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We study the splitting in the screening mass of pions and the η-meson across the chiral crossover. This
splitting is determined by the ’t Hooft determinant. We use results for the renormalization group scale
dependence of the ’t Hooft determinant obtained within the functional renormalization group in quenched
QCD with two flavors. The scale dependence of the ’t Hooft determinant is mapped to its temperature
dependence with the help of a Polyakov-quark-meson model. As a result we obtain the temperature
dependence of the splitting in the screening mass of pions and the η-meson.
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I. INTRODUCTION

The axial Uð1ÞA-symmetry of quantum chromodynam-
ics is broken by a quantum anomaly. As a consequence the
pseudoscalar singlet meson does not appear as a massless
mode in the spectrum of QCD in the phase of sponta-
neously broken chiral symmetry [1,2]. This phenomenon
can also be understood in terms of the ’t Hooft determinant
[3,4]. It is a Uð1ÞA-symmetry breaking 2Nf-quark inter-
action that gets contributions from fluctuations in the
topological charge. Recently, nonperturbative results for
the four-quark interaction channels, and in particular for the
’t Hooft determinant, have become available from inves-
tigations of quenched continuumQCDwith two flavors [5],
see also [6].
At temperatures of roughly 150–160 MeV, QCD with

2þ 1 flavors experiences a rapid crossover to a phase that
approximately respects chiral symmetry and breaks center
symmetry [7–9]. Although the situation is less clear at the
finite chemical potential, qualitative changes are expected
also at large densities, see e.g. [10–15] for reviews. At
temperatures far above the crossover and also at large
densities, the effects of the axial anomaly are expected to
vanish, since topological charge fluctuations become sup-
pressed [16,17]. Furthermore, it has been argued that the
splitting between the mass of the pseudoscalar singlet
meson and the pion could become small immediately
above the chiral crossover [18]. Experimental signs for
such an effective restoration of the Uð1ÞA-symmetry have
been found by [19,20], who report a drop in the in-medium
mass of the pseudoscalar singlet meson of at least 200MeV.
A restoration of the Uð1ÞA-symmetry would have a

qualitative impact on the nature of the phase transition in
the two-flavor chiral limit. In the presence of the axial
anomaly in terms of the ’t Hooft determinant this transition
is expected to be of second order in the Oð4Þ universality
class [21]. If, however, the Uð1ÞA-symmetry were
restored at the chiral transition, a first order transition or

a second order transition in the universality class of
Uð2ÞL ×Uð2ÞR=Uð2ÞA could take place [22–26].
The possibility of an effective restoration of the

Uð1ÞA-symmetry has been addressed in several lattice
QCD simulations. A degeneracy in the correlators of the
pion and the pseudoscalar singlet meson has been observed
in the chirally symmetric phase in a two-flavor simulation
with overlap and domain wall fermions [27,28]. On the
other hand, [9,29] find effective restoration only at larger
temperatures of 196 MeV with 2þ 1 flavors of domain
wall fermions and [30,31], using highly improved stag-
gered fermions, do not see it even at 1.5 times the crossover
temperature. The phenomenological implications of the
axial anomaly and different scenarios for its fate at the
chiral crossover have been investigated with a Dyson-
Schwinger approach using models for the quark-gluon
interaction [32–35], in the Nambu–Jona-Lasinio (NJL)
model [36–39] and with quark-meson [40–42] as well as
linear sigma models [43,44].
In this work we use results for the energy-momentum

scale dependence of the ’t Hooft determinant [5], where the
functional renormalization group (RG) in Wetterich’s
formulation [45] has been used to calculate the effective
action of quenched QCD with two flavors. From this
functional renormalization group, a coupled set of equa-
tions for the 1PI correlation functions, similar to the Dyson-
Schwinger equations, can be derived, see e.g. [46–53] for
reviews. Additionally, we use the Polyakov-quark-meson
(PQM) model [54–56] with two flavors as a qualitative
description of the chiral crossover. With the help of this
model we derive a mapping of the renormalization group
scale dependence of the ’t Hooft determinant to its temper-
ature dependence for the investigation of the mass splitting
between pseudoscalar singlet η-meson and pion at the
chiral crossover.
This paper is organised as follows: In Sec. II we briefly

discuss the PQM model with two quark flavors and its
behavior at the chiral crossover. Section III discusses the
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calculation of the ’t Hooft determinant [5] and the deriva-
tions of its temperature dependence. In Sec. IV we discuss
our main result, the mass splitting between η-meson and
pion at the chiral crossover and we summarize and
conclude in Sec. V.

II. POLYAKOV-QUARK-MESON MODEL

A. Lagrangian

The Euclidean Lagrangian of the two-flavor Polyakov-
quark-meson model with axial symmetry breaking term has
the form [55]

LPQM ¼ q̄

�
Dþ hπ

2
ðσ þ iγ5~τ ~πÞ þ hη

2
ð~τ ~aþiγ5ηÞ

�
q

þ trð∂μΣ∂μΣ†Þ þ Uðρ; ξÞ þ UðΦ; Φ̄Þ; ð1Þ

with the meson field 2Σ ¼ ðσ þ iηÞ þ ð~aþ i~πÞ~τ and Pauli
matrices ~τ. The mesonic potential

Uðρ; ξÞ ¼ m2
ρρþm2

ξξþ gρ2 − cσ ð2Þ

is a function of the chirally symmetric operators ρ ¼
trðΣΣ†Þ and the Kobayashi-Maskawa-’t Hooft determinant
ξ ¼ detΣþ detΣ† [3,4,57]. The latter breaks the Uð1ÞA-
symmetry and leads to a mass splitting between the (σ − ~π)-
and (η − ~a)-mesons. Additionally, an explicit symmetry
breaking term c appears in this potential which mimics a
nonvanishing current quark mass. Symmetry considera-
tions would allow for another term ρ2 ¼ tr½ðΣΣ†Þ2� in the
mesonic potential. For diagonal Σ ¼ diagðσ; σÞ, which is
the case that is investigated in this work, this invariant
becomes however proportional to ρ2 ∝ σ4. Furthermore,
any contributions to this term from quantum or thermal
fluctuations are then added to ρ2 and g can serve as a
counterterm for both operators. For an investigation of the
effect of taking the difference between ρ2 and ρ2 into
account see e.g. [26].
In the PQM model the covariant derivative

D ¼ γμð∂μ − iA0γ
0Þ depends only on the nonfluctuating

background field A0. Therefore also the Polyakov loop,
given as the thermal expectation value of the path-ordered
and color-traced Wilson loop,

Φ ¼ 1

Nc

�
trcP exp

�
−i

Z
β

0

dτA0ð~x; τÞ
��

β¼1=T
; ð3Þ

depends only on A0. To provide the gluonic background we
use a polynomial ansatz for the effective Polyakov loop
potential UðΦ; Φ̄Þ [54,55]

UðΦ; Φ̄Þ
T4

¼ −
b2ðTÞ
4

ðjΦj2 þ jΦ̄j2Þ

−
b3
6
ðΦ3 þ ðΦ̄Þ3Þ þ b4

16
ðjΦj2 þ jΦ̄j2Þ2 ð4Þ

with

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

ð5Þ

and the same parameters as [56]:

a0 ¼ 6.75 a1 ¼ −1.95 a2 ¼ 2.625 a3 ¼ −7.44

b3 ¼ 0.75 b4 ¼ 7.5

T0 ¼ 208 MeV: ð6Þ

Since we consider only the case of vanishing chemical
potential, we have Φ̄ ¼ Φ, and the potential UðΦ; Φ̄Þ is
therefore a function of Φ alone.

B. Effective potential and meson masses

We calculate the effective potential ΩMF at finite
temperature in the extended mean-field approximation
[58] which ignores all mesonic fluctuations. The remaining
path integral is Gaussian, leading to the determinant
of the fermionic kinetic operator. It depends on the
Yukawa interactions which we assume to be degenerate
h≡ hπ ¼ hη. Using Φ ¼ Φ̄ at μ ¼ 0 the result is

ΩMF ¼ Ωq̄q þUðρ; ξÞ þ UðΦÞ; ð7Þ

where

Ωq̄q ¼ −12
Z

Λ d3p
ð2πÞ3 Eq − 8T

Z
d3p
ð2πÞ3

× log ½1þ 3Φe−βEq þ 3Φe−2βEq þ e−3βEq �: ð8Þ

Here, E2
q ¼ ~p2 þ h2

2
ρ is the quark energy. The potential is

regularized with a sharp momentum cutoff Λ and then
renormalized by choosing the coefficients of the bare
potential Eq. (2) such that the correct value for the pion
mass and pion decay constant hσi ¼ fπ are reproduced at
T ¼ 0. The numerical results at finite temperature are found
to be independent of the sharp momentum cutoff for all
values Λ ≥ 5 GeV. The temperature dependence of the ’t
Hooft determinant in this setting is trivial since the quark
loop, being a function of ρ only, does not induce any
anomalous contributions. Thus, the η-mass would show
only a trivial temperature dependence which is proportional
to the change in the pion mass in this effective description.
The mesonic screening masses are given by the second

derivatives of the effective potential with respect to the
corresponding fields
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m2
ϕPQM

¼ ∂2
ϕΩMF; ϕ ∈ fσ; ~π; η; ~ag; ð9Þ

evaluated at the field expectation value hσi. For a potential
of the form Eq. (2) this implies

m2
~π ¼ m2

ρ þm2
ξ þ ghσi2;

m2
σ ¼ m2

ρ þm2
ξ þ 3ghσi2;

m2
η ¼ m2

~a ¼ m2
ρ −m2

ξ þ ghσi2: ð10Þ

The quark loop respects the full chiral symmetry and
therefore it does not contribute to m2

ξ . In particular this
means that the relation

m2
ξ ¼

m2
~π −m2

η

2
ð11Þ

holds for general ΩMF.

C. Crossover

Once the model parameters have been fixed to yield
physical values for the observables, the Polyakov-quark-
meson model gives a qualitative description for the QCD
crossover at finite temperature. To demonstrate this, we
show the order parameters in Fig. 1. The normalized chiral
condensate shows a rapid change to a very small value
around temperatures of 170 to 180 MeV, which is the usual
value found in these types of models for the temperature of
the chiral crossover. The Polyakov loop, Φ, increases at the
same temperatures, indicating a crossover to a deconfined
phase of broken center symmetry. When comparing to
results from lattice QCD [8,9], the crossover temperature in
this model is too large by about 20 MeV. To some extent
this can be remedied by improving the parametrization of
the Polyakov loop potential and adding a strange quark
[42,59], but it is still an indication for the qualitative nature
of the description provided by the PQMmodel. To improve

its applicability, this model can be embedded in a full QCD
calculation via the dynamical hadronization technique
[49,60,61]. Such an approach has been used e.g. quanti-
tatively in quenched QCD in [5] and qualitatively also for
unquenched QCD in [62].

III. ’T HOOFT DETERMINANT

We use results for the ’t Hooft determinant from a
calculation within quenched QCD with two quark flavors
[5]. This approach uses only the strong coupling strength and
bare quark mass as input at perturbative momentum scales.
From this input, the effective action Γ½ϕ� is calculated in a
vertex expansion by solving the Wetterich equation [45]

∂kΓk½ϕ� ¼
1

2
Tr
�

1

Γð2Þ
k þ Rk

∂kRk

�
: ð12Þ

By the integration of infinitesimal momentum shells, the
resulting trajectory for the effective average action, Γk½ϕ�,
connects the renomalized perturbative action S½ϕ� ¼
limk→ΛΓk½ϕ�, defined in terms of strong coupling strength
and bare quark mass at some large momentum Λ, with the
full quantum effective action Γ½ϕ� ¼ limk→0Γk½ϕ�. The
momentum-shell integration is controlled by the regulator
function Rk which acts as a momentum dependent mass
term.
As the momentum shell integration approaches non-

perturbative momenta below Oð1Þ GeV, four-quark inter-
actions are created via two-gluon exchange diagrams, e.g.
[53]. If these four-quark interactions are approximated by a
momentum-independent coupling constant, chiral sym-
metry breaking is signalled by a singularity in this
coupling. This divergence is a consequence of the emer-
gence of the pion pole in the spontaneously broken phase.
To avoid this divergence, one has to include momentum
dependencies in the four-quark interaction. One possibility
to do so with manageable effort is to use the dynamical
hadronization technique [49,60,61], see also [5,62,63] for
recent applications. In each momentum shell integration
step, this technique rewrites the four-quark interactions in
terms of meson exchange. This naturally includes the
correct momentum dependence close to the pion pole,
thus avoiding any singularities.

A. Renormalization group scale dependence
of the ’t Hooft determinant

To be able to identify the resonant four-quark interaction
channel a fierz-complete basis with ten basis elements has
been used in [5]. The momentum dependence of the
resonant pion channel has been taken into account via
the dynamical hadronization technique. The choice of only
hadronizing this single channel uses the knowledge that the
Uð1ÞA-anomaly will break the symmetry between pions
and η-meson. A more thorough investigation of the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 120  140  160  180  200  220  240

[1
]

T/[MeV]

<σ>/fπ
Φ

FIG. 1. Order parameters for the chiral, hσi=fπ , and deconfine-
ment transition, Φ, as functions of the temperature T.
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implications of this choice and the Uð1ÞÞA-anomaly will be
presented elsewhere.
Here we are especially interested in the four-quark

channels corresponding to the exchange of σ − π-mesons
(λπ) and η − ~a-mesons (λη)

λπ
4
ððq̄qÞ2 − ðq̄γ5~τqÞ2Þ; ð13Þ

λη
4
ð−ðq̄γ5qÞ2 þ ðq̄ ~τ qÞ2Þ: ð14Þ

These two channels can also be parametrized as

λðS−PÞþ
4

ððq̄qÞ2 − ðq̄γ5~τqÞ2 − ðq̄γ5qÞ2 þ ðq̄ ~τ qÞ2Þ

þ Δ
4
ððq̄qÞ2 − ðq̄γ5~τqÞ2 þ ðq̄γ5qÞ2 − ðq̄ ~τ qÞ2Þ; ð15Þ

where the first term with coupling λðS−PÞþ has the full
chiral symmetry and the second term, proportional to Δ,
corresponds to the ’t Hooft determinant in the case of two
quark flavors. Consequently, the difference of the pion and
η-meson four-quark couplings is directly proportional to
the strength of the ’t Hooft determinant

Δ ¼ λπ − λη
2

: ð16Þ

The corresponding results for these two channels are
shown in Fig. 2. These results have been obtained in the
truncation of [5] and have been rescaled such that a unit
residue at the pion pole is guaranteed. Additionally the
wave function renormalizations of pions and η-meson have
been assumed to be degenerate. We clearly see that the
four-quark interactions reach a considerable strength only
at nonperturbative momenta. In this regime, the ’t Hooft

determinant is almost as strong as the symmetric four-quark
channel. As a consequence, the pion channel becomes
dominant, whereas the η-meson is comparably heavy.
Although hardly visible in Fig. 2, the η-pion splitting is
already present at scales above the chiral symmetry break-
ing scale. One possible source for this splitting is the
previously mentioned asymmetric choice of only hadro-
nizing the pion-σ-meson channel.

B. Temperature dependence of the
’t Hooft determinant

As discussed already, the quark-meson model can be
derived from QCD within the functional renormalization
group approach via the dynamical hadronization technique.
Within this approach, mesons are introduced as auxiliary
fields. The momentum dependence of the dynamically
created four-quark interactions is then rewritten in terms of
the exchange of meson ϕ, i.e.

Γð4Þ
ðq̄qÞ2 → Γð3Þ

ðq̄qÞϕðΓð2Þ
ϕϕÞ−1Γð3Þ

ðq̄qÞϕ: ð17Þ

The couplings of the four-quark channels corresponding to
pion and η-meson exchange, λπ and λη, are therefore related
to the corresponding Yukawa interactions and meson
masses via the relations

λπ ¼
h2π
2m2

π
λη ¼

h2η
2m2

η
; ð18Þ

which hold at each renormalization group scale k.
For calculating the temperature dependence of

the η-meson mass we use the temperature independent
approximation h≡ hπ ¼ hη. For given h, the temperature
dependence of the meson masses, mϕðTÞ, is then
directly proportional to temperature dependence of the
corresponding four-quark interaction strength, λϕðTÞ.

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 100  200  300  400  500  600  700  800  900  1000

[M
eV

]-2

k/[MeV]

λπ
λη

 0

 0.0001

 0.0002

 0.0003

 0.0004

 0.0005

 0.0006

 100  200  300  400  500  600  700  800  900  1000

[M
eV

]-2

k/[MeV]

λ(S-P)+
Δ

FIG. 2. Four-quark interactions as functions of renormalization group scale k [5].
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Consequently, we are left with calculating the temperature
dependence of ληðTÞ. To do so, we assume that the
temperature dependence of a given coupling strength can
be mapped onto its renormalization group scale depend-
ence, since both quantities are energy-momentum scales.
A similar approximation has been used successfully for
obtaining the strong running coupling as a function of
temperature and magnetic field in [64]. To calculate the
precise relation between the temperature and RG-scale
dependence we use the temperature dependence of the pion
mass, mπ;PQMðTÞ, as obtained within the PQM model. The
pion mass gives us the corresponding four-quark interac-
tion strength λπ;PQMðTÞ via (18) with hπ ¼ h. Finally, we
use the corresponding coupling λπ;QCDðkÞ, obtained in the
approach presented in [5], to relate the RG scale k with the
temperature T by demanding λπ;PQMðTÞ≡ λπ;QCDðkÞ. This
condition maps each temperature T to a corresponding RG
scale kðTÞ and we obtain finally

m2
ηðTÞ ¼

h2

2

�
h2

2m2
π;PQMðTÞ

− 2ΔQCDðkðTÞÞ
�−1

; ð19Þ

from the RG running of the ’t Hooft determinant

ΔQCDðkÞ ≔
ðλπ;QCDðkÞ − λη;QCDðkÞÞ

2
: ð20Þ

IV. η- AND π-MESON MASS SPLITTING
AT CHIRAL CROSSOVER

We show the temperature dependence of the mesonic
curvature masses, defined by the second derivative of the
effective potential, in Fig. 3. At small temperatures our
value for the η-mass is mη ¼ 880 MeV. This agrees within
the given errors with lattice QCD which gives approx-
imately 819(127) MeV for the corresponding pole mass
[65]. One uncertainty in our calculation stems from using
the curvature mass instead of the pole mass, which is far
away from Euclidean momenta. Furthermore, we used the
assumption that the wave function renormalization as well
as the Yukawa coupling of the η-meson is degenerate with
the one of the pion.
At temperatures close to the crossover we see the usual

behavior of the pion and σ-meson masses, which become
degenerate above the transition. The mass of the η-meson
shows a drop at the chiral transition. This is in accordance
with experimental results for the in-medium mass [19,20].
A similar drop in the η-meson mass is found in the (2þ 1)-
flavor version of the quark-meson model without temper-
ature dependence in the ’t Hooft determinant coupling
[40,41]. Since the mesonic ’t Hooft determinant is of order
ΣNf in the meson field, the drop in the (2þ 1)-flavor
η-meson mass can be attributed solely to the melting of the
light condensate. The presented two-flavor case, on the
other hand, requires a genuine temperature dependence in

the strength of the ’t Hooft determinant coupling to
reproduce a similar drop. This is seen by comparing to
the temperature dependence of the η-meson mass obtained
from the PQMmodel alone. In this approximation the mass
is monotonous in the temperature, since m2

ξ is temperature
independent, whereas m2

ρ grows with the temperature.
Therefore, the drop in the mass of the η-meson is clearly
a QCD effect. On the other hand, it has recently been found
in a study with 2þ 1 quark flavors that mesonic fluctua-
tions might also have a visible and counteracting effect on
the strength of the ’t Hooft determinant [66].
Above the chiral crossover, we still see a large splitting

between the masses of the pion and the η-meson, which is
in contrast to some lattice simulations reporting a fast
reduction of the mass splitting above the chiral crossover
[27,28]. Several assumptions within our calculation can
have an influence on the mass splitting above the chiral
crossover. First, our procedure of mapping the renormal-
ization group scale dependence on the temperature intro-
duces uncertainties precisely at the chiral crossover.
Second, the restoration of chiral symmetry usually happens
at too large temperatures and too slowly in the quark-meson
model. Consequently, the temperature points above the
crossover should actually be compressed in Fig. 3, which
would entail a faster effective restoration of Uð1ÞA. Finally,
the asymmetric hadronization procedure used in [5] could
be responsible for a too large mass splitting in the chirally
symmetric phase. In future investigations, the η-channel
should therefore be dynamically hadronized as well.

V. SUMMARY AND CONCLUSION

We have investigated the mass splitting between pions
and η-meson across the chiral crossover. To this end, we
have used results for the renormalization group scale
dependence of the ’t Hooft determinant from two-flavor
quenched QCD. From these results the temperature
dependence for the ’t Hooft determinant has been
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FIG. 3. Meson screening masses as functions of the
temperature T.
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approximated by matching the temperature dependence of
the pion mass in a mean-field approximation of the
Polyakov-quark-meson model to its renormalization group
scale dependence from the result in quenched QCD [5].
We find a drop in the mass of the η-meson at the chiral

crossover which is compatible with experimental results for
the in-medium η-meson mass [19,20]. In the case of two
flavors, this drop is the consequence of a genuine temper-
ature dependence in the strength of the ’t Hooft determinant
coupling. A large splitting between pion and η-meson mass
is found at temperatures above the chiral transition. This
might be caused by the slow restoration of chiral symmetry
at large temperatures within the used model together with
the procedure used for mapping the renormalization group
scale to the temperature. Additionally, the asymmetric
choice in the dynamical hadronization procedure of [5]
and the fact that we used curvature masses instead of pole
masses might play a role.

For future investigations it would be interesting to
improve the calculation [5] with respect to axial anomaly
effects and dynamically hadronize the η-meson as well. It
would be interesting to include mesonic fluctuations in the
PQM model and see whether the found temperature
dependence in the ’t Hooft determinant coupling strength
is sufficiently strong to change the order of the chiral
transition in the chiral limit. Furthermore, a continuation of
the current approach to Minkowski space similar to [67]
would be desirable.
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