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We provide an updated analysis of the forward J=ψ-p scattering amplitude, relating its imaginary part to
γp → J=ψp and γp → cc̄X cross section data, and calculating its real part through a once-subtracted
dispersion relation. From a global fit to both differential and total cross section data, we extract a value for
the spin-averaged J=ψ -p s-wave scattering length aψp ¼ 0.046� 0.005 fm, which can be translated into a
J=ψ binding energy in nuclear matter of Bψ ¼ 2.7� 0.3 MeV. We estimate the forward-backward
asymmetry to the γp → e−eþp process around the J=ψ resonance, which results from interchanging the
leptons in the interference between the J=ψ production and the Bethe-Heitler mechanisms. We show that to
good approximation this asymmetry depends linearly on aψp, and can reach values around −25% for
forthcoming J=ψ threshold production experiments at Jefferson Lab. Its measurement can thus provide a
very sensitive observable for a refined extraction of aψp.
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I. INTRODUCTION

The interaction between heavy quarkonia, such as J=ψ ,
and protons or nuclear matter has generated a lot of interest
over the past decades as it provides a unique setting to
test the gluonic van der Waals interaction in quantum
chromodynamics (QCD). As valence light-quark exchange
between the J=ψ and the nuclear system cannot occur, and
light-quark antiquark exchange is strongly suppressed due
to the Okubo-Zweig-Iizuka rule, the interaction proceeds
dominantly through multiple gluon exchange which pro-
vides a weakly attractive interaction. As the heavy quar-
konium is a small size system, it can be treated as a color
dipole, and its interaction with the nucleon or nucleus may
be estimated from the knowledge of its chromoelectric
polarizability; see Refs. [1–3] for reviews and references
therein. For nuclei, this attraction may be strong enough to
provide a bound state between the cc̄ state and the nucleus
[4–6]. Using a perturbative calculation for the chromo-
electric polarizability of a heavy quarkonium [7] and a
two-gluon exchange interaction, Ref. [6] estimated a bind-
ing energy for a J=ψ in nuclear matter Bψ ∼ 10 MeV. In
subsequent works, also higher-order nonperturbative mod-
ifications to the interaction between quarkonia and nucle-
ons and nuclei were explored, including the coupling of the
J=ψ to DD̄, DD̄� and D�D̄� intermediate states [8–10],
which may also lead to attractive interactions. The latter
work [10] predicted J=ψ binding energies ranging from
around 5 MeV in 4He to around 15–20 MeV in 208Pb.
The quantitative study of a possible formation of such

bound states requires a more precise knowledge of the J=ψ -
nucleon interaction at low energies, which may be char-
acterized by its (spin-independent) s-wave scattering length
aψp, corresponding to a J=ψ-proton (p) total cross section

at the threshold of σψp ≡ 4πa2ψp. In the absence of a J=ψ-p
bound state, a small positive (negative) value of aψp would
indicate a weakly attractive (repulsive) J=ψ-p interaction. If
the attraction is sufficiently strong, it may then support
J=ψ -nuclear bound states [11]. It has been estimated using
QCD sum rules [12] that aψp ∼ 0.1 fm, corresponding with
σψp ∼ 1.26 mb. Calculations based on the rather uncertain
value of the J=ψ chromoelectric polarizability [13] provide
estimates for aψp ranging between a value of aψp ¼
0.05 fm [14] at the lower end, and a value of aψp ¼
0.37 fm [15] at the higher end. The latter value would lead
to J=ψ binding energy in nuclear matter exceeding 20MeV.
In recent years, the question whether J=ψ-nuclear bound

states exist became also amenable to lattice QCD calcu-
lations [16–18]. The most recent of these studies [18]
inferred a charmonium-nuclear matter binding energy
Bψ ≲ 40 MeV. The current lattice calculations were how-
ever performed at large pion masses (mπ ∼ 805 MeV), and
it is possible that the systems involving the lightest nuclei
will therefore be unbound at the physical pion mass. Future
calculations for smaller quark masses are clearly called for.
The J=ψ-p interaction was furthermore studied in

Refs. [19,20] as a probe of the color deconfinement in
high-energy nucleus-nucleus collisions. Based on the small
size of the J=ψ , around rψ ∼ 0.2 fm ≪ Λ−1

QCD, the J=ψ-p
cross section was estimated in those works in terms of the
gluon distribution in the nucleon and related through vector
meson dominance (VMD) to the J=ψ photoproduction
cross section on the proton. Using different parametriza-
tions of the gluon distributions in a proton from deep
inelastic scattering, the experimental behavior of the cross
section was well reproduced in Ref. [20]. In a related
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work [21], by using VMD and using data for hidden and
open charm photoproduction on a proton as input, a
phenomenological estimate of the J=ψ-p elastic cross
section was given. In the present work, we provide an
update along these lines, with the aim to provide an
improved extraction of the threshold J=ψ-p scattering
amplitude. For this purpose we evaluate the J=ψ -p forward
scattering amplitude in a dispersive formalism. As in
Ref. [21], we constrain the imaginary part from the present
world data of hidden and open-charm photoproduction.
The real part is evaluated through a dispersion relation,
which involves one subtraction constant, which can be
related to aψp. We are able to substantially improve the
precision of the fit, by including the forward differential
cross section data for γp → J=ψp in the fit, and study the
sensitivity of the γp → J=ψp cross section in the threshold
region to the subtraction constant. This then allows us to
make a quantitative study for planned experiments at the
Jefferson Laboratory (JLab) [22–24], which are aimed to
measure the γp → J=ψp process in the threshold region.
The paper is organized as follows. We describe the

forward J=ψ-p scattering amplitude in Sec. II, relating its
imaginary part to γp → J=ψp and γp → cc̄X data. We
subsequently calculate the real part from a dispersion
relation, involving one subtraction constant. In our frame-
work, the six parameters describing the discontinuities and
the one subtraction constant are obtained from a global fit
to both total and forward differential photoproduction cross
sections. In Sec. III, we then start from this γp → J=ψp
amplitude to describe the γp → J=ψp → e−eþp process,
and calculate the forward-backward asymmetry for the
γp → e−eþp process around the J=ψ resonance, which
results from interchanging the leptons in the interference
between the J=ψ production mechanism and the competing
Bethe-Heitler (BH) mechanism. We show that this forward-
backward asymmetry, which is proportional to the real part
of the J=ψ-p amplitude, provides a very sensitive observ-
able to extract the subtraction constant in the forward
J=ψ -p scattering amplitude, which in turn allows us to
extract aψp. We present results for this forward-backward
asymmetry, including error bands resulting from our fitting
procedure, in the kinematics of planned experiments at
JLab. Finally we provide our conclusions in Sec. IV.

II. FORWARD J=ψ − p SCATTERING AMPLITUDE
and γp → J=ψp PROCESS

We consider the forward J=ψ-p elastic scattering process,
which is described by the spin-averaged forward scattering
amplitude TψpðνÞ, where the shorthand ψ denotes the J=ψ
state. The amplitude Tψp depends on the crossing variable ν,
defined in terms of the Mandelstam invariants as

ν≡ s − u
4

¼ 1

2
ðs −M2 −M2

ψ Þ; ð1Þ

where MðMψ Þ stand for the masses of the proton (ψ),
respectively.
The forward differential cross section for the ψp → ψp

process can then be expressed as

dσ
dt

����
t¼0

ðψp → ψpÞ ¼ 1

64πsq2ψp
jTψpðνÞj2; ð2Þ

where in the forward direction the momentum transfer
t ¼ 0, and where qψp denotes the magnitude of the ψ three-
momentum in the c.m. frame, given by

q2ψp ¼ 1

4s
½s − ðMψ þMÞ2�½s − ðMψ −MÞ2�: ð3Þ

The optical theorem relates the imaginary part of TψpðνÞ
to the ψp → X total cross section σtotψp as

ℑTψpðνÞ ¼ 2
ffiffiffi
s

p
qψpσtotψpðνÞ: ð4Þ

The amplitude TψpðνÞ has the property that it is even under
crossing, i.e. Tψpð−νÞ ¼ TψpðνÞ. The real part of the
amplitude TψpðνÞ can be reconstructed from the knowledge
of the imaginary part along the real ν axis using a
dispersion relation, provided the integral converges. For
large ν, the amplitude is diffractive following approxi-
mately the behavior ℑTψpðνÞ ∼ νa, with 1 ≤ a < 2. The
convergence of the dispersion integral therefore requires
one subtraction. This leads to the subtracted dispersion
relation,

ℜTψpðνÞ ¼ Tψpð0Þ þ
2

π
ν2

Z
∞

νel

dν0
1

ν0
ℑTψpðν0Þ
ν02 − ν2

; ð5Þ

where νel ≡MMψ corresponds with the elastic threshold
s¼ sel¼ðMψ þMÞ2¼16.28GeV2. Furthermore in Eq. (5),
the real subtraction constant Tψpð0Þ denotes the amplitude
at ν ¼ 0. This subtraction constant can be predicted in
models, see e.g. [20], or has to be obtained from lattice
QCD. Alternatively, we can use it as a fit parameter and
extract it from data. In the following, we show the
sensitivity to extract this subtraction constant from the
measurement of the γp → ψp process in the threshold
region, and relate it with the ψ-p s-wave scattering
length aψp.
Physically, the discontinuity of the amplitude TψpðνÞ

entering the integrand of Eq. (5) has two contributions:
an elastic cut starting at sel, and an inelastic contribution
corresponding with open-charm (meson) production
on the proton. We parametrize the inelastic contribution
to Tψp by an effective inelastic cut which starts at the
DD̄ meson production threshold, corresponding with
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sinel ¼ ðM þ 2MDÞ2 ¼ 21.79 GeV2, or equivalently
νinel ¼ 5.66 GeV2. The imaginary part of Tψp is then
obtained as a sum of elastic and inelastic discontinuities,

ℑTψpðνÞ ¼ θðν − νelÞDiscelTψpðνÞ
þ θðν − νinelÞDiscinelTψpðνÞ: ð6Þ

We parametrize the elastic and inelastic discontinuities
by the following three-parameter forms:

DiscelTψpðνÞ ¼ Cel

�
1 −

νel
ν

�
bel
�
ν

νel

�
ael ð7Þ

DiscinelTψpðνÞ ¼ Cinel

�
1 −

νinel
ν

�
binel

�
ν

νinel

�
ainel

; ð8Þ

where the factors ∼ð1 − νthr=νÞb determine the behavior
around the respective threshold νthr, and the factors ∼νa
determine the Regge behavior of the amplitude at large ν. In
the following we discuss how we can determine the
respective parameters appearing in the elastic and inelastic
discontinuities.
The discontinuity across the elastic cut, Discel, is related

through the optical theorem to the ψp → ψp elastic
scattering cross section σelψp as

DiscelTψpðνÞ ¼ 2
ffiffiffi
s

p
qψpσelψp: ð9Þ

We use the VMD assumption to relate the elastic cross
section σelψp to the γp → ψp cross section [21,25],

σelψp ¼
�
Mψ

efψ

�
2
�
qγp
qψp

�
2

σðγp → ψpÞ; ð10Þ

with electric charge e given through α ¼ e2=ð4πÞ≃ 1=137,
and where fψ is the ψ decay constant, which is obtained
from the ψ → eþe− decay as

Γψ→ee ¼
4πα2

3

f2ψ
Mψ

: ð11Þ

The experimental value Γψ→ee ¼ 5.55 keV yields fψ ¼
0.278 GeV. Furthermore, qγp denotes the magnitude of the
γ three-momentum in the c.m. frame of the γp → ψp
process,

qγp ¼ ðs −M2Þ
2

ffiffiffi
s

p : ð12Þ

Equations (7), (9) and (10) then yield the parametrization
for the γp → ψp total cross section,

σðγp → ψpÞ ¼
�
efψ
Mψ

�
2 Cel

2
ffiffiffi
s

p
qγp

�
qψp
qγp

�

×

�
1 −

νel
ν

�
bel
�
ν

νel

�
ael
: ð13Þ

The discontinuity across the inelastic cut, Discinel, is
related through the optical theorem to the ψp → cc̄X
inelastic cross section σinelψp as

DiscinelTψpðsÞ ¼ 2
ffiffiffi
s

p
qψpσinelψp : ð14Þ

Using again VMD allows us to relate the inelastic cross
section σinelψp to the γp → cc̄X cross section, with an
analogous relation as in Eq. (10),

σinelψp ¼
�
Mψ

efψ

�
2
�
qγp
qψp

�
2

σðγp → cc̄XÞ: ð15Þ

Equations (8), (14) and (15) then yield the parametrization
for the γp → cc̄X total cross section,

σðγp → cc̄XÞ ¼
�
efψ
Mψ

�
2 Cinel

2
ffiffiffi
s

p
qγp

�
qψp
qγp

�

×

�
1 −

νinel
ν

�
binel

�
ν

νinel

�
ainel

: ð16Þ

Having fixed the imaginary part of the ψ-p forward
scattering amplitude, we then calculate its real part using
the subtracted dispersion relation of Eq. (5). With the
knowledge of the real and imaginary parts of the forward
scattering amplitude Tψp, we can determine the forward
(t ¼ 0) differential cross section for the γp → ψp process
using VMD,

dσ
dt

����
t¼0

ðγp → ψpÞ ¼
�
efψ
Mψ

�
2
�
qψp
qγp

�
2 dσ
dt

����
t¼0

ðψp → ψpÞ

¼
�
efψ
Mψ

�
2 1

64πsq2γp
jTψpðνÞj2: ð17Þ

Note that on the lhs of Eq. (17) the γp → ψp differential
cross section is obtained at the unphysical point t ¼ 0. Its
experimental determination thus requires an extrapolation
from t ¼ tmin to t ¼ 0.
Our formalism has seven parameters: three parameters

describing the elastic discontinuity, three describing the
inelastic discontinuity, and the subtraction constant Tψpð0Þ.
We obtain the values for these seven parameters [Tψpð0Þ,
ael=inel, bel=inel, cel=inel] by simultaneously fitting the
available data for σðγp → ψpÞ, σðγp → cc̄XÞ and
dσ=dtjt¼0ðγp → ψpÞ. For this purpose we use the
Levenberg-Marquardt algorithm [26,27] of the nonlinear
least-squares optimization procedure implemented in
MINPACK [28]. For our fits we estimate the error based
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on a covariance matrix for the parameters and a linear
uncertainty propagation for each of the functions. The
covariance matrix Σp is obtained based on the experimental
uncertainties of the data values as follows:

Σp ¼ ðJTf · Σ−1
e · JfÞ−1; Jði;jÞf ¼ ∂f

∂pj
ðWiÞ;

Σði;jÞ
e ¼ δði;jÞðσieÞ2; ð18Þ

where Wi is the W-value of the ith data point (with
s ¼ W2), σie is the total experimental uncertainty of the
ith data point, and f is the fit function of interest which
depends on the energy variable (W) and the set of seven
parameters (fpg). The derivatives over the parameters are
taken at their fitted values.
We show our fit to the γp → ψp (γp → cc̄X) total cross

section world data in Fig. 1 (Fig. 2) respectively as a
function of the c.m. energy W. By comparing Figs. 1 and 2
one notices that the ratio of the inelastic over elastic cross
sections σðγp → cc̄XÞ=σðγp → ψpÞ is around a factor of
30–50. Therefore, the inelastic discontinuity dominates the
determination of the forward ψ-p amplitude. Furthermore,
we show the forward differential cross section for the γp →
ψp process in Fig. 3 for three values of the subtraction
constant Tψpð0Þ. We note that the few HERA data points
for the inelastic cross section in Fig. 2 at the highest
energies (W > 100 GeV) are not so well reproduced.
However, these data points only marginally influence the
fit, which in this region is mainly driven by the precise
forward differential cross section data of Fig. 3. Our global
fit yields the parameters for the elastic and inelastic
discontinuities shown in Table I (second column, x ¼ el;

third column, x ¼ inel). For the subtraction constant we
obtain the fitted value of Tψpð0Þ ¼ 22.45� 2.45. As an
indicator of the quality of our fit, we evaluated the reduced
chi-squared,

χ2red ¼ χ2=ðNd − NpÞ; ð19Þ

HERA (2002)
Fermilab/E401 (1981)
Fermilab/E516 (1983)
Fermilab/E687 (1993)
SLAC (1975)
Cornell (1975)
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FIG. 1. W-dependence of the γp → J=ψp total cross section.
The data are fromCornell [29], SLAC [30], Fermilab [31–33], and
HERA [34]. The curve and band is the result of our global fit using
Eq. (13) with parameters given in Table I (second column, x ¼ el).
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EMC (1982)
Fermilab (1980)
CERN/WA58 (1987)
SLAC (1984)
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FIG. 2. W-dependence of the γp → cc̄X total cross section. The
data are from SLAC [35], Fermilab [36], EMC [37], CERN/
WA58 [38], and HERA/ZEUS [39]. The curve and band is the
result of our global fit using Eq. (16) with parameters given in
Table I (third column, x ¼ inel).

HERA (2002)
Fermilab (1981)
EMC (1980)
SLAC (1975)

T p(0) = 45
T p(0) = 22.45
T p(0) = 0

d
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t (
t=
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FIG. 3. W-dependence of the γp → J=ψp differential cross
section, extrapolated to the forward direction (t ¼ 0), for different
values of the subtraction constant Tψpð0Þ in the forward ψ-p
scattering amplitude. The data are from SLAC [30], CERN/EMC
[40], Fermilab [31], and HERA [34]. The black curve Tψpð0Þ ¼
22.45 shows the best fit value, with a corresponding error band
resulting from our fitting procedure.
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with Nd being the total number of the data points we use in
our fitting procedure and Np being the number of fitting
parameters. With the values ofNd ¼ 62 andNp ¼ 7, we get
χ2red ¼ 1.36. Its value shows that the present fit is decent
(i.e. one is not overfitting) although not perfect, indicating
the lack of a sufficient rich database. Forthcoming more
precise data especially in the threshold region, as expected
from the planned JLab experiments [22–24], will have a
strong impact on the quality of such a fit.
We also note that the γp → ψp reaction in the threshold

region might by modified due to the presence of pentaquark
resonances, which have recently been reported by the
LHCb Collaboration [41]. A new experiment at JLab
[24] aims to search for such resonances in the γp → ψp
reaction in the threshold region. If a sizable excitation
strength of such pentaquark states in the γp → ψp thresh-
old cross section is present, it was estimated in Ref. [24],
based on a model calculation [42], that this would most
likely occur at larger values of −t, away from the forward
region, and thus not influence our analysis. If, on the other
hand, such resonances yield sizeable excitation strength in
the forward region, they could be added to the para-
metrization of the elastic discontinuity. The dispersion
relation of Eq. (5) would then allow us to quantify the
change to the real part of the forward ψ-p amplitude.
We show the real and imaginary parts of Tψp in

Fig. 4 for our best fit value of the subtraction constant
Tψpð0Þ ¼ 22.45, as well as for two values around
this: Tψpð0Þ ¼ 0 and Tψpð0Þ ¼ 45. We notice that for
W < 10 GeV the real part dominates over the imaginary
part, whereas at very high energies (W ≫ 10 GeV) the
amplitude is largely dominated by the imaginary part, as
expected for a diffractive process.
We can relate the forward ψ-p amplitude at threshold,

Tψpðν ¼ νelÞ, corresponding with
ffiffiffi
s

p ¼ M þMψ , with
the value of the ψ -p s-wave scattering length, aψp,
defined as

Tψpðν ¼ νelÞ ¼ 8πðM þMψÞaψp; ð20Þ

where our sign definition of Tψp is fixed by Eq. (4). Note
that in this convention, in the absence of a ψ-p bound state,
a positive (negative) value of aψp corresponds to a positive
(negative) s-wave phase shift, describing low-energy
scattering from a weakly attractive (repulsive) potential.

Using the dispersion relation Eq. (5) to relate Tψpð0Þ with
TψpðνelÞ, we show the corresponding scattering lengths for
three choices of the subtraction constant in Table II. Note
that our best fit value Tψpð0Þ ¼ 22.45 results in a ψ-p
scattering length aψp ∼ 0.05 fm, which is at the lower end
of the range of values estimated in the literature, ranging
from aψ ¼ 0.05 fm [14] to aψ ¼ 0.37 fm [15]. The value
aψp ∼ 0.05 fm corresponds with a threshold ψ -p total cross
section of σψp ∼ 0.3 mb.
In a linear density approximation, the ψ-p scattering

length aψp can be related to the ψ binding energy in nuclear
matter, Bψ , corresponding with the depth of the potential
well seen by ψ in nuclear matter, as [14]

T p(0) = 45

T p(0) = 22.45

T p(0) = 0

T
 p

0
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T p(0) = 22.45

T p(0) = 0

R
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T
 p

  /
 I
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 T
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W   (GeV)

5 10 20 50

FIG. 4. Upper panel: Imaginary part (dotted curve) and real part
of the forward scattering amplitude Tψp as a function of W. The
real part is shown for three values of the subtraction constant as
indicated on the figure. Lower panel: Corresponding ratios of real
over imaginary parts.

TABLE I. Fit results for the coefficients entering the elastic
discontinuity (second column, x ¼ el) of Eq. (7), and the inelastic
discontinuity (third column, x ¼ inel) of Eq. (8).

x ¼ el x ¼ inel

Cx 0.10� 0.01 20.51� 1.70
bx 1.27� 0.17 3.53� 0.66
ax 1.38� 0.01 1.20� 0.01
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Bψ ≃ 8πðM þMψÞaψp
4MMψ

ρnm; ð21Þ

where ρnm ≃ 0.17 fm−3 denotes the nuclear matter density.
We show the Bψ values corresponding with the three values
of Tψpð0Þ considered in our calculations in Table II (last
column). Our best fit value aψp ∼ 0.05 fm thus corresponds
to a ψ binding energy in nuclear matter of Bψ ∼ 3 MeV.

III. FORWARD-BACKWARD ASYMMETRY
IN THE γp → ψp → e−eþp PROCESS

The value of Tψpð0Þ extracted in the previous section is
mainly sensitive to the forward differential cross section of
the γp → ψp process in the threshold region. The exper-
imental access of the γp → ψp process proceeds through
the reconstruction of the decay ψ → e−eþ (or ψ → μ−μþ),
shown in Fig. 5 (left). In the threshold region in the forward
direction (at a small value of −t), one may have a
significant interference with the competing Bethe-Heitler
mechanism, shown in Fig. 5 (right), which results in the
same final state. We study this interference in this section,
and exploit it to find an observable which depends linearly
on Tψpð0Þ.
For this purpose, we calculate the observables for the

process γðq; λÞ þ pðp; spÞ → e−ðl−; s−Þ þ eþðlþ; sþÞ þ
pðp0; s0pÞ (Fig. 5, left), with q, p, p0, l−, lþ being the
four-momenta of initial photon, initial proton, final proton,
final electron and positron, respectively, and where λ, sp,
s0p, s−, sþ are the corresponding helicities. In the following
expressions we denote the average nucleon four-momen-
tum by P ¼ ðp0 þ pÞ=2, the four-momentum of the e−eþ
pair as q0 ¼ l− þ lþ, the invariant mass squared of the
dilepton pair as M2

ll ¼ q02, and indicate the squared

momentum transfer between initial and final protons
as t ¼ ðp0 − pÞ2.
For small values of −t, the near-forward invariant

amplitude for the γp → ψp → e−eþp process is given by

Mψ ≃ ie3

q02
f2ψ
2M

1

q02 −M2
ψ þ iMψΓψ

Tψp

×

�
ν ¼ 1

2
ðs −M2

ψ −M2Þ
�

× εμðq; λÞ · ūðl−; s−Þγνvðlþ; sþÞ

× N̄ðp0; s0pÞ
��

gμν −
q0μqν

q · q0

�
þ q · q0

ðq · PÞ2

×

�
Pμ −

q · P
q · q0

q0μ
��

Pν −
q · P
q · q0

qν
��

Nðp; spÞ;

ð22Þ
where TψpðνÞ is the forward ψp elastic scattering ampli-
tude discussed above, and Γψ ¼ 92.9� 2.8 keV is the total
ψ width. Furthermore in Eq. (22), uðvÞ denote the e−ðeþÞ
spinors, N denotes the nucleon spinors, and εμ is the initial
photon polarization vector. The expression of Eq. (22)
corresponds to a near-forward approximation, as it involves
the ψ -p amplitude Tψp at t ¼ 0, where terms of order −t=s
are neglected.
The γp → ψp → e−eþp cross section, differential in t,

M2
ll, and the electron solid angle dΩe−eþcm in the c.m. frame

of the dilepton pair is given by

dσ

dtdM2
lldΩe−eþcm ¼ 1

ð2πÞ4
1

64ðs −M2Þ2

·
1

4

X
λ

X
sp

X
s0p

X
s−

X
sþ

jMψ j2; ð23Þ

with amplitude Mψ given by Eq. (22). We performed the
check that when integrating Eq. (23) over the electron solid
angle and dilepton invariant mass, one obtains

Z
dM2

ll

Z
dΩe−eþcm dσ

dtdM2
lldΩe−eþcm

����
t¼0

¼
�
Γψ→ee

Γψ

�
·
dσ
dt

����
t¼0

ðγp → ψpÞ; ð24Þ

FIG. 5. Dilepton (eþe−) photoproduction through J=ψ (left) and Bethe-Heitler (right) processes.

TABLE II. Values of the subtraction term Tψpð0Þ (first col-
umn), the corresponding values of the threshold amplitude
TψpðνelÞ (second column), the corresponding ψ-p s-wave scatter-
ing lengths aψp (third column), and the corresponding ψ-nuclear
matter binding energy Bψ, according to Eq. (21) (fourth column).

Tψpð0Þ Tψpðν ¼ νelÞ aψp (in fm) Bψ (in MeV)

0 1.30 0.003 0.2
22.45� 2.45 23.74� 2.59 0.046� 0.005 2.7� 0.3
45 46.30 0.090 5.2
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with dσ=dtjt¼0 being the γp → ψp forward differential
cross section given by Eq. (17), multiplied by the Γψ→ee=Γψ

branching ratio.
An irreducible background to the above γp → ψp →

e−eþp process arises from the BH process (Fig. 5, right).
The BH invariant amplitude, contributing to the γp →
e−eþp reaction, is given by

MBH ¼ ie3

t
εμðq; λÞ · N̄ðp0; s0pÞΓνNðp; spÞ

× ūðl−; s−Þ
�
γμ

γ · ðl− − qÞ þm
−2l− · q

γν

þ γν
γ · ðq − lþÞ þm

−2lþ · q
γμ

�
vðlþ; sþÞ; ð25Þ

with nucleon vertex given by

Γν ¼ F1ðtÞγν þ F2ðtÞ
iσναðp0 − pÞα

2M
; ð26Þ

where F1ðF2Þ are the Dirac (Pauli) proton electromagnetic
form factors, which we take from the recent fit of elastic e-p
scattering data of Refs. [43,44]. In the presence of the
Bethe-Heitler amplitude, the amplitudes Mψ and MBH

interfere, and the differential cross section is obtained by an
analogous expression as Eq. (23), with the replace-
ment Mψ → Mψ þMBH.
We next study this interference between ψ production

and Bethe-Heitler mechanisms for typical kinematics of the
γp → e−eþp process around the ψ production threshold,
accessible at JLab [22–24]. In Fig. 6, we show the in-plane
dilepton angles in the laboratory frame as a function of the

electron angle θe
−eþcm, defined in the e−eþ c.m. frame,

around the ψ resonance for JLab kinematics.
Figure 7 shows the differential cross section for the γp →

e−eþp process around the ψ resonance. For selected values
of the lepton angle (θe−eþcm), we show the ψ þ BH cross
sections (denoted by forward angle cross sections), and
compare them with the ψ þ BH cross sections for the
corresponding opposite lepton angle value (θe−eþcm − 180°,
denoted by backward angle cross sections). One notices a
sizable interference in the lower tail of the ψ resonance.
We can directly access the real part of the ψ amplitude by

exploiting this interference with the BH amplitude through
the forward-backward asymmetry AFB in the c.m. system of
the dilepton pair. We consider the dilepton pair in the
scattering plane defined by the two-body γp → J=ψp
process, and define the asymmetry AFB as

AFB ≡ dσðθe−eþcmÞ − dσðθe−eþcm − 180°Þ
dσðθe−eþcmÞ þ dσðθe−eþcm − 180°Þ ; ð27Þ

where dσ stands for dσ=dtdM2
lldΩe−eþcm. This observable

is 0 for both the BH process and the J=ψ process separately.
Its nonzero value accesses the real part of the product of BH
and J=ψ amplitudes.
Figure 8 shows the forward-backward asymmetry AFB

and its sensitivity on the subtraction constant Tψpð0Þ in the
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FIG. 6. Dilepton angles in the lab frame as a function of the
electron angle θe−eþcm, defined in the e−eþ c.m. frame. Solid
(dashed) curves denote the e−ðeþÞ lab angles.
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FIG. 7. Cross section for the in-plane γp → e−eþp process
differential in t, M2

ll, and electron solid angle Ωe−eþcm in the
dilepton c.m. frame, as a function of the dilepton massMll around
the ψ resonance, and for different values of the electron angle in
the dilepton c.m. frame. The dotted curve denotes the ψ
contribution. The other curves are the Bethe-Heitler þ ψ results
according to Eqs. (22) and (25) for Tψpð0Þ ¼ 22.45. Lower red
(upper black) curves show the forward (backward) angle cross
sections.
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kinematics of the JLab experiments. We notice that the
asymmetry AFB can reach values around −25% in these
kinematics for the value Tψpð0Þ ¼ 22.45 which was
obtained in the fit above. In Fig. 8, we apply the same
procedure of linear error propagation, mentioned above for
the case of the cross section fits, to the asymmetry.
Following this approach, the error of the asymmetry is
estimated based on the first-order derivatives over the
parameters,

σ2AFB
¼ ∂AFB

∂p · Σp ·
∂AFB

∂p ; ð28Þ

where derivatives are taken at the fitted values of the
parameters. We remark that in the particular case of the
asymmetry all the derivatives become 0 at particular values
of kinematical variables—the values at which the Bethe-
Heitler cross section becomes equal to the ψ cross section.
This is why our error bands show nodes at specific values
of Mll. One notices from Fig. 8 (lower panel) that away
from the ψ resonance position, the asymmetry AFB depends
in good approximation linearly on the value of Tψpð0Þ. It
therefore provides a very sensitive observable to extract
Tψpð0Þ. A future measurement of AFB at Jefferson Lab
[22–24] may thus provide us with a clean way to extract
Tψpð0Þ, or equivalently aψp, and provide a cross-check of
the value obtained from the cross section fits, as discussed
in Sec. II.

IV. CONCLUSIONS

In this work, we provided an updated phenomenologi-
cal analysis of the forward ψ-p scattering amplitude
within a dispersive framework. Using VMD, we related
the imaginary part of the forward ψ-p scattering amplitude
to γp → ψp and γp → cc̄X cross section data.
Furthermore, we calculated its real part through a once-
subtracted dispersion relation. In our framework, the six
parameters describing the discontinuities, and the one
subtraction constant, are obtained from a global fit to
both total and forward differential hidden and open-charm
photoproduction cross sections. This fit allowed us to
extract a value for the spin-averaged s-wave ψ-p scattering
length aψp ¼ 0.046� 0.005 fm, which can be translated
into a ψ binding energy in nuclear matter of Bψ ¼ 2.7�
0.3 MeV.
Starting from this γp → ψp amplitude we then calcu-

lated the γp → ψp → e−eþp process. This allowed us to
estimate the forward-backward asymmetry for the γp →
e−eþp process around the ψ resonance, which results from
interchanging the leptons in the interference between the ψ
production mechanism and the competing Bethe-Heitler
mechanism.
This forward-backward asymmetry, which accesses the

real part of the ψ-p amplitude, displays to good approxi-
mation a linear dependence on aψp, away from the ψ
resonance position. Using the forward γp → ψp amplitude
obtained from our fitting procedure, we estimated that this
forward-backward asymmetry can reach values around
−25% for forthcoming ψ threshold electro- and photo-
production experiments at Jefferson Lab. Such forthcoming
measurements can thus lead to a refined extraction of the
ψ-p scattering length aψp, and better constrain the ψ
binding energy in nuclear matter.
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FIG. 8. Forward-backward asymmetry for the γp → e−eþp
process as a function of the dilepton mass Mll around the ψ
resonance. Dotted curve (corresponding with AFB ¼ 0): ψ con-
tribution only. The other curves are the Bethe-Heitler + ψ results.
Upper panel: Results for Tψpð0Þ ¼ 22.45 and for different values
of the electron angle in the dilepton c.m. frame. Lower panel:
Results for θe

−eþcm ¼ 40° and for different values of Tψpð0Þ. The
bands represent the error resulting from our cross section fitting
procedure.
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