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Including the generalized CP symmetry, we have performed a comprehensive scan of leptonic mixing
patterns that can be obtained from finite discrete groups with order less than 2000. Both the semidirect
approach and its variant are considered. The lepton mixing matrices that can admit a good agreement with
experimental data can be organized into eight different categories up to possible row and column
permutations. These viable mixing patterns can be completely obtained from the discrete flavor groups

A(6n?), D(gln)}n, As and X(168) combined with CP symmetry. We perform a detailed analytical and

numerical analysis for each possible mixing pattern. The resulting predictions for lepton mixing parameter,
neutrinoless double beta decay, and flavored leptogenesis are studied.
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I. INTRODUCTION

The origin of fermion mass and flavor mixing is one of
longstanding open questions beyond the Standard Model
physics. The discovery of neutrino oscillations and the
precise measurements of the three lepton mixing angles 6,
0,3, and 65 shed light on the flavor puzzle and help to
establish the underlying physics principle. One most
popular approach is to invoke a discrete flavor symmetry
to explain the observed patterns. In this paradigm, a given
mixing pattern is related to certain residual symmetry of the
leptonic mass matrices, and the residual symmetry may
arise from the breaking of the complete flavor symmetry
group G, of some unknown extension of the Standard
Model. The residual symmetry groups and their embedding
in G is sufficient to predict the values of the mixing angles,
and the detailed dynamics of symmetry breaking is not
necessary. Many different discrete flavor symmetry groups
and their application in model building have been studied in
the literature; please see Refs. [1-3] for review.

In recent years, the flavor symmetry is extended to
include the generalized CP symmetry in order to under-
stand the observed values of the mixing angles and
simultaneously predict the unknown CP violating phases
[4,5]. Note that low significance hints for a maximal Dirac
CP phase 6.-p = —n/2 have been reported [6], and the
measurement of the Dirac CP phase is an important
physical motivation of forthcoming neutrino oscillation
experiments. From the bottom-up view, the neutrino and
the charged lepton mass matrices admit both residual flavor
symmetry and residual CP symmetry, and the residual
flavor symmetry can be generated by the residual CP
transformations [7-9]. One generally presumes that these
residual symmetries originate from a large symmetry group
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(a flavor symmetry G and the generalized CP) at high
energy scale whose breaking leads to the symmetries of the
mass matrices. Imposing a flavor symmetry as well as
generalized CP symmetry, one can constrain the CP
violation phases besides mixing angles. This can lead to
very predictive scenarios in which the mixing angles and
CP phases are determined in terms of few input parameters
[4,7,8]. Discrete flavor symmetry combined with CP
symmetry turns out to be a rather powerful framework.
A variety of flavor symmetry groups and their interplay
with the CP symmetry have been studied such as A4 [10],
S4 [4,11-15], A(27) [16], A(48) [17], A5 [18-20], A(96)
[21], and X(36 x 3) [22]. In particular, the lepton mixing
patterns arising from flavor symmetry group series A (3n?)
[23,24], A(6n2) [23,25,26] and D), [27] in combination
with a CP symmetry have been analyzed for an arbitrary
index n. Some models with flavor and CP symmetry have
been constructed [10-15,17,18], where the required vac-
uum alignment needed to achieve the remnant symmetries
is dynamically realized. Moreover, the phenomenological
implications of residual flavor and CP symmetry in
neutrinoless double beta (Oyff) decay [11,12,18,26-28]
and leptogenesis [28,29] have been studied. It is remarkable
that the residual CP transformation could be systematically
classified according to the number of its zero elements [30].

The powerful computer algebra software GAP [31] has
been frequently used to investigate the lepton mixing
matrices achievable from finite discrete groups [32-42].
In this paper, we shall include the generalized CP sym-
metry and perform a comprehensive scan of all finite
subgroups up to order 2000 with the help of GAP. The
CP transformations are assumed to correspond to class-
inverting automorphisms of the flavor symmetry group. All
the possible residual flavor symmetries would be consid-
ered. We shall find out all the admissible lepton mixing
patterns which can be compatible with the experimental
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data for certain values of the free parameter 6. To our
surprise, these viable lepton mixing matrices can be
categorized into eight cases up to permutations of rows
and columns, and they can be completely reproduced from
the A(6n?), Dgil). a0 As, and 2(168) flavor symmetry groups
and CP symmetry. We give the analytic formulas of mixing
angles and CP invariants in each of these cases. Moreover,
we present the analytic expressions for the effective
Majorana neutrino mass |m,,| in neutrinoless double beta
decay and the lepton asymmetry parameters €, (@ = e, u, 7)
relevant to leptogenesis. Furthermore, the allowed values of
|m,.| and the baryon asymmetry Y are analyzed numeri-
cally for the smallest values of the index n that admit a good
agreement with the experimental data on the mixing angles.

This paper is structured as follows: we shall elaborate the
method to obtain the lepton mixing Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix from any given residual
symmetry in the semidirect approach and the variant of the
semidirect approach in Sec. II. The mixing matrix can be
determined from the representation matrices of the residual
symmetry without reconstructing the lepton mass matrices.
We outline the procedure of group scanning in Sec. III. The
resulting mixing patterns which can accommodate the
experimental data, and the predictions for mixing angles
and CP invariants are presented. Moreover, the phenom-
enological predictions for Ovff decay and flavored thermal
leptogenesis are studied. Finally we conclude in Sec. I'V. In
Appendix, we derive the criteria to determine whether two
residual symmetries leads to the same mixing pattern, if the
redefinition of the free parameter € is used.

II. FRAMEWORK

Both family symmetry and CP symmetry act on the
flavor space in a nontrivial way, and the interplay between
them should be treated carefully. In order to consistently
combine the generalized CP symmetry with a flavor
symmetry group Gy, the CP transformation should be
related to an automorphism u: Gy — Gy, and the so-called
consistency condition has to be fulfilled [4,5,43],

Xpi(9)XE = pe(u(g)), (2.1)

\4 g S va
where the subscript “r” refers to the representation space
acted on, p,(g) is the representation matrix of the element g,
and X, is the generalized CP transformation. For a given
CP transformation X, p,(h)X, with h € G, also satisfies
the consistency equation of Eq. (2.1), and consequently it is
an admissible CP transformation as well. Obviously
pr(h)X, corresponds to performing a flavor symmetry
transformation p.(h) followed by a CP transformation
X,. It is easy to check that the generalized CP trans-
formation p.(h)X, maps the group element ¢ into
hu(g)h~'. Hence, the automorphism related to p,(h)X,
is a composition of u# and an inner automorphism

PHYSICAL REVIEW D 94, 073006 (2016)

Wy g — hgh™' with h, g € G. This implies that the effect
of the inner automorphism y;, amounts to a flavor sym-
metry transformation p.(h). As a result, one could focus
on the outer automorphism of G, when searching for the
most general CP transformations compatible with Gy.
Furthermore, it has been shown that the physically well-
defined CP transformations should be given by the class-
inverting automorphism of G, [44]. In other words, the
automorphism u should map each class of G, into its
inverse class. In the present work, we shall be concerned
with the CP transformations corresponding to the class-
inverting automorphisms.

Let us now consider a theory with both flavor symmetry
Gy and CP symmetry Hcp which denotes the CP trans-
formations consistent with G. Thus, the original symmetry
at a high energy scale is generically G x H¢p. Notice that
the mathematical structure of the group comprising G and
Hcp is a semidirect product [4] because the flavor
symmetry and CP transformations are not commutable
in general. The experimental data clearly shows that all
lepton masses are unequal and there is flavor mixing among
the three mass eigenstates. Therefore, the parent symmetry
Gy X Hcp should be broken down to different residual
subgroups G; % H[CP and G, x H¢p in the charged lepton
and neutrino sectors, respectively. It is remarkable that the
lepton flavor mixing is fully fixed by the group structure of
Gy X Hcp and the residual symmetries [7,8]. The details of
the breaking mechanisms realizing the assumed residual
symmetries are irrelevant. Assuming that neutrinos are
Majorana particles, the mass terms of leptons obtained
through flavor and CP symmetry breaking take the
following form:

- 1
Em = —llelL - EI/ZCmyI/L —+ H.C., (22)

where C is the charge conjugation matrix,
(ep,ur,7.)T and Iz = (eg, ug,7r)" denote the three left-
handed (LH) and right-handed (RH) charged lepton fields,
respectively, and vy = (Y1, v, v,)" contains the three
LH neutrino fields. Both the charged lepton and neutrino
mass matrices m; and m, are subject to the constraints of
the remnant symmetries, such that the lepton mixing matrix
can be fixed. Bottom-up analysis shows that the residual
flavor symmetry G, can be any Abelian subgroup of G,
while G, is either a K4 = Z, x Z, Klein subgroup or a Z,
subgroup for Majorana neutrinos [7,8]. If the remnant
flavor symmetry G, is restricted to be a Klein subgroup of
Gy and the left-handed leptons [; transform as three
unequivalent one-dimensional representations under G,
both the lepton mixing angles and Dirac CP violating
phase would be fully determined by residual symmetries.
This scenario has been studied comprehensively in the
literature [33,40,45]. The Majorana CP phase a3; would be

ILE
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predicted to be trivial and another Majorana phase a,; can
only be a rational multiple of z after the CP symmetry is
taken into account [8].

In this work, we shall discuss two different types of
remnant symmetries dubbed as “semidirect” and “variant of
semidirect” approaches. In the semidirect approach, the
residual symmetry in the neutrino sector is Z, x HY,, while
G, is able to distinguish among the three generations of
charged lepton fields. As a result, one column of the PMNS
matrix is completely fixed by the residual symmetries in
this case. In the variant of the semidirect approach, the
remnant symmetries in the charged lepton and neutrino
sectors are assumed to be Z, x HL, and K, x H%p,
respectively, and one row of the PMNS matrix can be
fixed. It turns out that the lepton mixing matrix depends on
a single real parameter @ in both approaches. Consequently
the mixing angles and CP violating phases are strongly
correlated with each other. In the following, the master
formula of the prediction for lepton flavor mixing would be
derived. As usual the three generations of left-handed
leptons are assigned to a faithful irreducible three-
dimensional representation of G, which is denoted as 3
henceforth.

A. Semidirect approach

We first analyze the residual symmetry constraints in the
charged lepton sector. The requirement that G; x HL., is a
symmetry of the charged lepton mass matrix m; entails that
the Hermitian combination m;ml should be invariant under
the action of G; x H.,, i.e.,

9 € Gy,

P;(gz)m;mz/h(gl) = m;m,, (2-3)

X;gm;m,XB = (m;m,)*, X13 (S HICP (24)
The residual flavor symmetry G; and the residual CP
symmetry H ICP have to be compatible with each other such
that the following restricted consistency equation must be

satisfied [7,8,12]:

Xupi (90X =pe(gr").  9€G). Xy €Hlp. (2.5)

The Hermitian matrix 2] m, is diagonalized by the unitary

transformation U; with Ujm|m,U; = diag(m2, m2, m?).
The explicit form of m;m, could be constructed from
Egs. (2.3) and (2.4), and thus U, can be determined. In fact,
one can directly extract the constraints on U; from
Egs. (2.3) and (2.4) without resorting to mass matrix

p
m;m; as follows:

Ujps(g)U, = /)giag(gz), (2.6)

UiXaU; = X0, (2.7)
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where p3¢(g,) and X'5'® are diagonal phase matrices. We
see that the residual CP transformation X3 should be a
symmetric unitary matrix, and ps(g;) and m;ml can be
diagonalized by the same unitary matrix U;. Given a
specific residual symmetry group G; and the three-
dimensional representation of Gy, the three normalized
and mutually orthogonal eigenvectors of p3(g;) can be
easily found and they constitute a unitary matrix X%,

fulfilling =/ p3(g,)Z; = p3(g;). We consider a scenario
in which the three generations of left-handed leptons can be
distinguished by G,;, and no further assumption or pre-
diction is made about the charged lepton masses. Therefore,
U, is uniquely fixed up to permutations and phases of its
column vectors, i.e.,
Uy =ZX,P 0, (2.8)
where Q; is an arbitrary diagonal phase matrix, and P, is a
permutation matrix. Moreover, it is straightforward to
check that the constraint of Eq. (2.7) arising from remnant
CP is automatically fulfilled for the admissible CP trans-
formation X, satisfying the restricted consistency condi-
tion in Eq. (2.5). That is to say, the mixing matrix U, of
charged leptons is fully determined by the residual flavor
symmetry G,, and the residual CP symmetry H IC p does not
lead to additional new constraints in the semidirect
approach.
Then we proceed to the neutrino sector. The invariance
of the neutrino mass matrix m, under the action of the
residual symmetry Z, X H{p gives rise to

9 €6y, (29)

pg(gu)mup?a(gu) =my,

XZE;WLDXD?, = m,f, Xu3 (S HZ&‘P’ (210)
where g, is the generator of the residual flavor symmetry
G, = Z, such that the equality g2 = 1 is satisfied. The

restricted consistency condition reads as

Xt (9) Xk =pe(9,), 9 €G,, X, €Hgp. (2.11)
We denote the diagonalization matrix of m, as U, which
fulfills UTm,U, = diag(m,, m,, m3). Neutrino oscillation
experiments reveal that three light neutrino masses m ; 3
are not degenerate. Inserting Ul'm, U, = diag(m,, m,, m3)
into Egs. (2.9), (2.10), we can derive the following
constraints on the unitary transformation U,

Ulps(g,)U, = diag(+1, £1,+1), (2.12)

UlX,3U: = diag(+1, £1,£1) = @2, (2.13)

where the “+” signs can be chosen independently. The

unitary matrix Q, = diag(v/£1,v=£1,v/=£1) is diagonal,
and its nonvanishing entries are +1 or +i. Obviously the
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residual CP transformation X,3 is a unitary symmetric
matrix as well. Since g, is an element of order two and its
representation matrix p3(g,) satisfies p3(g,) = 1, the eigen-
values of p3(g,) can only be +1 or —1. Without loss of
generality, we choose the three eigenvalues of p3(g,)
to be +1, —1, and —1, respectively. In the following, we
shall list the procedures of how to extract the prediction
for U,,.

First, p3(g,) can be diagonalized by a unitary matrix X,
with

Z;1p3(gv)2vl = dlag(L -1, _1) (214)

Note that X, is determined up to a unitary rotation of the
second and third column vectors because p3(g,) has two
degenerate eigenvalues —1. Subsequently plugging the
expression p3(g,) = 2yldiag(1,—1,—1)ZZ1 into the con-
sistency condition of Eq. (2.11), we obtain
¥ X33 diag(1, -1, 1) = diag(1, =1, =1)Z} X33}

vl

(2.15)

which implies that ZZIX,,Z; is a block-diagonal matrix,
and it is of the form

fyoge _ (€70
S XSy = :

2.16
0wy ( )

where u,,, 1s a symmetric unitary matrix, and it can be
written as U,y = 65,05, by performing the Takagi
factorization. As a consequence, the residual CP trans-
formation X, 3 can be factorized as

X3 =227, (2.17)

where X, = XX , with

e’z
21/2 = ( >
0 02%2

It is easy to check that the residual flavor symmetry
transformation p3(g,) can be diagonalized by X, as well,

(2.18)

ips3(9,)%, = diag(1, -1, -1). (2.19)

Then we discuss the constraint on U, from the remnant CP.

Substituting the relation X,3 = £,%7 of Eq. (2.17) into

Eq. (2.13), we have
(0iUiz,)(0lUiz,)T = 1. (2.20)

This implies that the combination o) UZZU is a orthogonal
matrix, and it is also a unitary matrix. Therefore, QI U IE,, is
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a real orthogonal matrix denoted by Oj;,3. Then the unitary

transformation U, takes the following form:

U, =13,0% ,0;. (2.21)

This indicated that U, is fixed up to a real orthogonal

matrix Os,3 by the remnant CP transformation X,z [7].

Furthermore, U, is subject to the constraint of residual Z,
flavor symmetry shown in Eq. (2.12), i.e.,

Uips(9,)U, = Pldiag(1,—1,-1)P,,  (2.22)

where P, is a permutation matrix, because the neutrino

masses cannot be pinned down in this approach and the

neutrino mass spectrum can be either normal ordering (NO)
or inverted ordering (IO). One finds from Eq. (2.22) that

P,0Q,0;,5diag(1, -1, —1) = diag(1,-1,-1)P,0, 03,3,

(2.23)
which leads to
O35 = P S3;(6), (2.24)
where S»3(0) is a rotation matrix, it is given by
1 0 0
S3(@) =0 cosf® —sind (2.25)
0 sind cosd

As a result, the residual symmetry Z, x CP of the neutrino
mass matrix enforces the unitary diagonalization matrix U,
of the following form:
U, = X,55(0)P,0}. (2.26)
Thus we summarize the lepton mixing matrix is determined
to be
U=UlU,=Q/PTE%,55(0)P,0. (2.27)
Note that PMNS matrix only depends on one free
parameter 0, the phase matrix Q; can be absorbed into
the charged lepton fields, and the same result has been
obtained by using various methods [4,7]. This is our master
formula to extract the mixing matrix from the postulated
residual symmetry in semidirect approach. It would be

frequently exploited when we scan the finite groups in
Sec. III.

B. Variant of semidirect approach

In this scenario, the original symmetry G, x H¢p is
broken down to Z, x H, in the charged lepton sector. The
generator of the residual Z, flavor symmetry group is called
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g; with g7 = 1. For the symmetry Z, x HL, to hold, the
charged lepton mass matrix has to fulfill

p;(gz)m;mlm (91) = szml’ (2-28)

X;gm;lelg, = (mjml)*, Xl3 S HICP (229)
The remnant symmetry Z, x H., is well defined only if
the restricted consistency condition is satisfied,

Xupi (90X = pe(g).  Xiw € Hpp. (2.30)

From Egs. (2.28) and (2.29), we find that the residual
symmetry Z, x H., leads to the following constraints on
the unitary transformation U,:

Uips(g)U, = diag(+1, %1, +1), (2.31)
U;XaU; = diag(e™®, e, e'%) = 07,  (2.32)
where Q; = diag(e®/?, ¢'%/? ¢/*/?) and a,,, are real

parameters. Note that X;3 should be symmetric, and the
entries of the diagonal matrix is =1 in Eq. (2.31) because g,
is of order two here. We assume that the eigenvalues of
p3(g;) are +1, —1, and —1 without loss of generality. In the
same fashion as we analyze the neutrino sector in the
semidirect approach, a proper Takagi factorization of X3
can be found to satisfy

Xp =22,

X p3(g)% = diag(1.—1.-1),  (2.33)

where X; is a unitary matrix. Substituting X;3 from this
equation in Eq. (2.32) we obtain

(QUIZ)(QIUIZ)" = 1. (2.34)

Hence, Q}U}ZZ is a real orthogonal matrix denoted as
O;.3, and thus U, can be expressed as

U5 =%,05,,0]. (2.35)

Furthermore, we take into account the constraint of the
residual Z, flavor symmetry,

Uips(g)Uy = Pidiag(1.~1.=1)P,.  (2.36)

where P; is a permutation matrix since no prediction can be
made for the charged lepton masses. Inserting Eq. (2.35)
into Eq. (2.36), we obtain

(P1Q,03,3)diag(1, —1, 1) = diag(1, -1, =1)(P;0,033).
(2.37)

As a consequence, Osy3 can only be a block-diagonal
rotation matrix

PHYSICAL REVIEW D 94, 073006 (2016)

Hence the charged lepton mass matrix m;m, can be
diagonalized by
U = %,55(0)P,Q]. (2.39)

In the neutrino sector, the residual flavor symmetry G, is
identified with a Klein group,

Gv = {1’ 9u1> 9025 903} (240)
with the properties
%=1 G =99 = Gu» fori#j#k.  (2.41)

The residual CP symmetry H{p arises from the breaking of
Hcp, and it has to be compatible with residual flavor
symmetry G,

Xoepr (gui)X;rl :pr(gui)’ Xuw€Hep, i= 1,2,3. (242)
The G, x H¢p transformation on v, leaves the Majorana
neutrino mass term in Eq. (2.2) invariant. This implies that
i=1,2,3,

pg(gui)mupfa(gyi) =my, (243)

XZ:;I’VLDXD:; = m,f, Xy3 (S H%P (244)
Equivalently, the neutrino diagonalization matrix U,
should satisfy

Ulps(g,)U, = diag(£1, +1, +1), (2.45)

UiX,3U: = diag(+1,+1,4+1) = Q2,  (2.46)
where Q, = diag(\/ﬁ, VA, \/ﬁ) As g,; is of order
two, we have det(ps(g,;)) = £1. Thus, each residual
flavor symmetry transformation p3(g,;) has a unique
normalized eigenvector v»; with eigenvalue equal to
det (p3(g,:)). These three unique eigenvectors v; (i = 1,
2, 3, one for each nontrivial Klein group element) constitute
a unitary matrix X, = (v, v, v3). It is easy to see that X,
simultaneously diagonalizes all the three representation
matrices p3(g,;). Therefore, U, coincides with X, up to an
arbitrary diagonal phase matrix Q) and permutation matrix
P, multiplied from the right-handed side,

u,=%rP,0,. (2.47)
From the consistency condition of Eq. (2.42), we can
straightforwardly derive that the remnant CP transforma-
tion X,3 would be diagonalized by X as follows:

X320 = diag(e'fe, efu, fr) = D2, (2.48)
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where D, = diag(e'</?, e/ ¢'F/?) and p,,, are real.
The diagonal matrix Q, would contribute to the Majorana
CP phases. Considering the constraint of the remnant CP
transformation in Eq. (2.46) and using the relation of
Eq. (2.48), we find
0, = P'D,P,0}. (2.49)
Therefore, the unitary matrix U, is uniquely determined (up
to permutations and phases of the column vectors)
U,=3D,P,0) =%,P,0;, (2.50)
where we have denoted X, =X/ D,. Hence in this
approach, the master formula for constructing the PMNS
matrix is given by
U=UlU, = QPISL(0)=i5,P,0i, (2.51)
where Q, is unphysical as it can be absorbed by redefinition
of the charged lepton fields. In contrast with the semidirect
approach, one row instead of one column is fixed by the
remnant symmetries while the PMNS matrix depends on a
single free parameter 0 in both cases.

Notice that if another pair of remnant subgroups
{G) x HYp, G, x HY,} are conjugate to {G; x HLp,
G, x H¢p} under a group element of G, i.e.,

G) = hG,h7!, G, = hG,h!,

heG,  (252)

HYp = pe(h)HYppL (h).
(2.53)

HY.p = pe(h)HLppl (h),

The unitary diagonalization matrices of the charged lepton
and neutrino would be related by Uj = p3(h)U; and
U, =p3(h)U,. As a consequence, the same result for
the PMNS matrix would be obtained. In Appendix, we
present the most general criteria to determine whether the
predicted PMNS for different residual symmetries are
equivalent. We would like to emphasize that in our
approach the lepton flavor mixing patterns are completely
determined by the structure of flavor symmetry group G
and the assumed symmetry breaking patterns, and they are
independent of the details of a specific implementation,
such as the particle content of the flavor symmetry breaking
sector or the possible additional symmetries of the theory.

III. LEPTON MIXING FROM SCAN OF FINITE
GROUPS AND PHENOMENOLOGY

In this section, we shall perform an exhaustive scan over
the discrete groups of order less than 2000 with the help of
the computer algebra program GAP [31], and all the possible
lepton mixing patterns achievable from the semidirect
approach and the variant of the semidirect approach would
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be studied. In order to avoid duplicating subgroups which
have been scanned, we shall only consider the groups with
faithful three-dimensional irreducible representations. In
our previous work, the possible lepton flavor mixing from
flavor symmetry breaking (without generalized CP) has
been systematically analyzed [40], and all discrete groups
of size smaller than 2000 are considered by using GAP. The
CP symmetry would be taken into account further in the
present work.

As a proper generalized CP symmetry corresponds to a
class-inverting automorphism of the flavor symmetry group
[44], we should first determine whether a finite group
has a class-inverting automorphism. The GAP command
AutomorphismGroup(.) can be exploited to obtain all the
automorphisms of a given group G; then we can search for
the existence of class-inverting automorphisms which map
the classes of G into their inverse. However, this might be
a tough job for groups of large order, since there are
generically a large amount of automorphisms. We notice
that all the automorphisms of G, constitute a group called
automorphism group Aut(G;). The inner automorphism
group Inn(G) is generated by the group conjugation
pn: g — hgh™ with h, g € G;. Inn(Gy) is a normal sub-
group of Aut(Gy), and it can be easily obtained by using
the command InnerAutomorphismsAutomorphismGroup
(.). Obviously the inner automorphism maps each conju-
gacy class into itself. As a result, if u is a class-inverting
automorphism, so will be the composition p,ou. The
search for a class-inverting automorphism can be greatly
simplified by considering the quotient group Out(G,) =
Aut(G)/Inn(G ) which is called the outer automorphism
group. Out(G;) can be obtained by the GAP command
NaturalHomomorphismByNormalSubgroup(.). If there
exists a class-inverting outer automorphism, a generalized
CP transformation consistent with G, can be imposed for a
generic field content. For a class-inverting outer auto-
morphism u, the corresponding CP transformation X,
can be fixed by solving the consistency equation

XorPr(9)Xor = pe(11(9)), (3.1)

Note that it is sufficient to impose this consistency equation
on the generators of Gy. Including the contribution of the
inner automorphism, the most general CP transformation
compatible with the flavor symmetry G, takes the form
X, = pe(h)Xor, h € Gy. (3.2)
On the other hand, if G, doesn’t possess a class-inverting
automorphism, CP symmetry can only be introduced in the
case that a special subset of irreducible representations is
present in a model. We shall not consider such flavor
symmetry since the generalized CP symmetry and the
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resulting predictions
dependent.

The residual flavor symmetries G; and G, are Abelian
subgroups of the flavor symmetry G, [7,8,40]. Hence we
find all the Abelian subgroups of G, with GAP, and the
corresponding group structures and generators are
extracted. For a generic residual flavor symmetry group
Gy which can be either G; or G,, the residual CP trans-
formation Xz, = p(fr)Xor With fr € G; should be a
symmetric unitary matrix and it satisfies the consistency
condition

for lepton mixing are model

Xrepy(hg)Xgr = pe(hg'), hg € Gg,  (3.3)

which gives rise to

SRR fr = u(hg). (3.4)
The permissible solutions to fr can be straightforwardly
found by Gap. Notice that Gy is an Abelian group;
therefore, all the elements in the right coset Gpfr also
satisfy Eq. (3.4) for a given solution f. In other words,
Pr(hg)X g, with hy € Gy is also an admissible residual CP
transformation, and it imposes the same constraints on the
lepton mass matrices as X, because of the remnant flavor
symmetry invariance. In this manner, we can find out all the
possible remnant CP symmetries H.., and H%, which are
compatible with the postulated remnant flavor symmetry
groups G; and G, respectively.

Our comprehensive scan over the discrete finite group up
to order 2000 reveals that there are 574 groups which
possess both faithful three-dimensional irreducible repre-
sentation and class-inverting automorphism. For each of the
574 groups, the class-inverting automorphism and the
corresponding CP transformation X, in the triplet repre-
sentation, its Abelian subgroups as well as the residual CP
transformations are calculated. Furthermore, we investigate
the possible lepton mixing patterns achievable from the
semidirect approach and the variant of the semidirect
approach by considering all the admitted residual sym-
metries. The predictions for the PMNS matrix are obtained
by using the master formulas in Egs. (2.27) and (2.51). In
order to measure quantitatively how well the obtained
mixing patterns can explain the current experimental data,
we perform a conventional y? analysis. The y? function is
defined in the usual way

F. (sin?6;; — (sin6;;)*")?
— > ,
ij=12,1323 Oij

(3.5)

where sin® 6, ; are the mixing angles predicted for different
remnant symmetries, and they depend on the free parameter
6.(sin0;;)*" denote the best fit values of the lepton mixing
angles and o;; their corresponding lo errors. We use the
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current global fit of neutrino oscillation data in Ref. [46].
The results of our analysis are available at the web site [47].
It is remarkable that we find many interesting mixing
patterns which can accommodate the experimental data on
lepton mixing for certain values of 6. Moreover, these
phenomenologically viable mixing patterns can be catego-
rized into several cases, as will be shown below.

A. Mixing patterns derived from semidirect approach

In this section we shall report the lepton mixing patterns
which can be obtained in the semidirect approach. The
contributions of the permutations of the rows and columns
would be considered. We shall give the analytical expres-
sions for mixing angles and CP invariants Jp, I, and I,.
Moreover, the resulting phenomenological implications in
neutrinoless double beta decay and leptogenesis will be
discussed. In the following, three rotation matrices S1,(0),
S13(0), and S»;(6) would be used with the convention

cosd —sinf O
S12(0) = | sind cos@® O |,
0 0 1
cosf 0 sind
Si3(0) = 0 1 0 ,
—sinfd 0 cosé
1 0 0
S3(@) =0 cosf® —sind (3.6)
0 sin@ cosf

The permutation matrices P; and P, in Eq. (2.27) can take
the following six forms:

00

10],
01
01
001,
10
10
00],
01

(3.7)

~

w

¥

|
S = O O = O O O =

v

)

)

|
-0 O O O = = O O
S = O = O O O O =
S O = O = O O = O

It is known that if the second and third rows of the PMNS
matrix are exchanged, the atmosphere mixing angle 03
becomes 7/2 — 0,3, the Dirac CP phase dc-p becomes
7+ 6cp, and other mixing parameters are invariant.
Therefore, generically the two permutations of a certain
pattern related through the exchange of the second and third
rows of the PMNS matrix can (or cannot) accommodate the
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experimental data on mixing angles simultaneously, as will
be shown in the following.
Case I(a)

V2sing;, elr> V2cos g,
V2cos(py —5) —e> —v2sin(gp—F)
V2cos (¢, +Z) e —\/2sin(p; +%)

x $»;(0) 01, (3.8)

ylo — L

V3

where ¢; and ¢, are rational angles, and they are
determined by the residual symmetries. The mixing pat-
terns originating from the permutations of rows are related
to this matrix through a redefinition of the parameters ¢,
and #. The viable values of ¢; and ¢, and the

TABLE 1.

PHYSICAL REVIEW D 94, 073006 (2016)

corresponding representative flavor symmetry groups are
collected in Table I. Note that the mixing patterns with the
signs of ¢, and ¢, reversed can also be produced, and the
same predictions for the mixing angles are obtained except
all the CP phases become their opposite. However, these
viable values are not shown in Table I in order not to
appear too lengthy. From this table, we can see that most
of the groups can predict more than one mixing patterns,
and some groups predict the same mixing patterns. We
only show one or two representative flavor symmetry
groups in Table I, and a full summary of the results is
available at our web site [47]. The subscripts A and A’ of
the group identity denote that the corresponding groups

D,&O,)l ~ A(6n?) and
> (Zo,y X Z3,y) Sz, respectively. It is notable that

belong to the type D group series

(1)
D9n 3n’ —

The predictions for the PMNS matrix of the form U'(%), where the first column shows the group identification in the GAP

system, and the second column displays the achievable values of the parameters ¢ and ¢,. We have shown, at most, two representative
flavor symmetry groups in the first column. If there is only one group predicting the corresponding values of ¢, and ¢, in the second
column, this unique group would be listed. The full results of our analysis are provided at the web site [47]. The subscripts A and A’

indicate that the corresponding groups belong to the type D group series DE, 2 A

(6n?) and D) & (Zgy X Z3,) X S3, respectively.

9n' 3n’ —
Group Id (¢1,92)
[24,12],, [48, 48] 3.3
[150.5],,, 1300, 26] (%.-9). ({£.0), (.. (-9, (£.0), .5
[162, 10], [162, 12] 5.0), (32,1)
[294.,7],. [588, 39] (R, —3m), (Pr _2Zr) Dz —n), (D2,0), (B2, -35), HE -5, H2.-9), 2.0
[3%71’62681]&5727] 5. =9, (55.0), (55,9, (55,3, (55,9, 6. =), (5. =5, (57.0), (5.9, (57 %), (57.%)
[6(;(1»2&7)9]%11] z.5), (2.3, (2.9, 6.-5), ¢.-%), .5), 3.3, 3.7
e o 49,5 .
[726,5],, [1452,23] ~ (37,-%), (??7,0) 5?7,%11)7 G “”) f 1—”1 (?71[;7?_]11);(136_3”6*_?_71[) (%’;,—3—’{), (1%”»—%—61,3(‘6—3”,6—@), (%,0),
.5, 5. -1, 5. -%), 5. -1, &35, G-, §1.0), .9, G539, G195, ¢35
) 0 (5.8, 00018, 0.5, (51 6 G0 (5.0 B
(540, (390 G -39, G- G, (9. G-, G119, G0 (1.9 (e,
(.53 (5.9)
[1176,243], (%,—37:), (%;_27”)’ %,—I%), (19—2”1,1 ),3(‘492 ,11]%), (%”,1?1—1), (%273%),(3%”»%?; 12"—1”2,&),2(“’1” .35, (21%{',?—3) g?—{‘,g),
3.-%. 6.5, 3.5, GF. &), GF.H), (2%{’,5—1) (2%—]”,5%), (?2;’,—1) G =%, GF. -5, (35.0). GF . 1)
(%1 (&) (59)
[11?3,52596135] (57, =%), (57.=%5), (57.,0), (5.9, (5. %), (5. = %), (57, =5), (57.0), (57.%), (5.5, (. =), (3. %)
s (597[7497[
[1536,408544632], (1217; 71%) (21%%,_4) 51217”’_@’ (1%17:,%); (%43425 =9 (%”2,5—% (24—; ,0), (223—85”,@, (;é%,g), (222%’?’ (2%5;',35"),
C¥-190. GF.9. 639, .10, .39, &F. -0 .0, B ). &9 G &9 &9
8, B -1, (5 5f”) (58— 1) (5¢-38)
48 027> \24 > 1670 \ 24> 167> \24 > 167> \ 24 ° 16
- GE - G- Gl BB GEOL G G 5.1
ol G Gl (o (- 00, 0. GF . G5
(3~ 67— G (5.3 G~ G (30, G40 G 1), 07 )
(#5—1—’7’,(1—%’7—12—’7;)» (#,—1—” (ﬁ;—ﬁgé(%,z—ﬁ)ig(r’[»—ﬁ zg —%2 (1’7',0)2&—1”7,—#(—1”»—1—’7‘),
G -8, GF.-9), -8, BF.-f). 3F.0), 3.3, B.15)
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all these interesting mixing patterns can be obtained from the
A(6n?) or D9n) 5,y flavor symmetry groups combined with
CP symmetry. In particular, widely studied smaller groups
Sy = [24,12] and A(96) = [96, 64 can admit a reasonably
|

PHYSICAL REVIEW D 94, 073006 (2016)

good fit to the experimental data. This is compatible with the
known results in the literature [4,11,12,15,21]. From the
PMNS matrix U ;,(,ﬁ,) ~s in Eq. (3.8), we can read out the lepton
mixing angles as follows:

1
sin’f,; = 3 (1 + cos20 cos 2¢; — /2'sin 20 cos @, cos @),
Gin20. — 1 + sin%0 cos 2¢; + /2 sin 26 cos ¢, cos @,
2 — 0520 cos 2¢; + \/2sin 20 cos @, cos @, ’
«in20 1 — cos?@sin (/6 4 2¢,) + /2 sin 26 cos ¢, sin (/6 — q)l)
N~Us3 =

We see that the solar and reactor mixing angles are
correlated as

3c08%0,,c08%0,5 = 2sin’p;. (3.10)
For the experimentally measured values 0.270 < sin’6,, <

0.344 and 0.0188 < sin?6,; < 0.0251 at 3¢ level [46], we
find the allowed intervals of the parameter ¢, are

€ [0.4357,0.5657] U [1.435x, 1.5657]. (3.11)
Obviously ¢, should be around /2 or 3z /2. Moreover, the
three CP rephasing invariants J-p, I, and I, are predicted

to be

1
Jep| = ——=|sin 20 sin ¢, sin 3¢, |,
\Jcpl \/6| () @1
1| = )cos Osin’g, sin @, (cochos @)

+ \/isinecosqol)',
4
|| = )sm&sm @ sin @, (sm@cos ©
2 cos @ cos (p1) ’ (3.12)

The above three CP invariants are conventionally defined
as [48-51]

Jep =3(UnUsUisU3,)

é sin 26, sin 265 sin 26,3 cos 013 sin ¢p,
I =3(UjiUh)

% sin20,,c0s*@,5 sin a,;,

0

S(UUL)

= —sin%260,5c0s%0, sin(az, — 25¢p), (3.13)

4>\~

2 — c0s?0cos 2, + /2 sin 260 cos @, cos ¢,

(3.9)

|
where Op is the Dirac CP violation phase, a,; and a3, are
the Majorana CP phases in the standard parametrization
of the lepton mixing matrix [52]. In this work, we shall
present the absolute values of J.p, I, and I, because the
signs of /| and I, depend on the CP parity of the neutrino
states which is encoded in the matrix Q, and the overall
signs of all the three CP invariant would be changed if the
left-handed lepton doublets are assigned to conjugate triplet
3 instead of 3.

Furthermore, we can derive the following exact sum rule
among the mixing angles and Dirac CP phase:

08 26,3(3 cos 26, — 2sin’p; ) + v/3 sin 2¢,
3sin 29]2 sin 613 sin 2923 )

coSOcp =

(3.14)

This sum rule can also be obtained from |U,|* =
2cos?(@, —x/6)/3 and |U,|* = 2cos* (¢, + 7/6)/3.
Because the parameter ¢; should be around z/2 or 3z/2
as shown in Eq. (3.11), the sum rule of Eq. (3.14) is
approximately

(30820, —2) cot 203
3Sin2912 Sin613 ’

cos Scp = (3.15)

This implies that 6.p would be nearly maximal if the
atmospheric angle 0,3 takes the maximal value 6,3 = 7 /4.
We allow the three mixing angles to freely vary in the
experimentally preferred 3o ranges [46], then the sum rule
Eq. (3.15) leads to
—0.643 < cosdcp < 0.819. (3.16)
Needless to say, the improved measurement of the mixing
angles, particularly 6, and 6,3, could help to make more
precise prediction for d-p in our framework.
If the light neutrinos with definite mass v; are Majorana
fermions, their exchange can trigger the neutrinoless
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double beta (0uff) decay processes (A,Z) — (A, Z+2) +
e~ + e~ in which the total lepton number changes by two
units. Most importantly, the experimental detection of this
lepton number violating decay will proof the Majorana
nature of neutrinos. In addition, the lifetime of the Ovpf
decay is related to the neutrino masses so that its meas-
urement will also probe the unknown absolute neutrino
mass and hierarchy. The Ovff decay amplitude has the
form A"# = G2m,, M where G is the Fermi con-
stant, m,, is the Ovpp decay effective Majorana mass and
MOPF is the nuclear matrix element of the process. The
effective mass m,, contains all the dependence of A*## on
the neutrino mixing parameters with [52]

3

2
E m;U;
i=1

= |m,c0s%0,,c08%0 5 + m,sin*0,c08%6, 3¢/

|m8€| =

+ m3sin?0,3e! (@ =2cr) |, (3.17)
where m , 3 are the light Majorana neutrino masses. One
can see that m,, depends on the values of the Majorana
phase a,; and the Majorana-Dirac phase difference
a3 = az; — 25¢p. We recall that the two heavier neutrino
masses can be expressed in terms of the lightest neutrino
mass and the two neutrino mass-squared differences
measured in neutrino oscillation experiments. For the
NO spectrum, one gets

my = Myightest»

_ /2 2
My = [ Mgy + A3y,

_ |2 2
ms = \/Migpieq + Ams,, (3.18)
while for the 10 spectrum

_ 2 2 2
mp = \/mlightest — Ams, — Amy,,

_ |2 2
My = A/ Miightest — Amz,,
M3 = Mijghtest> (319)

where Amj; = m; —m3. In our numerical analysis, we

shall use the best fit values of Amj3; and Am3, ,, obtained
in the global analysis [46],

Am2, = 7.50 x 105 eV?,

Am3; =2.457 x 1073 eV?,

Am3, = —2.449 x 107 eV2, (3.20)

where the quoted values of Am3, and Am3, correspond to
the NO and IO spectrums, respectively. The numerical
results would only change a little bit if the experimental

PHYSICAL REVIEW D 94, 073006 (2016)

uncertainties of the neutrino mass-squared splittings are
considered. For the mixing pattern U'(@, the effective
Majorana mass |m,,| is given by

1 .
|m,.| = E‘Zmlsinzgol +qm, <e"/’2 cosf+v2cos g sin9)2

+ gom; (\/Ecosecosqzl — el sin9>2 , (3.21)

where ¢, g, = £1 originates from the ambiguity of the
CP parity matrix Q,. We show |m,,| versus the lightest
neutrino mass Myjgney in Fig. 1, where the three mixing
angles are required to lie in the 30 regions. We display the
allowed ranges of the effective mass |m,,| under the
assumption of ¢; and ¢, as free continuous parameters
and for the specific value of (¢, ¢,) = (n/2,7/2). The
case of (¢1,®,) = (7/2,7/2) can be naturally reproduced
from the S, flavor symmetry combined with CP symmetry.
Accordingly |m,,| is predicted to close to 0.017 eV or
around the upper bound 0.048 eV for the IO neutrino mass
spectrum, which is within the future sensitivity of forth-
coming Ouvpf decay experiments. However, for the NO
spectrum, |m,,| strongly depends on the lightest neutrino
mass Mijghest> and it can even be approximately vanishing
for particular value of mjjghs- Although exploring the NO
region experimentally is beyond the reach of any planned
experiment, if Ouvff decays are not observed and neutrino
oscillation experiments establish that the neutrino masses
are NO, it would be important to test |m,,| values in the NO
region by combining the information on the absolute mass
scale from cosmology.

It is recently found that lepton flavor mixing as well
as leptogenesis is strongly constrained by the residual
discrete flavor and CP symmetries of the neutrino and
charged lepton sectors [29]. For the widely studied
scenario of leptogenesis in type-I seesaw model with a
hierarchical heavy neutrinos mass spectrum M, 3 > M|,
the CP asymmetry generated by the N; decay process
N, — l,+ H, a = e, u, T process is approximately given
by [53-57]

[(N, — Hl,) ~T(N, ~ Hi,)
> oll(Ny = Hl,) +T(N, — HI,)]
_ 3M, S /mim;miRy R ;UL U ;)
1670° > mj|Ryj|? '
where v is the Higgs vacuum expectation value given
by v =174 GeV, U is the PMNS matrix, and R is the

Casas-Ibarra parametrization of the neutrino Yukawa
matrix A [58]:

€

(3.22)

R = oM2AUm™, (3.23)

where M = diag(M, M,, M3) and m = diag(m,, m,, m3).
One sees that R is a generic complex orthogonal matrix
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FIG. 1. Predictions for the Ouff decay effective mass |m,,| with respect to the lightest neutrino mass Mijghies 10 case L. The left and
right panels are for the mixing patterns U/(@) and U!(®), respectively. The red (blue) dashed lines indicate the most general allowed
regions for the IO (NO) spectrum obtained by varying the mixing parameters within their 3o ranges [46]. The orange (cyan) areas denote
the achievable values of |m,,| when ¢, and ¢, are taken to be free continuous parameters in the case of IO (NO). The purple and green
regions are the theoretical predictions of the smallest flavor symmetry group which can generate these two mixing patterns. Note that the
purple (green) region overlaps the orange (cyan) one. The present most stringent upper limits |m,,| < 0.120 eV from EX0-200 [63,64]
and KamLAND-ZEN [65] is shown by a horizontal grey band. The vertical grey exclusion band is the current limit on ;s from the
cosmological data of > m; < 0.230 eV by the Planck Collaboration [66].

fulfilling RR” = RTR = 1. Besides the CP asymmetry
parameter €, the final baryon asymmetry depends on
washout mass parameter m, for each flavor a with

2
1/2 ‘
E' mj leUaj
J

In the present work we will be concerned with temper-
ature window 10° GeV < T ~ M, <10'2 GeV. In this
range only the interactions mediated by the 7 Yukawa
coupling are in equilibrium, and the final baryon asym-
metry is well approximated by

12 417 . 390 .
Yp=——— — — , 3.25
B 3 [6277 <589 m2> +en (589 mr>:| ( )

where g, is the effective number of spin degrees of
freedom in thermal equilibrium with g, = 106.75 in the
Standard Model, ¢, = ¢, + ¢€,, m, = m, + m,, and

. My, -1
10ma) = | 835 % 107 ov

-3 —1.167 =1
+(70'2X10 eV) ] . (3.26)

my

(3.24)

my =

Then we recapitulate the main results for leptogenesis
predicted by residual flavor and CP symmetries in
Ref. [29]. If both the neutrino Yukawa coupling and
the RH neutrino mass matrix (after the electroweak and
flavor symmetries breaking) are invariant under two sets
of residual CP transformation X, X,, of the LH neutrino

fields v; and Xy, Xy, of the RH neutrino fields, or
equivalently a Z, flavor symmetry and a CP symmetry
are preserved in the neutrino sector, the R matrix would
be constrained to be block diagonal [29],

x 0 0
PyRPI =0 x x|, (3.27)
0 x x

where the notation “x” denotes a nonzero matrix element,
and Py and P, are the permutation matrices. In order to
generate a nonvanishing lepton asymmetry, there cannot
be two zero elements in the first row of the R matrix.
As a consequence, depending on the values of P,, we
have three possible cases named C,, C;3, and C,3 [29],

x x 0

x 0 x
C]3:R:( ),

0 x X
C23:R—( >

Furthermore, each element of the R matrix is either real or
purely imaginary because of the residual CP invariance.
To facilitate the discussion, we introduce the notations

(3.28)

U =09, R' = ONRO,, (3.29)
where Qy and Q, are the CP parity matrices of the RH

and LH neutrino fields, respectively, they are diagonal
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TABLEII. The parametrization of the first column of R’-matrix
and the corresponding expressions of Wy,, W3 and W55 in the
three interesting cases Cy,, C;3 and C»s.

Case Cyp (K1, K>, K3) (R}, Ri5,RY3) Wap
a=1, (_|_, +, j:) (COS n, SiIlI’], ()) /myimy (my—my) sinncosn
) my cos? n-+mj sin® 5
(_|_, -, :t) (COSh 7, sinh 7, 0) /miymy (my+my) sinh g coshy
mycosh?y-+m;,sinh?y
(_’ +, j:) (sinh 1, cosh n, 0) _‘/mlmz(mﬁrmz)sinhncoshn
my sinh? p-+m, cosh?n
a=1, (+,%£,+) (cosn,0,8iny)  ymums(m —m;)singcosy
bh=3 m cos® n+ms sin®
(_|_, =+, _) (COSh 7, 0, sinh 7]) /miyms(my+ms) sinh g coshy
my cosh? n+mj sinh?
(_’ =+, _|_) (sinh 1,0, cosh ;1) J/myi; (my +ms)sinhncoshy
my sinh? p-+m3 cosh?n
a=2, (j:, +, +) (()7 cos7, sin ;7) /My (my—ms3) sinp cosn
bh=3 m, cos® n+ms sin® g
(:t’ =+, _) (0, cosh n, sinh ;7) /nym3(may+ms) sinhy coshy
m, cosh? y+ms sinh? 5
(j; -, +) (0, sinh 1, cosh ,7) _\/W(mzﬂm)sinhﬂcoshn

m, sinh? g+ms3 cosh’n

matrices with entries =1 and =i, and their values are not
constrained by residual symmetries. Thus, R’ would be a
block-diagonal real matrix, and it satisfies

3

> RAK =1, (3.30)
i—1
where K; is equal to +1 or —1 with
K; = (QZZV)II(QI%)H' (3-31)

Moreover, for each case C,, with ab =12, 13, and 23
listed in Eq. (3.28), the lepton asymmetry ¢, and washout
mass m, can be written into a quite simple form

3M,
16702

€, = W, (3.32)

~ 1/2

2
g = |mi >R, Uy +m)* R, U, |7, (3.33)

where

V2 cos ¢,
—V/2sin (¢, - %)
—V/2sin (@) + B

Ul(b)

_ b
V3

where the admissible values of ¢; and ¢, and the
corresponding representative flavor symmetry groups are
listed in Table I'V. One can refer to the full results at the web
site [47]. It is remarkable that all these phenomenological

_ei(pZ

PHYSICAL REVIEW D 94, 073006 (2016)
W = vV mambR/laR/lb(muKa - mbe)
‘ my(Ry,)? + my(R,)?
5, = Im(UﬁmUifb).

’

(3.34)

We would like to remind the readers that the repeated
indices are not summed over in Eqgs. (3.32), (3.33), and
(3.34). We notice that the lepton asymmetry €, is closely
related to the lower energy CP phases in this framework.
The observation of CP violation in future neutrino
oscillation and neutrinoless double beta decay experi-
ments would imply the existence of a baryon asymmetry.
We give the most general parametrization of the first
column of R’ and corresponding expressions of W,, W3,
and W,3 in Table II. For the predicted mixing pattern
U@ in Eq. (3.8), the rephasing invariants I5, are of the
form

2
I5; = Tcos @1 Sin @y,

. VI (x |
123:—?s1n 6 ¥ )sme,

2
I5y = —isin <E + (p1> sin @,.

3 . (3.35)

As shown in Table I, the parameter values (¢, ;) =
(z/2,7/2) can be obtained when the flavor symmetry
group Gy is 4. Accordingly, both the atmospheric mixing
angle and Dirac CP phase are predicted to be maximal.
We find that the best fit value of the parameter 6 is
O, = £0.0827(+0.0837), and the global minimum of the
x* function is y2, = 2.089(5.783) for NO (IO) spectrum.
The predictions for Yy as a function of the parameter y
are plotted in Fig. 2. We see that the realistic value of Y
can be reproduced for appropriate values of 5 except in
the case of NO with (K, K, K3) = (£, —, +), while for
the 10O spectrum the correct value of Y can be achieved
when (K,K,,K3) = (£,+,—) for 6y =0.083z or
(Kl’ Kz, K3) = (:I:, +, —), (:l:, -, +) for Hbf = —0.083x.
Case I(b)

elr> V2sin g,

\/ECOS (401 - %) Slz(e)QZﬂ (3-36)

e /2cos (g +5)

|

viable mixing patterns can be achieved from the type D
group series A(6n%) or Déil)ﬁn combined with CP sym-
metry. The smallest group that can admit a good fit to the
experimental data is [649, 259] = Délx)zﬁxz in this case. The
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FIG.2. The prediction for Y5/ Y5 as a function of 7 in case I(a) with (¢, @,) = (5.%), where 6 is the best fit value of #. Note that a

2

minor difference in 6, is obtained for NO and IO spectrums, because the best fit value as well as 1o error of sin? 6,5 and sin® @, slightly
depend on the mass ordering [46]. We choose M| = 5 x 10'" GeV and the lightest neutrino mass m, (or m3;)= 0.01 eV. The red dotted,
green dot-dashed, blue dashed lines correspond to (K, K,, K3) = (&, 4+, +), (£, +, —), and (£, —, +) respectively. The experimentally
observed value Y9 is represented by the horizontal black dashed line.

PMNS matrix U’(?) is related to U'(¢) by column permu-
tations, and the constant column vector (v/2sing,
V2 cos (¢ — z), V2 cos (¢ + g))T/\/g enforced by
residual symmetries is arranged at the third column in this
case. The patterns originating from the six possible row
permutations of U/() can be obtained through redefinitions
of ¢, and 6. We can extract the mixing angles from
Eq. (3.36) in the usual way and find

. 2 .
sin?0,; = gsmz(pl,

1 +sin (/6 + 2¢,)

2
Sin“6y; =
» 2 4 cos 2¢,

1 + sin20 cos 2¢; — v/2 sin 26 cos ¢, cos @,

. 29 —
S 2 + cos 2¢,

(3.37)

Notice that both the reactor angle 65 and the atmospheric
mixing angle 6,3 only depend on the discrete parameter ¢,
while all the three parameters 0, ¢, and ¢, are involved in
the solar mixing angle 6;,. Moreover, we easily see that the
mixing angles fulfill the following sum rule:

2Sin2923 =1+ tan913 \/ 2 - tan2913.

Using the best fit value sin? 8,5 = 0.0218 [46], we obtain

(3.38)

sinf; = 0.395, or sin’f,; = 0.605. (3.39)
Consequently 6,5 deviates from maximal mixing but it is in
the experimentally preferred 3¢ range [46]. As regards the

CP invariants, we find

1
6v6

1
|| = 5 | cos ¢ sin @, (4 cos 20 cos @, cos @,

|Jep| = | sin 26 sin 3¢, sin ¢, |,

— V/2sin 26 cos 2¢1)

’

22
|12| - T\/— |Sin2(,01 sin (pg(\/isin29 COS ¢

+ sin26 cos ¢,)]. (3.40)

For this mixing pattern U'("), the effective Majorana mass
|m,.| in Oupp is given by
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TABLE III. Results of the y? analysis for case I(b) with the flavor symmetry G; = [649,259]. As shown in Table IV, the

experimentally measured values of the mixing angles can be accommodated in the case of (¢, 9,) = (5. - %), ({5.0), (5.5), (5.5)>
(FE.—%). (1F.0), (5&.%), and (Y£.%). We display the best fit value 6y for 6, and 2, is the smallest value of y? that can be obtained at
the best fit value 8,;. The mixing angles and the CP violating phases for @ = 6, are presented as well. Note that the CP parity matrix Q,
can shift the Majorana phases a,; and o, by 7. In the last column we give the values of K , 5 for which the observed baryon asymmetry
can be generated via leptogenesis. The values in the square brackets are the corresponding results for the case of IO mass spectrum. The

net baryon asymmetry cannot be generated for ¢, = 0, 7.

ay/n oy /n
(p1.92) On/m Komin sin® @3 sin® @y, sin? 63 Ocp/m (mod 1) (mod 1) (K1, K>, K3)
(%.—% 0.014 11.065[3.989] 0.0201 0.304 0.601 0.984 0.656  0.010 (= +. ) [(=+ 1)
0.367 0.132 0.344  0.207 (+, = D+, +, %), (+,—, )]
(f%-.0)  0.012 11.065[3.989] 0.0201 0.304 0.601 1 0 0
0.384 0 0 0 .-
(%3 0.026 11.065 [3.989] 0.0201 0.304 0.601 1.049 0.701 0969 (+,—, %) [(+,+, L), (+,—, L), (=, +,%)]
0.285 1.629 0299  0.686 (+,— %) [(+.+. L), (+,= L), (=, +,%)]
(ﬁg) 0 18.807 [11.731] 0.0201 0.340 0.601 1 0 0 (+.— %), (- +. %) [(+,+ 1), (= +, )]
({z,—2) 0.633 6.432[26.835] 0.0201 0.304 0399 1.132 0344 0207 (+,— %), (= +, %) [(+.+, %), (= + F)]
0.986 1.984 0.656 0.010 (= + %) [(=+,$)]
({z,0) 0616 6.432[26.835] 0.0201 0.304 0399 1 0 0
0.988 0 0 0
(x5 0715 6.432[26.835] 0.0201 0.304 0399 0.629 0299  0.686 (+,—, %), (= +, £)[(+,+, £), (= +, £)]
0.974 0.049 0.701 0969 (+,—, %) [(+,+, %), (+,—, %), (=, +,%)]
(=5 0 14.174[34.576] 0.0201 0.340 0.399 O 0 0 (+,—, %) [(+,+, L), (+,—, %), (= +. )]
1 G, = [649,259], the admissible values of ¢, and ¢, are

= —[2m;sin? i, -2 ing)’
e =3 st (e eosd VRSO ) 6 10, (5.0) (55, (5.9, (F.-)
+ gam; (V2 cosBcos gy + 2 sinH)?|, (3.41)  (£.0), (Y%.%), and (}£,%). The corresponding predictions

for the Ovpp decay effective mass |m,,| versus the lightest
neutrino mass Mjigyeq are plotted in Fig. 1. We see that [m,, |
is close to 0.029 or 0.042 eV for the IO neutrino mass

where ¢q;,q, = £1 appears due to the undetermined CP
parity of the neutrino states encoded in the matrix Q, . In the

limit of |G| — oo, where |G| represents the order of G, ¢,
and ¢, tends to be continuous parameters. Then one can
almost reproduce the whole regions of |m,,| obtained by
varying the oscillation parameters over their current 3¢
global ranges, as shown in Fig. 1. For the smallest group

spectrum, which are within the future sensitivity of planned
Ovpf decay experiments. On the other hand, |m,,| is always
bigger than 0.7 x 10~ eV in the case of NO spectrum.
Now we proceed to discuss the predictions for lepto-
genesis. The bilinear invariant /{, can be read out as follows:

TABLE IV. The predictions for the PMNS matrix of the form U’(*), where the first column shows the group identification in the GAP
system, and the second column displays the achievable values of the parameters ¢; and ¢,. We have shown at most two representative
flavor symmetry groups in the first column. If there is only one group predicting the corresponding values of ¢; and ¢, in the second
column, this unique group would be listed. The full results of our analysis are provided at the web site [47]. The subscripts A and A’

o

indicate that the corresponding groups belong to the type D group series DE,(,),)I =~ A(6n?) and D (Zgy X Z3,y) X S5, respectively.

on' 3n" =
Group Id (p1,92)
[648.259],,. & -9, (5.0, &9, (5.9 (-9, (F.0), (2.9, (%9
[648, 260]
[726.5],. G .-%), 3.0, &5 &3, &9, &0, G5.-5), G0, G55, G830, Gr9. Ge3)
[1452, 23]
(1734.5], &.-%), (£.-%), (5.0), (.5, (&5, (&35, &5, (&3, (&5, (& -5, @& -0 1 0),

b 9 9
FHEDEDEDEDED
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2
I{, = — 3 Cos sin ¢,

L VA (n |
Ilzz?sm 6—(;;1 sin @5,

2
I, = T\[Sin (%—i— gol> sin ¢,

(3.42)
which are generally nonzero except ¢, = 0, #. The value of
baryon asymmetry can be straightforwardly calculated from
any given values of ¢; and ¢,. We shall study the smallest
viable flavor symmetry [649, 259] for illustration. The
results of the y? analysis are summarized in Table III. We
display the values of the mixing angles and CP phases at 6y,
the best fit points for which the y function has a global
minimum 2. . Obviously the mixing angles can be in
accordance with the experimental data for particular values
of 6. The leptogenesis asymmetries €, are vanishing for
(@1, 92) = (/18,0), (177/18,0). For the remaining six
admissible values of ¢; and ¢,, the variations of Y as a
function of 5 are plotted in Figs. 3—8. We see that the correct
value of Yp can be reproduced for certain values of 7
and K5 3.

R
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Case 11
ei(p] 1 ei(ﬂz
1 : i
yla) — V3 we'” 1 wPe” | S15(0)0]. (3.43)
wrel? 1 wer
ei(pl 1 eWz
1 . - i
UII(b) — ﬁ w?ei? 1 we'?? Sl3<0)Ql‘/7 (344)
wei(/u 1 wzeifl’z

where @ = ¢?*/3. The viable values of ¢, and ¢, and
corresponding representative flavor symmetry groups are
listed in Table V. Please see the web site [47] for the full
results. The smallest group which can describe the exper-
imentally measured values of the mixing angles for certain
values of 6 is S,. The mixing pattern in Eq. (3.44) results
from the permutation of the second and third rows of the
PMNS mixing matrix in Eq. (3.43). The second column
of U@ and U"®) are (1,1,1)"/+/3, and consequently
they are the trimaximal pattern. We can extract the
following results for the lepton mixing angles:
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FIG. 3. The prediction for Y/Y$> as a function of 7 in case I(b) with (¢, @,) = (ﬁ ,— %), where 0y is the best fit value of 6. We
choose M, = 5 x 10" GeV and the lightest neutrino mass n; (or m;) = 0.01 eV. The red dotted, green dot-dashed, blue dashed lines
correspond to (K|, K5, K3) = (+,+, %), (+,—, %), and (—, +, +) respectively. The experimentally observed value Y is represented

by the horizontal black dashed line.
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FIG.4. The prediction for Y5/ Y™ as a function of 77 in case I(b) with (¢, ;) = (% .%), where 6, is the best fit value of . We choose
M, =5 x10'" GeV and the lightest neutrino mass m, (orm;) = 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines
correspond to (K|, K», K3) = (+,+, %), (+,—, &), and (—, +, ) respectively. The experimentally observed value Y is represented
by the horizontal black dashed line.
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FIG.5. The prediction for Y5/ Y% as a function of 77 in case I(b) with (¢, ¢,) = (75 %), where 6y is the best fit value of 6. We choose
M, =5x 10" GeV and the lightest neutrino mass m; (orm;) = 0.01 eV. The red dotted, green dot-dashed, blue dashed lines
correspond to (K|, K5, K3) = (+,+, %), (+,—, %), and (—, +, +) respectively. The experimentally observed value Y is represented
by the horizontal black dashed line.
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FIG. 6. The prediction for Y/Y$ as a function of 7 in case I(b) with (¢, ¢,) = (=

1Tz — ), where Oy is the best fit value of 6. We

choose M; =5 x 10" GeV and the lightest neutrino mass m, (orms) = 0.01 eV. The red dotted, green dot-dashed, and blue dashed
lines correspond to (K, K,, K3) = (+,+,%), (+,—, %), and (-, +, £), respectively. The experimentally observed value Y9 is

represented by the horizontal black dashed line.

1
sin%6,3 = 3 [+ sin20cos(g, — 1)),
1
. 29 —
S =5 20 cos(pr — 1)’
in0,, — 1 —sin 2? sin (@, — ¢ + 7/6) for Ua).
2 —sin20cos(g, — @)
§in0,; — 1 + sin 2.9 sin (¢, — ¢ — 7/6) for U®).
- 2 —sin 260 cos(@, — @)
(3.45)

Therefore, the solar and the reactor mixing angles fulfill the
well-known sum rule

3c0s20,35in%0,, = 1. (3.46)
Hence, the solar mixing angle admits a lower bound
sin’@,, > 1/3. Using for sin?#@,; its 3¢ range 0.0188 <
sin?0;5 < 0.0251 [46], we find 0.340 < sin’0,;, < 0.342.
The JUNO experiment will be capable of reducing the
error of sin?#;, to about 0.1° or around 0.3% [59].

Future long baseline experiments such as DUNE [60] and
Hyper-Kamiokande [61] can also make very precise

measurements of the solar mixing angle. If significant devia-
tions from 1/3 of sin® @, were detected, this mixing pattern
would be ruled out. Moreover, the reactor mixing angle and
the atmospheric mixing angle are related as follows:

3cos203sin0 — 1 1 /3
: S — Tt —¢,), for UM,
1 — 3sin26,5 > T e =), for
3cos2035in%0s — 1 1 /3
=———t —¢), for UM®),
1 = 3sin20,5 3~ an(e2 g, for
(3.47)

For the mixing matrices U'/(@) and U''(%), the CP invariants
take the form

1
Jop| = ——=]cos 26|,
erl = 5 710320

2
1| = §|(cos9005(p1 — sin @ cos @)

X (cos @sin ¢, — sin @sin @, )

’

1
|1, = 9 | cos 20 sin (2¢p; — 2¢5)]. (3.48)
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best fit value of 6. We

choose M; =5 x 10'"" GeV and the lightest neutrino mass m, (or ms;) = 0.01 eV. The red dotted, green dot-dashed, blue dashed lines
correspond to (K, K, K3) = (+, +, ), (+, —, £), and (=, +, £), respectively. The experimentally observed value Y% is represented
by the horizontal black dashed line.

We find that the mixing angles and Dirac CP violating phase
fulfill the following sum rule:
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€08265cot260,3 ~\/§(7z/4—923) (3.49)
\/3c0s%0,; — 1siné; 013 . '
3_......./_.|....|...._
: i\ Noas |
- I 3 —
2r it ]
C ioh ]
1 fmmmmnt

L ; AN
L [, U7 VN ]
S Y
] F Rt
—1F = A ! -
N i ! ]
L i ! ]
-2+ i 1 -
L '\_I.’ N
-3 oo v b v v ™ v v by ]
-1 -0.5 0 0.5 1

nin

Therefore, the value of §p is closely related with the deviation
of 0,3 from maximal mixing. Inputting the 30 regions
0.0188 < sin’ @3 < 0.0251 and 0.385 < sin? #,; < 0.644
from the global fit [46], we see cos d-p can be any value in
the interval of [—1, 1]. Hence, no definite prediction can be
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FIG. 8. The prediction for Y5/Y% as a function of 7 in case I(b) with (¢, ¢,) = (XZ,%), where 6,; is the best fit value of 6. We

18 °2

choose M| = 5 x 10'! GeV and the lightest neutrino mass 7, (orm3) = 0.01 eV. The red dotted, green dot-dashed, and blue dashed
lines correspond to (K, K, K3) = (+, +, %), (+,—, %), and (=, +, %), respectively. The experimentally observed value Y9 is
represented by the horizontal black dashed line.
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TABLE V. The predictions for PMNS matrix of the form U*(@) and U*(%)

PHYSICAL REVIEW D 94, 073006 (2016)

, where the first column shows the group identification in the

GAP system, and the second column displays the achievable values of the parameters ¢, and ¢,. We have shown at most two
representative flavor symmetry groups in the first column. If there is only one group predicting the corresponding values of ¢, and ¢, in
the second column, this unique group would be listed. The full results of our analysis are provided at the web site [47]. The subscripts A

and A’ indicate that the corresponding groups belong to the type D group series DE,O,), =~ A(6n?) and p'"

(Z9n’ X Z3n ) X S3’

on' 3n" =
respectively.
Group Id (p1.92)
[24,12],, [48, 30] (7.0)
[96,64],, 192, 182] (—%’,g) (- ?21 . (_%T”,%)
(858 s TR G 8 G G CHD CH G D G-
ol CEEL LR 5, R CEL G R 50, (8.
[1200, 652] (5.2, (5. G52, 03 -50, 3% G2 8) G1 B G4, -5
648 259 F.-. -8 G- CEBD R C5oP CH-D CF-D 5D
76,243, (), G ), B8, OF =), (G190, (B850, 61 -3, G-, (=), (.-, (-5 1)
(IT%’S#)’ (_1%1’1_12”)’]2_%’_%)’ ](l_g’T”)’ l?—lﬂ’ 472”),1(_1”’2547_2) (_I%Ll” 5_), (—%75_712’ (_%_lﬂ’g_’l?(;
U CHED Cli . ¢ . 6T, Cli Bl =i, 6L 6
(0.= 31, (0.~ 13), (=13 M) (=B My (_Lpx Sy (e Sn) (e deny (ke Jony (8 dn)
CHPCE - D G0 G
[1536,408544632] (;%,—223—;) (2;%,—%), (Gz,3m) (—lz Iy (Ll _Im) (—Z—’g,?:”), (B—g’,—%:), (%”,—;i;) .
(_%‘;78”’;7)’ (;QT;I’7_%) (29_%’7_%)735_%’_%25 (176[, ﬂ)”(16’ ),1(]_4181,_%)’3(1 471781-]7_%) 3$48ﬂI,I 48”)
g G, T (- U s, o C e, C
%) G %0 669 G0 CH-% CH-W B 8. - -
made for 6-p at present. However, if the uncertainty of 1 . L
cp Al Pre . unty |m,.| = = |m (e cos @ — e sin )% + g m,
the atmospheric mixing angle 0,5 is reduced considerably 3
by future neutrino experiments, the above sum rule in + gym;(ei cos @ + ¢ sin 0)?|, (3.51)

Eq. (3.49) could impose a strong constraint on the value
of 5cp.

As shown in Table V, the group G, = S, can give rise to
the mixing patterns U'/(%) and U"'") with (¢,,¢,) = (7,0).
Then the atmospheric angle 6,3 as well as the Dirac CP
phase d.p are predicted to be maximal while both Majorana
phases are 0 or z. In fact, U@ and U"(*) are essentially
the same mixing pattern in this case, since they are related
by the redefinition of 8 and Q,,

Ul (9, ¢, =z, ¢, = 0)

=yl (g -0, =7 ;= 0>diag(1, 1,-1).

(3.50)

Furthermore we find there are two best fit solutions
BOpr = 0.1927,0.3087(0.1927,0.3087) for U@ in the
case of the NO (IO) spectrum, and the minimal value of
the y? function is y2, = 8.843 (12.565).

Regarding the Ovpf decay, the effective mass |m,,| is
given by

where ¢,,q, = +1. The predicted values of |m,,| are
displayed in Fig. 9, where we require that the three lepton
mixing angles are within the experimentally preferred 3¢
ranges. For the smallest group G, = S, one sees that |m,,|
is determined to be around 0.015 or 0.048 eV in the case of
the 10 spectrum, which is accessible to the future experi-

could be smaller than 10~* eV for certain values of the
lightest neutrino mass, because cancellation between differ-
ent terms in the expression of |m,,| can take place.

The residual symmetry enforces the second column of
the PMNS to be trimaximal in this case. Therefore, the R
matrix is of the form of Cy5 given in Eq. (3.28). We can read
out the CP invariants /{; relevant to leptogenesis as

e 1 :

Iy = §s1n (01 = @2).

" 1 V3

I —gcos 6—401 + @,

. 1 T

Iy = gcos g+q)1 -, . (3.52)

073006-19



CHANG-YUAN YAO and GUI-JUN DING

PHYSICAL REVIEW D 94, 073006 (2016)

The numerical results of the baryon asymmetry for (¢, ,) = (#,0) are shown in Fig. 10. It is easy to see that the
observed baryon asymmetry could be generated via leptogenesis except in the case of the NO spectrum

with (Kl, Kz, K3) = (—, i, +)
Case 111
V2e'1 sin ¢,
V2e cos (p; +)
Vel cos ()

1
V3

yll —

where ¢, and ¢, are rational angles, and their values are
determined by the residual symmetries. The admissible
values of ¢ and ¢, and the representative flavor symmetry
groups found from our group scan up to order 2000 are
summarized in Table VI. The full results are available at our
web site [47]. Similar to case II, the second column of the
mixing matrix is (1,1, 1) /+/3 as well. In particular, all the
six row permutations lead to the same mixing pattern, if
the freedom of redefining the parameters 8, ¢, and ¢, is

taken into account. For this mixing matrix U/ in
Eq. (3.53), the mixing angles read

|y
C Disfavored by 0v83 // p
107'E /c” - 7 B
_ 75
3 f COE ]
L i
R z 3
= F © ]
= f > ]
2 ]

)
103 e 2 =
E ~eae 12 E
C ~. > 3
C g

=
i = ]
10—4 ool Vo Al Lol Lo
107 1073 1072 107! 1

Myjghtest [CV]

FIG. 9. Predictions of the Ovff decay effective mass |m,,| with
respect to the lightest neutrino mass myjgheq fOr the mixing
patterns U”/(9) and U"(%), The red (blue) dashed lines indicate the
most general allowed regions for the IO (NO) spectrum obtained
by varying the mixing parameters within their 3¢ ranges [46]. The
orange (cyan) areas denote the achievable values of |m,,| when
@1 and ¢, are taken to be free continuous parameters in the case
of I0 (NO). The purple and green regions are the theoretical
predictions of the smallest flavor symmetry group which can
generate these two mixing patterns. Note that the purple (green)
region overlaps the orange (cyan) one. The present most stringent
upper limits |m,,| < 0.120 eV from EX0-200 [63,64] and Kam-
LAND-ZEN [65] is shown by horizontal grey band. The vertical
grey exclusion band is the current limit on mygpey from the
cosmological data of > m; < 0.230 eV by the Planck Collabo-
ration [66].

1
1

1

V2ei1 cos g,
—V2e sin (g, + ) | S15(0) Q4. (3.53)
V2ei sin (¢, —Z
.2 2 2
sin“0,3 = 308 (0 —s),
sin’0,, = :
273 2 2c0s2(0 - ¢y)
- sin (20 — 2, +%) — 1
03 = , 3.54
SR cos (20 — 2¢,) — 2 (3:54)
which fulfill the following sum rules:
3c0s20,3sin%0;, = 1,
1 1 /
Sin2923 = 5 + Etan 913 2 - tan2913. (355)

Inserting the best fit value sin’0;; = 0.0218 [46], we
obtain

Sin2912 = 0341,

sin?6,; = 0.395 or 0.605, (3.56)

which are compatible with the present experimental
data. By precisely measuring the solar and atmospheric
mixing angles, the reactor neutrino experiment JUNO and
long baseline neutrino oscillation experiments DUNE and
Hyper-Kamiokande are able to exclude this mixing pattern
or provide strong evidence for its relevance. Furthermore,
the CP invariants are given by

JCP = 12 = 07
2 -
I :§|31n2(p1|sm (0 =), (3.57)
which leads to
5cp,a31 =0 or T, (mOd ﬂ)ZiZ(pl (358)

This indicates that both Dirac CP phase d-p and Majorana
phase a3, are always trivial in this case. Subsequently we
find for the effective Majorana mass |m,,| the following
expression:
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FIG. 10. The prediction for Y5/ Y%" as a function of 5 in case Il with (¢, ¢,) = (x,0), where 6, ¢ 1s the best fit value of 6. We choose
M, =5 x 10" GeV and the lightest neutrino mass m, (orms) = 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines

correspond to (K, K,, K3) = (4, +,+), (+, £,
by the horizontal black dashed line.

TABLE VI.  The predictions for PMNS matrix of the form U/,
where the first column shows the group identification in the GAP
system, and the second column displays the achievable values of
the parameters ¢; and ¢,. We have shown at most two
representative flavor symmetry groups in the first column. If
there is only one group predicting the corresponding values of ¢
and ¢, in the second column, this unique group would be listed.
The full results of our analysis are provided at the web site [47].
The subscripts A and A’ indicate that the corresponding

groups belong to the type D group series DS}’), =~ A(6n?) and
D)., = (Zow X Zsy) % S, respectively.

on' 3n" =

Group Id (#1.92)
[12, 31, [24,12], (. 2)
(96, 64],, [192, 182] (=3 20)
[384,568],, [768, 1085335] (-2.0)
[600, 179] ., [1200, 682] (=3 7) (4 1)
[648,259],, [648, 260] (z.20)
[1176,243], (@7, (2.), (6. 2)
(1536, 408544632] , (=27, (= x)

—), and (—, &, +), respectively. The experimentally observed value Y9 is represented

1 —_—
|m,.| = 3 2m, e*?15in*(0 — @,) + qym,

+ 2g,m3e**icos? (0 — ¢,)|. (3.59)

We plot |m,,| as a function of the lightest neutrino mass
Mijghest 10 Fig. 11. For the smallest flavor symmetry group
A, which predicts (¢, ¢,) = (#,27/3), all the three CP
violation phases are conserved. As a result, the effective
mass |m,,| is close to 0.027 or 0.042 eV in case of 10
spectrum. It is notable that there is no cancellation in |m,,|
for any values of mjgheq in the case of NO, and thus |mee|
has a lower bound |m,,| > 2.52 x 1073 eV.

As regards the leptogenesis, we find that both rephase
invariant /¢, and the CP asymmetry €, are vanishing,

Ity =1y = If5 =0, (3.60)

Hence the net baryon asymmetry cannot be generated in
this case, and appropriate subleading corrections are
necessary in order to make the leptogenesis viable.
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FIG. 11. Predictions of the Ouvpf decay effective mass |m,,|

with respect to the lightest neutrino mass mjgp ey for the mixing
pattern U’ The red (blue) dashed lines indicate the most general
allowed regions for IO (NO) spectrum obtained by varying the
mixing parameters within their 3o ranges [46]. The orange (cyan)
areas denote the achievable values of |m,,| when ¢, and ¢, are
taken to be free continuous parameters in the case of 10 (NO).
The purple and green regions are the theoretical predictions of the
smallest flavor symmetry group which can generate this mixing
pattern. Note that the purple (green) region overlaps the orange
(cyan) one. The present most stringent upper limits |m,,| <
0.120 eV from EXO-200 [63,64] and KamLAND-ZEN [65] is
shown by horizontal grey band. The vertical grey exclusion band
is the current limit on mjghes from the cosmological data of
> m; < 0.230 eV by the Planck Collaboration [66].

Case IV
[ 1
Vi s O
1V(a) _ 1 by 1 i
vro = | ks -k |se00l
1 (/’17 1
2V54, 25 V2
_j ]% 1
W% s ©
. b, i
Uivee) = | 2\/I§¢g N _\/Lf 513(9)Q£, (361)

i 1 ?y 1
2V5¢, V5 V2

where ¢, = (v/5+ 1)/2 is the golden ratio. Notice that

U'®) can be obtained from U’V(® by multiplying the
factor i in its first column. Our group scanning reveals that
these two mixing patterns can be obtained from the groups
[60, 5] = As, [120,35], [180,19] and many others shown in
the web site. Indeed, this case has been found in previous
work on As flavor symmetry and generalized CP [18-20],

PHYSICAL REVIEW D 94, 073006 (2016)

and our results coincide with those. The PMNS mixing

matrix U'V(@ leads to the following expressions for the
mixing angles:

. o, .
sin%0,; = —Lsin%0,
13 \/5
4-2¢,

. 29 —
2 TS 0p, + cos 20"
1 /3 =, sin20
sin26,; = — Py (3.62)

2 3¢, —2+ p,c0s26°

Obviously U’V(@ is a real matrix, therefore all the three CP
invariants vanish,

‘]CP:II :IZIO, (363)

which implies that each of the CP violation phases
Ocp, M1, 31 1s either 0 or z. Moreover, we see that the
mixing angles fulfill the following sum rules:

3-¢,
5 ’

1
sin20; — 5 = (¢, — 1) tan 03/ + (b, = 2)tan’6)5.
(3.64)

sin’6,,c0s°6,3 =

Using the 3¢ range of the reactor mixing angle 0.0188 <
sin?6,; < 0.0251 [46], we get

0.282 < sin%6;, < 0.284,
0.401 < sin?60,; <0.415 or

0.585 < sin%0,3 < 0.599. (3.65)

These predictions for 6;, and 6,3 will be testable at
future neutrino facilities such as JUNO, DUNE, Hyper-
Kamiokande and so on. For the mixing matrix U'Y("), the
mixing angles read

sin?6,; = —Lsin4
\/5 )
4-2¢
: 29 — g ,
Y2 TS 00, + cos 26
1
Sin2923 = 5 . (366)

The solar and reactor mixing angles have the same form
as that of UV, and consequently the correlation
sin®6,c08%6013 = (3 — ¢,)/5 given in Eq. (3.64) still holds.
The minimum value of y? is y2. = 4.045(7.742) obtained
at the best fitting values 6y = £0.0567(+0.0567) for
NO (IO) spectrum. For the CP violating phases, we find
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Ocp 1s exactly maximal while both Majorana phases a,; and
a3, are trivial with

|JCP|:l —¢g
4\5v5

In this case, the general expression for the effective mass
|mee| 1S

| sin 20

, Il 212:0 (367)

1
V5
for UV,

[Mee] = —= |pymicos’0 — ' qymy + dyqamssin®0),

(3.68)

where ¢, q, = £1. Therefore the same values of |m,,|
would be obtained if the parameter ¢, is of opposite sign
for U@ and U'V("). After considering all possible
values of ¢, and ¢,, we display the allowed regions of
|m,,.| in Fig. 12. We see that |m,,| is close to 0.021 or
0.048 eV for 10 while it is smaller than 107 eV for
0.0016 eV < myjgheq < 0.0024 eV and  0.0051 eV <
Miighiest < 0.0061 eV in the case NO.
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FIG. 12. Predictions of the Ovff decay effective mass |m,,|
with respect to the lightest neutrino mass mjgpes for the mixing

patterns U'V(@ and U’V The red (blue) dashed lines indicate
the most general allowed regions for the I0 (NO) spectrum
obtained by varying the mixing parameters within their 3¢
ranges [46]. The purple and green regions are the theoretical
predictions of these two mixing patterns. The present most
stringent upper limits |m,,| < 0.120 eV from EXO0-200
[63,64] and KamLAND-ZEN [65] are shown by a horizontal
grey band. The vertical grey exclusion band is the current limit on
Mijghest from the cosmological data of > m; < 0.230 eV by the
Planck Collaboration [66].
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Then we come to study the resulting predictions for
leptogenesis. All the rephasing invariants /{, are deter-
mined to be zero for U’V(@ so that the CP asymmetries ¢,
vanish and the matter-antimatter asymmetry of the
Universe cannot be generated without high order correc-
tions. For the PMNS mixing matrix U’V(®), we find

1
19, =0, Iy=-I=— | —. 3.69
13 13 13 1/4\/5% (3.69)

We plot the values of Y versus n in Fig. 13. It is easy
to see that the observed baryon asymmetry can be obtained

via leptogenesis except in the case of NO with
(K1, Ky, K3) = (= +.+).
Case V
¢g 1 d)g -1
V(a) 1 T
U = 5 ¢q -1 _¢)g 1 S23 (9) Ql/
1 l—¢, —¢,
UV(b) = 5 1 1 - ¢g _¢g S23 (9) Q:
¢g -1 _¢g 1
(3.70)

Notice that these two mixing matrices are related through a
exchange of the second and third rows. Similar to case IV,
this mixing pattern can be obtained from the flavor
symmetry groups [60,5] = As, [120,35], [180,19] etc. in
combination with generalized CP. Earlier studies of this
mixing pattern in the context of A5 flavor symmetry and CP
can be found in Refs. [18-20]. We can extract the following
results for the mixing angles:

(cosf — ¢, sin0)?

. 29 — ;
Simn~03 4¢§
., (¢, cos 0 + sin 6)*
sin 912 - B - . 2
4¢p; — (cos @ — ¢, sin )
2 02
§in20,; — ¢2g<cos 0+, s1n.9) -~ for oV,
4¢p; — (cos @ — ¢, sin0)
sin @ — @2 cos 0)?
iy, — (S0 = §;,c0s6) for UV®).  (3.71)

49?2 — (cos 0 — ¢, sin6)?

For the mixing pattern U" (@), the global minimum of y? is
2 =6.190(6.434) obtained at the best fitting
values 6O,y = 0.0957(0.095z) for NO (IO) spectrum.
Accordingly the mixing angles at 6 = 6,; are given by
sin® @, = 0.331, sin?6;3 = 0.022, and sin’f,; = 0.524
which are in excellent agreement with experimental
data. For the PMNS matrix U"®), y? is minimized at
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FIG. 13. The prediction for Y/Y$® as a function of 5 in case IV(b), where Oyr is the best fit value of 6. We choose
M, =5 x 10" GeV and the lightest neutrino mass m, (orms) = 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines
correspond to (K|, K>, K3) = (+, %+, +), (+, £, =), and (—, &, +) respectively. The experimentally observed value Y is represented

by the horizontal black dashed line.

the best fitting point 6,y = 0.0957(0.094x) with y2. =
4.477(11.799), and the values obtained for the mixing
angles are sin’#;, = 0.331, sin’>#@;3 = 0.022, and
sin? 0,5 = 0.476. The CP invariants J.p, I;, and I, are
found to vanish exactly so that both Dirac and Majorana
CP phases take CP conserving values 0 and z. Similarly
the bilinear invariants /55 are also zero. Hence, a baryon
asymmetry cannot be obtained in this case unless the
residual symmetries are further broken by higher order
contributions. Furthermore, the two PMNS mixing matri-
ces UY@ and U"®) yield the same expression for the
effective Majorana mass |m,,|

1 .
[mee| = 2 |¢§m1 + gymy(cos O + gbg‘l sin 6)?

+ qams3(sin @ — ¢! cos )2 (3.72)

with ¢;,q, = 1. The predicted values of |m,,| from
this mixing pattern are shown in Fig. 14. We find that
|m,.| is around 0.016 or 0.048 eV in the case of the 10
spectrum, and it can be approximately vanishing for NO
due to strong cancellations if the lightest neutrino mass is

in the narrow range of 0.0023 eV < mjgpeq < 0.0034 eV
and 0.0067 eV < myjgheq < 0.0078 €V.

Case VI
(V3=1)e® 2 —(/3+1)eil0+d
uvt :% ~(V3+1)e 2 (V3-1)elot?)
2ei 2 20i0+F)
x $13(0)0i. (3.73)

where ¢ = arctan(2 — /7). This mixing pattern has not
been discussed in the literature as far as we know. It can be
achieved from the flavor symmetry groups [168,42],
[336,209], [504,157] and others which are listed at the
web site [47]. The group [168,42] exactly is the known
group X(168) = PSL(2,7). It is the automorphism group
of the Klein quartic as well as the symmetry group of
the Fano plane. It is the second-smallest non-Abelian
simple group after the alternating group As. It has important
applications in algebra, geometry, and number theory.
%(168) has also been recognized as quite interesting in
discrete flavor symmetry theory [62]. Notice that one

column of the PMNS matrix is (1, 1,1)7/ /3 in this case,
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and it should be identified as the second column in order to
be compatible with the experimental data on lepton mixing
angles. For the mixing matrices arising from the six
possible row permutations of UY!, four of them can
accommodate the experimental data

UVI(a) UVI(b) _ P132U1‘>/1</[NS’

UV = P231U¥1\1/INS'

=U I‘J/I\I/INS’
UV = Py 13Uplins (3.74)
One sees that UY/(®) and U"'Y) can be obtained from
UY!(@ and UY'() respectively by exchanging the second
and third rows. From the mixing matrices U"/(® and
UV'®) the mixing angles and the three CP rephasing
invariants can be read out as

1
sin’@,3 = - (44 2v/3¢c0s 20 + /25in26),
4

sin%,, = ,
28 - 2v/3c0s20— /25in 20
Sin%0, — 4 —2/3c0s20 + \/is'in 20 for UVI(@),
8 — 2\/§cos29— \/§s1n29
4 —2+/28in20
Sil’l2623 = \/_Sln for UV1<b>,

8 —21/3¢c0s260 — \/2sin 20
1
Jop| =——=|sin 20|,
el = ¢zl sin20)
1
|12|:%|c0529—\/gsin29|,

1
I :7—2|2f7— V34 (2=V21)cos20 — v/14sin26).
(3.75)

Then we can derive the following sum rules among the
mixing angles

. 1
sm291200326’13 = g .

1
sin%60,3c08%6,3 = o) (9 + 15c0s26,;

+2v/3,/12c05 2013 — 9 cos 40,5 —4)
for UVl(@),

1
sin%0,5c08%0,; = 31 (6 + 308203

+ V3,/1200520,; ~ 9 c0s 40, — 4)

for UV, (3.76)

Plugging in the best fitting value of the reactor angle
sin® ;3 = 0.0218 [46], we have
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FIG. 14. Predictions of the Ovf3f3 decay effective mass |m,,| with
respect to the lightest neutrino mass mjgp ey for the mixing patterns

UY@ and UV®). The red (blue) dashed lines indicate the most
general allowed regions for the IO (NO) spectrum obtained by
varying the mixing parameters within their 3o ranges [46]. The
purple and green regions are the theoretical predictions of these two
mixing patterns. The present most stringent upper limits |m,,| <
0.120 eV from EXO-200 [63,64] and KamLAND-ZEN [65] is
shown by horizontal grey band. The vertical grey exclusion band is
the current limit on myjgheq from the cosmological data of Som; <
0.230 eV by the Planck Collaboration [66].

sin0,, = 0.341,
sin6y; = 0.559 or 0.578 for U@,

sin?fy; = 0.441 or 0422 for UV, (3.77)

Obviously the atmospheric mixing angle 6,3 is nonmax-
imal in this case. The results of our y? analysis are
summarized in Table VII. The mixing matrices U"/(¢)
and U4 give rise to the following results for mixing
angles and CP invariants:

1
sin®0,; = o (4 —2v/30s 260 + /25in 20),

4
sinZ0,, = ,
28 1 2v/3¢0820 — /2sin260
Sin?0,, — 4+2v/3c0820+ /2 s'in L——r
8+ 2\/§cos29— \/§s1n29
4 —24/25in20
$in20,; = V2sin _ for Y@,
8+ 2\/§00529— \/Esm29

1 1
Jep| =—=sin20], |I,| =~|cos20+ V6sin20|,
el 6\/6\5111 . |1 36|COS +V65in26)|

1
1] =25 2V7+ V3 + 2+ V21) cos 20 — V14sin26).

(3.78)
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TABLE VII. Results of the y? analysis for case VI. We show the best fit value 6y of the parameter 6, and ;(ﬁﬁn is the global minimum of
the y? function. The mixing angles and the CP violating phases for § = 6, ¢ are given as well. Note that the CP parity matrix Q, can shift
the Majorana phases a,; and o, by 7. In the last column we give the values of K| , 3 for which the observed baryon asymmetry can be
generated via leptogenesis. The values in the square brackets are the corresponding results for the case of IO mass spectrum.

PHYSICAL REVIEW D 94, 073006 (2016)

O/ pean sin® 6,5 sin 6, sin® 6,5 dcp/m a7 oy /7 (K, K5, K3)
yVita) 0.572 12.028 0.0222 0.341 0.554 0.667 0.839 0.106 (+, =+, +), (+,+,-)
[0.555] [8.007] [0.0218] [0.341] [0.578] [0.763] [0.845] [0.926] [(—I—, +,+), (+, £, —)]
yvie) 0.569 8.133 0.0219 0.341 0.443 1.680 0.839 0.082 (+, £, 4), (+,£,-)
[0.576] [20.586] [0.0227] [0.341] [0.452] [1.646] [0.837] [0.146] [(+,£,4), (+, £, )]
yvI©) 0.928 12.028 0.0222 0.341 0.554 1.333 0.392 0.894 (+, £, +), (+,£,-)
[0.945] [8.007] [0.0218] [0.341] [0.578] [1.237] [0.385] [0.074] [(—, =+, —l—)]
yVi) 0.931 8.133 0.0219 0.341 0.443 0.320 0.391 0.918 (+, =+, +), (+,+,-)
[0.924] [20.586] [0.0227] [0.341] [0.452] [0.354] [0.393] [0.854] [(—, =+, )]

We find the sum rules in Eq. (3.76) and consequently the
estimates given in Eq. (3.77) are satisfied as well.
Furthermore, the sum rule of Eq. (3.49) among the mixing
angles and Dirac CP phase is fulfilled for all the above four

|

permutations of the PMNS matrix. Consequently the
comments below Eq. (3.49) also hold true here. As regards
the neutrinoless double beta decay, the predictions for the
effective mass |m,,| are given by

1 .
|mee|zﬁ|((\/§—1)e"f'cos9+( +V/3)ei ) sin ) my + 4q,m,
+ gams((1 +V/3)eF40) cos @ — (V3 = 1)e?sin§)*| for UY!@ and UYI®), (3.79)
1 -3n .
el = (14 V3)e cos 0+ (V3 = 1)e' 440 sin0)*m + dqum;
+ goms(V3 = 1)eiE40) cos 6 — (1 +V/3)e? sin0)*| for UYI(€) and UV, (3.80)

The parameter 6 freely varies in the range of [0, z], and the
observed values of the lepton mixing angles are required to
be reproduced at 3o level. The admissible regions of |m,,|

the observed baryon asymmetry can be interpreted as an
effect of leptogenesis for certain values of the parameters
K3, as listed in Table VIL

as a function of My are displayed in Fig. 15. We can Case VII
read off from this figure that |m!Q| = 0.019 or 0.046 eV and N Vi um
|mNO| > 0.00052 eV for the mixing patterns U"/(@) and - V2SR
UVI0) while mi9 = 0.030 or 0.040 eV and [m}O|>  gvire — Bz —uts [50)00,
0.0018 eV for the mixing patterns U"/(¢) and U"/(?), where 2V6 \/zg ‘ +1'3
|mQ| and |mNO| are the Oupp decay effective masses o 2v2 %
corresponding to 10 and NO mass orderings, respectively. Vi 95 e
Then we turn to study the implication for leptogenesis. . T s 2v2 515,
g)rllleo ::Vzn read out the lepton asymmetry parameters /{3 as  ;vii(h) — s Silz 272 s§;§3 $,4(0)0;,
GG
1 1 ‘
I=1=—r, [;=——7 for U@ and U"), (3.82)
13 13 6 \/j 13 3 \/§ . .
1 1 where s, = sin(2nz/7) with n =1, 2, 3. We note that
173:“3:W§, I W for UV'®) and UV, UV@) and UY"®) are related by the exchange of the

(3.81)

which are constant values. The numerical results for Yz as a
function of # are plotted in Figs. 16 and 17. We can see that

second and third rows. Similar to case VI, this mixing
pattern can also be obtained from the flavor symmetry
groups [168,42] = X(168), [336,209], [504,157] and so
forth in combination with generalized CP [47]. In this case,
the column fixed by residual symmetry is
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FIG. 15. Predictions of the Ovff decay effective mass |m,,| with respect to the lightest neutrino mass Mijghtest 10 the case VI. The left
panel is the result for the mixing patterns U/(“) and U(*), and the right panel is for U(©) and U’(9). The red (blue) dashed lines indicate
the most general allowed regions for IO (NO) spectrum obtained by varying the mixing parameters within their 3¢ ranges [46]. The
purple and green regions are the theoretical predictions of these two mixing patterns. The present most stringent upper limits |n,,| <
0.120 eV from EXO-200 [63,64] and KamLLAND-ZEN [65] is shown by horizontal grey band. The vertical grey exclusion band is the
current limit on myjgheq from the cosmological data of > m; < 0.230 eV by the Planck Collaboration [66].
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(Vs ~0.815 (Vs ~0.815
ﬁ 1/S2 ~ 0.363 s or ﬁ l/Sl ~ 0.452 (383)
1/s, 0.452 1/55 0363

It should be identified with the first column of the PMNS matrix to be in accordance with the experimental data. From the
mixing matrices in Eq. (3.82), we find the following results for the lepton mixing angles:

(2v/2s15,8in 0 + (51 — 5,) cos 0)*

. 29 — ,
ST 245353
2 (2v/2s15,c0s 0 + (5, — 51) sin 0)*
sin6,, = ,
2 2V/2s155 (52 — 51) $in 20 — (55 — 51)2c0820 + 45253 (cos 20 + 5)
i’y — s%(2ﬁs1s3 sin@ + (s; + s3) cos 0)? —
53(2v/2s155(s5 — 1) 8in 20 — (5, — 51)%c0s26 + 4s253(c0s 20 + 5))
. 2
Sin0,, — s%(Z\/.iszs3 sin@ — (s, + s3) cos ) for UVI(®) (3.84)
$3(2v/2s55(s5 — 1) 8in 20 — (5, — 51)%c0s26 + 4s253(c0s 20 + 5))
and
Jep=1=1,=0, (3.85)
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which implies that all the three CP violating phases d¢p, @1, and az; are trivial. Expressing the parameter € in terms of 6,5,
we can obtain the sum rules among the lepton mixing angles,

for UVl

8cos*@jpcos?03 =
53
20 0520 (\/(8C052913S§ —1)(s3(8s3 — 1) — 53) £ 53 sin913)2
sin’6y3c08%0 3 =
: N 55(8s3 — 1)?
. (\/(80052‘9135"% - 1)(S%(8S% -1)- s%) + 53 sin913)2
sin?6,;c08%6,3 =

Given the best fitting value of the reactor mixing angle
sin?6,; = 0.0218 [46], we obtain

sin?0;, =0.321, sin’6,3=0.399 or 0.601. (3.87)
For this mixing pattern, the effective Majorana neutrino
mass |m,,| is given by

13 1 1 2
Imee| =57 @+611m2 2v2cosO+ [ ——— ) sinf
24| s3 ST 8
. 1 1 2
+ gomy | —2V2sin@ + (——— ) cos@ | |.

S 8

(3.88)

As shown in Fig. 18, |m,,| is around 0.017 or 0.048 eV in
the case of IO, while a noticeable cancellation occurs such
that |m,,| can be smaller than 10~* eV for NO if the lightest
neutrino mass lies in the interval [0.0022,0.0032] or
[0.0064,0.0074] eV. Regarding the predictions for lepto-
genesis, all the relevant CP invariants I5; as well as the
lepton asymmetries €, are zero. Thus, a model, realizing
this pattern at leading order, should receive moderate
corrections to interpret the observed baryon asymmetry
as an effect of leptogenesis.

B. Mixing patterns derived from the variant
of semidirect approach

In this approach, the residual flavor symmetries in the
neutrino and charged lepton sectors are Ky x H{p and
Zy X H’CP, respectively. The prediction for the PMNS
mixing matrix can be straightforwardly extracted from
Eq. (2.51). It is remarkable that the resulting mixing matrix
has one row which is determined by the residual sym-
metries and which does not depend on the free parameter 6.
In exactly the same manner as the semidirect approach in
Sec. Il A, we perform a comprehensive scan over all
possible finite discrete groups of the order less than 2000
with the help of GAp. We find only one type of mixing
pattern which can accommodate the experimental data on

s3(8s3 —1)%

for UV11®), (3.86)

|
lepton mixing angles for particular choices of the free
parameter 6

1 \/Eeigo] _\/Egi(pl 0
yviie) — SSh@| 1 | —\2ei | O,
1 1 V22

UYHO) = Py Upis (3.89)
where the viable values of ¢, ¢, and the representative
flavor symmetry groups are summarized in Table VIII.
Notice that all these mixing patterns can be reproduced

|
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FIG. 18. The predictions of the Ouf decay effective mass |m,,|

with respect to the lightest neutrino mass mjjgpe; for the mixing
patterns U"/(@) and UV"(?), The red (blue) dashed lines indicate
the most general allowed regions for the I0 (NO) spectrum
obtained by varying the mixing parameters within their 3¢ ranges
[46]. The purple and green regions are the theoretical predictions
of these two mixing patterns. The present most stringent
upper limits |m,,| < 0.120 eV from EXO0-200 [63,64] and
KamLLAND-ZEN [65] is shown by horizontal grey band. The
vertical grey exclusion band is the current limit on mgpeq from
the cosmological data of > m; < 0.230 eV by the Planck
Collaboration [66].
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TABLE VIII. The predictions for PMNS matrix of the form U@ and UYH(®) where the first column shows the group
identification in the GAP system, and the second column displays the achievable values of the parameters ¢ and ¢,. We have shown at
most two representative flavor symmetry groups in the first column. If there is only one group predicting the corresponding values
of ¢, and ¢, in the second column, this unique group would be listed. The full results of our analysis are provided at the web site [47].
The subscripts A and A’ indicate that the corresponding groups belong to the type D group series DE,O,), =~ A(6n?) and

D), = (Zow X Zsy) % S5, respectively.

o' 3n’ =
Group Id (p1,92)
[24,12],, [48, 48] (n,7)
(96, 64],, [192, 944] (0,%)
[384,568],, [768, 1085727] (Z,-33), (%,x), (0,%5), (£, -7), (= 1z 30
[600, 179],. [1200, 1011} 0.2, 0.=38). (5.3 (-5 -9 (=F5.39). (<57 53 (5.3
(=39 (5.7 (=5 =70 (=5.-
(648, 259],, [648, 260] (=32,2), (=3, 7), (=32, -2, (-7, —35)
[1176,243], (0.-3). (0.-%). (5. =50, (5.~ (. 9. (5. (0.9, (.50,
(i) Ggm): (o). (259, G0, (5. (59, (-4, G~ ). 5.),
%9 G =) G5 =5 (5 =) G =F) G- %)
[1536. 4085446321, (=56 %) (5 50), (6. m): (oo~ 56 (6 %), (-0 5), (e, =), (g, =), (5. —%9)
(6 =46 (=56 66 =%, 6.5, G650, (6.~ ), (5.7), (0.5), (5.5).
(3.~ 56) .76 (G5 16)- (~ i §)

from the type D group series A(6n2) and Déln).?)n’ and the  We easily see that the reactor and atmospheric mixing

small flavor symmetry groups S, and A(96) already allow a angles are related by

reasonable fit to the experimental data for this type of

mixing pattern. This is consistent with the findings in sin0,; = Yeod for UyViia),

Ref. [12]. Obvious Upi?) is obtained from Upi® by €08 P13

exchanging the second and third rows. In this case, the row sin0y; = cos 229'3 for pVvii®) (3.92)
that is fixed by residual symmetry is (1, 1, —v/2¢/2) /2, and 2cos°0y3

it could be the second or the third row of the PMNS mixing

. . 2
matrix. The predictions for the mixing angles read as Given the 30 range 0.0188 < sin“6y3 < 0.0251 of 65 [46],

the atmospheric mixing angle 6,5 is determined to lie in the
1 region of
sin6,3 = = sin’6,
2 .
0.510 < sin’f,; < 0.513  for UV!1(@),

1 2 sin 26 cos
sin2912 =—-+ \/_ a

2 T 31 cos20 0.487 < sin’0,; <0.490 for UVI1®), (3.93)
sinf0,; = # for yViia), which deviates from maximal mixing slightly. Similarly
3 4 cos 20 the sum rule among the reactor and solar mixing angles is
sin%0,; = 7; i — iz for UVIIO), (3.90) &iven by
. 1
and the CP invariants take the form sin’f); = ) Ttanb3y/1 - tan’6;3 cos g, (3.94)

where the “+” and “—” signs are valid, 0 < 6§ < z/2 and
7/2 < 0 < =, respectively. For the experimentally favored
30 interval of the reactor mixing angle, we get

’

1
Jep| = ——=|sin 260 sin
CP| 8\@' (31

1
1| = WEKI + 3 cos26) sin 20 sin ¢ |,

ey 0.342 < sin%0;, < 0.363. (3.95)
L) = SH; V2 sin 20 sin(2, — 1)

. . As a example, for sin’6,; = 0.0251 (6 =0.072z or
—2cos’0sin2(gy — 1) —sin*Gsin2go|.  (3.91) 9~ 1.9287) and ¢, = x (or 0), we find the value of the
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FIG. 19. Predictions of the Ouvff decay effective mass |m,,|
with respect to the lightest neutrino mass mjgp ey for the mixing
patterns UY//1(@) and UV"(%), The red (blue) dashed lines indicate
the most general allowed regions for IO (NO) spectrum obtained
by varying the mixing parameters within their 3o ranges [46]. The
orange (cyan) areas denote the achievable values of |m,,| when
@ and ¢, are taken to be free continuous parameters in the case
of I0 (NO). The purple and green regions are the theoretical
predictions of the smallest flavor symmetry group which can
generate these two mixing patterns. Note that the purple (green)
region overlaps the orange (cyan) one. The present most stringent
upper limits |m,,| < 0.120 eV from EX0-200 [63,64] and Kam-
LAND-ZEN [65] are shown by the horizontal grey band. The
vertical grey exclusion band is the current limit on gy from
the cosmological data of > m; <0.230 eV by the Planck
Collaboration [66].

solar mixing angle sin” 8, = 0.342 which is within the 3¢
range. Therefore sin®#,, is generically predicted to be
close to its 3¢ upper limit in this case.' Notice that better
agreement of the predicted values of sin’@,, with the
experimental results could be achieved in a concrete model
with small corrections.

Moreover, we find that the Dirac CP phase is correlated
with the mixing angles as follows:

(3cos26;5 — 1) cot 26,

cosdcp = , 3.96
cr 44/c0s 2603 sin 03 ( )
where the “+ and “~" correspond to U"/"/(@) and UV(®),

respectively. If the reactor and solar mixing angles vary
within the 3¢ intervals 0.0188 < sin” 6,53 < 0.0251 and
0.270 < sin® 6, < 0.344 [46], we obtain

'The 36 ranges of sin® #,, obtained by distinct global fitting
groups have some minor difference: 0.270 < sin?6;, < 0.344
from the NuFIT group [46], 0.278 < sin’f;, < 0.375 from the
Valencia group [67], and 0.250 < sin?0;, < 0.354 given by the
Italian group [68].

PHYSICAL REVIEW D 94, 073006 (2016)
cos 8cp € £[0.983, 1]. (3.97)

Hence, 6cp is predicted to be around O or z in this case.
This mixing pattern would be ruled out if large CP
violation effect is discovered in planned long baseline
experiments.

From the mixing matrix shown in Eq. (3.89), we can
extract the expression for the effective Majorana mass |m,, |,

1 )
[m,,| = 1 |m1(\/§e"/’1 cos @ — sin 9)2

+ qymy(sin @ + V2ei cos 0)°

+ 2g,m5e?2sin%6), (3.98)
with g;, = £1. We plot the possible region of |m,,|
as a function of the lightest neutrino mass Mygpes N
Fig. 19. In the limit of |G| = co, we see that the entire
30 region for IO and a sizable part for NO can be
reproduced. For the particular value of (¢, @,) = (7, n),
which can be achieved from the S, flavor symmetry
combined with CP symmetry, we can read off from this
figure |m!Q| = 0.015 eV or [m!Q| = 0.048 eV and |m)O| is
highly suppressed for 0.0026 eV < myjgheq < 0.0031 eV
and 0.0079 eV < myigpeq < 0.0084 €V.

As has been shown in Ref. [29], if a Klein four flavor
symmetry is preserved by the neutrino mass matrix, all the
leptogenesis CP asymmetries €, would vanish and this
result is independent of the concrete form of the residual
Klein flavor symmetry transformation. Since the residual
flavor symmetry of the neutrino sector is K, in the variant
of the semidirect approach, a net baryon asymmetry cannot
be generated, and appropriate higher order corrections are
necessary to have successful leptogenesis.

IV. CONCLUSIONS

Flavor and CP symmetries have been widely used to
predict leptonic mixing parameters. In the present work,
we take into account the generalized CP symmetry and
perform an exhaustive scan of the lepton mixing patterns
which can be obtained from the discrete finite groups up to
order 2000 with the help of computer program GAP. The
generalized CP transformations are required to correspond
to class-inverting automorphisms of the flavor symmetry
group Gy, so that the consistency conditions between flavor
and CP symmetry can be fulfilled. If G does not possess a
class-inverting automorphism, a CP symmetry could pos-
sibly be consistently defined in a model which contains
only a subset of irreducible representations of G.

The flavor and CP symmetries have to be broken at low
energy. The PMNS mixing matrix is fully fixed by the
residual symmetries of the neutrino and charged lepton
mass matrices, and we do not need to consider how the
residual symmetries are dynamically realized. In this work,
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we have considered two scenarios: the semidirect approach
and the variant of the semidirect approach. In the semidirect
approach, the residual symmetries of the charged lepton
and neutrino mass matrices are G; x H., and Z, x H%,,
respectively, where G, can be any Abelian subgroup of G,
capable of distinguishing the three generations. In the
variant of the semidirect approach, the flavor and CP
symmetries are assumed to be broken down to Z, x H lcp
and K4 x H{p in the charged lepton and neutrino sectors
respectively. The PMNS matrix can be determined from
the representation matrix of the residual symmetry without
reconstructing the neutrino and charged lepton mass
matrices, and the master formula is given by Eq. (2.27)
and Eq. (2.51), respectively. We see that the PMINS matrix
depends on only a free parameter § which can take values in
the range of [0, z) in both approaches. Nevertheless, one
column of the PMNS matrix is fixed to certain constant
value by the residual symmetry in the semidirect approach
while one row is fixed in its variant.

For each discrete flavor group which has a faithful three-
dimensional irreducible representation and a class-inverting
outer automorphism, all the possible remnant symmetries
and the resulting predictions for lepton flavor mixing are
studied. All these results are available at our web site [47].
We find that all the mixing patterns which can accom-
modate the experimental data on the mixing angles can be
organized into eight different cases up to possible permu-
tations of rows and columns. It is remarkable that the
mixing matrices of case I, case II, and case III can be

reproduced from the A(6n%) or Dgifjn groups combined
with the CP symmetry. The list of the mixing matrices

associated with A(6n?) and Dé%n agrees exactly with
those given in Refs. [23,26,27]. The smallest group which
can produce the mixing patterns of case IV and case V is the
alternating group As. These two mixing patterns have really
been found in the literature of A5 flavor symmetry with
generalized CP [18-20]. The mixing patterns of case VI
and case VII are completely new as far as we know. They
can be achieved from the flavor symmetry group X(168) =
PSL(2,7) and CP symmetry. The second column of the
resulting PMNS mixing matrix is trimaximal in case II,
case III, and case VI, and therefore the sum rule
3sin’@,,c0s°0,3 = 1 is satisfied and the solar mixing
angle is bounded from below sin’6;, > 1/3. In the variant
of the semidirect approach, only one type of mixing
matrix denoted as case VIII can yield a good fit to the
experimental data, and one row of the PMNS matrix is
(1,1, —/2¢%2) /2. The solar mixing angle 6, is predicted
to the close to its 3¢ upper bound, and the atmospheric
mixing angle is around sin’6,; = 0.49 or sin® @3 = 0.51.
As a result, the paradigm of the generalized CP symemtry
should be testable by precisely measuring 6, and 6,5 at
future reactor neutrino experiments such as JUNO and long
baseline experiments DUNE and Hyper-K.
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Furthermore, the implications of residual symmetry in
Ovpp decay and flavored thermal leptogenesis are studied.
The predicted values of the effective Majorana mass |m,,|
are within the sensitivity of planned experiments for 10
neutrino mass spectrum, the known cancellation of the
different terms in |m,,| may occur in the case of NO
although |m,,| could have a nontrivial lower limit for a
certain finite group. As regards the leptogenesis, the R
matrix in the Casas-Ibarra parametrization only depends
on one single parameter x because of the constraint
imposed by remnant symmetry. The total lepton asymmetry
€ =€, + €, + ¢, is determined to be zero such that the
unflavored leptogenesis does not work. On the other hand,
all the lepton charge asymmetries ¢, (@ =e, y, 7) are
vanishing in case III, case V, case VII, and case VIII;
consequently, the matter-antimatter asymmetry of the
Universe cannot be explained via leptogenesis unless
the postulated residual symmetry is further broken at the
subleading level. For the remaining case I, case II, case IV,
and case VI, the measured value of the baryon asymmetry
can be generated for certain values of the parameters #
and K, 3 which are determined by the CP parity of the
neutrino states.

Many interesting mixing patterns and the associated
residual symmetry found in this work provide new oppor-
tunity for model building. So far lepton flavor mixing is
derived from group theoretical considerations without
any dynamical input. It would be interesting to construct
concrete models in which the breaking of the symmetry
group to the residual symmetry is achieved dynamically.
Usually the desired symmetry breaking is spontaneous
due to nonvanishing vacuum expectation values of
some flavons. The general procedure of building a
dynamical model is proposed in [69]. The models in
Refs. [10-13,15,17,18] provide good examples of how
to realize the desired residual symmetry in a specific model.
Inspired by the above promising results obtained for lepton
mixing, it is appealing to investigate whether the quark
mixing angles and the precisely measured CP violating
phase can be obtained as a result of mismatched remnant
symmetries in the down quark and up quark sectors if the
generalized CP symmetry is considered.
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APPENDIX: EQUIVALENT CONDITIONS
OF DISTINCT MIXING PATTERNS

In both the semidirect approach and the variant of the
semidirect approach discussed in Sec. II, two distinct
residual symmetries could lead to the same PMNS mixing
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matrix up to permutations of rows and columns and
redefinition of the free parameter € and the CP parity
matrix Q,. Then the lepton mixing matrices following from
these two residual symmetries would be called equivalent.
For example, the mixing matrices predicted by two residual
symmetries conjugate under a group element are equiv-
alent, as shown in the end of Sec. II. In the following, we
shall derive the most general equivalent conditions for both
approaches.

1. Equivalence in semidirect approach

Let us consider two generic residual symmetries in the
semidirect approach; their predictions for the lepton mixing
matrix can be written as

= 0}, P1%15:(0,)P,,1 0}

Q[2P1222S23( ) uzQ,,z, (Al)
where X = Z;ZD, and X, and X, are the corresponding
results of X for the two postulated residual symmetries.
0,1, are arbitrary diagonal phase matrices and Q,;, are
unitary diagonal matrices with nonvanishing entries £1
and *i. P;, and P, , are permutation matrices, and they
can take the six possible forms in Eq. (3.7). Moreover, 0,
and 0, are free continuous parameters within the funda-
mental interval of [0, ). For any given values of 6, and the
matrices Q;, Py, Q,1, P, if the corresponding values
of 0, as well as Qp, Pp, Q,», P, can be found such the
equality U, = U, is fulfilled, these two residual sym-
metries would be equivalent, i.e.,

Q11P11Z 823( ) I/lel - Q12P1222523(92) szzzv
(A2)

from which we can define a matrix = which is independent
of #; and 6, as follows:
E=3] P11Q11Q12P1222

S ( ) ulQu1Q1/2Pv2Sg%(92) (A3)

For convenience, introducing the notations P; = P; P},

Ql:PIZQll Q;zPZa PD:PDIPZZ’ and Qu:PUZleszpzza
then we have

E=XPIO%, = $55(01)P,0,55(6:).  (A4)
which implies
EE" = 8555(01)0753(01). (A5)

where Q) = P,Q,PI. Since = doesn’t depend on the
parameters @, and 6,, the right-hand side of the above
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equation has to be independent of @,. This requires Q)
should be of the form

= :I:dlag(l, j:ﬂzxz). (A6)
Therefore the (22) and (33) elements of Q/, are either +1 or
=4 simultaneously while the (11) element denoted as g, is
independently +1 and +i. Without loss of generality,
we assume that the fixed column by residual symmetries
is the first column of the PMNS matrix; thus, the
permutation matrices P,; and P,, as well as P, can be
either P|,; or Py3,. Using the properties S75(0) = S»3(—0),
P13,823(0) = Sx3(—0)Py3,, and  diag(1,1,—1)S3(0) =
Sy3(—6@)diag(1,1,—1), we can obtain

E=X{P0Z, = S$53(0)Q,P,S5(0,) = S53(00) 0, P,

(A7)

where 0y = 6, + 6,, and “+” and “-" depend on the values
of Q) and P,. Assuming the common first column of X,
and %, is vy, then the (11) entry of the = matrix is
viPQiy = q,. (A8)
We parametrize v; and Q; as v; = (a,b,¢)! and Q, =
diag(e'®, e'®, ¢, where a, b, ¢ can be set to be positive
real numbers by redefining the charged lepton fields with
the property a® + b*> + ¢? = 1. In the following we shall
discuss the constraints of Egs. (A7) and (A8) for the six
possible forms of P; one by one.
First, in the case of P; = P,3 = 13,3, Eq. (A8) becomes
eia] a2 + eiazb2 + ei(13C2 =gq,. (Ag)
Taking the absolute value of the both sides of this equation,
we obtain

|eia]a2 +eia2b2 + ei(z3c2| < a2 +b2 +C2 =1 = |qv|

(A10)
This equality is fulfilled if and only if
et = ¢l = ol = ¢ | (A11)
Thus Q; = ¢q,1543, and Eq. (A7) reduces to
Q=3[P%, = ¢;52(00) O, P, (A12)

which can be written into an equivalent and more compact
form

QQT = ¢:207? = diag(1, £1,y,). (A13)
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TABLE IX. Constraints on the fixed column v, = (a, b,c)”
and the phase matrix Q; = diag(e’™, e'®, ¢/®) imposed by the
equivalent condition in the semidirect approach.

P, Constraint on a; ;3 Constraint on a, b, and ¢

iy — piay _ ,iaz
e =e =e =4,

Q Q

i esss
SIS I T T
e so

[T

Conversely, if the condition of Eq. (A12) or Eq. (A13) is
satisfied, one can easily see that the two PMNS mixing
matrices U; and U, in Eq. (Al) would be equivalent.
For the case of P; = Py3,, then Eq. (A8) becomes
eMa? + e bc + e be = q,. (A14)
Taking the absolute value on both sides of this equation,
we get

lei™a? + ei®bc + e ®bc| < a®? +2bc < a®> + b* + c? =1,
(A15)

which requires

M = el® = ¢ln, b=c. (A16)
Consequently, the equivalent condition in Eq. (Al2)
and Eq. (A13) is also fulfilled with P; = Py3,. In other
words, if the second and third elements b and ¢ of the fixed
column are the same, we should further consider the
equivalent condition of Eq. (A13) with P; = Py3,. In the
same manner, we can analyze the remaining cases of
P; = P,5, P31, Py, and P3j,. The resulting constraints
on the phases a; , 3 and the constraints on the elements a, b,
and ¢ are summarized in Table IX. One can see that e’ =
el = ¢/ = g always needs to be satisfied. As a conse-
quence, we summarize that the most general equivalent
condition of two mixing patterns is given by Eq. (A13) in
the semidirect approach, and P, is the permutation matrix
under which the fixed column v is invariant P;v; = v;.

2. Equivalence in variant of the semidirect approach

Given two distinct set of residual symmetries in this
approach, as shown in Sec. II B, the lepton mixing matrices
read as

U, = 0, P, S5,(0))%,P,, O],

Uy = 0 PLS3(0,)%,P,, 0. (A17)
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where X = Z;'Z,,. In the following, we shall derive the
criteria to determine whether the above two PMNS matrices
U, and U, are essentially the same up to rows and columns
permutations and the redefinition of the parameter 6. In
other words, if the solution(s) for 8, and the P ,, Oy,
P15, Q0,1 matrices can be found for any given value of 6,
so that the equality U; = U, is fulfilled, and then U, and
U, would be equivalent, i.e.,

01 PlSY(0))Z P, 0F = 0pPLSTL(0,)%,P,, 00,
(AI8)

which leads to

E=XP,0,%) = 55(0,)P,0,55(6,),  (A19)
with P, =P, P}, 0, =P,0},00P), Pi=PyP,
and Q; = Pp0,,0,,PL. Thus, the product of = and its
transpose is
==T = $,5(0)0PS% (0), (A20)
where Q) = P,;Q,P! is a diagonal phase matrix. Since = is
a constant matrix and it does not depend on #;, we have
Q) = diag(de/?, £e'/?, £el@/?), (A21)
where « and y are real, and “+” can be chosen independ-
ently. In the variant of the semidirect approach, one row of
the PMNS matrix is fixed by the postulated residual
symmetry. Without loss of generality, we assume that
the fixed row is the first row of the PMNS matrix. As a

result, the permutation matrices P;;, P, and P; can be
either P 3 or P3,; thus, we obtain the equivalent condition

E=%P,0,%]
= 523(61)PlQng3(92)
= Sx3(61)Q1P153;(6,)
= QQPIS%(Qo)v

with 6y =6, £60,. If the two mixing patterns U,
and U, are equivalent, the first row of X£; and X, must
be equal, and it is denoted as u; = (cy,¢y,¢3) =
(lerle?. leale®. |es|e®) with o1 [* +[eaf® + |es* = 1.
Notice that we can set the phases 6, =0 and 6,5 €
[0,Z) by redefining the matrices Q; and Q,. The (11)
element of = can be read from Eq. (A22) as

(A22)

u P,Qul = +eir? = q,. (A23)

We parametrize Q, = diag(q,.¢,2.9,3) and q,1 53 = %1,
+i. In the following, we shall analyze the equivalent
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TABLE X. Constraints on the fixed row u; = (|c,|,|c2|e™®, |c3]e®) and the phase matrix Q, = diag(q,1, ¢,», ¢,3) imposed by the

equivalent condition in the variant of the semidirect approach.

P, Constraint on g, 53 Constraint on |cy 3] Constraint on 0, 3
Pio3 91 =492 =493 =4q
Pi3 91 =490 =493 =4 |lea] = [es] Gy =03
Pyy3 49 =90 =93 =4 le1| = ez 6, =0
P 4 =490 =93 =4 le1| = es] 63=0
9 =42 =43 = 4 6, =63=0
P3 qu :—iqyzzqg:e_m./é% le1] = |ca| = |es] :% 6, =n/3,0; =n/6
G = —iq,, = —iq,3 = e 6y = /6, 63 = 7/3
v =902 =493 =41 6, =6;=0
P3pp G = —iq,, = —igq,; = e7" g, ler] = [ea| = les| = %@ 0y =n/3,6,=x/6

du = qup = —iq,3 = /0,

52 :]T/6, 63 :77:/3

condition of Eq. (A22) and the constraint of Eq. (A23) for

the six possible values of P,.
If P, = Pyy3 = 15,3, Eq. (A23) reduces to
auleil + gl + qusles® = g (A24)

Subsequently taking absolute value of the both sides of this
equation, we obtain

|qy1|C1|2+QD2|C2|2+Q1/3|C3|2| = 17 (A25)

which requires
du1 =492 = 49,3 = 4q;- (A26)

Therefore the equivalent condition of Eq. (A22) becomes

Q=3,P,2 = q:0/P,SL(6,), (A27)
or equivalently
QQT = ¢;2Q? = diag(1, e, '), (A28)

where @ = a —y.
For the case of P, = P3,, Eq. (A23) takes the form
qulerl? + qeses + quzeac; = qi, (A29)

from which we obtain

\qu1lc1]? + qacies + quacac]
<l +20ealles] < fer|* + |ea* + [es]? = 1 = |qy].
(A30)

Thus Eq. (A29) is satisfied if and only if

gy = €% q, = e a0 g e = les],  (A31)
which leads to e/(%=%) = 41, 4. Considering 8; — 8, €
(=5.%), we have

6y = 63, 91 =4d2=4q3=4q.  (A32)
Therefore the equivalent condition is still QQT =
diag(1, e, e') given by Eq. (A28) with Q = X,P,%}
and PL/ = P]32.

For all the six possible values of P, the corresponding
constraints on the fixed row u; = (|cy], |ca|e2, |c3|e®)
and the phase matrix Q, = diag(q,;, ¢,», g,3) are summa-
rized in Table X. We see that the equivalent condition
can be written as QQT = diag(1, e, @) with Q =
ZIPDQLZ; The matrix Q) is an identity matrix Q) =
ﬂ3><3 in the case of Pl/ :P123, P132, P213, and P321.
Nevertheless, depending on the values of §, and o5, we
have Q! = 13,3, e”"/®diag(1,i, 1), e~"*/°diag(1, 1, ), or
e~"/3diag(1,i,i) for P, = P,3;, P3,. Using this simple
criteria, one can easily determine whether two residual
symmetries give rise to the same lepton mixing pattern.
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