PHYSICAL REVIEW D 94, 074004 (2016)

p-meson longitudinal leading-twist distribution amplitude within QCD
background field theory

Hai-Bing Fu,' Xing-Gang Wu

2 Wei Cheng,2 and Tao Zhong3

'School of Science, Guizhou Minzu University, Guiyang 550025, People’s Republic of China
*Department of Physics, Chongging University, Chongqing 401331, People’s Republic of China
3Physics Department, Henan Normal University, Xinxiang 453007, People’s Republic of China

(Received 20 July 2016; published 3 October 2016)

We revisit the p-meson longitudinal leading-twist distribution amplitude (DA) qbg; , by using the QCD
sum rules approach within the background field theory. To improve the accuracy of the sum rules for its

moments <§|,|l;p), we include the next-to-leading order QCD correction to the perturbative part and keep all
nonperturbative condensates up to dimension-six consistently within the background field theory. The first

two moments read <§g; 2|1 Gev = 0.241(28) and (Eﬂ; 2|1 gev = 0.109(10), indicating a double humped

behavior for (ﬁg; "

at small energy scale. As an application, we apply them to the B — p transition form

factors within the QCD light-cone sum rules, which are key components for the decay width I'(B — p£u,).
To compare with the world average of I'(B — pfv,) issued by Particle Data Group, we predict

[Vl = 3.19f8‘g§, which agrees with the BABAR and Omnes parametrization prediction within errors.
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I. INTRODUCTION

The p-meson distribution amplitudes (DAs) are key
components for collinear factorization of the p-meson
involved processes, such as the semileptonic decay
B(D) - ptv, and the flavor-changing-neutral-current
decays B — py and B — p£*¢~, which are important
for extracting the Cabibbo-Kobayashi-Maskawa (CKM)
matrix elements and for searching new physics beyond the
Standard Model. Inversely, those processes could provide a
good test of various p-meson DA models suggested in the
literature. The p-meson DAs arouse people’s great interest
since the initial works of Refs. [1-3] on the light-meson
DAs. The vector p-meson DAs have more complex
structures than the light pseudoscalar DAs. There are
chiral-even and chiral-odd p-meson DAs due to chiral-
even and chiral-odd operators in the matrix elements. The
p-meson thus has two polarization states, either longi-
tudinal (||) or transverse (L), which can be expanded over
different twist structures [4,5]. In the paper, we shall
concentrate our attention on the p-meson longitudinal

leading-twist DA (;5

The leading-twist DA ¢2 p(x u) can be expanded as a
Gegenbauer polynomial series [6], i.e.,

¢2p<xu>—6x1—x<+zc3ﬂ xabo). ()

where £ = 2x — 1. The Gegenbauer moments a',',;p at any

other scale can be obtained via the QCD evolution equation.
The evolution equation up to next-to-leading order (NLO) is
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available in Ref. [7]. Theoretically, the Gegenbauer moments
have been studied via various approaches [8—16]. Most of
their predictions are consistent with each other, but are of
large theoretical uncertainties. It is helpful to provide an
accurate prediction for a better comparison with the forth-
coming more accurate experimental data.

The conventional Shifman-Vainshtein-Zakharov (SVZ)
sum rules [17] provide a standard way to deal with the
hadron phenomenology. Within the framework of SVZ sum
rules, hadrons are represented by interpolating quark
currents with certain quantum numbers taken at large
virtualities. The correlation function (correlator) of those
currents is introduced and treated by using the operator
product expansion (OPE), where short- and long-distance
quark-gluon interactions are separated. The short-distance
part is perturbatively calculable, while the nonperturbative
long-distance part can be parametrized into the nonpertur-
bative but universal vacuum condensates. The SVZ sum
rules are then achieved by matching to a sum over hadronic
states with the help of the dispersion relation.

The introduction of vacuum condensates is the basic
assumption of the SVZ sum rules. Those universal vacuum
condensates reflect the nonperturbative nature of QCD
which can be fixed via a global fit of experimental data.
As suggested by the background-field theory (BFT), the
quark and gluon fields are composed of background fields
and quantum fluctuations around them. This way, the BFT
provides a self-consistent description for the vacuum
condensates and provides a systematic way to derive the
SVZ sum rules [18-22].

The SVZ sum rules within the BFT have been applied to
deal with the pseudoscalar and scalar DAs [23-28]. In those
calculations, because of the complexity of high-dimensional
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operators and also the contribution of high-dimensional
condensates are generally power suppressed, one simply
adopts the reduced quark propagators S (x, 0) and the vertex

operators I'(z - B)", which keep only up to dimension-three
operators. Such a rough treatment is theoretically incom-
plete, which may miss some important high-dimensional
condensates in the sum rules. Their contribution may be
sizable, especially to compare with the NLO QCD correc-
tions to the perturbative part. Thus to compare with the
forthcoming more and more accurate data, it is helpful to take
those high-dimensional terms into consideration.

We have deduced the formulas for the quark propagator

Sr(x,0) and the vertex operators I'(z - B)" within the BFT
by keeping all terms in the OPE up to dimension-six
operators [29,30]. For example, the quark propagator is
parametrized as [29]

2
Sp(x.0) = $%(x.0) + 53(x,0) + S3(x.0) + Y 537 (x.0)

i=1
3 5
5(i 6(i
+> :SF(>(x,O)+§ :sp“(x,()), (2)
i=1 i=1

where Slﬁl)(x,O) stand for the propagator parts that are
proportional to the dimension-k operators with type (i)
under the same dimension. Those formulas help us to
achieve sound and accurate SVZ sum rules up to dimen-
sion-six condensates such as (g,gq)* and (g} fG>). Their
first applications for the heavy and light pseudoscalar DAs
have been done in Refs. [29,30]. Those applications show
that the new propagators and vertex operators shall result in
new terms proportional to the dimension-six condensates
that are missing in previous studies but do have sizable
contributions. We shall adopt those newly derived quark
propagator and vertex operators to study the p-meson

longitudinal leading-twist DA ¢g; ,- We shall then apply

¢Q; , to deal with the B — p transition form factors (TFFs)
within the light-cone sum rules (LCSR) [31-33]. As a
further step, we shall show their effects to the B-meson
semileptonic decay width T'(B — p¢v,), which has been
measured by the BABAR collaboration [34,35].

The remaining parts of the paper are organized as
follows. In Sec. II, we describe the calculation technology
for deriving the moments of the leading-twist DA ¢,
within the SVZ sum rules. In Sec. III, we present the

numerical results for the moments ( ,IL,,), the decay width
I'(B - pfv,), and the CKM matrix element |V .
Section IV is reserved for a summary.

II. CALCULATION TECHNOLOGY

Within the framework of BFT, the gluon field A; (x) and
quark field w(x) in QCD Lagrangian are replaced by

PHYSICAL REVIEW D 94, 074004 (2016)
Aj(x) = AL (x) + ¢ (x). (3)

y(x) = y(x) +n(x), (4)

where A% (x) with A = (1, ..., 8) and y(x) at the right-hand
side are gluon and quark background fields, respectively.
¢4 (x) and 5(x) stand for the gluon and quark quantum
fields, i.e., the quantum fluctuation on the background
fields. The QCD Lagrangian within the BFT can be found
in Ref. [22]. The background fields satisfy the equations of
motion

(iD —m)y(x) =0 (5)

and
DB GB# (x) = g7 (x)y Thw (x), (6)

where D, =0, —ig, T A% (x) and D}}# =58 — g, fABC AC (x)
are fundamental and adjoint representations of the gauge
covariant derivative, respectively. One can take different
gauges for the quantum fluctuations and the background
fields. A proper choice of gauge could make the sum rules
calculation much more simplified. Practically, one usually
adopts the background gauge, DﬁBqﬁB" (x) =0, for the
gluon quantum field [18-20], and the Schwinger gauge
or the fixed-point gauge, x* A (x) = 0, for the background
field [36]. Using those inputs, the quark propagator

Sr(x,0) and the vertex operators I'(z - D)" are ready to

be derived up to dimension-six operators within the BFT.

We refer the interested readers to Ref. [29] for details.
Considering the definition

(0[d(0)z(iz - D)"u(0)|p(q. 1))
= (W 2)(q - 2)"m, fp{Enp), (7)
where g and ¢ are momentum and polarization vector of

the p-meson, (z-D)" = (z-l3—z-l3)", and flll is the
decay constant. The nth-order moment of p-meson lead-
ing-twist DA ¢g; p(x, u) at the scale p is defined as

() = / du(2x - 1l (x. ). (8)

As a special case, the Oth moment satisfies the normali-
zation condition

ey = / Ll (o) = 1. (9)

To derive the SVZ sum rules for the p-meson leading-

twist DA moments ( ll,;p), we introduce the following

correlator:
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i [ el 011,51 5(0)}0)

= (z-q)"P 1" (%),

5" (z,q) =

(10)

<>
where J,(x) = d(x)z(iz- D)"u(x) and z>=0. Here
=(0,2,...), i.e., only even moments are nonzero due
to the isospin symmetry.

The correlator (10) is an analytic ¢>-function defined at
both positive and negative g>-values. In physical region
(g*> > 0), the complicated hadronic content of the correlator
can be quantified by applying the unitarity relation through
inserting a complete set of intermediate hadronic states to
the matrix element. By singling out the ground state and
introducing a compact notation for the rest of the con-
tributions, we obtain

2
= m)fp

3
0 —s,),
T R Dins )0 %)

n,0
Im]l(md )(‘]2) = ”5(q2 n;p>

(11)

where the quark-hadron duality has been adopted and the
parameter s, is the continuum threshold of the lowest
continuum state.

On the other hand, one can apply the OPE for the
correlator (10) in deep Euclidean region (g*> < 0). The
coefficients before the operators (result in nonperturbative
condensates) are perturbatively calculable. The OPE indi-
cates that

=i [ e
x {=Tr(0]S%(0, x)z(iz - D)"S%(x. 0)z|0)
+ Tr{0[d(x)d(0)2(iz - D)"S%(x, 0)2]0)

+ Tr(0]S%(0, x)z(iz - D)”ﬁ(O)u(x)z|0)}
+o- (12)
!

M= i
(e = 7 {47t2(n+1

1+ nf(n—2) {(a,G?)

)(n+3) <1 *?Aﬁl)(l —eny 4 30
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(a) (b)

FIG. 1. Schematic Feynman diagrams for the p-meson longi-
tudinal leading-twist DA moments, where the cross (x) stands for
the background quark field. The big dots stand for the vertex

<>
operators in the correlator, the left one is for z(iz - D)" and the
right one is for Z.

The first term corresponds to Fig. 1(a), the second one
corresponds to Fig. 1(b), and the third one corresponds to
the permutation contribution by transforming u <> d from
Fig. 1(b). We adopt the dimensional regularization under
the MS-scheme to deal with the infrared divergences at
high orders, whose divergent terms shall be absorbed into
the renormalized leading-twist DA [37].

As a combination of the correlator within the different
g*-region, the sum rules for the moments of the p-meson
leading-twist DA can be derived by using the dispersion
relation

11

nMZ/d e/ Im/ly,4(s) = LMIQCD(q2>7 (13)

where M is the Borel parameter and the Borel trans-
formation operator

N d n
Ly = 1 2 —— 14
w= Jm oy (@) ( dQ2) - 14
0% /n=m?
where Q% = —g?. The final sum rules read

< qq _ 8n+1my{g;qoTGq)
18

6
q=u,d M

165" + 810n + 363

4n +2(g,qq)*
L4 <gqq>>

81  M° R2z(n+1) M*
85" +405n + 826

24 72

(2 fG3) (85™ +405n + 192l M?
16z M°

16-22n M?
+0(n-2) [”

36 2
M> 78804421
72 U 72

383k +399  106kn — 410k + 6171 — 415

72

766n + 437

1 —
w(n+1) =

TE

_68n2—37n—11+"i e L (3(135K + 128)
144n — 144 n—k

k—n+1 (k+1)(k+2)

)}

(15)
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where the step function 6(x) = 1 for x > 0, and 6(x) =0
for x <0. ygp =0.557216 is Euler’s constant and the
Oth derivative of the digamma function w(n+1)=
> i1 1/k—yg. The NLO coefficients A, have been
calculated by Ref [8], whose first three are Aj =1,
Al =3 and A}, = 33, respectively.

One can obtain relations amon% the Gegenbauer
moments a','l;,, and the moments (£.,) by substituting
Eq. (1) into Eq. (8). For examples, we have

| —
a, =

Z(stel) - 1), (16)

dl, =g (4, - 21, -1, (1)

a5, = o (135<§g;p> —495(l.) +429(&L. ) —=5).  (18)

III. NUMERICAL RESULTS AND DISCUSSIONS

We adopt the following parameters to do the numerical
calculation. The p-meson mass and decay constant are from
the Particle Data Group [38], m, =0.775 GeV and

fﬂ = 0.216 £ 0.003 GeV. The nonperturbative vacuum
condensates up to dimension-six have been determined
in Refs. [39-51],

(qq) = —0.0138(17) GeV>,
(9,q¢)* = —0.0018(7) GeV®,
(a,G?) = 0.038(11) GeV*,

(2fG3?) =0.013(7) GeV®,
3" m,(Gg) = —1.656(5) x 10~ GeV*,
q=u,d

> mglg,GoTGq) = 1.325(33) x 107+ GeV*.
q=u,d

The continuum threshold s, is usually set as the value
around the squared mass of the p-meson first excited state.
At present, the structure of the excited p-meson state is not
yet completely clear, cf. a recent review in Ref. [38].
Therefore, we use the sum rules (15) with n = 0, together

with the normalization condition (f& ,) =1, to inversely

TABLE L. The first two moments (afl

PHYSICAL REVIEW D 94, 074004 (2016)

determine an effective value for s,. We get, s, = 2.8 GeV?,
which indicates that the effect1ve threshold continuum
state is close to p(1700).

A. The p-meson leading-twist DA qﬁg;p(x,y)

To determine a Borel window for the sum rules (15), e.g.,
the allowable range for M, we adopt two criteria: (I) All
continuum contributions are less than 40% of the total
dispersion relation; (I) the contributions from the dimen-
sion-six condensates should not exceed 10%. By setting all
other parameters to be their central values, the first two

moments (ég; ,) and (Zj"l';p> up to NLO level at the scale
u = M are determined as

(&) umps = 0.234(23) for M? € [1.72,3.00]  (19)

and

(€] umps = 0.103(7)  for M? € [4.26,4.86],  (20)
where the central values are for M? = 2.185 and 4.535,
respectively.

To show how the nonperturbative dimension-six con-
densates and the perturbative NLO corrections affect the
moments, we list the first two moments <cf” ,) at the scale
M in Table I, where the perturbative contnbuuons are
calculated up to NLO level and the nonperturbative con-
tributions are up to dimension-six condensates. The con-
tributions from the LO terms, the NLO terms, the
dimension-three, the dimension-four, the dimension-five
and the dimension-six condensates are presented separately
in Table I. It shows that the dominant contribution is from
the LO terms, which provide ~80% contribution to

<§|(|2 2 /}) The NLO terms provide ~6.0% contribution to

<§2; ,) and ~7.8% contribution to (54; ,)- Itis noted that the
nonperturbative condensates do not follow the usual power
counting of 1/M?-suppression, and the dimension-six
condensates provide sizable contributions to the moments
which are at the same order of the NLO terms. Thus they
are of equal importance for a precise prediction of the d)'zl; "
moments.

By using the relations among the Gegenbauer moments

an,, and the moments ( ,), such as Egs. (16)—(18), we can

>l u—u Of the longitudinal leading-twist DA z/) predicted from the sum rules under the BFT.

Here the perturbative contributions are calculated up to NLO level and the nonperturbatlve contributions are up to dimension-six
condensates. The contributions from the LO terms, the NLO terms, the dimension-three, the dimension-four, the dimension-five and the
dimension-six condensates are presented separately. The errors are obtain by varying M? within the determined Borel window.

LO NLO Dimension-three Dimension-four Dimension-five Dimension-six Total
<§g‘ﬂ>|M:M 0.193(34) 0.014(1) —-0.0021(7) 0.013(6) 0.0007(5) 0.015(22) 0.234(23)
<§ﬂ'/)>|ﬂ:M 0.081(4) 0.008(1) —0.0008(1) 0.005(2) 0.0003(1) 0.010(1) 0.103(7)
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TABLE II. The first two Gegenbauer moments a2 » and a for the longitudinal leading-twist DA ¢2 2 which is predicted from the
sum rules under the BFT. A comparison of predictions under Vanous approaches [9—-16] has also been presented. For easy comparison,

we have set the scale 4y = 1 GeV. The moments (ig; ,) and (fﬂ; ,) and the inverse moment {(x~1) are also presented. The number in the
parentheses shows the uncertainties from all the input parameters.

PHYSICAL REVIEW D 94, 074004 (2016)

al, al, () (€hy) &7
Our predictions 0.119(82) —0.035(100) 0.241(28) 0.109(10) 3.30(34)
NLCSR [9] 0.047(58) —0.057(118) 0.216(21) 0.089(9) 2.97(39)
BB [10] 0.150(70) e 0.251(24) e 3.45(21)
Lattice QCD [11] 0.197(158) e 0.268(54) e 3.60(48)
BS [12] 0.111 0.036 0.238 0.115 3.44
AdS/QCD [13,14] 0.104 0.053 0.236 0.115 3.47
LFQM [15] 0.014 —0.005 0.205 0.088 3.03
IM [16] —0.010 —0.033 0.196 0.080 2.87
derive all., at the scale M. Furthermore, the Gegenbauer ~ model (LFQM) prediction [15], and the instanton model

moments all;ﬂ at any other scale can be obtained via the

QCD evolution, i.e., the evolution at the NLO accuracy
shows [7,52,53]

aly () = am )ENLO

471' Z A /’ Lh

Z/JO)d( k)’ (21)

where p is the initial scale, y is the required scale, and

ENLO L3 /(250
(1) (0)
Yn'Po—1n P
{1+ PP ) - o} (2
where L = ay(u)/as(uo),  fo=11- 2ns/3, P =

102 —38n,/3, yflo) and yﬁ,]) are LO and NLO anomalous
dimensions, accordingly.
We present our predictions for the Gegenbauer moments

g(4> together with the moments 52(4

= [l dxx'¢p) ,,(x, ), in Table II, where all

uncertamty sources have been taken into consideration and
have been summed up in quadrature. Because of the

the

a ) and the inverse

moment

dominance of the LO terms to the moments <§|(|2’ 4);/),

Q; , behavior and the quantities such as the TFFs and [V |
shall be dominated by the LO terms. For example, as will
be shown later, if without taking the NLO terms and the
dimension-six condensates into consideration, the magni-
tudes of A, A, and V, at ¢*> =0 shall be altered by
3%-4%; and the magnitude of |V,,| shall be altered
by ~5%.

As a comparison, we also present the sum rules pre-
diction with nonlocal condensates (NLCSR) [9], the Ball
and Brawn (BB) prediction [10], the lattice QCD prediction
[11], the Bethe-Salpeter wave function (BS) prediction
[12], the AdS/QCD prediction [13,14], the light-front quark

(IM) prediction [16] in Table II. To compare with the other
predictions, we have set the scale u, = 1 GeV, which is
adopted in most of the references. It is noted that our
present predictions on the DA moments agree with most of
them within reasonable errors, and most of them prefer a
double humped behavior, as exphcltly shown by Fig. 2.
We make a discussion on how the 452 ., behavior changes

with different truncations of the Gegenbauer expansion. By
taking the central values for the Gegenbauer moment alrlz;p,
we put the DA ¢} (x.uy =1 GeV) for n = (2.4.6) in
Fig 3. It shows that by including the sixth-moment

a6 p(l GeV) = 0.009 into the Gegenbauer expansion, the
shape of ¢2; , 1s slightly changed and close to the double
humped behavior for the case of n = 4. By including more
behavior shall be
almost unchanged. Thus it is convenient and is of high

moments into the expansion, the (ﬁg; "

L4fr QpooogﬁﬁXO290_09290_000&64»$oqopg
| © t, 3
— 1.2 i . Dl oy A
TOL q /?of «W *#\o’,’\
-~ 1 < o4 o\«
= <f . +22 \q
= 79t 5 \e
_%08 s ——BFTSR Q,\\:
+ L sp\v
<[ Fo BB P\
06r ff [ NLCSR A
< 13 ~ <
oal 7/’ o - = AdS/QCD 0"7‘\‘6 |
: ‘“:;o <« Lattice QCD o)\
Iy, o
02 ’j’ o + LFQM s :‘\ E
I o IM A
0 . n n .
0 0.2 0.4 0.6 0.8 1

x

FIG. 2. The p-meson leading-twist DA ¢2p(x o =1 GeV)
predicted from the sum rules under the BFT (BFTSR). As a
comparison, the NLCSR prediction [9], the BB prediction [10],
the lattice QCD prediction [11], the AdS/QCD prediction [13,14],
the LFQM prediction [15], and the IM prediction [16] have also
been presented.
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b, (. o)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
T

FIG. 3. The p-meson longitudinal twist-2 DA qﬁg;ﬂ(x, Uy =
1 GeV) for n = 2, 4 and 6, respectively.

precision to keep only the first two moments in the
Gegenbauer expansion.

The p-meson leading-twist wave function lpg; " (x,ky)is
an important component for reliable pQCD predictions
within the k factorization formalism [54,55]. We adopt the
present DA moments to fix a p-meson wave function

y/g;p(x, k) that is constructed from the Wu-Huang
model [56]

h h7
y/g;/)(x’kl) = /’1 '(kaj_)lllg;p()@kl)’
hihy

(23)

whose radial part is from the Brodsky-Huang-Lepage
prescription [57]. The spin-space wave function
;(Z‘hz (x,k ) is from the Wigner-Melosh rotation [58-60].
The p-meson DA qbg; , can be derived from l//g; ,(x k) via

the relation

2V3 dk;

¢g;/)(xwu) - T Ik, < 167[3 W2;/}<x’kl_)7 (24)
p s

which leads to

Ag. V3xxm 3 3
P () = =2 1+ B G (@) + €, GO
877.'2f/,b2;p
2 2 2
I, (e my I Mg
x | Erf <b2;p P > — Erf (bz;p E)] ,

where j‘lll = ,l)l/ V5, the error function, Erf(x) =
2 [y e"zdt/\/i and the light constitute quark mass,
m, =300 GeV. To be slightly different from the one
suggested in Ref. [61], we have explicitly put the newly
derived fourth Gegenbauer term in the longitudinal func-
tion. Four model parameters can be fixed by the

PHYSICAL REVIEW D 94, 074004 (2016)

normalization condition, the average value of the squared
transverse momentum <ki>é/p2 =0.37+£0.02 GeV, and

the second and fourth Gegenbauer moments determined
from the sum rules (15). By using the central values for the

input parameters, we obtain: Ag;p =24.61, bg;p = 0.581,
B)., =0.075 and C}., = —0.044.

B. The B — p transition form factors
One of the important applications of qﬁg; , 1s the B-meson
semileptonic decay B — p£v,. It is the key component for
the vector and axial vector B — p TFFs A,(q?), A,(q?)
and V(q?). By using a left-handed current jj(x) =
ib(x)(1 —y5)g,(x) to do the LCSR calculation, one can
highlight the contributions from )., [611], thus showing the

properties of qﬁg; , via a more transparent way. Following the
standard LCSR procedures, one can derive the LCSRs for
the mentioned TFFs, which have been presented in
Ref. [61]. One only needs to replace the DA ¢g; , used

there to be our present one.
At the large recoil region, ¢> ~ 0 GeV?, we obtain

A(0) = 023775957, (26)
A,(0) = 0.2461 0053, (27)
V(0) = 0.26870 0%, (28)

where the errors are squared averages of all error sources
for the LCSRs. If using the qﬁg; , determined from the sum
rules without the NLO terms and the dimension-six
condensates, we obtain A;(0) = 0.2307005, A,(0) =
0.257250% and V(0) = 0.262103%. Those values change
from the above ones, i.e., Egs. (26)—(28), determined from
the sum rules with the NLO terms and the dimension-six
condensates by about 3%—4%.

We put those TFFs versus ¢ in Fig. 4, where we have
extrapolated them to all allowable g’-regions via the
rapidly converging series in the parameter z(z) expansion
which is suggested by Refs. [62-64],

1

Fi(q*) = =k, > ajlz(g®) —z(0)%,  (29)
RikZ012
where
z(t)—\/t+_t_\/t+_t° (30)

IRV EAN

with 1, = (mg+m,)? and 1o=1.(1-/1—-1_/1,).
The values of the resonance masses mp; can be found
in Ref. [64], and F; stands for the three TFFs.
The parameters aj( are fixed such that A < 1%, which

074004-6



p-MESON LONGITUDINAL LEADING-TWIST ...

09 I ["w Lattice QCD (96)
08 | A Lattice QCD [8 = 6.0] (04")
¢ Lattice QCD [ = 6.2] (047)

07 } |—BFTSR-DA

L:‘E 0.6

—

< 05
0.4
0.3
0.2

0 2 4 6 8 10 12 14 16 18 20
¢*(GeV?)

2.5 | | m Lattice QCD (96")
A Lattice QCD [3 = 6.0] (04")

¢ Lattice QCD [3 = 6.2] (04")
2T |—Brrsr-DA
s
<
5)’
1t §
2 XX
N
05

0 2 4 6 8 10 12 14 16 18 20

7*(GeV?)
3.5} | m Lattice QCD (96’)
A Lattice QCD [3 = 6.0] (04') A
31 | & Lattice QCD [8 = 6.2] (04")
—BFTSR-DA
25} N
T 2
> H
15+
1 L
0.5

0 2 4 6 8 10 12 14 16 18 20
¢*(GeV?)

FIG. 4. The extrapolated B — p axial-vector and vector TFFs
A1,(¢%) and V(g?*) by using the LCSRs derived in Ref. [61],
where the p-meson leading-twist DA (,bg; , is from our present sum
rules under the BFT (BFTSR). The lattice QCD predictions
[65,66] are presented as a comparison.

are put in Table III. The measure of the quality of
extrapolation A is defined as

IR0 - F0)|
A= Rm <M

where 7 € (0,1, ....%, 14] GeV2.

We apply the extrapolated B — p TFFs for the semi-
leptonic decays, B — p~¢*v, and BT — p°¢*v,. Their
branching ratios and lifetimes are [38]: B(B® — p=¢*v,) =
(2944 021)x 104 and  7(B°) = 1.520 % 0.004 ps;

(31)
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TABLE III. The fitted parameters a’i,z for the B — p TFFs F},
in which all the LCSR parameters are set to be their central
values. A is the measure of the quality of extrapolation.

Al Az v
aj 0.233 —0.874 —1.034
ag 0.345 0.708 5.257
A 0.16 0.23 0.41

TABLEIV. The predicted |V, in unit 1073, The estimations of
the Omnes parametrization [67] and BABAR collaboration
[34,35] are also presented as a comparison.

Our prediction 3 191L8.66§

Omnes parametrization [67] 2.80(20)
BABAR [34] LCSR [5] 2.75(24)
ISGW [68] 2.83(24)
BABAR [35] LCSR [5] 2.85(40)
ISGW [68] 2.91(40)

B(B* — p%*tv,) = (1.58 £0.11) x 10™* and z(B*") =
1.638 £ 0.004 ps. Those two semileptonic decays can be
adopted to determine the CKM matrix element |V |, we
present the results in Table IV. Both of them lead to the same

predictions, |V,| = 3.1910, where the errors are squared

averages of the errors from fl(lz, 1) the Borel window, the
continuum threshold s& for the B — p TFFs, the h-quark
mass, the B-meson decay constant and the uncertainties from
the measured lifetimes and branching ratios, respectively. If
using the (/)Q; , determined from the sum rules without the
NLO terms and the dimension-six condensates, we obtain
V| = 3.3670:¢ which changes from the one determined

from the sum rules with the NLO terms and the dimension-
six condensates by about 5%. Table IV shows our result is

1.8 - - -
16 m Lattice QCD (96°)
N A Lattice QCD [3 = 6.0] (04)
E LAF | ¢ Lattice QCD [3 = 6.2] (04"
T 1af —BFTSR-DA
S 'y
= 1y K23 3
”g 2 f —3 \>
0.8 y
oy ]
N 4
x 0.6 A + C
o 1
:;g 0.4H
=02}
Ok

0 2 4 6 8 10 12 14 16 18 20
7*(GeV?)

FIG. 5. The predicted differential decay width 1/]V,|>x

dl'/dq?, where the shaded band shows the squared average of

all the errors from the mentioned error sources. The lattice QCD
predictions [65,66] are presented as a comparison.
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consistent with the Omnes parametrization and BABAR
prediction within errors.

IV. SUMMARY

The BFT provides a clean physical picture for the
perturbative and nonperturbative properties of QCD and
provides a systematic way to derive the SVZ sum rules for
hadron phenomenology. In the paper, we have studied the
moments of the p-meson leading-twist DA g{)g; , viathe SVZ
sum rules up to dimension-six operators and by taking the
NLO QCD correction to the perturbative part. Our pre-
dictions for the second and fourth moments ( g; ,) and (fﬂ; ))
are shown in Table II, which lead to the Gegenbauer
moments ag;ﬂh Gev = 0.119(82)  and aﬂ;ph Gev =
—0.035(100). They indicate a double humped behavior
for qbg; ,» Which agrees with most of the predictions done in
the literature.

The p-meson DA is a key component for p-meson
involved high-energy processes. A better determination

PHYSICAL REVIEW D 94, 074004 (2016)

of the p-meson DA shall be helpful for a better under-

standing of the p-meson physics. As an application of ¢g; S

we calculate the B — pfv, semileptonic decays within the
LCSR via a chiral correlator. It is found that the extrapo-
lated B — p TFFs agree with the lattice QCD predictions
[65,66] within errors. This can be more clearly shown
by Fig. 5, which shows the different decay width
1/|Vuw|* X dT'/dg?. Our present obtained p-meson DA

g; , shall be further constrained/tested by more data

available in the near future, and we hope the definite
behavior can be concluded finally.
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