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We revisit the ρ-meson longitudinal leading-twist distribution amplitude (DA) ϕ∥
2;ρ by using the QCD

sum rules approach within the background field theory. To improve the accuracy of the sum rules for its

moments hξ∥n;ρi, we include the next-to-leading order QCD correction to the perturbative part and keep all
nonperturbative condensates up to dimension-six consistently within the background field theory. The first

two moments read hξ∥2;ρij1 GeV ¼ 0.241ð28Þ and hξ∥4;ρij1 GeV ¼ 0.109ð10Þ, indicating a double humped

behavior for ϕ∥
2;ρ at small energy scale. As an application, we apply them to the B → ρ transition form

factors within the QCD light-cone sum rules, which are key components for the decay width ΓðB → ρlνlÞ.
To compare with the world average of ΓðB → ρlνlÞ issued by Particle Data Group, we predict
jVubj ¼ 3.19þ0.65

−0.62 , which agrees with the BABAR and Omnès parametrization prediction within errors.

DOI: 10.1103/PhysRevD.94.074004

I. INTRODUCTION

The ρ-meson distribution amplitudes (DAs) are key
components for collinear factorization of the ρ-meson
involved processes, such as the semileptonic decay
BðDÞ → ρlνl and the flavor-changing-neutral-current
decays B → ργ and B → ρlþl−, which are important
for extracting the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements and for searching new physics beyond the
Standard Model. Inversely, those processes could provide a
good test of various ρ-meson DA models suggested in the
literature. The ρ-meson DAs arouse people’s great interest
since the initial works of Refs. [1–3] on the light-meson
DAs. The vector ρ-meson DAs have more complex
structures than the light pseudoscalar DAs. There are
chiral-even and chiral-odd ρ-meson DAs due to chiral-
even and chiral-odd operators in the matrix elements. The
ρ-meson thus has two polarization states, either longi-
tudinal (∥) or transverse (⊥), which can be expanded over
different twist structures [4,5]. In the paper, we shall
concentrate our attention on the ρ-meson longitudinal
leading-twist DA ϕ∥

2;ρ.
The leading-twist DA ϕ∥

2;ρðx; μÞ can be expanded as a
Gegenbauer polynomial series [6], i.e.,

ϕ∥
2;ρðx; μÞ ¼ 6xð1 − xÞ

�
1þ

X
n

C3=2
n ðξÞ × a∥n;ρðμÞ

�
; ð1Þ

where ξ ¼ 2x − 1. The Gegenbauer moments a∥n;ρ at any
other scale can be obtained via the QCD evolution equation.
The evolution equation up to next-to-leading order (NLO) is

available inRef. [7]. Theoretically, theGegenbauermoments
have been studied via various approaches [8–16]. Most of
their predictions are consistent with each other, but are of
large theoretical uncertainties. It is helpful to provide an
accurate prediction for a better comparison with the forth-
coming more accurate experimental data.
The conventional Shifman-Vainshtein-Zakharov (SVZ)

sum rules [17] provide a standard way to deal with the
hadron phenomenology. Within the framework of SVZ sum
rules, hadrons are represented by interpolating quark
currents with certain quantum numbers taken at large
virtualities. The correlation function (correlator) of those
currents is introduced and treated by using the operator
product expansion (OPE), where short- and long-distance
quark-gluon interactions are separated. The short-distance
part is perturbatively calculable, while the nonperturbative
long-distance part can be parametrized into the nonpertur-
bative but universal vacuum condensates. The SVZ sum
rules are then achieved by matching to a sum over hadronic
states with the help of the dispersion relation.
The introduction of vacuum condensates is the basic

assumption of the SVZ sum rules. Those universal vacuum
condensates reflect the nonperturbative nature of QCD
which can be fixed via a global fit of experimental data.
As suggested by the background-field theory (BFT), the
quark and gluon fields are composed of background fields
and quantum fluctuations around them. This way, the BFT
provides a self-consistent description for the vacuum
condensates and provides a systematic way to derive the
SVZ sum rules [18–22].
The SVZ sum rules within the BFT have been applied to

deal with the pseudoscalar and scalar DAs [23–28]. In those
calculations, because of the complexity of high-dimensional*wuxg@cqu.edu.cn
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operators and also the contribution of high-dimensional
condensates are generally power suppressed, one simply
adopts the reduced quark propagatorsSFðx; 0Þ and the vertex
operators Γðz ·D↔Þn, which keep only up to dimension-three
operators. Such a rough treatment is theoretically incom-
plete, which may miss some important high-dimensional
condensates in the sum rules. Their contribution may be
sizable, especially to compare with the NLO QCD correc-
tions to the perturbative part. Thus to compare with the
forthcomingmore andmore accurate data, it is helpful to take
those high-dimensional terms into consideration.
We have deduced the formulas for the quark propagator

SFðx; 0Þ and the vertex operators Γðz ·D↔Þn within the BFT
by keeping all terms in the OPE up to dimension-six
operators [29,30]. For example, the quark propagator is
parametrized as [29]

SFðx; 0Þ ¼ S0Fðx; 0Þ þ S2Fðx; 0Þ þ S3Fðx; 0Þ þ
X2
i¼1

S4ðiÞF ðx; 0Þ

þ
X3
i¼1

S5ðiÞF ðx; 0Þ þ
X5
i¼1

S6ðiÞF ðx; 0Þ; ð2Þ

where SkðiÞF ðx; 0Þ stand for the propagator parts that are
proportional to the dimension-k operators with type (i)
under the same dimension. Those formulas help us to
achieve sound and accurate SVZ sum rules up to dimen-
sion-six condensates such as hgsqqi2 and hg3sfG3i. Their
first applications for the heavy and light pseudoscalar DAs
have been done in Refs. [29,30]. Those applications show
that the new propagators and vertex operators shall result in
new terms proportional to the dimension-six condensates
that are missing in previous studies but do have sizable
contributions. We shall adopt those newly derived quark
propagator and vertex operators to study the ρ-meson
longitudinal leading-twist DA ϕ∥

2;ρ. We shall then apply

ϕ∥
2;ρ to deal with the B → ρ transition form factors (TFFs)

within the light-cone sum rules (LCSR) [31–33]. As a
further step, we shall show their effects to the B-meson
semileptonic decay width ΓðB → ρlνlÞ, which has been
measured by the BABAR collaboration [34,35].
The remaining parts of the paper are organized as

follows. In Sec. II, we describe the calculation technology
for deriving the moments of the leading-twist DA ϕ∥

2;ρ
within the SVZ sum rules. In Sec. III, we present the
numerical results for the moments hξ∥n;ρi, the decay width
ΓðB → ρlνlÞ, and the CKM matrix element jVubj.
Section IV is reserved for a summary.

II. CALCULATION TECHNOLOGY

Within the framework of BFT, the gluon fieldAA
μ ðxÞ and

quark field ψðxÞ in QCD Lagrangian are replaced by

AA
μ ðxÞ → AA

μ ðxÞ þ ϕA
μ ðxÞ; ð3Þ

ψðxÞ → ψðxÞ þ ηðxÞ; ð4Þ
whereAA

μ ðxÞwith A ¼ ð1;…; 8Þ and ψðxÞ at the right-hand
side are gluon and quark background fields, respectively.
ϕA
μ ðxÞ and ηðxÞ stand for the gluon and quark quantum

fields, i.e., the quantum fluctuation on the background
fields. The QCD Lagrangian within the BFT can be found
in Ref. [22]. The background fields satisfy the equations of
motion

ðiD −mÞψðxÞ ¼ 0 ð5Þ

and

~DAB
μ GBνμðxÞ ¼ gsψðxÞγνTAψðxÞ; ð6Þ

whereDμ¼∂μ−igsTAAA
μ ðxÞ and ~DAB

μ ¼δAB−gsfABCAC
μ ðxÞ

are fundamental and adjoint representations of the gauge
covariant derivative, respectively. One can take different
gauges for the quantum fluctuations and the background
fields. A proper choice of gauge could make the sum rules
calculation much more simplified. Practically, one usually
adopts the background gauge, ~DAB

μ ϕBμðxÞ ¼ 0, for the
gluon quantum field [18–20], and the Schwinger gauge
or the fixed-point gauge, xμAA

μ ðxÞ ¼ 0, for the background
field [36]. Using those inputs, the quark propagator

SFðx; 0Þ and the vertex operators Γðz ·D↔Þn are ready to
be derived up to dimension-six operators within the BFT.
We refer the interested readers to Ref. [29] for details.
Considering the definition

h0jdð0Þzðiz ·D↔Þnuð0Þjρðq; λÞi
¼ ðeðλÞ� · zÞðq · zÞnmρf

∥
ρhξ∥n;ρi; ð7Þ

where q and eðλÞ are momentum and polarization vector of

the ρ-meson, ðz ·D↔Þn ¼ ðz · ~D − z · D⃖Þn, and f∥ρ is the
decay constant. The nth-order moment of ρ-meson lead-
ing-twist DA ϕ∥

2;ρðx; μÞ at the scale μ is defined as

hξ∥n;ρi ¼
Z

1

0

duð2x − 1Þnϕ∥
2;ρðx; μÞ: ð8Þ

As a special case, the 0th moment satisfies the normali-
zation condition

hξ∥0;ρi ¼
Z

1

0

dxϕ∥
2;ρðx; μÞ ¼ 1: ð9Þ

To derive the SVZ sum rules for the ρ-meson leading-
twist DA moments hξ∥n;ρi, we introduce the following
correlator:
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Πðn;0Þ
ρ ðz; qÞ ¼ i

Z
d4xeiq·xh0jTfJnðxÞJ†0ð0Þgj0i

¼ ðz · qÞnþ2Iðn;0Þðq2Þ; ð10Þ

where JnðxÞ ¼ dðxÞzðiz ·D↔ÞnuðxÞ and z2 ¼ 0. Here
n ¼ ð0; 2;…Þ, i.e., only even moments are nonzero due
to the isospin symmetry.
The correlator (10) is an analytic q2-function defined at

both positive and negative q2-values. In physical region
(q2 > 0), the complicated hadronic content of the correlator
can be quantified by applying the unitarity relation through
inserting a complete set of intermediate hadronic states to
the matrix element. By singling out the ground state and
introducing a compact notation for the rest of the con-
tributions, we obtain

ImIðn;0Þhad ðq2Þ ¼ πδðq2 −m2
ρÞf∥ρ2hξ∥n;ρi

þ π
3

4π2ðnþ 1Þðnþ 3Þ θðq
2 − sρÞ; ð11Þ

where the quark-hadron duality has been adopted and the
parameter sρ is the continuum threshold of the lowest
continuum state.
On the other hand, one can apply the OPE for the

correlator (10) in deep Euclidean region ðq2 < 0Þ. The
coefficients before the operators (result in nonperturbative
condensates) are perturbatively calculable. The OPE indi-
cates that

Πðn;0Þ
2;ρ ðz; qÞ ¼ i

Z
d4xeiq·x

× f−Trh0jSdFð0; xÞzðiz ·D
↔ÞnSuFðx; 0Þzj0i

þ Trh0jdðxÞdð0Þzðiz ·D↔ÞnSuFðx; 0Þzj0i
þ Trh0jSdFð0; xÞzðiz ·D

↔Þnuð0ÞuðxÞzj0ig
þ � � � ð12Þ

The first term corresponds to Fig. 1(a), the second one
corresponds to Fig. 1(b), and the third one corresponds to
the permutation contribution by transforming u ↔ d from
Fig. 1(b). We adopt the dimensional regularization under
the MS-scheme to deal with the infrared divergences at
high orders, whose divergent terms shall be absorbed into
the renormalized leading-twist DA [37].
As a combination of the correlator within the different

q2-region, the sum rules for the moments of the ρ-meson
leading-twist DA can be derived by using the dispersion
relation

1

π

1

M2

Z
dse−s=M

2

ImIhadðsÞ ¼ L̂MIQCDðq2Þ; ð13Þ

where M is the Borel parameter and the Borel trans-
formation operator

L̂M ¼ lim
Q2 ;n→∞
Q2=n¼M2 ;

1

ðn − 1Þ! ðQ
2Þn
�
−

d
dQ2

�
n
; ð14Þ

where Q2 ¼ −q2. The final sum rules read

hξ∥n;ρi ¼ M2

f2ρ
em

2
ρ=M2

�
3

4π2ðnþ 1Þðnþ 3Þ
�
1þ αs

π
A0
n

�
ð1− e−sρ=M

2Þ þ
X
q¼u;d

�
mqhqqi
M4

−
8nþ 1

18

mqhgsqσTGqi
M6

þ 4nþ 2

81

hgsqqi2
M6

�
þ 1þ nθðn− 2Þ

12πðnþ 1Þ
hαsG2i
M4

þ 1

16π

hg3sfG3i
M6

�
8δn0 þ 405nþ 192

36
ln
M2

μ2
−
16δn0 þ 810nþ 363

72

× γE þ
7

24
ψðnþ 1Þ þ 8δn0 þ 405nþ 826

72
þ θðn− 2Þ

�
16− 22n

72
ln
M2

μ2
−
788nþ 421

72
ψðnþ 1Þ− 766nþ 437

72
γE

−
68n2 − 37n− 11

144n
þ
Xn−2
k¼0

ð−1Þk 1

144

�
3ð135kþ 128Þ

n− k
þ 383kþ 399

k− nþ 1
−
106kn− 410kþ 617n− 415

ðkþ 1Þðkþ 2Þ þ 106

����
;

ð15Þ

FIG. 1. Schematic Feynman diagrams for the ρ-meson longi-
tudinal leading-twist DAmoments, where the cross ð×Þ stands for
the background quark field. The big dots stand for the vertex

operators in the correlator, the left one is for zðiz ·D↔Þn and the
right one is for z.
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where the step function θðxÞ ¼ 1 for x ≥ 0, and θðxÞ ¼ 0
for x < 0. γE ¼ 0.557216 is Euler’s constant and the
0th derivative of the digamma function ψðnþ 1Þ ¼P

n
k¼1 1=k − γE. The NLO coefficients An have been

calculated by Ref. [8], whose first three are A0
0 ¼ 1,

A0
2 ¼ 5

3
and A0

4 ¼ 59
27
, respectively.

One can obtain relations among the Gegenbauer
moments a∥n;ρ and the moments hξ∥n;ρi by substituting
Eq. (1) into Eq. (8). For examples, we have

a∥2;ρ ¼
7

12
ð5hξ∥2;ρi − 1Þ; ð16Þ

a∥4;ρ ¼ −
11

24
ð14hξ∥2;ρi − 21hξ∥4;ρi − 1Þ; ð17Þ

a∥6;ρ ¼
5

64
ð135hξ∥2;ρi − 495hξ∥4;ρi þ 429hξ∥6;ρi − 5Þ: ð18Þ

III. NUMERICAL RESULTS AND DISCUSSIONS

We adopt the following parameters to do the numerical
calculation. The ρ-meson mass and decay constant are from
the Particle Data Group [38], mρ ¼ 0.775 GeV and

f∥ρ ¼ 0.216� 0.003 GeV. The nonperturbative vacuum
condensates up to dimension-six have been determined
in Refs. [39–51],

hqqi ¼ −0.0138ð17Þ GeV3;

hgsqqi2 ¼ −0.0018ð7Þ GeV6;

hαsG2i ¼ 0.038ð11Þ GeV4;

hg3sfG3i ¼ 0.013ð7Þ GeV6;X
q¼u;d

mqhqqi ¼ −1.656ð5Þ × 10−4 GeV4;

X
q¼u;d

mqhgsqσTGqi ¼ 1.325ð33Þ × 10−4 GeV4:

The continuum threshold sρ is usually set as the value
around the squared mass of the ρ-meson first excited state.
At present, the structure of the excited ρ-meson state is not
yet completely clear, cf. a recent review in Ref. [38].
Therefore, we use the sum rules (15) with n ¼ 0, together
with the normalization condition hξ∥0;ρi ¼ 1, to inversely

determine an effective value for sρ. We get, sρ ≃ 2.8 GeV2,
which indicates that the effective threshold continuum
state is close to ρð1700Þ.

A. The ρ-meson leading-twist DA ϕ∥
2;ρðx;μÞ

To determine a Borel window for the sum rules (15), e.g.,
the allowable range for M, we adopt two criteria: (I) All
continuum contributions are less than 40% of the total
dispersion relation; (II) the contributions from the dimen-
sion-six condensates should not exceed 10%. By setting all
other parameters to be their central values, the first two
moments hξ∥2;ρi and hξ∥4;ρi up to NLO level at the scale
μ ¼ M are determined as

hξ∥2;ρijμ¼M ¼ 0.234ð23Þ for M2 ∈ ½1.72; 3.00� ð19Þ

and

hξ∥4;ρijμ¼M ¼ 0.103ð7Þ for M2 ∈ ½4.26; 4.86�; ð20Þ

where the central values are for M2 ¼ 2.185 and 4.535,
respectively.
To show how the nonperturbative dimension-six con-

densates and the perturbative NLO corrections affect the
moments, we list the first two moments hξ∥ð2;4Þ;ρi at the scale
M in Table I, where the perturbative contributions are
calculated up to NLO level and the nonperturbative con-
tributions are up to dimension-six condensates. The con-
tributions from the LO terms, the NLO terms, the
dimension-three, the dimension-four, the dimension-five
and the dimension-six condensates are presented separately
in Table I. It shows that the dominant contribution is from
the LO terms, which provide ∼80% contribution to
hξ∥ð2;4Þ;ρi. The NLO terms provide ∼6.0% contribution to

hξ∥2;ρi and ∼7.8% contribution to hξ∥4;ρi. It is noted that the
nonperturbative condensates do not follow the usual power
counting of 1=M2-suppression, and the dimension-six
condensates provide sizable contributions to the moments
which are at the same order of the NLO terms. Thus they
are of equal importance for a precise prediction of the ϕ∥

2;ρ

moments.
By using the relations among the Gegenbauer moments

a∥n;ρ and the moments hξ∥n;ρi, such as Eqs. (16)–(18), we can

TABLE I. The first two moments hξ∥ð2;4Þ;ρijμ¼M of the longitudinal leading-twist DA ϕ∥
2;ρ predicted from the sum rules under the BFT.

Here the perturbative contributions are calculated up to NLO level and the nonperturbative contributions are up to dimension-six
condensates. The contributions from the LO terms, the NLO terms, the dimension-three, the dimension-four, the dimension-five and the
dimension-six condensates are presented separately. The errors are obtain by varying M2 within the determined Borel window.

LO NLO Dimension-three Dimension-four Dimension-five Dimension-six Total

hξ∥2;ρijμ¼M
0.193(34) 0.014(1) −0.0021ð7Þ 0.013(6) 0.0007(5) 0.015(22) 0.234(23)

hξ∥4;ρijμ¼M
0.081(4) 0.008(1) −0.0008ð1Þ 0.005(2) 0.0003(1) 0.010(1) 0.103(7)
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derive a∥n;ρ at the scale M. Furthermore, the Gegenbauer
moments a∥n;ρ at any other scale can be obtained via the
QCD evolution, i.e., the evolution at the NLO accuracy
shows [7,52,53]

a∥n;ρðμÞ ¼ a∥n;ρðμ0ÞENLO
n;ρ

þ αsðμÞ
4π

Xn−2
k¼0

ak;ρðμ0ÞLγð0Þk =ð2β0Þdð1Þnk ; ð21Þ

where μ0 is the initial scale, μ is the required scale, and

ENLO
n;ρ ¼ Lγð0Þn =ð2β0Þ

×

�
1þ γð1Þn β0 − γð0Þn β1

8πβ20
½αsðμÞ − αsðμ0Þ�

�
; ð22Þ

where L ¼ αsðμÞ=αsðμ0Þ, β0 ¼ 11 − 2nf=3, β1 ¼
102 − 38nf=3, γ

ð0Þ
n and γð1Þn are LO and NLO anomalous

dimensions, accordingly.
We present our predictions for the Gegenbauer moments

a∥
2ð4Þ;ρ, together with the moments ξ∥

2ð4Þ;ρ and the inverse

moment hx−1i ¼ R 10 dxx−1ϕ∥
2;ρðx; μÞ, in Table II, where all

uncertainty sources have been taken into consideration and
have been summed up in quadrature. Because of the
dominance of the LO terms to the moments hξ∥ð2;4Þ;ρi, the
ϕ∥
2;ρ behavior and the quantities such as the TFFs and jVubj

shall be dominated by the LO terms. For example, as will
be shown later, if without taking the NLO terms and the
dimension-six condensates into consideration, the magni-
tudes of A1, A2 and V0 at q2 ¼ 0 shall be altered by
3%–4%; and the magnitude of jVubj shall be altered
by ∼5%.
As a comparison, we also present the sum rules pre-

diction with nonlocal condensates (NLCSR) [9], the Ball
and Brawn (BB) prediction [10], the lattice QCD prediction
[11], the Bethe-Salpeter wave function (BS) prediction
[12], the AdS/QCD prediction [13,14], the light-front quark

model (LFQM) prediction [15], and the instanton model
(IM) prediction [16] in Table II. To compare with the other
predictions, we have set the scale μ0 ¼ 1 GeV, which is
adopted in most of the references. It is noted that our
present predictions on the DA moments agree with most of
them within reasonable errors, and most of them prefer a
double humped behavior, as explicitly shown by Fig. 2.
We make a discussion on how the ϕ∥

2;ρ behavior changes
with different truncations of the Gegenbauer expansion. By
taking the central values for the Gegenbauer moment a∥n;ρ,
we put the DA ϕ∥

2;ρðx; μ0 ¼ 1 GeVÞ for n ¼ ð2; 4; 6Þ in
Fig. 3. It shows that by including the sixth-moment
a∥6;ρð1 GeVÞ ¼ 0.009 into the Gegenbauer expansion, the

shape of ϕ∥
2;ρ is slightly changed and close to the double

humped behavior for the case of n ¼ 4. By including more
moments into the expansion, the ϕ∥

2;ρ behavior shall be
almost unchanged. Thus it is convenient and is of high

TABLE II. The first two Gegenbauer moments a∥2;ρ and a∥4;ρ for the longitudinal leading-twist DA ϕ∥
2;ρ, which is predicted from the

sum rules under the BFT. A comparison of predictions under various approaches [9–16] has also been presented. For easy comparison,
we have set the scale μ0 ¼ 1 GeV. The moments hξ∥2;ρi and hξ∥4;ρi and the inverse moment hx−1i are also presented. The number in the
parentheses shows the uncertainties from all the input parameters.

a∥2;ρ a∥4;ρ hξ∥2;ρi hξ∥4;ρi hx−1i
Our predictions 0.119(82) −0.035ð100Þ 0.241(28) 0.109(10) 3.30(34)
NLCSR [9] 0.047(58) −0.057ð118Þ 0.216(21) 0.089(9) 2.97(39)
BB [10] 0.150(70) � � � 0.251(24) � � � 3.45(21)
Lattice QCD [11] 0.197(158) � � � 0.268(54) � � � 3.60(48)
BS [12] 0.111 0.036 0.238 0.115 3.44
AdS/QCD [13,14] 0.104 0.053 0.236 0.115 3.47
LFQM [15] 0.014 −0.005 0.205 0.088 3.03
IM [16] −0.010 −0.033 0.196 0.080 2.87

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

FIG. 2. The ρ-meson leading-twist DA ϕ∥
2;ρðx; μ0 ¼ 1 GeVÞ

predicted from the sum rules under the BFT (BFTSR). As a
comparison, the NLCSR prediction [9], the BB prediction [10],
the lattice QCD prediction [11], the AdS/QCD prediction [13,14],
the LFQM prediction [15], and the IM prediction [16] have also
been presented.
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precision to keep only the first two moments in the
Gegenbauer expansion.
The ρ-meson leading-twist wave function ψ∥

2;ρðx;k⊥Þ is
an important component for reliable pQCD predictions
within the kT factorization formalism [54,55]. We adopt the
present DA moments to fix a ρ-meson wave function
ψ∥
2;ρðx;k⊥Þ that is constructed from the Wu-Huang

model [56]

ψ∥
2;ρðx;k⊥Þ ¼

X
h1h2

χh1h2ρ ðx;k⊥ÞψR
2;ρðx;k⊥Þ; ð23Þ

whose radial part is from the Brodsky-Huang-Lepage
prescription [57]. The spin-space wave function
χh1h2ρ ðx;k⊥Þ is from the Wigner-Melosh rotation [58–60].
The ρ-meson DA ϕ∥

2;ρ can be derived from ψ∥
2;ρðx;k⊥Þ via

the relation

ϕ∥
2;ρðx; μÞ ¼

2
ffiffiffi
3

p
~f∥ρ

Z
jk⊥j2≤μ2

dk⊥
16π3

ψ∥
2;ρðx;k⊥Þ; ð24Þ

which leads to

ϕ∥
2;ρðx; μÞ ¼

A∥
2;ρ

ffiffiffiffiffiffiffiffi
3xx

p
mq

8π
3
2 ~f∥ρb

∥
2;ρ

½1þ B∥
2;ρC

3
2

2ðξÞ þ C∥
2;ρC

3
2

4ðξÞ�

×

"
Erf

 
b∥2;ρ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2 þm2

q

xx

s !
− Erf

 
b∥2;ρ

ffiffiffiffiffiffi
m2

q

xx

s !#
;

ð25Þ

where ~f∥ρ ¼ f∥ρ=
ffiffiffi
5

p
, the error function, ErfðxÞ ¼

2
R
x
0 e

−t2dt=
ffiffiffi
π

p
and the light constitute quark mass,

mq ≃ 300 GeV. To be slightly different from the one
suggested in Ref. [61], we have explicitly put the newly
derived fourth Gegenbauer term in the longitudinal func-
tion. Four model parameters can be fixed by the

normalization condition, the average value of the squared
transverse momentum hk2⊥i1=22;ρ ¼ 0.37� 0.02 GeV, and
the second and fourth Gegenbauer moments determined
from the sum rules (15). By using the central values for the
input parameters, we obtain: A∥

2;ρ ¼ 24.61, b∥2;ρ ¼ 0.581,

B∥
2;ρ ¼ 0.075 and C∥

2;ρ ¼ −0.044.

B. The B → ρ transition form factors

One of the important applications of ϕ∥
2;ρ is the B-meson

semileptonic decay B → ρlνl. It is the key component for
the vector and axial vector B → ρ TFFs A1ðq2Þ, A2ðq2Þ
and Vðq2Þ. By using a left-handed current j†BðxÞ ¼
ibðxÞð1 − γ5Þq2ðxÞ to do the LCSR calculation, one can
highlight the contributions from ϕ∥

2;ρ [61], thus showing the

properties of ϕ∥
2;ρ via a more transparent way. Following the

standard LCSR procedures, one can derive the LCSRs for
the mentioned TFFs, which have been presented in
Ref. [61]. One only needs to replace the DA ϕ∥

2;ρ used
there to be our present one.
At the large recoil region, q2 ≈ 0 GeV2, we obtain

A1ð0Þ ¼ 0.237þ0.029
−0.021 ; ð26Þ

A2ð0Þ ¼ 0.246þ0.063
−0.043 ; ð27Þ

Vð0Þ ¼ 0.268þ0.021
−0.017 ; ð28Þ

where the errors are squared averages of all error sources
for the LCSRs. If using the ϕ∥

2;ρ determined from the sum
rules without the NLO terms and the dimension-six
condensates, we obtain A1ð0Þ ¼ 0.230þ0.028

−0.020 , A2ð0Þ ¼
0.257þ0.063

−0.043 and Vð0Þ ¼ 0.262þ0.020
−0.016 . Those values change

from the above ones, i.e., Eqs. (26)–(28), determined from
the sum rules with the NLO terms and the dimension-six
condensates by about 3%–4%.
We put those TFFs versus q2 in Fig. 4, where we have

extrapolated them to all allowable q2-regions via the
rapidly converging series in the parameter zðtÞ expansion
which is suggested by Refs. [62–64],

Fiðq2Þ ¼
1

1 − q2=m2
R;i

X
k¼0;1;2

aik½zðq2Þ − zð0Þ�k; ð29Þ

where

zðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

pffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t

p þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tþ − t0

p ð30Þ

with t� ¼ ðmB �mρÞ2 and t0 ¼ tþð1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − t−=tþ

p Þ.
The values of the resonance masses mR;i can be found
in Ref. [64], and Fi stands for the three TFFs.
The parameters aik are fixed such that Δ < 1%, which

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

FIG. 3. The ρ-meson longitudinal twist-2 DA ϕ∥
2;ρðx; μ0 ¼

1 GeVÞ for n ¼ 2, 4 and 6, respectively.
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are put in Table III. The measure of the quality of
extrapolation Δ is defined as

Δ ¼
P

tjFiðtÞ − Ffit
i ðtÞjP

tjFiðtÞj
× 100; ð31Þ

where t ∈ ½0; 1
2
;…; 27

2
; 14� GeV2.

We apply the extrapolated B → ρ TFFs for the semi-
leptonic decays, B0 → ρ−lþνl and Bþ → ρ0lþνl. Their
branching ratios and lifetimes are [38]: BðB0 → ρ−lþνlÞ ¼
ð2.94� 0.21Þ × 10−4 and τðB0Þ ¼ 1.520� 0.004 ps;

BðBþ → ρ0lþνlÞ ¼ ð1.58� 0.11Þ × 10−4 and τðBþÞ ¼
1.638� 0.004 ps. Those two semileptonic decays can be
adopted to determine the CKM matrix element jVubj, we
present the results in Table IV. Both of them lead to the same
predictions, jVubj ¼ 3.19þ0.65

−0.62 , where the errors are squared

averages of the errors from ξ∥ð2;4Þ;ρ, the Borel window, the

continuum threshold sB0 for the B → ρ TFFs, the b-quark
mass, theB-meson decay constant and the uncertainties from
the measured lifetimes and branching ratios, respectively. If
using the ϕ∥

2;ρ determined from the sum rules without the
NLO terms and the dimension-six condensates, we obtain
jVubj ¼ 3.36þ0.66

−0.64 , which changes from the one determined
from the sum rules with the NLO terms and the dimension-
six condensates by about 5%. Table IV shows our result is
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2.5
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FIG. 4. The extrapolated B → ρ axial-vector and vector TFFs
A1;2ðq2Þ and Vðq2Þ by using the LCSRs derived in Ref. [61],

where the ρ-meson leading-twist DA ϕ∥
2;ρ is from our present sum

rules under the BFT (BFTSR). The lattice QCD predictions
[65,66] are presented as a comparison.

TABLE III. The fitted parameters ai1;2 for the B → ρ TFFs Fi,
in which all the LCSR parameters are set to be their central
values. Δ is the measure of the quality of extrapolation.

A1 A2 V

ai1 0.233 −0.874 −1.034
ai2 0.345 0.708 5.257
Δ 0.16 0.23 0.41

TABLE IV. The predicted jVubj in unit 10−3. The estimations of
the Omnès parametrization [67] and BABAR collaboration
[34,35] are also presented as a comparison.

Our prediction 3.19þ0.65
−0.62

Omnès parametrization [67] 2.80(20)
BABAR [34] LCSR [5] 2.75(24)

ISGW [68] 2.83(24)
BABAR [35] LCSR [5] 2.85(40)

ISGW [68] 2.91(40)
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FIG. 5. The predicted differential decay width 1=jVubj2×
dΓ=dq2, where the shaded band shows the squared average of
all the errors from the mentioned error sources. The lattice QCD
predictions [65,66] are presented as a comparison.
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consistent with the Omnès parametrization and BABAR
prediction within errors.

IV. SUMMARY

The BFT provides a clean physical picture for the
perturbative and nonperturbative properties of QCD and
provides a systematic way to derive the SVZ sum rules for
hadron phenomenology. In the paper, we have studied the
moments of the ρ-meson leading-twist DA ϕ∥

2;ρ via the SVZ
sum rules up to dimension-six operators and by taking the
NLO QCD correction to the perturbative part. Our pre-
dictions for the second and fourth moments hξ∥2;ρi and hξ∥4;ρi
are shown in Table II, which lead to the Gegenbauer
moments a∥2;ρj1 GeV ¼ 0.119ð82Þ and a∥4;ρj1 GeV ¼
−0.035ð100Þ. They indicate a double humped behavior
for ϕ∥

2;ρ, which agrees with most of the predictions done in
the literature.
The ρ-meson DA is a key component for ρ-meson

involved high-energy processes. A better determination

of the ρ-meson DA shall be helpful for a better under-
standing of the ρ-meson physics. As an application of ϕ∥

2;ρ,
we calculate the B → ρlνl semileptonic decays within the
LCSR via a chiral correlator. It is found that the extrapo-
lated B → ρ TFFs agree with the lattice QCD predictions
[65,66] within errors. This can be more clearly shown
by Fig. 5, which shows the different decay width
1=jVubj2 × dΓ=dq2. Our present obtained ρ-meson DA
ϕ∥
2;ρ shall be further constrained/tested by more data

available in the near future, and we hope the definite
behavior can be concluded finally.
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