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In the era of precision physics measurements at the LHC, efficient and exhaustive estimations of
theoretical uncertainties play an increasingly crucial role. In the context of Monte Carlo (MC) event
generators, the estimation of such uncertainties traditionally requires independent MC runs for each
variation, for a linear increase in total run time. In this work, we report on an automated evaluation of the
dominant (renormalization-scale and nonsingular) perturbative uncertainties in the PYTHIA 8 event
generator, with only a modest computational overhead. Each generated event is accompanied by a vector
of alternative weights (one for each uncertainty variation), with each set separately preserving the total
cross section. Explicit scale-compensating terms can be included, reflecting known coefficients of higher-
order splitting terms and reducing the effect of the variations. The formalism also allows for the
enhancement of rare partonic splittings, such as g → bb̄ and q → qγ, to obtain weighted samples enriched
in these splittings while preserving the correct physical Sudakov factors.
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I. INTRODUCTION

Event generators [1] are used in almost all tests of the
Standard Model at colliders. The current state of the art
allows for fixed-order corrections to the matrix elements
used in these predictions and a consistent matching or
merging between the matrix-element and parton-shower
contributions. The components of such predictions are
based on approximation, and it is necessary to estimate
their reliability. For the fixed-order (matrix-element) piece
of these calculations, estimates of the uncertainty come
from varying a common factorization (μF) and renormal-
ization (μR) scale and simultaneously considering the
correlation with the parton distribution functions (PDFs).
While these uncertainty estimates may be tedious to
compute, it is a relatively simple procedure to calculate
the relative weight of an event after scale and PDF
variations. There is an additional simplicity to these
uncertainty estimates. The rest of the event development
is usually unchanged by these variations. Therefore, each
particle-level prediction can be recycled after applying the
weight correction for that event. This is particularly
important if the entire event has been folded with a
(time-consuming) detector simulation.
The uncertainty on the other components of the pre-

diction, such as parton showering, multiparton interactions,
and hadronization, is more challenging to estimate. This is
because of the algorithms applied to sample probability
distributions and the iterative nature of the algorithms. The
state of the art is to select a (small) number of event-
generator parameters and make entirely new predictions
based on them, as, e.g., in the “Perugia” tune variations [2]

and/or “eigentune” variations [3–6]. Since each of these
new predictions makes different particle-level predictions,
each generated event must be passed through a detector
simulation as part of a realistic analysis. This fact greatly
reduces the number of parameter variations than can be
performed.
In this paper, we present a method to estimate the effect

of parameter variations in the parton shower for a given
kinematic configuration. This is similar to what was done
previously in VINCIA for final-state radiation (FSR) [7], but
is here extended to initial-state radiation (ISR) and adapted
to PYTHIA’s parton-shower framework [8–10].
We also show how to use the same method to generate a

weighted sample enhanced in the occurrence of specific
shower branchings, such as g → bb̄, with correctly calcu-
lated weights (including correct physical Sudakov form
factors). This could be useful, e.g., for the B physics
community. (We note that equivalent proposals for “bias-
ing” or “boosting” specific shower splitting probabilities
were also made in [11,12].) The two methods can be
combined, so one can also get uncertainties on a biased
sample, although the latter capability has not yet been
implemented in the current PYTHIA code.

II. METHOD

The probability for a branching in the parton shower is
encapsulated in the Sudakov form factor that, for realistic
applications, must be evaluated numerically. A practical
numerical method for this is the veto algorithm, known in
computer science as the “thinning algorithm” [13,14],
which involves rejecting (or thinning out) trial branchings.
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We start with a brief review of this method as applied to
parton showers in Sec. II A. We then turn to the main
focus of this paper: incorporating systematic variations of
the branching probabilities. For a unitary (probability-
conserving) shower, such variations necessarily imply
opposite variations in the nonbranching probabilities
through the rejections. The specific form these variations
must have to preserve the unitarity of the shower is derived
in Sec. II B. A further interesting application of the same
framework is presented in Sec. II C, allowing us to generate
correctly weighted showers with biased kernels, as was
already proposed for q → qγ splittings in [11]. With the
general formalism now in hand, Secs. II D and II E describe
the specific application of the framework to renormaliza-
tion-scale and nonsingular-term variations in the shower,
respectively.
At the technical level, in the original VINCIA implemen-

tation [7], the set of variations that could be performed were
defined by the authors (hard coded), with limited options
for users to modify, e.g., by which factor to vary the
renormalization scale up and down. The PYTHIA imple-
mentation has been made significantly more general,
allowing users considerable flexibility to define any num-
ber of simultaneous or separate variations, as documented
in detail in PYTHIA’s online Hypertext Markup Language
(HTML) documentation, with a set of default variations
chosen by the authors.
As in VINCIA, the modification to the rejection and

acceptance probabilities are accumulated during the shower
evolution and presented after the shower has finished as (a
set of) alternative global event weights; one for each
variation. The relative probability for each event to occur
under different showering assumptions (represented by the
variations) is given by the weight calculated for the given
variation relative to the nominal (unvaried) event weight.
We note that, since unitarity is strictly imposed on these

variations, each set of weights should integrate to the same
total cross section. Bear in mind, however, that this will
only really be true in the limit of infinitely many events.
Depending on the magnitude of each variation and how
“long” the shower evolutions are (bigger phase spaces
imply more room for changes to accumulate), the variation
weights will fluctuate around their mean values. This will
reduce the statistical precision on the uncertainty variations
relative to the nominal sample. To exemplify, take a sample
of 100 identical hard 4-jet events, and say that one of them
experienced a very unlikely branching somewhere deep in
the shower, say at the 20th branching (i.e. with minimal
impact on 4-jet distributions). These 100 events would all
enter with the same weight in the nominal sample. But the
event that happened to contain the unlikely 20th branching
can acquire a much larger weight in one of the variations if
the probability for that branching to occur is much larger
for that variation. The 4-jet cross section computed from
the variation weights would then be dominated by the

single event with large weight, corresponding to a much
worse statistical precision, in spite of the fact that the actual
weight change occurred not at the 4-jet level butmuch deeper
in the shower. This is a simple consequence of accumulating
thevariations through the shower history,which—depending
on future uses of the algorithm—may make it desirable to
introduce further options for controlling the amount of
variation performed at each stage of the shower. For the
time being, for practical applications, we advise to monitor
the variations of the uncertainty weights in each histogram
bin so that any issues due to very rare events with very large
variation weights do not go unnoticed.

A. Proof of the standard veto algorithm

Given a differential branching probability, Pðt; zÞ, with
t ∝ Q2 being the shower evolution variable and z a
complementary phase-space invariant [which in the
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) pic-
ture can be identified with the collinear energy-sharing
fraction], a standard parton-shower algorithm generates the
scale of the next branching by solving the following
equation for t,

Rt ¼ Δðt0; tÞ ¼ exp

�
−
Z

t0

t
dt1

Z
dz1Pðt1; z1Þ

�
; ð1Þ

with t0 being the starting scale for the evolution,Rt ∈ ½0; 1�
a uniformly distributed random number, andΔ the Sudakov
factor, or no-branching probability. In the specific case of
PYTHIA’s transverse-momentum-ordered showers [8], the
differential branching probability is

Pðt; zÞ ¼ αsðtÞ
2π

PðzÞ
t

; ð2Þ

with t ¼ p2⊥evol [8], and PðzÞ being a DGLAP splitting
kernel [15–17]. We emphasize, however, that the formalism
presented here is valid for an arbitrary Pðt; zÞ and could be
applied equally well to dipole/antenna showers.
After the selection of t, a value for z is then selected

according to a second random number, by solving for z in
the following equation:

Rz ¼
R
z
zmin

dz1Pðt; z1ÞR
zmax
zmin

dz1Pðt; z1Þ
; ð3Þ

with Rz ∈ ½0; 1� being a different uniformly distributed
random number. This generates the resummed probability
distribution,

dP
dt dz

¼ Pðt; zÞΔðt0; tÞ: ð4Þ

However, since Pðt; zÞ can be complicated to integrate
(especially in the presence of matrix-element or higher-
order corrections to P) and Eqs. (1) and (3) can be difficult
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to invert analytically for t and z, a simple and powerful trick
is normally used to transform the problem: the “veto
algorithm.” Instead of using the exact P in Eqs. (1)
and (3), one instead uses a simpler “trial” overestimate,
P̂ðt; zÞ > Pðt; zÞ, constructed specifically such that it can
be easily integrated and inverted. (The integration boun-
daries in z can also be extended to cover a larger region than
the physical one, though such details are not important
here.) Trial branchings generated according to P̂ (i.e. with a
Sudakov Δ̂ based on P̂) are then accepted with the
probability

Paccðt; zÞ ¼
Pðt; zÞ
P̂ðt; zÞ ; ð5Þ

with Pðt; zÞ ¼ 0 outside the boundaries of the physical
phase space, and Pacc < 1 guaranteed by P̂ > P. If the trial
is accepted, physical momenta are generated corresponding
to the chosen values of t and z, and the prebranching
partons are replaced by the postbranching ones, including
the effects of recoils etc. If the trial is rejected (with
probability Prej ¼ 1 − Pacc), the parton system remains in
its original state. In either case, the scale of the (accepted or
rejected) trial becomes the new value for t0, from which the
evolution is restarted to find the next (lower) trial scale. The
procedure ends when t < tmin.
Before considering how to modify this algorithm to

produce uncertainty variations and bias weights, we first
demonstrate the all-orders proof of why the veto algorithm
does end up producing the correct form of the physical
resummed distribution, Eq. (4). This will be useful as the
main starting point below, and is often neglected in the
literature. [The oldest equivalent explicit treatment we are
aware of in the particle-physics literature is given by
Sjöstrand and van Zijl in the context of their Sudakov-based
approach to multiple-parton interactions [18], proving that
the sum over p⊥-ordered multiple-parton interactions
(MPIs) reproduces the naive (inclusive, unordered) cross
sections when summed over all possible orderings. The
standard veto algorithm applied to parton showers is also
described in Ref. [19] and is further discussed in
Refs. [12,20,21]. However, as mentioned above, the basics
of the algorithm can be found in Refs. [13,14].]
Consider the probability distribution for the first

accepted branching. For the specific case of zero rejected
trials preceding it (suppressing the z dependence for
clarity), it is

dP0

dt
¼ PaccðtÞP̂ðtÞΔ̂ðt0; tÞ ¼ PðtÞΔ̂ðt0; tÞ; ð6Þ

hence for zero rejected trials the accept-probability factor
results in the correct PðtÞ but it is associated with the wrong
(trial) Sudakov factor, Δ̂ < Δ. For one rejected trial
preceding the accepted branching, we have

dP1

dt
¼ PðtÞ

Z
t0

t
dt1P̂ðt1Þð1 − Paccðt1ÞÞΔ̂ðt0; t1ÞΔ̂ðt1; tÞ

¼ PðtÞΔ̂ðt0; tÞ
Z

t0

t
dt1ðP̂ðt1Þ − Pðt1ÞÞ; ð7Þ

where we have used the fact that Sudakov products
combine trivially when the underlying system does not
change, Δðt1; t2Þ ¼ Δðt1; tÞΔðt; t2Þ, and we again find the
“wrong” (trial) Sudakov but now it is accompanied by a
factor that depends explicitly on the difference between P̂
and P. For two rejected trials preceding the accepted
branching,

dP2

dt
¼ PðtÞΔ̂ðt0; tÞ

Z
t0

t
dt1ðP̂ðt1Þ − Pðt1ÞÞ

×
Z

t1

t
dt2ðP̂ðt2Þ − Pðt2ÞÞ; ð8Þ

and similarly for n rejected trials preceding the accepted
branching. The crucial point in the proof is to recognize that
the double integral in Eq. (8) is in fact a triangle integral
with a factorized integrand symmetric under interchange of
the two integration variables, hence it can be written

Z
1

0

dxfðxÞ
Z

x

0

dyfðyÞ ¼ 1

2

Z
1

0

dxfðxÞ
Z

1

0

dyfðyÞ

¼ 1

2

�Z
1

0

dxfðxÞ
�

2

; ð9Þ

and similarly for the higher-n terms that yield hypertriangle
integrals that can always be written on product form,
prefaced by a factor 1=n! that gives the fractional volume
occupied by a single ordered slice t0 > t1 > t2 > � � � >
tn > t of the full n-hypercube.
Thus, the densities for each possible number of rejected

trial branchings form nothing but the terms of an expanded
exponential. The sum over all possible numbers of the
preceding failed trial branchings is therefore,

dP
dt

¼PðtÞΔ̂ðt0; tÞ
�
1þ

X∞
n¼1

1

n!

�Z
t0

t
dt1ðP̂ðt1Þ−Pðt1ÞÞ

�
n
�

¼PðtÞexp
�
−
Z

t0

t
dt1P̂ðt1Þ

�

×exp

�Z
t0

t
dt1ðP̂ðt1Þ−Pðt1ÞÞ

�

¼PðtÞexp
�
−
Z

t0

t
dt1Pðt1Þ

�

¼PðtÞΔðt0; tÞ; ð10Þ

where we inserted the definition of the trial Sudakov, Δ̂, in
the second line, canceled it against the P̂ term from the
failed-branching exponential, and finally used the
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definition of the physical Sudakov, Eq. (1). The last line is
the desired expression, which now gives the physical
resummed branching probability, independently of the trial
function. This expression is identical to Eq. (4), proving the
correctness of the veto algorithm and in particular that the
final result is independent of the choice of trial function, as
long as P̂ > P.

B. Veto algorithm with uncertainty variations

The main part of our paper consists of the proof, to all
orders in perturbation theory, of a conjecture developed by
one of us in Ref. [7] in the context of the VINCIA shower
generator [22]. According to this proposal, the veto
algorithm discussed above can be modified to simulta-
neously compute several alternative sets of weights for each
event, answering roughly: what would the weight of this
event have been, if we had used, for instance, an alternative
value for the strong coupling or an alternative splitting
function? The number of variations that can be included is
in principle infinite (each requiring very little computing
and memory resources), hence several alternative defini-
tions of the same source of uncertainty can be evaluated
simultaneously (e.g., renormalization-scale variations by
factors

ffiffiffi
2

p
, 2, and 4 can all be included) and final plots can

be made using only a subset of these. We here prove the
validity of the algorithm to all orders in perturbation theory,
and implement it in the PYTHIA 8 event generator [10].
Consider a parton shower based on the veto algorithm

discussed above, with the physical trial-accept probability,
Pacc, given by Eq. (5). Consider further an alternative
shower algorithm, defined by a different physical trial-
accept probability, P0

acc,

P0
accðt; zÞ ¼

P0ðt; zÞ
P̂ðt; zÞ ; ð11Þ

where the difference between the alternative radiation
kernel P0 and the original P can be, for instance, different
αs scale choices, different nonsingular terms in the splitting
kernels, and/or different effective higher-order contribu-
tions to the splitting kernels. Note however that we assume
that the t and z definitions remain the same. Translations
between different t choices are discussed in [23] (and the
resulting equations are used in VINCIA to provide an
uncertainty variation corresponding to the difference
between virtuality-ordered and p⊥-ordered showers) while
exploring different z definitions (and more generally,
different recoil strategies) would require a future generali-
zation of the algorithm presented here.
The proposal to compute the probability of an event

generated by P0 based on an event generated using P is as
follows [7] (suppressing again the z dependence for
clarity):

1. Start the event evolution by setting all weights
(nominal and uncertainty-variation ones) equal to
the input weight of the event, w0 ¼ w.

2. If the trial branching is accepted, multiply the
alternative weight w0 by the relative ratio of accept
probabilities,

R0
accðtÞ

P0
accðtÞ

PaccðtÞ
P0ðtÞ
PðtÞ : ð12Þ

3. If the trial branching is rejected, multiply the
alternative weight w0 by the relative ratio of reject
probabilities,

R0
rejðtÞ ¼

P0
rejðtÞ

PrejðtÞ
¼ 1 − P0

accðtÞ
1 − PaccðtÞ

¼ P̂ðtÞ − P0ðtÞ
P̂ðtÞ − PðtÞ :

ð13Þ

4. If desired, the detailed balance between the accept
and reject probabilities could optionally be allowed
to be broken by up to a nonsingular term,
P0
acc ≠ 1 − P0

rej, to represent uncertainties due to
genuine (noncanceling) higher-order corrections that
would modify the total cross sections. For the
current implementation in PYTHIA, however, we
do not consider this possibility further.

Step 2 is responsible for adjusting the naive splitting
probabilities, while step 3 is responsible for adjusting
the no-splitting Sudakov factors. The result is that the
set of weights w0 represents a separately unitary event
sample, with hw0i ¼ hwi; i.e., the samples integrate to the
same total cross section. We already know that the
probability distribution of the generated event sample,
when applying the nominal set of weights, w, is the
distribution defined by Eq. (4). We shall now prove that
the probability distribution obtained from the same gen-
erated event sample, when applying the set of weights w0, is
the correct resummed distribution for the P0 radiation
kernels,

dP0

dt dz
¼ P0ðt; zÞΔ0ðt0; tÞ; ð14Þ

where the primes on both P0 and Δ0 emphasize that the
modified radiation probability enters in both places.
For zero rejected trials, the modified weight distribu-

tion is

dP0
0

dt
¼ R0

accðtÞ|fflfflffl{zfflfflffl}
reweight

PaccðtÞ|fflfflffl{zfflfflffl}
accept trial

P̂ðtÞΔ̂ðt0; tÞ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
generate trial

¼ P0ðtÞΔ̂ðt0; tÞ; ð15Þ

for one rejected trial,
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dP0
1

dt
¼ R0

accðtÞ|fflfflffl{zfflfflffl}
reweight

PaccðtÞ|fflfflffl{zfflfflffl}
accept trial

P̂ðtÞΔ̂ðt0; tÞ

×
Z

t0

t
dt1 R0

rejðtÞ|fflffl{zfflffl}
reweighting

ðP̂ðt1Þ − Pðt1ÞÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
reject trial

¼ P0ðtÞΔ̂ðt0; tÞ
Z

t0

t
dt1ðP̂ðt1Þ − P0ðt1ÞÞ; ð16Þ

and for two rejected trials,

dP0
2

dt
¼ P0ðtÞΔ̂ðt0; tÞ

Z
t0

t
dt1ðP̂ðt1Þ − P0ðt1ÞÞ

×
Z

t1

t
dt2ðP̂ðt2Þ − P0ðt2ÞÞ; ð17Þ

hence exactly the same structure emerges for the
reweighted sample as for the underlying veto algorithm
above, just with P replaced by P0. The proof that Eq. (14)
results from the sum over all possibilities is therefore
identical to the proof of the original (unweighted) veto
algorithm above.
Two remarks are in order. First, we emphasize that the

relative reject ratio, Eq. (13), contains the difference P̂ − P in
the denominator. Thismeans that, if the trial overestimate, P̂,
is “too perfect” (meaning it is very close to P), the
denominator can become close to singular, resulting in large
and possibly numerically unstable weights. Algorithmically,
what happens is that there are very few failed trials, hence the
modifications to the Sudakov factor are not mapped out very
well; each failed trial will have a very large job to do.
Technically,we address this by applying a “headroom factor”
to the trial functions when automated uncertainty variations
are requested, ensuring that there is always a non-negligible
probability for trials to be rejected at the cost of computa-
tional speed. By default, we choose a headroom factor of 2.
For the representative example of hadronic Z decays, this
results in a slowdown of the code of only about 20%.
Secondly, the final event weight, w0, after the full shower

evolution, is the product of many such factors, one R0
acc for

each accepted trial and one R0
rej for each rejected one,

w0 ¼
Y

i∈accepted

P0
i;acc

Pi;acc

Y
j∈rejected

P0
j;rej

Pj;rej
: ð18Þ

Given enough phase space for evolution, this factor can
become arbitrarily different from unity, representing that,
e.g., a very active shower history is exponentially more
likely to occur in a shower with a large value of αs than in
one with a small value. In principle, this is both physically
and mathematically correct. In practice, however, it is not
desirable that branchings at low evolution scales in the
shower should significantly alter the modified event
weights. Technically, we treat this by imposing a few
limiting factors on the variations, as detailed below.

C. Veto algorithm with biased kernels

A second important use case for shower algorithms is to
evaluate the fragmentation contributions to processes like
photon and B hadron production, via splittings like q → qγ
and g → bb̄, respectively. (π0 → γγ and similar hadron
decay processes obviously contribute substantially to the
former as well; our focus here is on the perturbative
contributions only.) Since these processes are relatively
rare (αem ≪ αs and Pg→bb̄ ≪ Pg→gg), the generation of
adequate event samples featuring these processes can suffer
from substantial inefficiencies. A complementary case is
the generation of high-multiplicity minimum-bias samples
in pp collisions, for which events enriched in the number of
perturbative MPIs could help to improve the generation
efficiency (though of course there is also a contribution
from events with few MPIs but very active hadroniza-
tion steps).
A similar line of argument as above allows us to

construct weighted samples enriched in these processes,
while preserving the exact Sudakov factors. We note that
this method is formally identical to the one presented for
q → qγ branchings in Ref. [11]; we include its definition
and all-orders proof here mostly for completeness, and to
have it presented in the same notation as above.
Consider that we wish to enhance the rate of g → bb̄

splittings by a factor of 10 (for example), until we have
obtained at least one such splitting, after which we would
normally want to let the probability to have a second
g → bb̄ splitting in the same event drop back down to the
normal level. We can achieve this by first increasing the rate
of trials for the corresponding splitting function by a factor
of 10 by using a larger (biased) trial function (suppressing
the dependence on both t and z),

P̂bias ¼ 10P̂: ð19Þ

We then keep the accept probability the same as normal, but
reweight each accepted biased trial branching by the
inverse of the biasing factor,

Pacc
P

P̂
; Racc

P̂

P̂bias

1

10
; ð20Þ

so that the product RaccPaccP̂bias ¼ P is the desired physical
distribution. For each rejected biased trial branching, we
use the same technology as above to reweight the event,

Rrej ¼
1 − PaccRacc

1 − Pacc
¼ P̂

P̂ − P

�
1 −

P

P̂bias

�

⟶
P≪P̂bias P̂

P̂ − P
; ð21Þ

where the last asymptotic shows that the reweighting factor
becomes independent of the bias in the limit in which the
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bias factor is very large. Nonetheless, the difference is
important since, as we shall see below, this is what allows
us to recover the physical Sudakov factor.
We note that if one is interested only in enhancing a

single branching of the given type, all events featuring the
branching will be accompanied by a single power of the
constant inverse-bias factor, Eq. (20), hence that weight can
alternatively just be applied to the event sample as a whole,
and will cancel in any normalized distributions. The
important part is thus the application of Eq. (21) to each
rejected trial branching, in order to recover the physical
Sudakov factor. Similarly to the above, this is a procedure
that will only work well when there is at least a minimal
number of rejected trial branchings, ensured, e.g., by
choosing P̂ > 1.2P.
The proof is as follows. For zero rejected trials, the

distribution obtained by the above procedure is

dP0

dt
¼ RaccðtÞ|fflfflffl{zfflfflffl}

reweight

PaccðtÞ|fflfflffl{zfflfflffl}
accept trial

P̂biasðtÞΔ̂biasðt0; tÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
generate biased trial

¼ PðtÞΔ̂biasðt0; tÞ; ð22Þ

for one rejected trial,

dP1

dt
¼PðtÞΔ̂biasðt0; tÞ

Z
t0

t
dt1P̂biasðt1Þð1−Paccðt1ÞÞRrejðt1Þ

¼PðtÞΔ̂biasðt0; tÞ
Z

t0

t
dt1ðP̂biasðt1Þ−Pðt1ÞÞ; ð23Þ

where the second equality follows from the exact definition
of Rrej in Eq. (21), while the asymptotic version of it would
only generate the first term in the integrand. For two
rejected trials,

dP2

dt
¼ PðtÞΔ̂biasðt0; tÞ

Z
t0

t
dt1ðP̂biasðt1Þ − Pðt1ÞÞ

×
Z

t1

t
dt2ðP̂biasðt2Þ − Pðt2ÞÞ: ð24Þ

As required, the nested integrals translate between P̂bias and
the physical branching probability, P, such that the pro-
duced Sudakov factors will depend only upon P, not Pbias.

D. Renormalization-scale variations

The first major class of variations we include are
variations of the shower renormalization scales. This can
be done for both QED and QCD, with the latter normally
dominating the overall uncertainty. It is worth noting,
however, that for a coherent shower algorithm, a scale
choice of p⊥ accompanied by the so-called Catani-
Marchesini-Webber scale factor [24,25] absorbs the leading
second-order corrections to the splitting functions for soft-
gluon emission. A brute-force scale variation would destroy

this agreement. We therefore provide an option to allow an
explicitOðα2sÞ compensating term to accompany each scale
variation, driving the effective scale choice back towards
p⊥ at the next-to-leading-order (NLO) level, while leaving
the higher-order components of the scale variation
untouched.
Specifically, if the baseline gluon-emission density is

Pðt; zÞ ¼ αsðp⊥Þ
2π

PðzÞ
t

; ð25Þ

with PðzÞ being the DGLAP radiation kernel, then
we may define a renormalization-scale variation,
μ ¼ p⊥ → μ0 ¼ kp⊥, with a NLO-compensating term
(see, e.g., [23]),

P0ðt; zÞ ¼ αsðkp⊥Þ
2π

�
1þ αs

2π
β0 ln k

�
PðzÞ
t

; ð26Þ

with β0 ¼ ð11NC − 2nFÞ=3, NC ¼ 3, and nF being the
number of active flavors at the scale μ ¼ p⊥. Note that, if
there are any quark-mass thresholds in between p⊥ and
kp⊥, then αsðp⊥Þ and αsðkp⊥Þ will not be evaluated with
the same nF. Matching conditions are applied in PYTHIA to
make the running continuous across thresholds, so this
effect should be small for reasonable values of k.
Nonetheless one could in principle add an additional term
αs=ð2πÞ lnðmq=ðkp⊥ÞÞ=3 to compensate for the different β0
coefficients used in the region between the threshold and
kp⊥; however since the variation is numerically larger
without that term, and since the ambiguities associated with
thresholds are anyway among the uncertainties one could
wish to explore, for the time being we consider it more
conservative to not include any such terms.
Note also that the scale and scheme of the αs factor in the

compensation term, inside the parenthesis in Eq. (26), is not
specified, as this amounts to an effect of yet higher order,
beyond NLO. To make the compensation as conservative as
possible (and to avoid the risk of overcompensating), we
choose the scale of the compensation term to be the largest
local scale in the problem, namely the invariant mass of the
emitting color dipolemdip, thusmaking the correction termas
numerically small (and hence as conservative) as possible;
specifically μmax ¼ maxðmdip; kp⊥Þ. Furthermore, since the
analyses of [24,25] only pertain to the soft limit, our estimate
of the compensation would be too optimistic if applied
undiminished over all of the phase space. To be more
conservative, we therefore multiply the compensation term
by an explicit factor (1 − ζ), defined so as to vanish linearly
outside the soft limit,
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ζ ¼

8>>><
>>>:

singularity of splitting :

z 1=z

1 − z 1=ð1 − zÞ
minðz; 1 − zÞ 1=ðzð1 − zÞÞ

: ð27Þ

Combined, these arguments lead us to the following modi-
fied accept probability for a robust shower renormalization-
scale variation compatible with the known second-order
leading-singular structure:

P0ðt; zÞ ¼ αsðkp⊥Þ
2π

×

�
1þ ð1 − ζÞ αsðμmaxÞ

2π
β0 ln k

�
PðzÞ
t

; ð28Þ

hence

R0
accðt; zÞ ¼

P0
accðt; zÞ

Paccðt; zÞ
¼ αsðkp⊥Þ

αsðp⊥Þ

×

�
1þ ð1 − ζÞ αsðμmaxÞ

2π
β0 ln k

�
: ð29Þ

We emphasize that the compensation term in the
expressions above is only included for gluon emissions,
not for g → qq̄ splittings. The latter are subjected to the full
(uncompensated) variation, αsðkp⊥Þ=αsðp⊥Þ.
Finally, we impose an absolute limit on the allowed

amount of αs variation, by default,

jΔαsj ≤ 0.2: ð30Þ

This does not significantly restrict the range of variation for
perturbative branchings (even when αs ∼ 0.5, a full 40%
amount of variation is still allowed), but it does prevent
branchings very near the cutoff from generating large
changes to the event weights. Removing this bound would
not significantly affect the perturbative physics uncertain-
ties, but would cause much larger weight fluctuations
(between events with and without some very soft branching
near the end of the evolution), mandating much longer run
times for the same statistical precision.
At the technical level, the user decides whether to

perform scale variations of ISR and FSR independently,
or to vary the respective αs factors in a correlated manner. It
is even possible to include both types of variations
(independent and correlated), and compare the results
obtained at the end of the run. From a practical point of
view, the FSR αs choice mainly influences the amount of
broadening of the jets, while the ISR αs choice influences
resummed aspects such as the combined recoil given to a
hard system (e.g., a Z, W, or H boson, or a tt̄, dijet, or

γ þ jet system) by ISR radiation and also how many extra
jets are created from ISR. The latter of course also depends
on whether and how corrections from higher-order matrix
elements are being accounted for.
An illustration and validation of the automated renorm-

alization-scale variations are given in Fig. 1, for the case of
FSR and the distribution of 1-thrust in eþe− → hadrons
events at the Z pole, compared to a measurement by the L3
experiment [26]. (QED ISR is switched off and b-tagged
events are excluded in this comparison.) First, we perform
three separate dedicated runs, using μR ¼ 2p⊥ (solid
yellow lines with square symbols), μR ¼ p⊥ (the default
choice, solid blue lines with dot symbols), and μR ¼ 0.5p⊥
(dashed red lines with open þ symbols). For the central
run, we also included the automated weight variations
presented here, for the same factor-2 μR variations. The
range spanned by the reweighted central distribution is
shown by the blue === hashed areas. On the left-hand side
of Fig. 1, the NLO scale-compensation term is switched off,
and we see that the results of the independent runs are
faithfully reproduced by the reweighted central-run distri-
butions. (The small difference in the first bin is due to the
absolute limit of jΔαsj ≤ 0.2 that we impose in the
reweighting framework.) On the right-hand side of
Fig. 1, the same distributions are shown, but now with
the NLO scale-compensation term switched on. The differ-
ence between the stand-alone runs (where no compensation
is applied) and the reweighted distributions illustrates the
effect of the compensation term.
A corresponding validation for the initial-state shower

renormalization-scale variations is given in Fig. 2, where
we have chosen the transverse momentum of the lepton pair
in Drell-Yan events as the test observable. The peak region
below p⊥Z ¼ 40 GeV is shown in the top row of the plots
(on a linear scale) while the bottom row shows the tail of
the spectrum (on a log-log scale). As in Fig. 1, the hashed
area in the plots in the left-hand (right-hand) column shows
the uncertainty band with the NLO scale-compensation
term switched off (on). The effect is here less than in the
FSR case, cf. Fig. 1, presumably due to the compensation
term being proportional to αsðmdipÞ where mdip can be very
large in the ISR case.
Note to experimentalists: rather than performing dedi-

cated runs for μR variations, we recommend using the
uncertainty weights instead, since the renormalization-scale
compensation term is only available for the latter and
allows slightly more aggressive (smaller) uncertainty
estimates.

E. Splitting-kernel variations

All shower formalisms are based upon the universal
nature of the singular infrared (soft and/or collinear) limits
of QCD. In these limits, the exact form of the splitting
functions is known (to a given order), regardless of whether
we express them as DGLAP kernels, dipole/antenna
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functions, or by any other means. Away from these limits,
however, in the physical phase space on which the kernels
will be applied as approximations, there are in principle
infinitely many different radiation functions to choose
from, sharing the same singular terms but having different
nonsingular ones. This represents a fundamental ambiguity
for shower algorithms that cannot be evaded by, e.g., setting
the nonsingular terms to zero. First, any such (arbitrary)
choice would not address the underlying issue. Secondly, it
would not be stable against reparametrizations of the
radiation functions themselves. For example, zero in one
dipole parametrization does not correspond to zero in
another, see, e.g., [7,28].
Moreover, varying the splitting kernels by nonsingular

(also known as “finite”) terms produces uncertainty enve-
lopes that are quite complementary to those produced by
renormalization-scale variations [7]. The reason is that
renormalization-scale variations are by construction pro-
portional to the (default) shower radiation functions, while
nonsingular terms vary the radiation functions themselves.
In regions far from the singular limits, the pole terms are
highly suppressed and the default shower radiation func-
tions may not bear much resemblance to the matrix
elements for the process at hand. In such regions,

process-dependent nonsingular terms dominate, and cor-
responding nonsingular-term variations in the shower
radiation functions can therefore easily produce much
larger (and more realistic) uncertainty estimates than
renormalization-scale changes.
We therefore believe that an exhaustive exploration of

parton-shower uncertainties should at least grant the
capability to perform nonsingular variations of the shower
kernels, while the final decision on whether and how to use
them can still be left up to the user. An observation of large
nonsingular-term uncertainties in the context of a physics
study would be a direct indication of a need to incorporate
further corrections from matrix elements, e.g., via one of
the many matching/merging strategies available in
PYTHIA 8. This is because the matrix elements contain
the correct (process-dependent) nonsingular terms for the
process at hand, thus nullifying the nonsingular-term
uncertainties at least in any phase-space regions populated
by the matrix elements. This is also true of PYTHIA’s internal
LO matrix-element corrections (MECs), which by default
are applied to the first emission in most resonance decays
and some production processes [29–31]. Effects of non-
singular-term variations will then only appear starting from
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FIG. 1. Illustration of the default renormalization-scale variations for FSR, by a factor of 2 in each direction. The central (default,
unweighted) shower calculation is shown in blue, with === hashing indicating the range spanned by the variation weights. The dashed
(red) and solid (yellow) lines represent the results of stand-alone runs with μR ¼ 0.5p⊥ and μR ¼ 2p⊥, respectively. (Left panels)
Without the NLO scale-compensation term. (Right panels) With the NLO scale-compensation term (the default setting). Distribution of
1-thrust for eþe− → hadrons at the Z pole, excluding b-tagged events; ISR switched off; data from the L3 experiment [26].
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FIG. 2. Illustration of the default renormalization-scale variations for ISR, by a factor of 2 in each direction. The central (default,
unweighted) shower calculation is shown in blue, with === hashing indicating the range spanned by the variation weights. The dashed
(red) and solid (yellow) lines represent the results of stand-alone runs with μR ¼ 0.5p⊥ and μR ¼ 2p⊥, respectively. (Left panels)
Without the NLO scale-compensation term. (Right panel) With the NLO scale-compensation term (the default setting). Distribution of
the p⊥ spectrum of the lepton pair in pp → Z → eþe−=μþμ− at the Z pole (66 < mll=GeV < 116), for leptons in the phase-space
window jηlj < 2.4, p⊥l > 20 GeV; data from the ATLAS experiment [27].
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the second emission.1 Below, we include validation plots
both with and without MECs, to illustrate the effects.
To implement nonsingular-term variations in the context

of a DGLAP approach, we allow for the following
modification of the shower splitting kernels,

PðzÞ
Q2

dQ2 →

�
PðzÞ
Q2

þ cNS
m2

dip

�
dQ2

¼
�
PðzÞ þ cNSQ2

m2
dip

�
dt
t
; ð31Þ

where mdip is the invariant mass of the dipole in which the
splitting occurs, cNS is a dimensionless constant of order
unity that parametrizes the amount of (nonsingular) split-
ting-kernel variation, and in the last equality we used the
identity dQ2=Q2 ¼ dt=t that holds for any t ¼ fðzÞQ2,
including in particular all of the PYTHIA evolution variables.
Note that, for gluon emission off timelike massive quarks,

Q2 should be the virtuality, or off-shellness of the massive
quark, defined as Q2 ¼ ðpb þ pgÞ2 −m2

b ¼ 2pb · pg [29],
with pb being the 4-momentum of the massive quark and
pg that of the emitted gluon. (For spacelike virtual massive
quarks, the mass correction has the opposite sign [8].)
Thus,

P0ðt; zÞ ¼ αs
2π

C
�
PðzÞ þ cNSQ2=m2

dip

t

�
; ð32Þ

where C is the color factor. The variation can therefore be
obtained by introducing a spurious term proportional to
Q2=m2

dip in the splitting kernel used to compute the accept
probability, hence

R0
acc ¼

P0
acc

Pacc
¼ 1þ cNSQ2=m2

dip

PðzÞ ; ð33Þ

from which we also immediately confirm that the relative
variation explicitly vanishes when Q2 → 0 or PðzÞ → ∞.
To motivate a reasonable range of variations, we take the

nonsingular terms that different physical matrix elements
exhibit as a first indicator, and supplement that by con-
sidering the terms that are induced by PYTHIA’s MECs for Z
boson decays [30]. In particular, the study in [28] found
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FIG. 3. Illustration of the default nonsingular variations for FSR splitting kernels, corresponding to cNS ¼ �2 (shown in red with nnn
hashing), compared with the default renormalization-scale variations by a factor of 2 with the NLO compensation term switched on
(shown in blue with === hashing). (Left panels) Matrix-element corrections off. (Right panels) Matrix-element corrections on. Note that
the range of the ratio plot is greater than in Fig. 1. Distribution of 1-thrust for eþe− → hadrons at the Z pole, excluding b-tagged events;
ISR switched off; data from the L3 experiment [26].

1Note that, at the technical level, default PYTHIA applies MECs
throughout the shower in some cases, for instance to ensure the
correct “dead-zone” suppression for radiation off massive quarks
[29]. In such cases, although a MEC is technically applied to
every emission, it is only LO exact for the first one, hence
nonsingular-term variations are still enabled for the second and
subsequent ones.
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FIG. 4. Illustration of the default nonsingular variations for ISR splitting kernels, corresponding to cNS ¼ �2 (shown in red with nnn
hashing), compared with the default renormalization-scale variations by a factor of 2 with the NLO compensation term switched on
(shown in blue with === hashing). (Left panels) Matrix-element corrections off. (Right panels) Matrix-element corrections on.
Distribution of the p⊥ spectrum of the lepton pair in pp → Z → eþe−=μþμ− at the Z pole (66 < mll=GeV < 116), for leptons in the
phase-space window jηlj < 2.4, p⊥l > 20 GeV; data from the ATLAS experiment [27].
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order-unity differences (in dimensionless units) between
different physical processes and three different antenna-
shower formalisms: Lund dipoles à la ARIADNE [32,33],
GGG antennas à la VINCIA [7,34,35], and sector antennas à
la Kosower [28,36]. Therefore, here we also take variations
of order unity as the baseline for our recommendations.
In Fig. 3, we illustrate the splitting-kernel variation

taking cNS ¼ �2 as a first guess at a reasonable range
of variation. As can be observed by comparing the left- and
right-hand panes of the figure, where PYTHIA’s MECs are
switched off and on, respectively, this variation, labeled
PðzÞ and shown in red with nnn hashing, roughly spans the
range between PYTHIA with and without matrix-element
corrections. In the right-hand pane, where PYTHIA’s internal
MECs for Z → 3 jets [30] are switched on, the splitting-
kernel uncertainty is essentially zero in the 3-jet region
1 − T ≤ 0.33, since the nonsingular terms are there pro-
vided by the matrix elements. There are in principle still
nonsingular-term uncertainties starting from the 4-jet level,
beyond 0.33. Note that the ratio panes in Fig. 3 have a
larger range than those of Fig. 1 and that, for comparison,
the renormalization-scale uncertainty, with the scale-
compensation term switched on, is still shown in blue
with === hashing.
The case of nonsingular-term variations for the ISR

splitting kernels is shown in Fig. 4, again compared to the
renormalization-scale variations (with the NLO compensa-
tion term switched on), for the same p⊥Z distributions as
were shown in Fig. 2. For this specific case, PYTHIA’s
matrix-element corrections [31] do not have as dramatic an
effect on the central prediction as they did for FSR, as can
be seen by comparing the central lines of the plots in the
left-hand column of the figure (MECs off) to the ones on
the right (MECs on). The variation of nonsingular terms,
however, is completely canceled when MECs are switched
on, as expected for a distribution dominated by a single
emission.
For completeness, we remark that the reweighting

strategies presented here, and parton showers in general,
are based on exact cancellation between real and virtual
corrections. This is called detailed balance and is also
referred to as unitarity in the parton-shower context.
However, the Kinoshita-Lee-Nauenberg theorem [37,38]
allows for violations of this balance by nonsingular terms.
Hence a realistic assessment of the full uncertainties of
parton-shower calculations should take into account that
nonsingular terms can contribute not only in the radiation
functions, as above, but also at the level of breaking
detailed balance. This would amount to an estimate of
the possible size of NLO (and higher) K factors. To
accomplish this consistently, however, several further
aspects would need to be addressed, including variations
already at the Born level and ensuring that weight mod-
ifications at the nth branching in the shower do not change
the total cross section by more than the factors proportional

to αBornþn
s . These considerations are beyond the scope of

this work, but we emphasize that they should be
investigated.

III. SUMMARY

We describe the mathematical formalism and practical
validation for a new way of calculating perturbative
uncertainty estimates in the PYTHIA 8 Monte Carlo event
generator, following the proposal made in [7]. Instead of
performing independent Monte Carlo runs for each (set of)
parameter variation(s), we effectively recycle the vetoed
trials of the Sudakov veto algorithm to provide a numerical
mapping of the probability-density changes resulting from
different choices of renormalization scales and nonsingular
terms. The result is cast as a vector of weights for each
event whose zero element corresponds to the nominal
(user) settings, with the uncertainty variations telling
how much the probability to obtain that event would have
changed under different showering assumptions.
Each set of weights is separately unitary, in the sense that

they integrate to the same total inclusive cross section for
the process at hand. It is therefore important to note that
nonunitary changes, such as “K-factor” variations, are not
accessed by this framework, but would have to be estimated
separately. The same is true for PDF variations and for
variations of the nonperturbative fragmentation parameters.
The variation weights can be interpreted as follows:

branching sequences dominated by well-controlled loga-
rithmically enhanced splittings will produce small weight
variations, while events containing one or more branchings
for which PYTHIA’s underlying assumptions may be com-
promised will exhibit large weight variations. Large non-
singular-term uncertainties should be taken as indicating a
need for including more matched matrix elements in the
calculation, since even LO matrix elements contain the
correct (LO) finite terms for the process at hand. Large
renormalization-scale uncertainties could only be amelio-
rated by including more NLO matrix elements, and/or by
improving or matching the underlying shower formalism to
higher-logarithmic accuracy. Several approaches for the
former are now emerging (and are available in PYTHIA, the
most advanced being UNLOPS [39]), while the latter remains
a long-standing and highly nontrivial problem.
Our approach is based on a proposal first made in

Ref. [7], which we here prove to be valid to all orders in
perturbation theory [40]. We also include several valida-
tions illustrating that the automated weight variations
produced by our implementation do indeed reproduce
the results of independent runs with the corresponding
parameter changes. The formalism shares qualitative fea-
tures with the proposal for boosting splitting probabilities
in [12] and with the proposal for biasing photon emissions
made in Ref. [11], and indeed for those purposes our
approach reduces to those of [11,12].
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Recently, two techniques for fast uncertainty variations
for NLO calculations were presented [41] in the context of
the SHERPA event generator [42], one based on interpolation
grids and another based on analytically calculable weights.
Our approach differs in several respects from both of these.
Most importantly, our formalism applies to all orders rather
than just to the first order of corrections, hence variations
are performed all throughout the shower. Secondly, as we
show, our strategy is formally exact (in the limit of
infinitely many generated events), while the weights
computed in [41] are only approximate in the shower
context. An extensive study of parton-shower uncertainties
was also recently performed in the HERWIG context, using
conventional methods (independent runs) [43].
We end by remarking on possible pathologies that can

arise, and how best to deal with them. If an event is very
rare in the baseline sample but much more likely in a
variation, the result will necessarily be a very large weight
for that variation. Especially after cuts the statistical
precision of the weighted samples can therefore be much
lower than for the nominal ones. To address this, we
recommend biasing the nominal sample to make the
relevant rare occurrences more frequent. This has the
additional benefit of improving the statistical precision
also of the nominal weights in the tails of the distributions.
Note however that the technology for combining the
uncertainty variations with biases has not yet been imple-
mented; we eagerly await feedback from the community on

issues encountered in practical studies, on which to base the
development of future capabilities and recommendations.
Details of how to switch on the new automated frame-

work in PYTHIA and how to define the list of uncertainty
variations to be performed in an actual run have been
included in a new HTML documentation file in the online
set of PYTHIA documentation files. These technical spec-
ifications may change as the code evolves.2
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Note added.—Recently, we became aware of two comple-
mentary projects that allow renormalization-scale and PDF
variations in a manner analogous to ours, implemented in
the HERWIG and SHERPA generators, respectively; see
[44,45] for details.
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