ0ðTDÞb0b00
× ~SHðP − q0 þ kÞγ0ðTCÞb00bUðPÞ�: ð25Þ

Here we have already used the facts that uLLLγμP0γνuLLL ¼
uLLLγμP0γνuLLL and UðP0ÞγσPþγρUðPÞ ¼ UðP0Þγ0Pþγ0
UðPÞ as in the previous calculation for the diagram (a). We
have also neglected the magnetic phase factor for the same
reason as discussed below Eq. (20). Performing the k0

integral with lower contour, we find

−iMðbÞLLL
1−loop ≃ iG2T ðbÞ

a0a;b0b

	
uLLLðq0∥Þ

γ0 þ γ3

2
P0uLLLðq∥Þ




× ½UðP0ÞPþUðPÞ�
Z

kF−Λ

kF−Λ0

dk3

2π

1

ϵk − ϵF
;

ð26Þ

where we have defined the color factor as T ðbÞ
a0a;b0b ¼

ðTAÞa0a00 ðTBÞa00aðTBÞb0b00 ðTAÞb00b. As is evident from the
integration range, this amplitude comes from the contri-
bution below the Fermi momentum, k3 < kF, which in
general contains both holes and antiparticles. In the present
case with Λ0 > Λ ≫ kF ¼ μ, since both kF − Λ0 and
kF − Λ are negative, the integration region is in the
Dirac sea and thus the amplitude comes from the antiquark
contribution.8 Furthermore, thanks to the condition
Λ ≫ mdyn, the integration region is far away from the

region jk3j < mdyn, and thus we can safely treat the
antiquark as massless. We shall change the integral
variable as k3 → K ¼ kF − k3. Then, the amplitude
becomes

−iMðbÞLLL
1−loop ≃ iG2T ðbÞ

a0a;b0b

	
uLLLðq0∥Þ

γ0 þ γ3

2
P0uLLLðq∥Þ




× ½UðP0ÞPþUðPÞ�
Z

Λ0

Λ

dK
2π

1

−K
: ð27Þ

The chemical potential is again absorbed into the integral
variable thanks to the linear dispersion of the mass-
less quark.
When combining the contributions from the diagrams

(a) and (b), we use the following identities for the color
factors:

T ðaÞ
a0a;b0b ¼

N2
c − 1

4N2
c

δa0aδb0b −
1

Nc
ðTAÞa0aðTAÞb0b; ð28Þ

T ðbÞ
a0a;b0b ¼

N2
c − 1

4N2
c

δa0aδb0b þ
�
−

1

Nc
þ Nc

2

�
ðTAÞa0aðTAÞb0b:

ð29Þ

Then, we find the total amplitude at the one-loop
level:

−iMLLL
1−loop ¼ −iðMðaÞLLL

1−loop þMðbÞLLL
1−loop Þ

≃ −iG2
Nc

2
ðTAÞa0aðTAÞb0b

× ½uLLLðq0∥Þγ0uLLLðq∥Þ�N 2
Qξ

†
σ0ξσ

×
Z

Λ0

Λ

dK
2π

1

K
: ð30Þ

We see that the logarithmic terms coming from box (24)
and crossed (27) diagrams do not cancel each other, and
this term remains in the total amplitude thanks to the
non-Abelian property of the interaction as in the ordinary
Kondo effect. In fact, this incomplete cancellation due to
the difference in Eqs. (28) and (29) is exactly the same as
what we encounter in the QCD Kondo effect at finite
density [4]. While the strength of the effective interaction
changes in the presence of magnetic fields, its non-
Abelian structure does not, and thus works in the same
way as in the QCD Kondo effect.
Furthermore, since light quarks can be regarded as

massless above the Fermi level, the helicity conservation
must be satisfied. Thus, only forward scattering of the light
quark near the Fermi level off the heavy quark impurity is
allowed in the 1þ 1 dimensions.

8This is contrasted with the ordinary Kondo effect in con-
densed matter with a contact interaction, where the crossed
diagram corresponds to the hole contribution.
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III. RENORMALIZATION GROUP EQUATION
AND THE KONDO SCALE

A. Renormalization group equation

In this section, we derive the RG equation of the effective
coupling strength for the interaction between a light quark
and a heavy quark. Combining the tree amplitude (19) and
the one-loop amplitude (30), we find that the one-loop
contribution gives rise to an additional logarithmic term to
the tree one:

−iMLLL ¼ −iðMLLL
0 þMLLL

1−loopÞ

≃ −iMLLL
0

�
1þ G

2π

Nc

2
log

Λ0

Λ

�
: ð31Þ

From this result, we notice that the one-loop amplitude
MLLL

1−loop is proportional to the tree amplitude MLLL
0 , and

thus we can redefine the coupling G with the logarithmic
term included. From the viewpoint of the RG, this
implies that the RG flow of the amplitude can be
represented as that of the “effective coupling strength”
GðΛÞ at the scale Λ, and the coupling G defined at the
tree amplitude (18) should be treated as the initial value
at Λ ¼ Λ0 [4]. More precisely, for an infinitesimal change
of the scale, the new effective coupling GðΛ − δΛÞ
defined by the left-hand side of Eq. (31) can be expressed
as GðΛ − δΛÞ≃GðΛÞ − δGðΛ0Þ=δΛ0jΛ0¼ΛδΛ with the
first term defined by the tree amplitude and the second
by the one-loop amplitude. However, we have to be
careful when the tree amplitude itself has an explicit scale
dependence as we have seen in Eq. (18). In such a case,
we need to include the change of the tree amplitude into
the second term together with the one-loop contribution.9

This happens only for case (I) mg < Λ. Since we start
from the initial scale Λ0 of the order of

ffiffiffiffiffiffiffiffi
eqB

p
which is

much larger than mg [corresponding to case (I)] and we
decrease the scale Λ according to the RG equation, we
must distinguish two regimes for the running scale Λ
corresponding to cases (I) and (II) in Eq. (18):

ðIÞ mg < Λ≲ ffiffiffiffiffiffiffiffi
eqB

p
;

ðIIÞ mdyn ≪ Λ < mg:

The lower limit for regime (II) is put because the present
calculation with massless approximation is valid only for
Λ ≫ mdyn. According to Eqs. (18) and (31), we find the
following RG equations for each regime:

ðIÞ Λ
d
dΛ

GðΛÞ ¼ −2αs −
Nc

4π
G2ðΛÞ; ð32Þ

ðIIÞ Λ
d
dΛ

GðΛÞ ¼ −
Nc

4π
G2ðΛÞ; ð33Þ

where the first term in Eq. (32) comes from the scale
dependence of the tree amplitude.10 As we start from the
initial scale Λ0 and decrease the scale Λ, the effective
coupling GðΛÞ first obeys Eq. (32) in regime (I) then
Eq. (33) in regime (II).

B. Solutions to the RG equations and matching

Before considering the effect of the additional contribu-
tion from the tree amplitude in regime (I), let us solve the
simpler RG equation (33) in regime (II). Notice that it is
the famous form of the differential equation yielding the
asymptotic freedom as seen in QCD.We solve this equation
with the initial condition GðΛ0Þ ¼ αs logð4eqB=m2

gÞ≡G0

specified at Λ ¼ Λ0 ≲mg. Then, the solution

GðΛÞ ¼ G0

1þ 1
4πNcG0 log ðΛ=Λ0Þ

ð34Þ

shows that the effective coupling GðΛÞ decreases with
increasing Λ (asymptotic freedom). Conversely, the effec-
tive coupling increases with decreasing Λ, and diverges at
some scale. This is the Landau pole called the Kondo scale
(an analog of ΛQCD in QCD), and it is given by

ΛK ≃ Λ0 exp

�
−

4π

NcG0

�
ð35Þ

with Λ0 ≲mg. The effective coupling in the exponent is
evaluated at this scale G0 ¼ GðΛ0Þ. Below and around the
Kondo scale, the system becomes nonperturbative even if
the gauge coupling g is small enough. By using the Kondo
scale (35), the effective coupling can be expressed as

GðΛÞ ¼ 1
1
4πNc logΛ=ΛK

: ð36Þ

This is again similar to the asymptotic freedom in QCD.
A few comments are in order about the Kondo scale (35).

First of all, let us consider the QCD Kondo effect at high
density with the contact interaction whose strength is given
by a dimensionful coupling Gc so that the interaction is
given by GcðqΓqÞðQΓQÞ. With the density of state ρF at
the Fermi surface, one obtains a Kondo scale ΛK ∝
exp ð−2=NcρFGcÞ [4,5]. Notice that a dimensionless com-
bination ρFGc corresponds to the dimensionless coupling
G0=ð2πÞ in Eq. (35). This observation suggests that the
density of state of the LLL, ρLLL, was hidden in our
definition of the effective coupling. Indeed, integration over

9Otherwise the coupling does not vary in the absence of the
one-loop contribution.

10A RG equation similar to Eq. (32) describes color super-
conductivity induced by the color magnetic interaction [13].
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the transverse momentum of the light quark yields ρLLL≡
1
2π ·
R dky

2π
1

π1=2lq
e−l

2
qk2y ¼ eqB=ð2πÞ2. The similarity between

these two Kondo scales is a consequence of the fact
that imposing a magnetic field plays the same role as
having the Fermi surface. This should be compared with
another similarity between the superconducting gap Δ ∝
expð−c=ρFGsÞ and the chiral condensate (dynamical mass)
from magnetic catalysis: mdyn ∝ expð−c0=ρLLLGmÞ where
Gs,Gm are the coupling strength of the contact interactions,
and c, c0 are some numerical constants. The latter similarity
was the crucial observation made in Ref. [8]. Substituting
G0 ¼ αs logð4eqB=m2

gÞ ¼ αs logð4π=αsÞ into Eq. (35),
one finds

ΛK ≃ ffiffiffiffiffiffiffiffi
eqB

p
αδs exp

�
−

4π

Ncαs logð4π=αsÞ
�
; ð37Þ

where we have taken Λ0 ¼ mg and thus δ ¼ 1=2.
Now we go back to the original problem with the initial

scale Λ0 taken in regime (I) and, correspondingly, the RG
equation (32). The solution to the RG equation (32) is
given by

GðΛÞ ¼
ffiffiffiffiffiffiffiffiffiffi
8παs
Nc

s
tan

"
arctan

 ffiffiffiffiffiffiffiffiffiffi
Nc

8παs

s
GðΛ0Þ

!

−
ffiffiffiffiffiffiffiffiffiffi
Ncαs
8π

r
log

Λ2

Λ2
0

#
ð38Þ

with the initial effective coupling

GðΛ0Þ ¼ αs log

�
4eqB

Λ2
0

�
: ð39Þ

With decreasing Λ, the effective coupling grows as
expected. This solution is valid in regime (I) and its value
at the lower limit Λ ¼ mg is evaluated as

GðmgÞ ¼ αs log
4eqB

m2
g

�
1þ 1

3
·

� ffiffiffiffiffiffiffiffiffiffi
Ncαs
8π

r
log

4eqB

m2
g

�2

þ…

�
:

ð40Þ

Here we have expanded the solution with respect toffiffiffiffiffi
αs

p
logð4eqB=m2

gÞ ¼ ffiffiffiffiffi
αs

p
logð4π=αsÞ ≪ 1 which natu-

rally appears in the argument of tangent or arctangent,
and the contribution depending on Λ0 appears in the next
subleading term. Note that the leading order term coincides
with the effective coupling Eq. (18) derived from the tree
amplitude [in regime (II) or Λ ¼ mg in regime (I)]. This
means that the effective coupling at Λ ¼ mg deviates
from the tree value and the difference corresponds to the
contribution from the quantum fluctuations. Indeed, if we

neglect the second term in Eq. (32), we will obtain this
leading solution.
If we enter regime (II), we solve the RG equation (33)

with the initial condition specified at Λ ¼ mg. In the
previous analysis, we solved the RG equation (33) with
the initial condition given by the tree value. However, the
initial value must be replaced by the result (40) which we
have just obtained from the RG equation in regime (I).
Therefore, the solution to the RG equation (33) with a
renewed (and more accurate) initial condition reads:

GðΛÞ ¼ GðmgÞ
1þ 1

4πNcGðmgÞ logðΛ=mgÞ
: ð41Þ

Since the functional form is the same as before, we can
immediately find that this solution has a Landau pole and
we can define the Kondo scale. By using the GðmgÞ in
Eq. (40) up to the second order, we finally obtain the Kondo
scale as

ΛK≃ ffiffiffiffiffiffiffiffi
eqB

p
α1=2s exp

�
−

4π

Ncαs logð4π=αsÞ
þ log

�
4π

αs

�
1=6
�

≃ ffiffiffiffiffiffiffiffi
eqB

p
α1=3s exp

�
−

4π

Ncαs logð4π=αsÞ
�
: ð42Þ

The power of αs in the prefactor is now 1=3 which is
slightly smaller than 1=2 due to the effects of quantum
fluctuations from regime (I) Λ > mg. In fact, the exponent
of the Kondo scale is predominantly determined by the
dynamics in regime (II), while the prefactor by regime (I).
This implies that the numerical value of the prefactor
depends on the approximations made in regime (I). For
example, recall that we have neglected the magnetic phase
factor in deriving the RG equation for the effective coupling
G. While this approximation leads to a closed RG equation
for the effective coupling, its effect could become sizable
when we consider higher energy region in regime (I). Still,
we expect an improved treatment at higher energy region
will only affect the prefactor, while keeping the exponent
unchanged.
We can show that this Kondo scale (42) is common to

several channels of SUðNcÞ symmetry, including 3c and 6c
of Nc ¼ 3, as in the QCD Kondo effect [4]. Furthermore,
we can easily verify that the same Kondo scale appears in
the q −Q scattering channel.
As mentioned in the Introduction, the resultant Kondo

scale (42) has the form similar to that of the dynamical
quark mass mdyn induced by magnetic catalysis in QCD
[10]. This is not an accidental similarity, and there are at
least two reasons. First of all, recall that the analytic
representation of the dynamical mass in magnetic catalysis
is obtained from the Dyson-Schwinger (DS) equation for a
quark. Although the DS equation can in principle contain
nonperturbative effect, it was solved in Ref. [10] with an
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improved “rainbow” approximation which consists of an
infinite number of “magnetically dressed” gluon propaga-
tors attached to a single quark propagator in a planar way.
Cutting the (virtual) quark propagator generates planar
diagrams for quark-antiquark scattering with infinitely
many gluon exchange. Notice that similar types of dia-
grams can be summed by the RG equation which recur-
sively generates gluon exchange.11 Thus solving the DS
equation in the rainbow approximation is intimately related
to solving the perturbative RG equation.12 In both cases, the
exponent in the characteristic scale has the scattering
amplitude at the tree level. The secondary reason is the
fact that the gluon exchange interaction between the light
quark and the heavy quark impurity (the tree level ampli-
tude) in our problem has the form similar to that between
the light quark and the anti-light quark in magnetic
catalysis. This situation should be contrasted with the
relationship between the color superconductivity and the
QCD Kondo effect. Although both of them are unstable
phenomena around the Fermi surface, the gap in the color
superconductivity and the Kondo scale in the QCD Kondo
effect have different parametric dependences on the cou-
pling. This is because the dominant interaction leading to
each phenomenon is different from each other: the color
magnetic gluon exchange in the color superconductivity
[13] and the color electric gluon exchange in the QCD
Kondo effect [4].
To reach a deeper understanding of the result, let us

consider again how the Kondo scale is obtained. What we
actually did is the following: We first solve the perturbative
RG equation to find the scale dependence of the effective
coupling GðΛÞ in a “safe” region where the effective
coupling GðΛÞ is small enough. Then we find that GðΛÞ
increases with decreasing Λ, and diverges at some scale
while it stands outside the validity region of perturbative
calculation. This scale is nothing but the Kondo scale ΛK.
In this sense, we are able to determineΛK from the behavior
of GðΛÞ even without going down to lower scales.
On the other hand, we should notice that solving

the RG equation corresponds to collecting logarithmically
enhanced contributions from each step of the degrading
scale. Thus, the effective coupling at scale Λ is essentially
controlled by the longitudinal integral

R Λ0

Λ dK=K. This
means that the physics at the scale Λ is determined by
contributions from the whole region Λ < K < Λ0 (instead
of the infrared region).
In the expression of the Kondo scale (37), we saw that

the exponent of the Kondo scale does not have an explicit

dependence on the magnetic field strength B. The same is
true for the improved result (42). If the Kondo scale
depends on the magnetic field only through the overall
prefactor, then it grows very fast with increasing B.
However, this is not the case. In fact, a nontrivial depend-
ence appears through the QCD coupling constant αs,
which renders the growth slower. We take the QCD
coupling evaluated at the energy scales of the order offfiffiffiffiffiffiffiffi
eqB

p
. This is consistent with the observation that the

effective coupling in the Kondo scale must be evaluated
at the initial energy scale Λ0 ∼

ffiffiffiffiffiffiffiffi
eqB

p
. Plugging the

QCD coupling αsðeqBÞ−1 ≃ b0 logðeqB=Λ2
QCDÞ with

b0 ¼ ð11Nc − 2nfÞ=12π into the Kondo scale (42), we find
the following B dependence:

Λ2
K

Λ2
QCD

≃ 1h
b0 log

�
eqB
Λ2
QCD

�i
2=3

�
eqB

Λ2
QCD

�
1−2γ

; ð43Þ

where thepower γ≡ð4πb0=NcÞ=logf4πb0 logðeqB=Λ2
QCDÞg

corresponds to the anomalous dimension for ΛKðBÞ
coming from quantum evolution. This Kondo scale very
slowly but monotonically increases with an increasing
magnetic field like the dynamical quark mass induced by
magnetic catalysis in QCD [10]. Taking the magnetic field
strong enough drives the Kondo scale and thus the physics
of the Kondo dynamics far from the nonperturbative
QCD scale ΛQCD. In particular, it is quite interesting that
the Kondo effect could take place in the energy region where
the QCD coupling is small enough.

IV. IMPACT OF MAGNETICALLY INDUCED
QCD KONDO EFFECT

In this section, we discuss how the magnetically induced
QCD Kondo effect could give an impact on other phenom-
ena that are induced by strong magnetic fields. We also
discuss possible relevance of the magnetically induced
QCD Kondo effect in realistic situations which are accom-
panied by strong magnetic fields.

A. Magnetic catalysis vs magnetically-induced
QCD Kondo effect

In the previous analysis for the QCD Kondo effect [4],
competition with the color superconductivity was dis-
cussed because both are expected to occur in high density
quark matter. Light quarks near the Fermi surface induce
the Cooper instability via attractive quark-quark interac-
tion in color superconductivity, and the avalanche of
particle-hole excitations via quark-impurity (non-
Abelian) interaction in the QCD Kondo effect. Thus,
how the competition occurs depends on the strength of
these two interactions (which may be controlled by the
density of impurities). In the current analysis of the
magnetically induced QCD Kondo effect, we have taken

11In the Kondo effect, nonplanar crossed diagrams represented
in Fig. 3 (right) play an important role in the cancelling the
spurious contribution from Uð1Þ (scalar) interactions.

12It is recognized in color superconductivity that the gap
obtained from the gap equation (the DS equation) in the rainbow
approximation is equivalent to that computed from the perturba-
tive RG equation [12].
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the chemical potential μ much larger than the dynamical
quark mass mdyn so that the effect of finite mass can be
neglected above the Fermi level and we can focus on the
Kondo dynamics. However, when the chemical potential
is taken small and the effect of finite mass cannot be
neglected any longer even above the Fermi level, we will
have to examine the competition between the magneti-
cally induced QCD Kondo effect and magnetic catalysis.
In this case, since the chemical potential and thus the
Kondo scale are not far away from mdyn, the result
obtained with the massless approximation should be taken
with care. Namely when the competition becomes crucial
with μ, mdyn and ΛK of the similar order, the effective
coupling G will become large, and thus we will have to
work with some nonperturbative methods.
Then, what kind of physics is expected by the com-

petition? Physically, we expect to see the competition
between two effects: one is the interaction to form a chiral
condensate (a qq pair) and the other, a Kondo color-singlet
state (a qQ pair). As we already discussed briefly in the
Introduction, such a competition will give a sizable
influence on the QCD phase diagram with strong mag-
netic fields. Consider the QCD phase diagram on a
temperature (T) and magnetic field (B) plane. When the
magnetic field is not imposed (B ¼ 0), the chiral sym-
metry breaking (and quark confinement) takes place in
low temperature regions T < Tc, but addition of the
magnetic field B ≠ 0 induces the magnetic catalysis and
affects the critical temperature in a nontrivial way. For
example, the phenomena induced by magnetic fields are
enhancement of chiral [6–8] and gluon [25,26] conden-
sates in lower temperature regions (magnetic catalysis),
and decrease of Tc of chiral [27,28] and deconfinement
[29,30] phase transitions (inverse magnetic catalysis). If
one adds heavy quarks to a system that is in chirally
broken phase and in magnetic fields, then heavy quarks
attract light quarks constituting the chiral condensate, due
to the magnetically-induced Kondo effect, and will work
to weaken the magnetic catalysis. This will have some
impact on the critical temperature to modify the QCD
phase diagram.

B. Chiral magnetic effect in the presence
of the heavy impurity

Recall that the Kondo effect was originally introduced
in relation to the anomalous behavior of electric resistance
at low temperature. Similarly, we expect that transport
properties of the QCD matter will also change due to the
QCD Kondo effect. Analogy with the ordinary Kondo
effect suggests that the QCD Kondo effect at high
densities will affect the electric and color electric con-
ductivities which can be seen as susceptibilities against
external fields. Then, what can be expected as a result of
the magnetically induced QCD Kondo effect? A naive
expectation is that it would affect the electric/color electric

conductivities in a similar way as in the QCD Kondo
effect at high densities. However, we should recall that
while there is a logarithmic enhancement in the scattering
amplitude, only a forward scattering is possible with
1þ 1-dimensional massless quarks. Therefore, the scat-
tering cross section does not contribute to the electrical
resistance.13 A similar argument holds in the chiral
magnetic effect which is an interesting transport phe-
nomenon in a chirally imbalanced quark matter in a
strong magnetic field [31,32]. Indeed, we already con-
firmed that the QCD Kondo effect (or a logarithmic
enhancement of the scattering amplitude) is also caused
by the chiral imbalance [33] without the magnetic field.
However, if we consider the QCD Kondo effect in the
presence of both the chiral imbalance and the strong
magnetic fields with the condition

ffiffiffiffiffiffiffiffi
eqB

p
≫ μ5, it is

dominated by magnetically induced QCD Kondo effect.
In this case, only the forward scattering will be allowed
due to the dimensional reduction to 1þ 1-dimensions.
Thus, we expect that the chiral magnetic effect will not
be affected by this Kondo effect. We will discuss this
problem in a separate paper [33].

C. Relevance in realistic situations: Heavy ion
collisions and magnetars

There are several situations which are accompanied by
extremely strong magnetic fields. The primary example is
high-energy heavy-ion collisions at RHIC or the LHC.
While the duration for the strong magnetic fields is quite
short, it may last as long as the lifetime of quark-gluon
plasmas and the typical strength would exceed even the
nonperturbative QCD scale eB≳ Λ2

QCD. The secondary
example is the magnetars whose magnetic fields
well exceed the critical magnetic field for electrons
eB ≫ eBc ¼ m2

e. We expect that a quark matter could
exist at the core of magnetars since the density goes
beyond the normal nuclear matter density. In both cases, if
heavy quark impurities are present, there is a possibility
for the magnetically induced Kondo effect to occur.
As we already discussed, the appearance of the Kondo
effect will be seen in the change of transport properties of
the quark matter.

D. Applications to condensed matter physics

In certain systems in condensed matter physics, the
electronic spectrum takes the form of chiral fermions. For
example, carbon nanotube has a 1þ 1-dimensional spec-
trum, and graphene has a 2þ 1-dimensional spectrum.

13A standard framework for computing the electrical resistance
is the Boltzmann equation with the interaction between an
electron and an impurity included in the collision term. In
principle, we can do the same thing for the QCD Kondo effect
and the magnetically induced QCD Kondo effect.
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The parent crystal is long-known as graphite that is
composed of infinite stacking of graphene layers.
Because of weak interlayer interaction, the electronic
spectrum of graphite has a dispersion also along the
c-axis that is perpendicular to the layers, and the Fermi
surface of electrons and holes is present. If one applies a
strong magnetic field parallel to the c-axis, the carriers fall
into the LLL, and their spin is polarized. However, there
remains still a sublattice degrees of freedom that plays a
role analogous to the color of quarks. Hence, interesting
many-body phenomena can be expected. In fact, recent
experiment under magnetic field of the order of 50 T has
found a feature suggesting drastic change of the electronic
property [34]. With impurity scatterings from one sub-
lattice to the other, we may also expect a Kondo-type
effect that is analogous to the magnetically induced QCD
Kondo effect discussed in this paper.

V. SUMMARY AND CONCLUSION

We have found a new type of the Kondo effect, the
“magnetically induced QCD Kondo effect” which occurs
when a strong magnetic field is imposed on a light quark
matter with heavy-quark impurities. In this Kondo effect,
imposing the magnetic field plays the role as forming the
Fermi surface. We understand that the magnetically
induced QCD Kondo effect shares the same fundamental
physics with superconductivity and magnetic catalysis.
We have explicitly demonstrated that, in a strong magnetic
field, the scattering amplitude of a massless quark off a
heavy quark impurity shows a logarithmic enhancement
with respect to decreasing energy scale. The effective
coupling strength between a light quark and a heavy
impurity shows a typical behavior of the asymptotic
freedom, and thus diverges at a lower scale called
the Kondo scale. It is given by ΛK ≃ ffiffiffiffiffiffiffiffi

eqB
p

α1=3s

expf−4π=Ncαs logð4π=αsÞg which has the form similar
to the dynamical mass of magnetic catalysis in QCD [10].
The Kondo scale slowly grows with increasing magnetic
field strength and can become larger than the QCD
nonperturbative scale ΛQCD. Therefore, a sufficiently
strong magnetic field allows us to find the Kondo effect
in a regime where the QCD coupling is small enough.
Since only the forward scattering is allowed due to the
dimensional reduction in a strong magnetic field, the
magnetically induced QCD Kondo effect will not affect
the electrical resistance. However, its effect can be seen in
other transport properties.
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APPENDIX: CALCULATION OF
DIMENSIONALLY REDUCED
SCATTERING AMPLITUDES

In the Appendix, we present how to obtain the dimen-
sionally reduced amplitude for the scattering of a light
quark in the LLL state off a heavy quark impurity. We
perform perturbative calculation with respect to the QCD
coupling because we have large scales

ffiffiffiffiffiffiffiffi
eqB

p
≫ μ ≫ ΛQCD

which provide typical energy scales of the coupling
αsð

ffiffiffiffiffiffiffiffi
eqB

p Þ ≪ 1. Below, we compute the tree (leading
order) and one-loop (next-to-leading-order) amplitudes
through the self-energy of a heavy quark, which is a
technique adopted also in Ref. [35]. The self-energy of a
heavy quark with a one-loop contribution of a light quark as
depicted in Fig. 4 is directly related to the amplitude of the
scattering of a light quark off the heavy quark. In other
words, the self-energy Σ is proportional to jMj2 and the
amplitude M can be read off through the cutting rule. Our
method in a strong magnetic field can derive the gauge
invariant result with minimum complication of phase
factors due to the magnetic field.
To demonstrate how to extract the scattering amplitude

from the self-energy diagram, we first consider the case
of vanishing magnetic field. In this case, the leading
order diagram is shown in Fig. 5 and the self-energy
ΣLOðr; r0jB ¼ 0; μ ≠ 0Þ in the coordinate space is given by

FIG. 4. Self-energy diagram of the heavy quark.

FIG. 5. Leading order contribution to Fig. 4.
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ΣLOð0; 0jB ¼ 0; μ ≠ 0Þ

≡
Z

d4wd4w0d4vd4v0trðSðv; w0ÞigγμðTAÞa0aSðw0; vÞigγαðTA0 Þaa0 Þ

×DAB
μν ðw;w0ÞDA0B0

αβ ðv; v0ÞSHð0; wÞigγνðTBÞb0bSHðw; v0ÞigγβðTB0 ÞbcSHðv0; 0Þ

¼
Z
q0;q

trð ~Sðq0; μÞigγμðTAÞa0a ~Sðq; μÞigγαðTA0 Þaa0 Þ

× ~DAB
μν ðq0 − q; μÞ ~DA0B0

αβ ðq0 − q; μÞ
Z
P;P0

~SHðP0ÞigγνðTBÞb0b ~SHðPÞigγβðTB0 Þbc ~SHðP0Þ; ðA1Þ

where Sðr; r0Þ, SHðr; r0Þ and DAB
μν ðr; r0Þ are in-medium

propagators in coordinate space of a light quark, a heavy
quark and a gluon, and we put tilde for their counterparts in
the momentum space. The momentum integrals in the
rightmost expression stand for the four momentum ones:R
q ¼

R
d4q=ð2πÞ4. For simplicity, we have set the two

coordinates of the external heavy quarks equal to zero. By
applying the cutting rule to the intermediate quark states,
and replacing the external heavy propagator by the spinor,
we find the following amplitude:

− iM0ðB ¼ 0; μ ≠ 0Þ
¼ ðigÞ2½uðq0ÞγμðTAÞa0auðqÞ�
× ~DAB

μν ðq0 − q; μÞ½UðP0ÞγνðTBÞb0bUðPÞ�: ðA2Þ

This is nothing but the leading-order scattering amplitude
of the light quark off the heavy quark at a finite chemical
potential and vanishing magnetic fields. This leading order
amplitude is the same as that in the analysis of the QCD
Kondo effect [4]. In the absence of the magnetic field, this
amplitude contains full dependence on the four momenta of
the scattered quark.

1. Leading order

Now, we shall compute the scattering amplitudes in
strong magnetic fields within the leading-order level. In this
case, the light quarks are in the LLL state, and the gluons
are screened due to the magnetic field (recall

ffiffiffiffiffiffiffiffi
eqB

p
≫ μ).

Then, the leading-order self-energy of a heavy quark shown
in Fig. 5 can be written as

ΣLOð0; 0jB; μÞ ¼
Z

d4wd4w0d4vd4v0trðSLLLðv; w0ÞigγμðTAÞa0aSLLLðw0; vÞigγαðTB0 Þaa0 Þ

×DAB
μν ðw;w0jeqBÞDA0B0

αβ ðv; v0jeqBÞSHð0; wÞigγνðTBÞb0bSHðw; v0ÞigγβðTB0 ÞbcSHðv0; 0Þ

¼ eqB

2π

Z
q0∥;q∥

trð ~S∥ðq0∥; μÞigγμðTAÞa0a ~S∥ðq∥; μÞigγαðTA0 Þaa0 Þ

×
Z
Q⊥

~DAB
μν ðq0∥ − q∥; Q⊥jeqBÞe−

l2qQ
2⊥

4

Z
Q⊥

~DA0B0
αβ ðq0∥ − q∥; Q⊥jeqBÞe−

l2qQ
2⊥

4

×
Z
P;P0

~SHðP0ÞigγνðTBÞb0b ~SHðPÞigγβðTB0 Þbc ~SHðP0Þ; ðA3Þ

where the momentum integrals are defined asR
qð0Þ∥

¼ R d2qð0Þ∥
ð2πÞ2,

R
Q⊥ ¼ R d2Q⊥

ð2πÞ2 , and
R
Pð0Þ ¼ R d4Pð0Þ

ð2πÞ4 . Compar-

ing with the previous simple case without magnetic fields
(A1) where the four coordinates v; v0; w; w0 are replaced
by four momenta q; q0; P; P0, the transverse momenta of
the light quark q⊥; q0⊥ in the above result are already
integrated out leaving only theQ⊥; Q0⊥ integrals left. Recall
that the transverse motion of a light quark in a strong
magnetic field can be factored out in the self-energy

FIG. 6. Next to leading order contribution to Fig. 4, corre-
sponding to the box diagram.
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yielding an overall factor eqB
2π . This factorization property

corresponds to the dimensional reduction in a strong
magnetic field. Below, we exclude this overall factor in
defining the dimensionally reduced amplitude. By using the
cutting rule as in the previous simple example, and
replacing the external heavy quark propagator by the spinor,
we can read off the leading order (1þ 1 dimensional)
scattering amplitude as

−iMLLL
0 ¼ ðigÞ2½uLLLðq0∥ÞγμðTAÞa0auLLLðq∥Þ�

×
Z
Q⊥

~DAB
μν ðq0∥ − q∥; Q⊥jeqBÞe−

l2qQ
2⊥

4

× ½UðP0ÞγνðTBÞb0bUðPÞ�: ðA4Þ

This is the tree amplitude (12).

2. Next-to-leading order

Next, we consider the next-to-leading order processes which consist of box and crossed diagrams. The self-energy
diagram leading to the box diagram is depicted in Fig. 6, and the self-energy ΣNLOðboxÞðr; r0jB; μÞ with two coordinates
taken to be zero r ¼ r0 ¼ 0 is given by

ΣNLOðboxÞð0;0jB;μÞ¼
Z

d4wd4w0d4w00d4w000d4vd4v0d4v00d4v000trðSLLLðw00;w0ÞigγμðTAÞa0a00SLLLðw0;v0ÞigγνðTBÞa00a
×SLLLðv0;v00ÞigγξðTA0 ÞaaSLLLðv00;w00ÞigγαðTB0 Þaa0 ÞDAC

μσ ðw;w0ÞDBD
νρ ðv;v0ÞDA0C0

ξδ ðv00;v000ÞDB0D0
α;β ðw00;w000Þ

×SHð0;wÞigγσðTCÞb0b00SHðw;vÞigγρðTDÞb00bSHðv;v000ÞigγδðTC0 ÞbcSHðv000;w000ÞigγβðTD0 ÞcdSHðw000;0Þ

¼ eqB

2π

Z
q0∥;q∥

Z
k∥;k∥

trð ~S∥ðq0∥;μÞigγμðTAÞa0a00

× ~S∥ðk∥;μÞigγσðTBÞa00a ~S∥ðq∥;μÞigγξðTA0 Þaa ~S∥ðk∥;μÞigγαðTB0 ÞaaÞ

×

	Z
Q0⊥

~DAC
μσ ðq0∥−k∥;Q0⊥jeqBÞe−

l2qQ
02⊥

4

Z
Q⊥

~DBD
νρ ðq∥−k∥;Q⊥jeqBÞe−

l2qQ
2⊥

4



e−i

l2q
~Q⊥× ~Q0⊥

2

×

	Z
Q0⊥

~DA0C0
ξδ ðq∥−k∥;Q0⊥jeqBÞe−

l2q
~
Q
02⊥

4

Z
Q⊥

~DB0D0
αβ ðq0∥−k∥;Q⊥jeqBÞe−

l2q
~
Q
2⊥

4



ei

l2q
~
Q⊥×

~
Q
0⊥

2

×
Z
P;P0

~SHðP0ÞigγνðTCÞb0b00 ~SHðPþq−kÞigγρðTDÞb00b
× ~SHðPÞγδðTC0 Þbc ~SHðPþq−kÞigγβðTD0 Þcd ~SHðP0Þ: ðA5Þ

Again, the factor eqB
2π appears owing to the perpendicular part of the light quark propagators, and we exclude it when defining

the 1þ 1 dimensional scattering amplitude. Then we obtain the one-loop amplitude of the box diagram by cutting the
diagram, which reads

−iMðaÞLLL
1−loop ¼ ðigÞ4

Z
k∥

½uLLLðq0∥ÞγμðTAÞa0a00 ~S∥ðk∥; μÞγνðTBÞa00auLLLðq∥Þ�

×
Z
Q0⊥

~DAC
μσ ðq0∥ − k∥; Q0⊥jeqBÞe−

l2qQ
02⊥

4

Z
Q⊥

~DBD
νρ ðq∥ − k∥; Q⊥jeqBÞe−

l2qQ
2⊥

4 e−i
l2q

~Q⊥× ~Q0⊥
2

× ½UðP0ÞγσðTCÞb0b00 ~SHðPþ q − kÞγρðTDÞb00bUðPÞ�: ðA6Þ

This is the result (20). The phase factor e−i
l2q

~Q⊥× ~Q0⊥
2 is gauge invariant and in general contributes to the scattering

amplitude. Similarly, we can obtain the 1þ 1 dimensional one-loop amplitude of the crossed diagram. The result is given
in Eq. (25).
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