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Including the generalized CP symmetry, we have performed a comprehensive scan of leptonic mixing
patterns that can be obtained from finite discrete groups with order less than 2000. Both the semidirect
approach and its variant are considered. The lepton mixing matrices that can admit a good agreement with
experimental data can be organized into eight different categories up to possible row and column
permutations. These viable mixing patterns can be completely obtained from the discrete flavor groups

Δð6n2Þ, Dð1Þ
9n;3n, A5 and Σð168Þ combined with CP symmetry. We perform a detailed analytical and

numerical analysis for each possible mixing pattern. The resulting predictions for lepton mixing parameter,
neutrinoless double beta decay, and flavored leptogenesis are studied.
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I. INTRODUCTION

The origin of fermion mass and flavor mixing is one of
longstanding open questions beyond the Standard Model
physics. The discovery of neutrino oscillations and the
precise measurements of the three lepton mixing angles θ12,
θ23, and θ13 shed light on the flavor puzzle and help to
establish the underlying physics principle. One most
popular approach is to invoke a discrete flavor symmetry
to explain the observed patterns. In this paradigm, a given
mixing pattern is related to certain residual symmetry of the
leptonic mass matrices, and the residual symmetry may
arise from the breaking of the complete flavor symmetry
group Gf of some unknown extension of the Standard
Model. The residual symmetry groups and their embedding
inGf is sufficient to predict the values of the mixing angles,
and the detailed dynamics of symmetry breaking is not
necessary. Many different discrete flavor symmetry groups
and their application in model building have been studied in
the literature; please see Refs. [1–3] for review.
In recent years, the flavor symmetry is extended to

include the generalized CP symmetry in order to under-
stand the observed values of the mixing angles and
simultaneously predict the unknown CP violating phases
[4,5]. Note that low significance hints for a maximal Dirac
CP phase δCP ≃ −π=2 have been reported [6], and the
measurement of the Dirac CP phase is an important
physical motivation of forthcoming neutrino oscillation
experiments. From the bottom-up view, the neutrino and
the charged lepton mass matrices admit both residual flavor
symmetry and residual CP symmetry, and the residual
flavor symmetry can be generated by the residual CP
transformations [7–9]. One generally presumes that these
residual symmetries originate from a large symmetry group

(a flavor symmetry Gf and the generalized CP) at high
energy scale whose breaking leads to the symmetries of the
mass matrices. Imposing a flavor symmetry as well as
generalized CP symmetry, one can constrain the CP
violation phases besides mixing angles. This can lead to
very predictive scenarios in which the mixing angles and
CP phases are determined in terms of few input parameters
[4,7,8]. Discrete flavor symmetry combined with CP
symmetry turns out to be a rather powerful framework.
A variety of flavor symmetry groups and their interplay
with the CP symmetry have been studied such as A4 [10],
S4 [4,11–15], Δð27Þ [16], Δð48Þ [17], A5 [18–20], Δð96Þ
[21], and Σð36 × 3Þ [22]. In particular, the lepton mixing
patterns arising from flavor symmetry group series Δð3n2Þ
[23,24], Δð6n2Þ [23,25,26] and Dð1Þ

9n;3n [27] in combination
with a CP symmetry have been analyzed for an arbitrary
index n. Some models with flavor and CP symmetry have
been constructed [10–15,17,18], where the required vac-
uum alignment needed to achieve the remnant symmetries
is dynamically realized. Moreover, the phenomenological
implications of residual flavor and CP symmetry in
neutrinoless double beta (0νββ) decay [11,12,18,26–28]
and leptogenesis [28,29] have been studied. It is remarkable
that the residual CP transformation could be systematically
classified according to the number of its zero elements [30].
The powerful computer algebra software GAP [31] has

been frequently used to investigate the lepton mixing
matrices achievable from finite discrete groups [32–42].
In this paper, we shall include the generalized CP sym-
metry and perform a comprehensive scan of all finite
subgroups up to order 2000 with the help of GAP. The
CP transformations are assumed to correspond to class-
inverting automorphisms of the flavor symmetry group. All
the possible residual flavor symmetries would be consid-
ered. We shall find out all the admissible lepton mixing
patterns which can be compatible with the experimental
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data for certain values of the free parameter θ. To our
surprise, these viable lepton mixing matrices can be
categorized into eight cases up to permutations of rows
and columns, and they can be completely reproduced from

theΔð6n2Þ,Dð1Þ
9n;3n, A5, and Σð168Þ flavor symmetry groups

and CP symmetry. We give the analytic formulas of mixing
angles and CP invariants in each of these cases. Moreover,
we present the analytic expressions for the effective
Majorana neutrino mass jmeej in neutrinoless double beta
decay and the lepton asymmetry parameters ϵα (α ¼ e, μ, τ)
relevant to leptogenesis. Furthermore, the allowed values of
jmeej and the baryon asymmetry YB are analyzed numeri-
cally for the smallest values of the index n that admit a good
agreement with the experimental data on the mixing angles.
This paper is structured as follows: we shall elaborate the

method to obtain the lepton mixing Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix from any given residual
symmetry in the semidirect approach and the variant of the
semidirect approach in Sec. II. The mixing matrix can be
determined from the representation matrices of the residual
symmetry without reconstructing the lepton mass matrices.
We outline the procedure of group scanning in Sec. III. The
resulting mixing patterns which can accommodate the
experimental data, and the predictions for mixing angles
and CP invariants are presented. Moreover, the phenom-
enological predictions for 0νββ decay and flavored thermal
leptogenesis are studied. Finally we conclude in Sec. IV. In
Appendix, we derive the criteria to determine whether two
residual symmetries leads to the same mixing pattern, if the
redefinition of the free parameter θ is used.

II. FRAMEWORK

Both family symmetry and CP symmetry act on the
flavor space in a nontrivial way, and the interplay between
them should be treated carefully. In order to consistently
combine the generalized CP symmetry with a flavor
symmetry group Gf, the CP transformation should be
related to an automorphism u∶ Gf → Gf, and the so-called
consistency condition has to be fulfilled [4,5,43],

Xrρ
�
rðgÞX†

r ¼ ρrðuðgÞÞ; ∀ g ∈ Gf; ð2:1Þ

where the subscript “r” refers to the representation space
acted on, ρrðgÞ is the representation matrix of the element g,
and Xr is the generalized CP transformation. For a given
CP transformation Xr, ρrðhÞXr with h ∈ Gf also satisfies
the consistency equation of Eq. (2.1), and consequently it is
an admissible CP transformation as well. Obviously
ρrðhÞXr corresponds to performing a flavor symmetry
transformation ρrðhÞ followed by a CP transformation
Xr. It is easy to check that the generalized CP trans-
formation ρrðhÞXr maps the group element g into
huðgÞh−1. Hence, the automorphism related to ρrðhÞXr
is a composition of u and an inner automorphism

μh∶ g → hgh−1 with h; g ∈ Gf. This implies that the effect
of the inner automorphism μh amounts to a flavor sym-
metry transformation ρrðhÞ. As a result, one could focus
on the outer automorphism of Gf when searching for the
most general CP transformations compatible with Gf.
Furthermore, it has been shown that the physically well-
defined CP transformations should be given by the class-
inverting automorphism of Gf [44]. In other words, the
automorphism u should map each class of Gf into its
inverse class. In the present work, we shall be concerned
with the CP transformations corresponding to the class-
inverting automorphisms.
Let us now consider a theory with both flavor symmetry

Gf and CP symmetry HCP which denotes the CP trans-
formations consistent withGf. Thus, the original symmetry
at a high energy scale is generically Gf ⋊ HCP. Notice that
the mathematical structure of the group comprising Gf and
HCP is a semidirect product [4] because the flavor
symmetry and CP transformations are not commutable
in general. The experimental data clearly shows that all
lepton masses are unequal and there is flavor mixing among
the three mass eigenstates. Therefore, the parent symmetry
Gf ⋊ HCP should be broken down to different residual
subgroups Gl ⋊ Hl

CP and Gν ×Hν
CP in the charged lepton

and neutrino sectors, respectively. It is remarkable that the
lepton flavor mixing is fully fixed by the group structure of
Gf ⋊ HCP and the residual symmetries [7,8]. The details of
the breaking mechanisms realizing the assumed residual
symmetries are irrelevant. Assuming that neutrinos are
Majorana particles, the mass terms of leptons obtained
through flavor and CP symmetry breaking take the
following form:

Lm ¼ −lRmllL −
1

2
νTLCmννL þ H:c:; ð2:2Þ

where C is the charge conjugation matrix, lL ≡
ðeL; μL; τLÞT and lR ≡ ðeR; μR; τRÞT denote the three left-
handed (LH) and right-handed (RH) charged lepton fields,
respectively, and νL ≡ ðνeL; νμL; ντLÞT contains the three
LH neutrino fields. Both the charged lepton and neutrino
mass matrices ml and mν are subject to the constraints of
the remnant symmetries, such that the lepton mixing matrix
can be fixed. Bottom-up analysis shows that the residual
flavor symmetry Gl can be any Abelian subgroup of Gf

while Gν is either a K4 ≅ Z2 × Z2 Klein subgroup or a Z2

subgroup for Majorana neutrinos [7,8]. If the remnant
flavor symmetry Gν is restricted to be a Klein subgroup of
Gf and the left-handed leptons lL transform as three
unequivalent one-dimensional representations under Gl,
both the lepton mixing angles and Dirac CP violating
phase would be fully determined by residual symmetries.
This scenario has been studied comprehensively in the
literature [33,40,45]. The Majorana CP phase α31 would be
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predicted to be trivial and another Majorana phase α21 can
only be a rational multiple of π after the CP symmetry is
taken into account [8].
In this work, we shall discuss two different types of

remnant symmetries dubbed as “semidirect” and “variant of
semidirect” approaches. In the semidirect approach, the
residual symmetry in the neutrino sector is Z2 ×Hν

CP while
Gl is able to distinguish among the three generations of
charged lepton fields. As a result, one column of the PMNS
matrix is completely fixed by the residual symmetries in
this case. In the variant of the semidirect approach, the
remnant symmetries in the charged lepton and neutrino
sectors are assumed to be Z2 ×Hl

CP and K4 ×Hν
CP,

respectively, and one row of the PMNS matrix can be
fixed. It turns out that the lepton mixing matrix depends on
a single real parameter θ in both approaches. Consequently
the mixing angles and CP violating phases are strongly
correlated with each other. In the following, the master
formula of the prediction for lepton flavor mixing would be
derived. As usual the three generations of left-handed
leptons are assigned to a faithful irreducible three-
dimensional representation of Gf which is denoted as 3
henceforth.

A. Semidirect approach

We first analyze the residual symmetry constraints in the
charged lepton sector. The requirement that Gl ⋊ Hl

CP is a
symmetry of the charged lepton mass matrix ml entails that
the Hermitian combination m†

l ml should be invariant under
the action of Gl ⋊ Hl

CP, i.e.,

ρ†3ðglÞm†
l mlρ3ðglÞ ¼ m†

l ml; gl ∈ Gl; ð2:3Þ

X†
l3m

†
l mlXl3 ¼ ðm†

l mlÞ�; Xl3 ∈ Hl
CP: ð2:4Þ

The residual flavor symmetry Gl and the residual CP
symmetry Hl

CP have to be compatible with each other such
that the following restricted consistency equation must be
satisfied [7,8,12]:

Xlrρ
�
rðglÞX−1

lr ¼ ρrðg−1l Þ; gl ∈Gl; Xlr ∈Hl
CP: ð2:5Þ

The Hermitian matrix m†
l ml is diagonalized by the unitary

transformation Ul with U†
l m

†
l mlUl ¼ diagðm2

e; m2
μ; m2

τÞ.
The explicit form of m†

l ml could be constructed from
Eqs. (2.3) and (2.4), and thus Ul can be determined. In fact,
one can directly extract the constraints on Ul from
Eqs. (2.3) and (2.4) without resorting to mass matrix
m†

l ml as follows:

U†
l ρ3ðglÞUl ¼ ρdiag3 ðglÞ; ð2:6Þ

U†
l Xl3U�

l ¼ Xdiag
l3 ; ð2:7Þ

where ρdiag3 ðglÞ and Xdiag
l3 are diagonal phase matrices. We

see that the residual CP transformation Xl3 should be a
symmetric unitary matrix, and ρ3ðglÞ and m†

l ml can be
diagonalized by the same unitary matrix Ul. Given a
specific residual symmetry group Gl and the three-
dimensional representation of Gf, the three normalized
and mutually orthogonal eigenvectors of ρ3ðglÞ can be
easily found and they constitute a unitary matrix Σl

fulfilling Σ†
l ρ3ðglÞΣl ¼ ρdiag3 ðglÞ. We consider a scenario

in which the three generations of left-handed leptons can be
distinguished by Gl, and no further assumption or pre-
diction is made about the charged lepton masses. Therefore,
Ul is uniquely fixed up to permutations and phases of its
column vectors, i.e.,

Ul ¼ ΣlPlQl; ð2:8Þ

where Ql is an arbitrary diagonal phase matrix, and Pl is a
permutation matrix. Moreover, it is straightforward to
check that the constraint of Eq. (2.7) arising from remnant
CP is automatically fulfilled for the admissible CP trans-
formation Xlr satisfying the restricted consistency condi-
tion in Eq. (2.5). That is to say, the mixing matrix Ul of
charged leptons is fully determined by the residual flavor
symmetry Gl, and the residual CP symmetry Hl

CP does not
lead to additional new constraints in the semidirect
approach.
Then we proceed to the neutrino sector. The invariance

of the neutrino mass matrix mν under the action of the
residual symmetry Z2 ×Hν

CP gives rise to

ρT3 ðgνÞmνρ3ðgνÞ ¼ mν; gν ∈ Gν; ð2:9Þ

XT
ν3mνXν3 ¼ m�

ν; Xν3 ∈ Hν
CP; ð2:10Þ

where gν is the generator of the residual flavor symmetry
Gν ¼ Z2 such that the equality g2ν ¼ 1 is satisfied. The
restricted consistency condition reads as

Xνrρ
�
rðgνÞX−1

νr ¼ ρrðgνÞ; gν ∈Gν; Xνr ∈Hν
CP: ð2:11Þ

We denote the diagonalization matrix of mν as Uν which
fulfills UT

νmνUν ¼ diagðm1; m2; m3Þ. Neutrino oscillation
experiments reveal that three light neutrino masses m1;2;3

are not degenerate. Inserting UT
νmνUν ¼ diagðm1; m2; m3Þ

into Eqs. (2.9), (2.10), we can derive the following
constraints on the unitary transformation Uν,

U†
νρ3ðgνÞUν ¼ diagð�1;�1;�1Þ; ð2:12Þ

U†
νXν3U�

ν ¼ diagð�1;�1;�1Þ≡Q2
ν; ð2:13Þ

where the “�” signs can be chosen independently. The
unitary matrix Qν ¼ diagð ffiffiffiffiffiffiffi�1

p
;

ffiffiffiffiffiffiffi�1
p

;
ffiffiffiffiffiffiffi�1

p Þ is diagonal,
and its nonvanishing entries are �1 or �i. Obviously the

CP SYMMETRY AND LEPTON MIXING FROM A SCAN … PHYSICAL REVIEW D 94, 073006 (2016)

073006-3



residual CP transformation Xν3 is a unitary symmetric
matrix as well. Since gν is an element of order two and its
representation matrix ρ3ðgνÞ satisfies ρ23ðgνÞ ¼ 1, the eigen-
values of ρ3ðgνÞ can only be þ1 or −1. Without loss of
generality, we choose the three eigenvalues of ρ3ðgνÞ
to be þ1, −1, and −1, respectively. In the following, we
shall list the procedures of how to extract the prediction
for Uν.
First, ρ3ðgνÞ can be diagonalized by a unitary matrix Σν1

with

Σ†
ν1ρ3ðgνÞΣν1 ¼ diagð1;−1;−1Þ: ð2:14Þ

Note that Σν1 is determined up to a unitary rotation of the
second and third column vectors because ρ3ðgνÞ has two
degenerate eigenvalues −1. Subsequently plugging the
expression ρ3ðgνÞ ¼ Σν1diagð1;−1;−1ÞΣ†

ν1 into the con-
sistency condition of Eq. (2.11), we obtain

Σ†
ν1Xν3Σ�

ν1diagð1;−1;−1Þ ¼ diagð1;−1;−1ÞΣ†
ν1Xν3Σ�

ν1;

ð2:15Þ

which implies that Σ†
ν1XνΣ�

ν1 is a block-diagonal matrix,
and it is of the form

Σ†
ν1Xν3Σ�

ν1 ¼
�
eiγ 0

0 u2×2

�
; ð2:16Þ

where u2×2 is a symmetric unitary matrix, and it can be
written as u2×2 ¼ σ2×2σ

T
2×2 by performing the Takagi

factorization. As a consequence, the residual CP trans-
formation Xν3 can be factorized as

Xν3 ¼ ΣνΣT
ν ; ð2:17Þ

where Σν ¼ Σν1Σν2 with

Σν2 ¼
�
eiγ=2 0

0 σ2×2

�
: ð2:18Þ

It is easy to check that the residual flavor symmetry
transformation ρ3ðgνÞ can be diagonalized by Σν as well,

Σ†
νρ3ðgνÞΣν ¼ diagð1;−1;−1Þ: ð2:19Þ

Then we discuss the constraint onUν from the remnant CP.
Substituting the relation Xν3 ¼ ΣνΣT

ν of Eq. (2.17) into
Eq. (2.13), we have

ðQ†
νU

†
νΣνÞðQ†

νU
†
νΣνÞT ¼ 1: ð2:20Þ

This implies that the combination Q†
νU

†
νΣν is a orthogonal

matrix, and it is also a unitary matrix. Therefore,Q†
νU

†
νΣν is

a real orthogonal matrix denoted by O3×3. Then the unitary
transformation Uν takes the following form:

Uν ¼ ΣνOT
3×3Q

†
ν: ð2:21Þ

This indicated that Uν is fixed up to a real orthogonal
matrix O3×3 by the remnant CP transformation Xν3 [7].
Furthermore, Uν is subject to the constraint of residual Z2

flavor symmetry shown in Eq. (2.12), i.e.,

U†
νρ3ðgνÞUν ¼ PT

ν diagð1;−1;−1ÞPν; ð2:22Þ

where Pν is a permutation matrix, because the neutrino
masses cannot be pinned down in this approach and the
neutrino mass spectrum can be either normal ordering (NO)
or inverted ordering (IO). One finds from Eq. (2.22) that

PνQνO3×3diagð1;−1;−1Þ ¼ diagð1;−1;−1ÞPνQνO3×3;

ð2:23Þ

which leads to

O3×3 ¼ PT
νST23ðθÞ; ð2:24Þ

where S23ðθÞ is a rotation matrix, it is given by

S23ðθÞ ¼

0
B@

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

1
CA: ð2:25Þ

As a result, the residual symmetry Z2 × CP of the neutrino
mass matrix enforces the unitary diagonalization matrix Uν

of the following form:

Uν ¼ ΣνS23ðθÞPνQ
†
ν: ð2:26Þ

Thus we summarize the lepton mixing matrix is determined
to be

U ¼ U†
l Uν ¼ Q†

l P
T
l Σ

†
lΣνS23ðθÞPνQ

†
ν: ð2:27Þ

Note that PMNS matrix only depends on one free
parameter θ, the phase matrix Ql can be absorbed into
the charged lepton fields, and the same result has been
obtained by using various methods [4,7]. This is our master
formula to extract the mixing matrix from the postulated
residual symmetry in semidirect approach. It would be
frequently exploited when we scan the finite groups in
Sec. III.

B. Variant of semidirect approach

In this scenario, the original symmetry Gf ⋊ HCP is
broken down to Z2 ×Hl

CP in the charged lepton sector. The
generator of the residual Z2 flavor symmetry group is called
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gl with g2l ¼ 1. For the symmetry Z2 ×Hl
CP to hold, the

charged lepton mass matrix has to fulfill

ρ†3ðglÞm†
l mlρ3ðglÞ ¼ m†

l ml; ð2:28Þ

X†
l3m

†
l mlXl3 ¼ ðm†

l mlÞ�; Xl3 ∈ Hl
CP: ð2:29Þ

The remnant symmetry Z2 ×Hl
CP is well defined only if

the restricted consistency condition is satisfied,

Xlrρ
�
rðglÞX−1

lr ¼ ρrðglÞ; Xlr ∈ Hl
CP: ð2:30Þ

From Eqs. (2.28) and (2.29), we find that the residual
symmetry Z2 ×Hl

CP leads to the following constraints on
the unitary transformation Ul:

U†
l ρ3ðglÞUl ¼ diagð�1;�1;�1Þ; ð2:31Þ

U†
l Xl3U�

l ¼ diagðeiαe ; eiαμ ; eiατÞ≡Q2
l ; ð2:32Þ

where Ql ¼ diagðeiαe=2; eiαμ=2; eiατ=2Þ and αe;μ;τ are real
parameters. Note that Xl3 should be symmetric, and the
entries of the diagonal matrix is�1 in Eq. (2.31) because gl
is of order two here. We assume that the eigenvalues of
ρ3ðglÞ are þ1, −1, and −1 without loss of generality. In the
same fashion as we analyze the neutrino sector in the
semidirect approach, a proper Takagi factorization of Xl3
can be found to satisfy

Xl3 ¼ ΣlΣT
l ; Σ†

l ρ3ðglÞΣl ¼ diagð1;−1;−1Þ; ð2:33Þ
where Σl is a unitary matrix. Substituting Xl3 from this
equation in Eq. (2.32) we obtain

ðQ†
l U

†
lΣlÞðQ†

l U
†
lΣlÞT ¼ 1: ð2:34Þ

Hence, Q†
l U

†
lΣl is a real orthogonal matrix denoted as

O3×3, and thus Ul can be expressed as

Ul ¼ ΣlOT
3×3Q

†
l : ð2:35Þ

Furthermore, we take into account the constraint of the
residual Z2 flavor symmetry,

U†
l ρ3ðglÞUl ¼ PT

l diagð1;−1;−1ÞPl; ð2:36Þ

where Pl is a permutation matrix since no prediction can be
made for the charged lepton masses. Inserting Eq. (2.35)
into Eq. (2.36), we obtain

ðPlQlO3×3Þdiagð1;−1;−1Þ ¼ diagð1;−1;−1ÞðPlQlO3×3Þ:
ð2:37Þ

As a consequence, O3×3 can only be a block-diagonal
rotation matrix

O3×3 ¼ PT
l S

T
23ðθÞ: ð2:38Þ

Hence the charged lepton mass matrix m†
l ml can be

diagonalized by

Ul ¼ ΣlS23ðθÞPlQ
†
l : ð2:39Þ

In the neutrino sector, the residual flavor symmetry Gν is
identified with a Klein group,

Gν ¼ f1; gν1; gν2; gν3g ð2:40Þ

with the properties

g2νi¼ 1; gνigνj¼ gνjgνi¼ gνk; for i≠ j≠ k: ð2:41Þ

The residual CP symmetryHν
CP arises from the breaking of

HCP, and it has to be compatible with residual flavor
symmetry Gν,

Xνrρ
�
rðgνiÞX−1

νr ¼ ρrðgνiÞ; Xνr ∈Hν
CP; i¼ 1;2;3: ð2:42Þ

The Gν ×Hν
CP transformation on νL leaves the Majorana

neutrino mass term in Eq. (2.2) invariant. This implies that

ρT3 ðgνiÞmνρ3ðgνiÞ ¼ mν; i ¼ 1; 2; 3; ð2:43Þ

XT
ν3mνXν3 ¼ m�

ν; Xν3 ∈ Hν
CP: ð2:44Þ

Equivalently, the neutrino diagonalization matrix Uν

should satisfy

U†
νρ3ðgνiÞUν ¼ diagð�1;�1;�1Þ; ð2:45Þ

U†
νXν3U�

ν ¼ diagð�1;�1;�1Þ≡Q2
ν; ð2:46Þ

where Qν ¼ diagð ffiffiffiffiffiffiffi�1
p

;
ffiffiffiffiffiffiffi�1

p
;

ffiffiffiffiffiffiffi�1
p Þ. As gνi is of order

two, we have det ðρ3ðgνiÞÞ ¼ �1. Thus, each residual
flavor symmetry transformation ρ3ðgνiÞ has a unique
normalized eigenvector vi with eigenvalue equal to
det ðρ3ðgνiÞÞ. These three unique eigenvectors vi (i ¼ 1,
2, 3, one for each nontrivial Klein group element) constitute
a unitary matrix Σ0

ν ≡ ðv1; v2; v3Þ. It is easy to see that Σ0
ν

simultaneously diagonalizes all the three representation
matrices ρ3ðgνiÞ. Therefore, Uν coincides with Σ0

ν up to an
arbitrary diagonal phase matrix Q0

ν and permutation matrix
Pν multiplied from the right-handed side,

Uν ¼ Σ0
νPνQ0

ν: ð2:47Þ

From the consistency condition of Eq. (2.42), we can
straightforwardly derive that the remnant CP transforma-
tion Xν3 would be diagonalized by Σ0

ν as follows:

Σ0†
ν Xν3Σ0�

ν ¼ diagðeiβe ; eiβμ ; eiβτÞ≡D2
ν; ð2:48Þ
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where Dν ¼ diagðeiβe=2; eiβμ=2; eiβτ=2Þ and βe;μ;τ are real.
The diagonal matrix Q0

ν would contribute to the Majorana
CP phases. Considering the constraint of the remnant CP
transformation in Eq. (2.46) and using the relation of
Eq. (2.48), we find

Q0
ν ¼ PT

νDνPνQ
†
ν: ð2:49Þ

Therefore, the unitary matrixUν is uniquely determined (up
to permutations and phases of the column vectors)

Uν ¼ Σ0
νDνPνQ

†
ν ≡ ΣνPνQ

†
ν; ð2:50Þ

where we have denoted Σν ¼ Σ0
νDν. Hence in this

approach, the master formula for constructing the PMNS
matrix is given by

U ¼ U†
l Uν ¼ QlPT

l S
T
23ðθÞΣ†

lΣνPνQ
†
ν; ð2:51Þ

whereQl is unphysical as it can be absorbed by redefinition
of the charged lepton fields. In contrast with the semidirect
approach, one row instead of one column is fixed by the
remnant symmetries while the PMNS matrix depends on a
single free parameter θ in both cases.
Notice that if another pair of remnant subgroups

fG0
l ⋊ Hl0

CP; G
0
ν ×Hν0

CPg are conjugate to fGl ⋊ Hl
CP;

Gν ×Hν
CPg under a group element of Gf, i.e.,

G0
l ¼ hGlh−1; G0

ν ¼ hGνh−1; h ∈ Gf; ð2:52Þ

Hl0
CP ¼ ρrðhÞHl

CPρ
T
r ðhÞ; Hν0

CP ¼ ρrðhÞHν
CPρ

T
r ðhÞ:

ð2:53Þ

The unitary diagonalization matrices of the charged lepton
and neutrino would be related by U0

l ¼ ρ3ðhÞUl and
U0

ν ¼ ρ3ðhÞUν. As a consequence, the same result for
the PMNS matrix would be obtained. In Appendix, we
present the most general criteria to determine whether the
predicted PMNS for different residual symmetries are
equivalent. We would like to emphasize that in our
approach the lepton flavor mixing patterns are completely
determined by the structure of flavor symmetry group Gf

and the assumed symmetry breaking patterns, and they are
independent of the details of a specific implementation,
such as the particle content of the flavor symmetry breaking
sector or the possible additional symmetries of the theory.

III. LEPTON MIXING FROM SCAN OF FINITE
GROUPS AND PHENOMENOLOGY

In this section, we shall perform an exhaustive scan over
the discrete groups of order less than 2000 with the help of
the computer algebra program GAP [31], and all the possible
lepton mixing patterns achievable from the semidirect
approach and the variant of the semidirect approach would

be studied. In order to avoid duplicating subgroups which
have been scanned, we shall only consider the groups with
faithful three-dimensional irreducible representations. In
our previous work, the possible lepton flavor mixing from
flavor symmetry breaking (without generalized CP) has
been systematically analyzed [40], and all discrete groups
of size smaller than 2000 are considered by using GAP. The
CP symmetry would be taken into account further in the
present work.
As a proper generalized CP symmetry corresponds to a

class-inverting automorphism of the flavor symmetry group
[44], we should first determine whether a finite group
has a class-inverting automorphism. The GAP command
AutomorphismGroup(.) can be exploited to obtain all the
automorphisms of a given groupGf; then we can search for
the existence of class-inverting automorphisms which map
the classes of Gf into their inverse. However, this might be
a tough job for groups of large order, since there are
generically a large amount of automorphisms. We notice
that all the automorphisms of Gf constitute a group called
automorphism group AutðGfÞ. The inner automorphism
group InnðGfÞ is generated by the group conjugation
μh∶ g → hgh−1 with h; g ∈ Gf. InnðGfÞ is a normal sub-
group of AutðGfÞ, and it can be easily obtained by using
the command InnerAutomorphismsAutomorphismGroup
(.). Obviously the inner automorphism maps each conju-
gacy class into itself. As a result, if u is a class-inverting
automorphism, so will be the composition μh∘u. The
search for a class-inverting automorphism can be greatly
simplified by considering the quotient group OutðGfÞ≡
AutðGfÞ=InnðGfÞ which is called the outer automorphism
group. OutðGfÞ can be obtained by the GAP command
NaturalHomomorphismByNormalSubgroup(.). If there
exists a class-inverting outer automorphism, a generalized
CP transformation consistent with Gf can be imposed for a
generic field content. For a class-inverting outer auto-
morphism u, the corresponding CP transformation X0r
can be fixed by solving the consistency equation

X0rρ
�
rðgÞX−1

0r ¼ ρrðuðgÞÞ; g ∈ Gf: ð3:1Þ

Note that it is sufficient to impose this consistency equation
on the generators of Gf. Including the contribution of the
inner automorphism, the most general CP transformation
compatible with the flavor symmetry Gf takes the form

Xr ¼ ρrðhÞX0r; h ∈ Gf: ð3:2Þ

On the other hand, if Gf doesn’t possess a class-inverting
automorphism, CP symmetry can only be introduced in the
case that a special subset of irreducible representations is
present in a model. We shall not consider such flavor
symmetry since the generalized CP symmetry and the
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resulting predictions for lepton mixing are model
dependent.
The residual flavor symmetries Gl and Gν are Abelian

subgroups of the flavor symmetry Gf [7,8,40]. Hence we
find all the Abelian subgroups of Gf with GAP, and the
corresponding group structures and generators are
extracted. For a generic residual flavor symmetry group
GR which can be either Gl or Gν, the residual CP trans-
formation XRr ¼ ρrðfRÞX0r with fR ∈ Gf should be a
symmetric unitary matrix and it satisfies the consistency
condition

XRrρ
�
rðhRÞX−1

Rr ¼ ρrðh−1R Þ; hR ∈ GR; ð3:3Þ

which gives rise to

f−1R h−1R fR ¼ uðhRÞ: ð3:4Þ

The permissible solutions to fR can be straightforwardly
found by GAP. Notice that GR is an Abelian group;
therefore, all the elements in the right coset GRfR also
satisfy Eq. (3.4) for a given solution fR. In other words,
ρrðhRÞXRr with hR ∈ GR is also an admissible residual CP
transformation, and it imposes the same constraints on the
lepton mass matrices as XRr because of the remnant flavor
symmetry invariance. In this manner, we can find out all the
possible remnant CP symmetries Hl

CP and Hν
CP which are

compatible with the postulated remnant flavor symmetry
groups Gl and Gν, respectively.
Our comprehensive scan over the discrete finite group up

to order 2000 reveals that there are 574 groups which
possess both faithful three-dimensional irreducible repre-
sentation and class-inverting automorphism. For each of the
574 groups, the class-inverting automorphism and the
corresponding CP transformation X0r in the triplet repre-
sentation, its Abelian subgroups as well as the residual CP
transformations are calculated. Furthermore, we investigate
the possible lepton mixing patterns achievable from the
semidirect approach and the variant of the semidirect
approach by considering all the admitted residual sym-
metries. The predictions for the PMNS matrix are obtained
by using the master formulas in Eqs. (2.27) and (2.51). In
order to measure quantitatively how well the obtained
mixing patterns can explain the current experimental data,
we perform a conventional χ2 analysis. The χ2 function is
defined in the usual way

χ2 ¼
X

ij¼12;13;23

ðsin2θij − ðsin2θijÞbfÞ2
σ2ij

; ð3:5Þ

where sin2 θij are the mixing angles predicted for different
remnant symmetries, and they depend on the free parameter
θ:ðsin2θijÞbf denote the best fit values of the lepton mixing
angles and σij their corresponding 1σ errors. We use the

current global fit of neutrino oscillation data in Ref. [46].
The results of our analysis are available at the web site [47].
It is remarkable that we find many interesting mixing
patterns which can accommodate the experimental data on
lepton mixing for certain values of θ. Moreover, these
phenomenologically viable mixing patterns can be catego-
rized into several cases, as will be shown below.

A. Mixing patterns derived from semidirect approach

In this section we shall report the lepton mixing patterns
which can be obtained in the semidirect approach. The
contributions of the permutations of the rows and columns
would be considered. We shall give the analytical expres-
sions for mixing angles and CP invariants JCP, I1, and I2.
Moreover, the resulting phenomenological implications in
neutrinoless double beta decay and leptogenesis will be
discussed. In the following, three rotation matrices S12ðθÞ,
S13ðθÞ, and S23ðθÞ would be used with the convention

S12ðθÞ ¼

0
B@

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

1
CA;

S13ðθÞ ¼

0
B@

cos θ 0 sin θ

0 1 0

− sin θ 0 cos θ

1
CA;

S23ðθÞ ¼

0
B@

1 0 0

0 cos θ − sin θ

0 sin θ cos θ

1
CA: ð3:6Þ

The permutation matrices Pl and Pν in Eq. (2.27) can take
the following six forms:

P123¼

0
B@
1 0 0

0 1 0

0 0 1

1
CA; P231¼

0
B@
0 1 0

0 0 1

1 0 0

1
CA;

P312¼

0
B@
0 0 1

1 0 0

0 1 0

1
CA; P132¼

0
B@
1 0 0

0 0 1

0 1 0

1
CA;

P213¼

0
B@
0 1 0

1 0 0

0 0 1

1
CA; P321¼

0
B@
0 0 1

0 1 0

1 0 0

1
CA: ð3:7Þ

It is known that if the second and third rows of the PMNS
matrix are exchanged, the atmosphere mixing angle θ23
becomes π=2 − θ23, the Dirac CP phase δCP becomes
π þ δCP, and other mixing parameters are invariant.
Therefore, generically the two permutations of a certain
pattern related through the exchange of the second and third
rows of the PMNS matrix can (or cannot) accommodate the
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experimental data on mixing angles simultaneously, as will
be shown in the following.
Case I(a)

UIðaÞ ¼ 1ffiffiffi
3

p

0
BB@

ffiffiffi
2

p
sinφ1 eiφ2

ffiffiffi
2

p
cosφ1ffiffiffi

2
p

cosðφ1− π
6
Þ −eiφ2 −

ffiffiffi
2

p
sinðφ1− π

6
Þffiffiffi

2
p

cosðφ1þ π
6
Þ eiφ2 −

ffiffiffi
2

p
sinðφ1þ π

6
Þ

1
CCA

×S23ðθÞQ†
ν; ð3:8Þ

where φ1 and φ2 are rational angles, and they are
determined by the residual symmetries. The mixing pat-
terns originating from the permutations of rows are related
to this matrix through a redefinition of the parameters φ1

and θ. The viable values of φ1 and φ2 and the

corresponding representative flavor symmetry groups are
collected in Table I. Note that the mixing patterns with the
signs of φ1 and φ2 reversed can also be produced, and the
same predictions for the mixing angles are obtained except
all the CP phases become their opposite. However, these
viable values are not shown in Table I in order not to
appear too lengthy. From this table, we can see that most
of the groups can predict more than one mixing patterns,
and some groups predict the same mixing patterns. We
only show one or two representative flavor symmetry
groups in Table I, and a full summary of the results is
available at our web site [47]. The subscripts Δ and Δ0 of
the group identity denote that the corresponding groups

belong to the type D group series Dð0Þ
n;n ≅ Δð6n2Þ and

Dð1Þ
9n0;3n0 ≅ ðZ9n0 ×Z3n0 Þ⋊ S3, respectively. It is notable that

TABLE I. The predictions for the PMNS matrix of the form UIðaÞ, where the first column shows the group identification in the GAP

system, and the second column displays the achievable values of the parameters φ1 and φ2. We have shown, at most, two representative
flavor symmetry groups in the first column. If there is only one group predicting the corresponding values of φ1 and φ2 in the second
column, this unique group would be listed. The full results of our analysis are provided at the web site [47]. The subscripts Δ and Δ0

indicate that the corresponding groups belong to the type D group series Dð0Þ
n;n ≅ Δð6n2Þ and Dð1Þ

9n0;3n0 ≅ ðZ9n0 × Z3n0 Þ ⋊ S3, respectively.

Group Id ðφ1;φ2Þ
½24; 12�

▵
, [48, 48] ðπ

2
; π
2
Þ

½150; 5�
▵
, [300, 26] ð7π

15
;− π

5
Þ, ð7π

15
; 0Þ, ð7π

15
; 2π
5
Þ, ð8π

15
;− π

5
Þ, ð8π

15
; 0Þ, ð8π

15
; 2π
5
Þ

[162, 10], [162, 12] ð5π
9
; 0Þ, ð5π

9
; π
3
Þ

½294; 7�
▵
, [588, 39] ð10π

21
;− 3π

7
Þ, ð10π

21
;− 2π

7
Þ, ð10π

21
;− π

7
Þ, ð10π

21
; 0Þ, ð11π

21
;− 3π

7
Þ, ð11π

21
;− 2π

7
Þ, ð11π

21
;− π

7
Þ, ð11π

21
; 0Þ

½384; 568�
▵
,

[768, 1085727]
ð11π
24

;− π
4
Þ, ð11π

24
; 0Þ, ð11π

24
; π
8
Þ, ð11π

24
; 3π
8
Þ, ð11π

24
; π
2
Þ, ðπ

2
;− 3π

8
Þ, ð13π

24
;− π

4
Þ, ð13π

24
; 0Þ, ð13π

24
; π
8
Þ, ð13π

24
; 3π
8
Þ, ð13π

24
; π
2
Þ

½600; 179�
▵
,

[1200, 1011]
ð7π
15
; π
10
Þ, ð7π

15
; 3π
10
Þ, ð7π

15
; π
2
Þ, ðπ

2
;− 2π

5
Þ, ðπ

2
;− 3π

10
Þ, ð8π

15
; π
10
Þ, ð8π

15
; 3π
10
Þ, ð8π

15
; π
2
Þ

½648; 259�
▵
0 , [648,

260]
ðπ
2
; π
3
Þ, ð5π

9
;− π

6
Þ, ð5π

9
; π
2
Þ

½726; 5�
▵
, [1452, 23] ð5π

11
;− 2π

11
Þ, ð5π

11
; 0Þ, ð5π

11
; π
11
Þ, ð5π

11
; 3π
11
Þ, ð5π

11
; 4π
11
Þ, ð5π

11
; 5π
11
Þ, ð16π

33
;− 5π

11
Þ, ð16π

33
;− 3π

11
Þ, ð16π

33
;− 2π

11
Þ, ð16π

33
;− π

11
Þ, ð16π

33
; 0Þ,

ð16π
33

; 4π
11
Þ, ð17π

33
;− 5π

11
Þ, ð17π

33
;− 3π

11
Þ, ð17π

33
;− 2π

11
Þ, ð17π

33
; 4π
11
Þ, ð6π

11
;− 2π

11
Þ, ð6π

11
; 0Þ, ð6π

11
; π
11
Þ, ð6π

11
; 3π
11
Þ, ð6π

11
; 4π
11
Þ, ð6π

11
; 5π
11
Þ

½1014; 7�
▵ ð6π

13
;− 5π

13
Þ, ð6π

13
;− 3π

13
Þ, ð6π

13
; 0Þ, ð6π

13
; π
13
Þ, ð6π

13
; 2π
13
Þ, ð6π

13
; 4π
13
Þ, ð6π

13
; 6π
13
Þ, ð19π

39
;− 5π

13
Þ, ð19π

39
;− 3π

13
Þ, ð19π

39
; 0Þ, ð19π

39
; π
13
Þ, ð19π

39
; 2π
13
Þ,

ð19π
39

; 4π
13
Þ, ð19π

39
; 6π
13
Þ, ð20π

39
;− 5π

13
Þ, ð20π

39
;− 3π

13
Þ, ð20π

39
; 4π
13
Þ, ð20π

39
; 6π
13
Þ, ð7π

13
;− 5π

13
Þ, ð7π

13
;− 3π

13
Þ, ð7π

13
; 0Þ, ð7π

13
; π
13
Þ, ð7π

13
; 2π
13
Þ,

ð7π
13
; 4π
13
Þ, ð7π

13
; 6π
13
Þ

½1176; 243�
▵ ð19π

42
;− 3π

7
Þ, ð19π

42
;− 2π

7
Þ, ð19π

42
;− π

7
Þ, ð19π

42
; 0Þ, ð19π

42
; π
14
Þ, ð19π

42
; 3π
14
Þ, ð19π

42
; 5π
14
Þ, ð19π

42
; π
2
Þ, ð10π

21
; π
14
Þ, ð10π

21
; 3π
14
Þ, ð10π

21
; 5π
14
Þ, ð10π

21
; π
2
Þ,

ðπ
2
;− 3π

7
Þ, ðπ

2
; 2π
7
Þ, ðπ

2
; 5π
14
Þ, ð11π

21
; π
14
Þ, ð11π

21
; 3π
14
Þ, ð11π

21
; 5π
14
Þ, ð11π

21
; π
2
Þ, ð23π

42
;− 3π

7
Þ, ð23π

42
;− 2π

7
Þ, ð23π

42
;− π

7
Þ, ð23π

42
; 0Þ, ð23π

42
; π
14
Þ,

ð23π
42

; 3π
14
Þ, ð23π

42
; 5π
14
Þ, ð23π

42
; π
2
Þ

½1458; 659�
▵
0 ,

[1458, 663]
ð13π
27

;− 2π
9
Þ, ð13π

27
;− π

9
Þ, ð13π

27
; 0Þ, ð13π

27
; π
3
Þ, ð13π

27
; 4π
9
Þ, ð14π

27
;− 2π

9
Þ, ð14π

27
;− π

9
Þ, ð14π

27
; 0Þ, ð14π

27
; π
3
Þ, ð14π

27
; 4π
9
Þ, ð5π

9
;− 2π

9
Þ, ð5π

9
; π
9
Þ,

ð5π
9
; 4π
9
Þ

½1536; 408544632�
▵ ð11π

24
;− 7π

16
Þ, ð11π

24
;− 5π

16
Þ, ð11π

24
;− π

16
Þ, ð11π

24
; 3π
16
Þ, ð23π

48
;− 5π

16
Þ, ð23π

48
;− 3π

16
Þ, ð23π

48
; 0Þ, ð23π

48
; π
16
Þ, ð23π

48
; π
8
Þ, ð23π

48
; π
4
Þ, ð23π

48
; 3π
8
Þ,

ð23π
48

; 7π
16
Þ, ð23π

48
; π
2
Þ, ðπ

2
; 5π
16
Þ, ðπ

2
; 7π
16
Þ, ð25π

48
;− 5π

16
Þ, ð25π

48
;− 3π

16
Þ, ð25π

48
; 0Þ, ð25π

48
; π
16
Þ, ð25π

48
; π
8
Þ, ð25π

48
; π
4
Þ, ð25π

48
; 3π
8
Þ, ð25π

48
; 7π
16
Þ,

ð25π
48

; π
2
Þ, ð13π

24
;− 7π

16
Þ, ð13π

24
;− 5π

16
Þ, ð13π

24
;− π

16
Þ, ð13π

24
; 3π
16
Þ

½1734; 5�
▵ ð23π

51
;− 8π

17
Þ, ð23π

51
;− 6π

17
Þ, ð23π

51
;− 4π

17
Þ, ð23π

51
;− 3π

17
Þ, ð23π

51
;− 2π

17
Þ, ð23π

51
;− π

17
Þ, ð23π

51
; 0Þ, ð23π

51
; 5π
17
Þ, ð23π

51
; 7π
17
Þ, ð8π

17
;− 8π

17
Þ,

ð8π
17
;− 7π

17
Þ, ð8π

17
;− 6π

17
Þ, ð8π

17
;− 5π

17
Þ, ð8π

17
;− 4π

17
Þ, ð8π

17
;− 3π

17
Þ, ð8π

17
;− 2π

17
Þ, ð8π

17
;− π

17
Þ, ð8π

17
; 0Þ, ð25π

51
;− 8π

17
Þ, ð25π

51
;− 6π

17
Þ,

ð25π
51

;− 5π
17
Þ, ð25π

51
;− 4π

17
Þ, ð25π

51
;− 3π

17
Þ, ð25π

51
; 7π
17
Þ, ð26π

51
;− 8π

17
Þ, ð26π

51
;− 6π

17
Þ, ð26π

51
;− 5π

17
Þ, ð26π

51
;− 4π

17
Þ, ð26π

51
; 7π
17
Þ, ð9π

17
;− 8π

17
Þ,

ð9π
17
;− 7π

17
Þ, ð9π

17
;− 6π

17
Þ, ð9π

17
;− 5π

17
Þ, ð9π

17
;− 4π

17
Þ, ð9π

17
;− 3π

17
Þ, ð9π

17
;− 2π

17
Þ, ð9π

17
;− π

17
Þ, ð9π

17
; 0Þ, ð28π

51
;− 8π

17
Þ, ð28π

51
;− 6π

17
Þ,

ð28π
51

;− 4π
17
Þ, ð28π

51
;− 3π

17
Þ, ð28π

51
;− 2π

17
Þ, ð28π

51
;− π

17
Þ, ð28π

51
; 0Þ, ð28π

51
; 5π
17
Þ, ð28π

51
; 7π
17
Þ

CHANG-YUAN YAO and GUI-JUN DING PHYSICAL REVIEW D 94, 073006 (2016)

073006-8



all these interesting mixing patterns can be obtained from the

Δð6n2Þ or Dð1Þ
9n0;3n0 flavor symmetry groups combined with

CP symmetry. In particular, widely studied smaller groups
S4 ≅ ½24; 12� and Δð96Þ ≅ ½96; 64� can admit a reasonably

good fit to the experimental data. This is compatible with the
known results in the literature [4,11,12,15,21]. From the

PMNSmatrixUIðaÞ
PMNS in Eq. (3.8), we can read out the lepton

mixing angles as follows:

sin2θ13 ¼
1

3
ð1þ cos2θ cos 2φ1 −

ffiffiffi
2

p
sin 2θ cosφ1 cosφ2Þ;

sin2θ12 ¼
1þ sin2θ cos 2φ1 þ

ffiffiffi
2

p
sin 2θ cosφ1 cosφ2

2 − cos2θ cos 2φ1 þ
ffiffiffi
2

p
sin 2θ cosφ1 cosφ2

;

sin2θ23 ¼
1 − cos2θ sin ðπ=6þ 2φ1Þ þ

ffiffiffi
2

p
sin 2θ cosφ2 sin ðπ=6 − φ1Þ

2 − cos2θ cos 2φ1 þ
ffiffiffi
2

p
sin 2θ cosφ1 cosφ2

: ð3:9Þ

We see that the solar and reactor mixing angles are
correlated as

3cos2θ12cos2θ13 ¼ 2sin2φ1: ð3:10Þ

For the experimentally measured values 0.270 ≤ sin2θ12 ≤
0.344 and 0.0188 ≤ sin2θ13 ≤ 0.0251 at 3σ level [46], we
find the allowed intervals of the parameter φ1 are

φ1 ∈ ½0.435π; 0.565π� ∪ ½1.435π; 1.565π�: ð3:11Þ

Obviously φ1 should be around π=2 or 3π=2. Moreover, the
three CP rephasing invariants JCP, I1, and I2 are predicted
to be

jJCPj ¼
1

6
ffiffiffi
6

p j sin 2θ sinφ2 sin 3φ1j;

jI1j ¼
4

9

��� cos θsin2φ1 sinφ2

�
cos θ cosφ2

þ
ffiffiffi
2

p
sin θ cosφ1

����;
jI2j ¼

4

9

��� sin θsin2φ1 sinφ2

�
sin θ cosφ2

−
ffiffiffi
2

p
cos θ cosφ1

����: ð3:12Þ

The above three CP invariants are conventionally defined
as [48–51]

JCP ≡ ℑðU11U33U�
13U

�
31Þ

¼ 1

8
sin 2θ12 sin 2θ13 sin 2θ23 cos θ13 sin δCP;

I1 ≡ ℑðU�2
11U

2
12Þ

¼ 1

4
sin22θ12cos4θ13 sin α21;

I2 ≡ ℑðU�2
11U

2
13Þ

¼ 1

4
sin22θ13cos2θ12 sinðα31 − 2δCPÞ; ð3:13Þ

where δCP is the Dirac CP violation phase, α21 and α31 are
the Majorana CP phases in the standard parametrization
of the lepton mixing matrix [52]. In this work, we shall
present the absolute values of JCP, I1, and I2 because the
signs of I1 and I2 depend on the CP parity of the neutrino
states which is encoded in the matrix Qν and the overall
signs of all the three CP invariant would be changed if the
left-handed lepton doublets are assigned to conjugate triplet
3 instead of 3.
Furthermore, we can derive the following exact sum rule

among the mixing angles and Dirac CP phase:

cos δCP ¼ cos 2θ23ð3 cos 2θ12 − 2sin2φ1Þ þ
ffiffiffi
3

p
sin 2φ1

3 sin 2θ12 sin θ13 sin 2θ23
:

ð3:14Þ

This sum rule can also be obtained from jUμ1j2 ¼
2cos2ðφ1 − π=6Þ=3 and jUτ1j2 ¼ 2cos2ðφ1 þ π=6Þ=3.
Because the parameter φ1 should be around π=2 or 3π=2
as shown in Eq. (3.11), the sum rule of Eq. (3.14) is
approximately

cos δCP ≃ ð3 cos 2θ12 − 2Þ cot 2θ23
3 sin 2θ12 sin θ13

: ð3:15Þ

This implies that δCP would be nearly maximal if the
atmospheric angle θ23 takes the maximal value θ23 ¼ π=4.
We allow the three mixing angles to freely vary in the
experimentally preferred 3σ ranges [46], then the sum rule
Eq. (3.15) leads to

−0.643 ≤ cos δCP ≤ 0.819: ð3:16Þ

Needless to say, the improved measurement of the mixing
angles, particularly θ12 and θ23, could help to make more
precise prediction for δCP in our framework.
If the light neutrinos with definite mass νi are Majorana

fermions, their exchange can trigger the neutrinoless
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double beta (0νββ) decay processes ðA; ZÞ → ðA; Z þ 2Þ þ
e− þ e− in which the total lepton number changes by two
units. Most importantly, the experimental detection of this
lepton number violating decay will proof the Majorana
nature of neutrinos. In addition, the lifetime of the 0νββ
decay is related to the neutrino masses so that its meas-
urement will also probe the unknown absolute neutrino
mass and hierarchy. The 0νββ decay amplitude has the
form A0νββ ¼ G2

FmeeM0νββ, where GF is the Fermi con-
stant, mee is the 0νββ decay effective Majorana mass and
M0νββ is the nuclear matrix element of the process. The
effective mass mee contains all the dependence of A0νββ on
the neutrino mixing parameters with [52]

jmeej ¼
����X3
i¼1

miU2
1i

����
¼ jm1cos2θ12cos2θ13 þm2sin2θ12cos2θ13eiα21

þm3sin2θ13eiðα31−2δCPÞj; ð3:17Þ
where m1;2;3 are the light Majorana neutrino masses. One
can see that mee depends on the values of the Majorana
phase α21 and the Majorana-Dirac phase difference
α31

0 ≡ α31 − 2δCP. We recall that the two heavier neutrino
masses can be expressed in terms of the lightest neutrino
mass and the two neutrino mass-squared differences
measured in neutrino oscillation experiments. For the
NO spectrum, one gets

m1 ¼ mlightest;

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lightest þ Δm2
21

q
;

m3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lightest þ Δm2
31

q
; ð3:18Þ

while for the IO spectrum

m1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lightest − Δm2
32 − Δm2

21

q
;

m2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

lightest − Δm2
32

q
;

m3 ¼ mlightest; ð3:19Þ

where Δm2
ij ¼ m2

i −m2
j . In our numerical analysis, we

shall use the best fit values of Δm2
21 and Δm2

31ð32Þ obtained
in the global analysis [46],

Δm2
21 ¼ 7.50 × 10−5 eV2;

Δm2
31 ¼ 2.457 × 10−3 eV2;

Δm2
32 ¼ −2.449 × 10−3 eV2; ð3:20Þ

where the quoted values of Δm2
31 and Δm2

32 correspond to
the NO and IO spectrums, respectively. The numerical
results would only change a little bit if the experimental

uncertainties of the neutrino mass-squared splittings are
considered. For the mixing pattern UIðaÞ, the effective
Majorana mass jmeej is given by

jmeej ¼
1

3

���2m1sin2φ1þq1m2

�
eiφ2 cosθþ

ffiffiffi
2

p
cosφ1 sinθ

�
2

þq2m3

� ffiffiffi
2

p
cosθcosφ1−eiφ2 sinθ

�
2
���; ð3:21Þ

where q1; q2 ¼ �1 originates from the ambiguity of the
CP parity matrix Qν. We show jmeej versus the lightest
neutrino mass mlightest in Fig. 1, where the three mixing
angles are required to lie in the 3σ regions. We display the
allowed ranges of the effective mass jmeej under the
assumption of φ1 and φ2 as free continuous parameters
and for the specific value of ðφ1;φ2Þ ¼ ðπ=2; π=2Þ. The
case of ðφ1;φ2Þ ¼ ðπ=2; π=2Þ can be naturally reproduced
from the S4 flavor symmetry combined with CP symmetry.
Accordingly jmeej is predicted to close to 0.017 eV or
around the upper bound 0.048 eV for the IO neutrino mass
spectrum, which is within the future sensitivity of forth-
coming 0νββ decay experiments. However, for the NO
spectrum, jmeej strongly depends on the lightest neutrino
mass mlightest, and it can even be approximately vanishing
for particular value of mlightest. Although exploring the NO
region experimentally is beyond the reach of any planned
experiment, if 0νββ decays are not observed and neutrino
oscillation experiments establish that the neutrino masses
are NO, it would be important to test jmeej values in the NO
region by combining the information on the absolute mass
scale from cosmology.
It is recently found that lepton flavor mixing as well

as leptogenesis is strongly constrained by the residual
discrete flavor and CP symmetries of the neutrino and
charged lepton sectors [29]. For the widely studied
scenario of leptogenesis in type-I seesaw model with a
hierarchical heavy neutrinos mass spectrum M2;3 ≫ M1,
the CP asymmetry generated by the N1 decay process
N1 → lα þH, α ¼ e, μ, τ process is approximately given
by [53–57]

ϵα ≡ ΓðN1 → HlαÞ − ΓðN1 → HlαÞP
α½ΓðN1 → HlαÞ þ ΓðN1 → HlαÞ�

¼ −
3M1

16πv2
ℑðPij

ffiffiffiffiffiffiffiffiffiffiffimimj
p mjR1iR1jU�

αiUαjÞP
jmjjR1jj2

; ð3:22Þ

where v is the Higgs vacuum expectation value given
by v ¼ 174 GeV, U is the PMNS matrix, and R is the
Casas-Ibarra parametrization of the neutrino Yukawa
matrix λ [58]:

R ¼ vM−1
2λUm−1

2; ð3:23Þ

whereM ≡ diagðM1;M2;M3Þ and m≡ diagðm1; m2; m3Þ.
One sees that R is a generic complex orthogonal matrix
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fulfilling RRT ¼ RTR ¼ 1. Besides the CP asymmetry
parameter ϵα, the final baryon asymmetry depends on
washout mass parameter ~mα for each flavor α with

~mα ¼
����X

j

m1=2
j R1jU�

αj

����2: ð3:24Þ

In the present work we will be concerned with temper-
ature window 109 GeV ≤ T ∼M1 ≤ 1012 GeV. In this
range only the interactions mediated by the τ Yukawa
coupling are in equilibrium, and the final baryon asym-
metry is well approximated by

YB ≃ −
12

37g�

�
ϵ2η

�
417

589
~m2

�
þ ϵτη

�
390

589
~mτ

�	
; ð3:25Þ

where g� is the effective number of spin degrees of
freedom in thermal equilibrium with g� ¼ 106.75 in the
Standard Model, ϵ2 ¼ ϵe þ ϵμ, ~m2 ¼ ~me þ ~mμ, and

ηð ~mαÞ≃
��

~mα

8.25 × 10−3 eV

�
−1

þ
�
0.2 × 10−3 eV

~mα

�−1.16	−1
: ð3:26Þ

Then we recapitulate the main results for leptogenesis
predicted by residual flavor and CP symmetries in
Ref. [29]. If both the neutrino Yukawa coupling and
the RH neutrino mass matrix (after the electroweak and
flavor symmetries breaking) are invariant under two sets
of residual CP transformation Xν1, Xν2 of the LH neutrino

fields νL and XN1, XN2 of the RH neutrino fields, or
equivalently a Z2 flavor symmetry and a CP symmetry
are preserved in the neutrino sector, the R matrix would
be constrained to be block diagonal [29],

PNRPT
ν ¼

0
B@

× 0 0

0 × ×

0 × ×

1
CA; ð3:27Þ

where the notation “×” denotes a nonzero matrix element,
and PN and Pν are the permutation matrices. In order to
generate a nonvanishing lepton asymmetry, there cannot
be two zero elements in the first row of the R matrix.
As a consequence, depending on the values of Pν, we
have three possible cases named C12, C13, and C23 [29],

C12∶ R ¼
�

× × 0

…

�
;

C13∶ R ¼
�

× 0 ×

…

�
;

C23∶ R ¼
�

0 × ×

…

�
: ð3:28Þ

Furthermore, each element of the Rmatrix is either real or
purely imaginary because of the residual CP invariance.
To facilitate the discussion, we introduce the notations

U0 ¼ UQν; R0 ¼ QNRQν; ð3:29Þ

where QN and Qν are the CP parity matrices of the RH
and LH neutrino fields, respectively, they are diagonal
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FIG. 1. Predictions for the 0νββ decay effective mass jmeej with respect to the lightest neutrino mass mlightest in case I. The left and
right panels are for the mixing patterns UIðaÞ and UIðbÞ, respectively. The red (blue) dashed lines indicate the most general allowed
regions for the IO (NO) spectrum obtained by varying the mixing parameters within their 3σ ranges [46]. The orange (cyan) areas denote
the achievable values of jmeej when φ1 and φ2 are taken to be free continuous parameters in the case of IO (NO). The purple and green
regions are the theoretical predictions of the smallest flavor symmetry group which can generate these two mixing patterns. Note that the
purple (green) region overlaps the orange (cyan) one. The present most stringent upper limits jmeej < 0.120 eV from EXO-200 [63,64]
and KamLAND-ZEN [65] is shown by a horizontal grey band. The vertical grey exclusion band is the current limit on mlightest from the
cosmological data of

P
mi < 0.230 eV by the Planck Collaboration [66].
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matrices with entries �1 and �i, and their values are not
constrained by residual symmetries. Thus, R0 would be a
block-diagonal real matrix, and it satisfies

X3
i¼1

R02
1iKi ¼ 1; ð3:30Þ

where Ki is equal to þ1 or −1 with

Ki ¼ ðQ2
NÞ11ðQ2

νÞii: ð3:31Þ

Moreover, for each case Cab with ab ¼ 12, 13, and 23
listed in Eq. (3.28), the lepton asymmetry ϵα and washout
mass ~mα can be written into a quite simple form

ϵα ¼ −
3M1

16πv2
WabIαab; ð3:32Þ

~mα ¼
���m1=2

a R0
1aU

0
αa þm1=2

b R0
1bU

0
αb

���2; ð3:33Þ

where

Wab ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
mamb

p
R0
1aR

0
1bðmaKa −mbKbÞ

maðR0
1aÞ2 þmbðR0

1bÞ2
;

Iαab ¼ ImðU0
αaU0�

αbÞ: ð3:34Þ

We would like to remind the readers that the repeated
indices are not summed over in Eqs. (3.32), (3.33), and
(3.34). We notice that the lepton asymmetry ϵα is closely
related to the lower energy CP phases in this framework.
The observation of CP violation in future neutrino
oscillation and neutrinoless double beta decay experi-
ments would imply the existence of a baryon asymmetry.
We give the most general parametrization of the first
column of R0 and corresponding expressions ofW12,W13,
and W23 in Table II. For the predicted mixing pattern
UIðaÞ in Eq. (3.8), the rephasing invariants Iα23 are of the
form

Ie23 ¼
ffiffiffi
2

p

3
cosφ1 sinφ2;

Iμ23 ¼ −
ffiffiffi
2

p

3
sin

�
π

6
− φ1

�
sinφ2;

Iτ23 ¼ −
ffiffiffi
2

p

3
sin

�
π

6
þ φ1

�
sinφ2: ð3:35Þ

As shown in Table I, the parameter values ðφ1;φ2Þ ¼
ðπ=2; π=2Þ can be obtained when the flavor symmetry
groupGf is S4. Accordingly, both the atmospheric mixing
angle and Dirac CP phase are predicted to be maximal.
We find that the best fit value of the parameter θ is
θbf ¼ �0.082πð�0.083πÞ, and the global minimum of the
χ2 function is χ2min ¼ 2.089ð5.783Þ for NO (IO) spectrum.
The predictions for YB as a function of the parameter η
are plotted in Fig. 2. We see that the realistic value of YB
can be reproduced for appropriate values of η except in
the case of NO with ðK1; K2; K3Þ ¼ ð�;−;þÞ, while for
the IO spectrum the correct value of YB can be achieved
when ðK1; K2; K3Þ ¼ ð�;þ;−Þ for θbf ¼ 0.083π or
ðK1; K2; K3Þ ¼ ð�;þ;−Þ, ð�;−;þÞ for θbf ¼ −0.083π.
Case I(b)

UIðbÞ ¼ 1ffiffiffi
3

p

0
BB@

ffiffiffi
2

p
cosφ1 eiφ2

ffiffiffi
2

p
sinφ1

−
ffiffiffi
2

p
sin ðφ1 − π

6
Þ −eiφ2

ffiffiffi
2

p
cos ðφ1 − π

6
Þ

−
ffiffiffi
2

p
sin ðφ1 þ π

6
Þ eiφ2

ffiffiffi
2

p
cos ðφ1 þ π

6
Þ

1
CCAS12ðθÞQ†

ν; ð3:36Þ

where the admissible values of φ1 and φ2 and the
corresponding representative flavor symmetry groups are

listed in Table IV. One can refer to the full results at the web

site [47]. It is remarkable that all these phenomenological

viable mixing patterns can be achieved from the type D

group series Δð6n2Þ or Dð1Þ
9n;3n combined with CP sym-

metry. The smallest group that can admit a good fit to the

experimental data is ½649; 259� ≅ Dð1Þ
9×2;3×2 in this case. The

TABLE II. The parametrization of the first column of R0-matrix
and the corresponding expressions of W12, W13 and W23 in the
three interesting cases C12, C13 and C23.

Case Cab ðK1; K2; K3Þ ðR0
11; R

0
12; R

0
13Þ Wab

a ¼ 1,
b ¼ 2

ðþ;þ;�Þ ðcos η; sin η; 0Þ ffiffiffiffiffiffiffiffiffi
m1m2

p ðm1−m2Þ sin η cos η
m1 cos2 ηþm2 sin2 η

ðþ;−;�Þ ðcosh η; sinh η; 0Þ ffiffiffiffiffiffiffiffiffi
m1m2

p ðm1þm2Þ sinh η cosh η
m1cosh2ηþm2sinh2η

ð−;þ;�Þ ðsinh η; cosh η; 0Þ −
ffiffiffiffiffiffiffiffiffi
m1m2

p ðm1þm2Þsinhηcoshη
m1 sinh2 ηþm2 cosh2η

a ¼ 1,
b ¼ 3

ðþ;�;þÞ ðcos η; 0; sin ηÞ ffiffiffiffiffiffiffiffiffi
m1m3

p ðm1−m3Þ sin η cos η
m1 cos2 ηþm3 sin2 η

ðþ;�;−Þ ðcosh η; 0; sinh ηÞ ffiffiffiffiffiffiffiffiffi
m1m3

p ðm1þm3Þ sinh η cosh η
m1 cosh2 ηþm3 sinh2 η

ð−;�;þÞ ðsinh η; 0; cosh ηÞ −
ffiffiffiffiffiffiffiffiffi
m1m3

p ðm1þm3Þsinhηcoshη
m1 sinh2 ηþm3 cosh2η

a ¼ 2,
b ¼ 3

ð�;þ;þÞ ð0; cos η; sin ηÞ ffiffiffiffiffiffiffiffiffi
m2m3

p ðm2−m3Þ sin η cos η
m2 cos2 ηþm3 sin2 η

ð�;þ;−Þ ð0; cosh η; sinh ηÞ ffiffiffiffiffiffiffiffiffi
m2m3

p ðm2þm3Þ sinh η cosh η
m2 cosh2 ηþm3 sinh2 η

ð�;−;þÞ ð0; sinh η; cosh ηÞ −
ffiffiffiffiffiffiffiffiffi
m2m3

p ðm2þm3Þsinhηcoshη
m2 sinh2 ηþm3 cosh2η
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PMNS matrix UIðbÞ is related to UIðaÞ by column permu-
tations, and the constant column vector ð ffiffiffi

2
p

sinφ1;ffiffiffi
2

p
cos ðφ1 − π

6
Þ; ffiffiffi

2
p

cos ðφ1 þ π
6
ÞÞT= ffiffiffi

3
p

enforced by
residual symmetries is arranged at the third column in this
case. The patterns originating from the six possible row
permutations ofUIðbÞ can be obtained through redefinitions
of φ1 and θ. We can extract the mixing angles from
Eq. (3.36) in the usual way and find

sin2θ13 ¼
2

3
sin2φ1;

sin2θ23 ¼
1þ sin ðπ=6þ 2φ1Þ

2þ cos 2φ1

;

sin2θ12 ¼
1þ sin2θ cos 2φ1 −

ffiffiffi
2

p
sin 2θ cosφ2 cosφ1

2þ cos 2φ1

:

ð3:37Þ

Notice that both the reactor angle θ13 and the atmospheric
mixing angle θ23 only depend on the discrete parameter φ1

while all the three parameters θ, φ1, and φ2 are involved in
the solar mixing angle θ12. Moreover, we easily see that the
mixing angles fulfill the following sum rule:

2sin2θ23 ¼ 1� tan θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − tan2θ13

q
: ð3:38Þ

Using the best fit value sin2 θ13 ¼ 0.0218 [46], we obtain

sin2θ23 ≃ 0.395; or sin2θ23 ≃ 0.605: ð3:39Þ

Consequently θ23 deviates from maximal mixing but it is in
the experimentally preferred 3σ range [46]. As regards the
CP invariants, we find

jJCPj ¼
1

6
ffiffiffi
6

p j sin 2θ sin 3φ1 sinφ2j;

jI1j ¼
1

9
j cosφ1 sinφ2ð4 cos 2θ cosφ1 cosφ2

−
ffiffiffi
2

p
sin 2θ cos 2φ1Þj;

jI2j ¼
2

ffiffiffi
2

p

9
jsin2φ1 sinφ2ð

ffiffiffi
2

p
sin2θ cosφ2

þ sin 2θ cosφ1Þj: ð3:40Þ

For this mixing pattern UIðbÞ, the effective Majorana mass
jmeej in 0νββ is given by

FIG. 2. The prediction for YB=Yobs
B as a function of η in case I(a) with ðφ1;φ2Þ ¼ ðπ

2
; π
2
Þ, where θbf is the best fit value of θ. Note that a

minor difference in θbf is obtained for NO and IO spectrums, because the best fit value as well as 1σ error of sin2 θ13 and sin2 θ23 slightly
depend on the mass ordering [46]. We chooseM1 ¼ 5 × 1011 GeV and the lightest neutrino massm1 ðorm3Þ¼ 0.01 eV. The red dotted,
green dot-dashed, blue dashed lines correspond to ðK1; K2; K3Þ ¼ ð�;þ;þÞ; ð�;þ;−Þ, and ð�;−;þÞ respectively. The experimentally
observed value Yobs

B is represented by the horizontal black dashed line.
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jmeej ¼
1

3
j2m3sin2φ1 þ q1m2ðeiφ2 cosθ −

ffiffiffi
2

p
cosφ1 sinθÞ2

þ q2m1ð
ffiffiffi
2

p
cosθ cosφ1 þ eiφ2 sinθÞ2j; ð3:41Þ

where q1; q2 ¼ �1 appears due to the undetermined CP
parity of the neutrino states encoded in the matrix Qν. In the
limit of jGfj → ∞, where jGfj represents the order ofGf, φ1

and φ2 tends to be continuous parameters. Then one can
almost reproduce the whole regions of jmeej obtained by
varying the oscillation parameters over their current 3σ
global ranges, as shown in Fig. 1. For the smallest group

Gf ¼ ½649; 259�, the admissible values of φ1 and φ2 are
ðφ1;φ2Þ ¼ ð π

18
;− π

6
Þ, ð π

18
; 0Þ, ð π

18
; π
3
Þ, ð π

18
; π
2
Þ, ð17π

18
;− π

6
Þ,

ð17π
18

; 0Þ, ð17π
18

; π
3
Þ, and ð17π

18
; π
2
Þ. The corresponding predictions

for the 0νββ decay effective mass jmeej versus the lightest
neutrino massmlightest are plotted in Fig. 1. We see that jmeej
is close to 0.029 or 0.042 eV for the IO neutrino mass
spectrum, which are within the future sensitivity of planned
0νββ decay experiments. On the other hand, jmeej is always
bigger than 0.7 × 10−4 eV in the case of NO spectrum.
Now we proceed to discuss the predictions for lepto-

genesis. The bilinear invariant Iα12 can be read out as follows:

TABLE III. Results of the χ2 analysis for case I(b) with the flavor symmetry Gf ¼ ½649; 259�. As shown in Table IV, the
experimentally measured values of the mixing angles can be accommodated in the case of ðφ1;φ2Þ ¼ ð π

18
;− π

6
Þ, ð π

18
; 0Þ, ð π

18
; π
3
Þ, ð π

18
; π
2
Þ,

ð17π
18

;− π
6
Þ, ð17π

18
; 0Þ, ð17π

18
; π
3
Þ, and ð17π

18
; π
2
Þ. We display the best fit value θbf for θ, and χ2min is the smallest value of χ2 that can be obtained at

the best fit value θbf . The mixing angles and the CP violating phases for θ ¼ θbf are presented as well. Note that the CP parity matrixQν

can shift the Majorana phases α21 and α031 by π. In the last column we give the values of K1;2;3 for which the observed baryon asymmetry
can be generated via leptogenesis. The values in the square brackets are the corresponding results for the case of IO mass spectrum. The
net baryon asymmetry cannot be generated for φ2 ¼ 0; π.

ðφ1;φ2Þ θbf=π χ2min sin2 θ13 sin2 θ12 sin2 θ23 δCP=π
α21=π
(mod 1)

α031=π
(mod 1) ðK1; K2; K3Þ

ð π
18
;− π

6
Þ 0.014 11.065 [3.989] 0.0201 0.304 0.601 0.984 0.656 0.010 ð−;þ;�Þ [ð−;þ;�Þ]

0.367 0.132 0.344 0.207 ðþ;−;�Þ[ðþ;þ;�Þ, ðþ;−;�Þ]
ð π
18
; 0Þ 0.012 11.065 [3.989] 0.0201 0.304 0.601 1 0 0 � � �

0.384 0 0 0 � � �
ð π
18
; π
3
Þ 0.026 11.065 [3.989] 0.0201 0.304 0.601 1.049 0.701 0.969 ðþ;−;�Þ [ðþ;þ;�Þ, ðþ;−;�Þ, ð−;þ;�Þ]

0.285 1.629 0.299 0.686 ðþ;−;�Þ [ðþ;þ;�Þ, ðþ;−;�Þ, ð−;þ;�Þ]
ð π
18
; π
2
Þ 0 18.807 [11.731] 0.0201 0.340 0.601 1 0 0 ðþ;−;�Þ, ð−;þ;�Þ [ðþ;þ;�Þ, ð−;þ;�Þ]

ð17π
18

;− π
6
Þ 0.633 6.432 [26.835] 0.0201 0.304 0.399 1.132 0.344 0.207 ðþ;−;�Þ, ð−;þ;�Þ [ðþ;þ;�Þ, ð−;þ;�Þ]
0.986 1.984 0.656 0.010 ð−;þ;�Þ [ð−;þ;�Þ]

ð17π
18

; 0Þ 0.616 6.432 [26.835] 0.0201 0.304 0.399 1 0 0 � � �
0.988 0 0 0 � � �

ð17π
18

; π
3
Þ 0.715 6.432 [26.835] 0.0201 0.304 0.399 0.629 0.299 0.686 ðþ;−;�Þ, ð−;þ;�Þ[ðþ;þ;�Þ, ð−;þ;�Þ]

0.974 0.049 0.701 0.969 ðþ;−;�Þ [ðþ;þ;�Þ, ðþ;−;�Þ, ð−;þ;�Þ]
ð17π
18

; π
2
Þ 0 14.174[34.576] 0.0201 0.340 0.399 0 0 0 ðþ;−;�Þ [ðþ;þ;�Þ, ðþ;−;�Þ, ð−;þ;�Þ]

TABLE IV. The predictions for the PMNS matrix of the form UIðbÞ, where the first column shows the group identification in the GAP

system, and the second column displays the achievable values of the parameters φ1 and φ2. We have shown at most two representative
flavor symmetry groups in the first column. If there is only one group predicting the corresponding values of φ1 and φ2 in the second
column, this unique group would be listed. The full results of our analysis are provided at the web site [47]. The subscripts Δ and Δ0

indicate that the corresponding groups belong to the type D group series Dð0Þ
n;n ≅ Δð6n2Þ and Dð1Þ

9n0;3n0 ≅ ðZ9n0 × Z3n0 Þ ⋊ S3, respectively.

Group Id ðφ1;φ2Þ
½648; 259�

▵
0 ,

[648, 260]
ð π
18
;− π

6
Þ, ð π

18
; 0Þ, ð π

18
; π
3
Þ, ð π

18
; π
2
Þ, ð17π

18
;− π

6
Þ, ð17π

18
; 0Þ, ð17π

18
; π
3
Þ, ð17π

18
; π
2
Þ

½726; 5�
▵
,

[1452, 23]
ð2π
33
;− 2π

11
Þ, ð2π

33
; 0Þ, ð2π

33
; π
11
Þ, ð2π

33
; 3π
11
Þ, ð2π

33
; 4π
11
Þ, ð2π

33
; 5π
11
Þ, ð31π

33
;− 2π

11
Þ, ð31π

33
; 0Þ, ð31π

33
; π
11
Þ, ð31π

33
; 3π
11
Þ, ð31π

33
; 4π
11
Þ, ð31π

33
; 5π
11
Þ

½1734; 5�
▵ ð π

17
;− 8π

17
Þ, ð π

17
;− 6π

17
Þ, ð π

17
; 0Þ, ð π

17
; π
17
Þ, ð π

17
; 2π
17
Þ, ð π

17
; 3π
17
Þ, ð π

17
; 4π
17
Þ, ð π

17
; 5π
17
Þ, ð π

17
; 7π
17
Þ, ð16π

17
;− 8π

17
Þ, ð16π

17
;− 6π

17
Þ, ð16π

17
; 0Þ,

ð16π
17

; π
17
Þ, ð16π

17
; 2π
17
Þ, ð16π

17
; 3π
17
Þ, ð16π

17
; 4π
17
Þ, ð16π

17
; 5π
17
Þ, ð16π

17
; 7π
17
Þ
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Ie12 ¼ −
ffiffiffi
2

p

3
cosφ1 sinφ2;

Iμ12 ¼
ffiffiffi
2

p

3
sin

�
π

6
− φ1

�
sinφ2;

Iτ12 ¼
ffiffiffi
2

p

3
sin

�
π

6
þ φ1

�
sinφ2; ð3:42Þ

which are generally nonzero except φ2 ¼ 0; π. The value of
baryon asymmetry can be straightforwardly calculated from
any given values of φ1 and φ2. We shall study the smallest
viable flavor symmetry [649, 259] for illustration. The
results of the χ2 analysis are summarized in Table III. We
display the values of the mixing angles andCP phases at θbf ,
the best fit points for which the χ2 function has a global
minimum χ2min. Obviously the mixing angles can be in
accordance with the experimental data for particular values
of θ. The leptogenesis asymmetries ϵα are vanishing for
ðφ1;φ2Þ ¼ ðπ=18; 0Þ, ð17π=18; 0Þ. For the remaining six
admissible values of φ1 and φ2, the variations of YB as a
function of η are plotted in Figs. 3–8. We see that the correct
value of YB can be reproduced for certain values of η
and K1;2;3.

Case II

UIIðaÞ ¼ 1ffiffiffi
3

p

0
B@

eiφ1 1 eiφ2

ωeiφ1 1 ω2eiφ2

ω2eiφ1 1 ωeiφ2

1
CAS13ðθÞQ†

ν; ð3:43Þ

UIIðbÞ ¼ 1ffiffiffi
3

p

0
B@

eiφ1 1 eiφ2

ω2eiφ1 1 ωeiφ2

ωeiφ1 1 ω2eiφ2

1
CAS13ðθÞQ†

ν; ð3:44Þ

where ω ¼ ei2π=3. The viable values of φ1 and φ2 and
corresponding representative flavor symmetry groups are
listed in Table V. Please see the web site [47] for the full
results. The smallest group which can describe the exper-
imentally measured values of the mixing angles for certain
values of θ is S4. The mixing pattern in Eq. (3.44) results
from the permutation of the second and third rows of the
PMNS mixing matrix in Eq. (3.43). The second column
of UIIðaÞ and UIIðbÞ are ð1; 1; 1ÞT= ffiffiffi

3
p

, and consequently
they are the trimaximal pattern. We can extract the
following results for the lepton mixing angles:

FIG. 3. The prediction for YB=Yobs
B as a function of η in case I(b) with ðφ1;φ2Þ ¼ ð π

18
;− π

6
Þ, where θbf is the best fit value of θ. We

choose M1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, blue dashed lines
correspond to ðK1; K2; K3Þ ¼ ðþ;þ;�Þ; ðþ;−;�Þ, and ð−;þ;�Þ respectively. The experimentally observed value Yobs

B is represented
by the horizontal black dashed line.
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FIG. 4. The prediction for YB=Yobs
B as a function of η in case I(b) with ðφ1;φ2Þ ¼ ð π

18
; π
3
Þ, where θbf is the best fit value of θ. We choose

M1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines
correspond to ðK1; K2; K3Þ ¼ ðþ;þ;�Þ; ðþ;−;�Þ, and ð−;þ;�Þ respectively. The experimentally observed value Yobs

B is represented
by the horizontal black dashed line.

FIG. 5. The prediction for YB=Yobs
B as a function of η in case I(b) with ðφ1;φ2Þ ¼ ð π

18
; π
2
Þ, where θbf is the best fit value of θ. We choose

M1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, blue dashed lines
correspond to ðK1; K2; K3Þ ¼ ðþ;þ;�Þ; ðþ;−;�Þ, and ð−;þ;�Þ respectively. The experimentally observed value Yobs

B is represented
by the horizontal black dashed line.
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sin2θ13 ¼
1

3
½1þ sin 2θ cosðφ2 − φ1Þ�;

sin2θ12 ¼
1

2 − sin 2θ cosðφ2 − φ1Þ
;

sin2θ23 ¼
1 − sin 2θ sin ðφ2 − φ1 þ π=6Þ

2 − sin 2θ cosðφ2 − φ1Þ
for UIIðaÞ;

sin2θ23 ¼
1þ sin 2θ sin ðφ2 − φ1 − π=6Þ

2 − sin 2θ cosðφ2 − φ1Þ
for UIIðbÞ:

ð3:45Þ

Therefore, the solar and the reactor mixing angles fulfill the
well-known sum rule

3cos2θ13sin2θ12 ¼ 1: ð3:46Þ

Hence, the solar mixing angle admits a lower bound
sin2θ12 > 1=3. Using for sin2 θ13 its 3σ range 0.0188 ≤
sin2θ13 ≤ 0.0251 [46], we find 0.340 ≤ sin2θ12 ≤ 0.342.
The JUNO experiment will be capable of reducing the
error of sin2 θ12 to about 0.1° or around 0.3% [59].
Future long baseline experiments such as DUNE [60] and
Hyper-Kamiokande [61] can also make very precise

measurements of the solar mixing angle. If significant devia-
tions from 1=3 of sin2 θ12 were detected, this mixing pattern
would be ruled out. Moreover, the reactor mixing angle and
the atmospheric mixing angle are related as follows:

3cos2θ13sin2θ23 − 1

1 − 3sin2θ13
¼ 1

2
þ

ffiffiffi
3

p

2
tan ðφ2 − φ1Þ; for UIIðaÞ;

3cos2θ13sin2θ23 − 1

1 − 3sin2θ13
¼ 1

2
−

ffiffiffi
3

p

2
tan ðφ2 − φ1Þ; for UIIðbÞ:

ð3:47Þ

For the mixing matrices UIIðaÞ and UIIðbÞ, the CP invariants
take the form

jJCPj ¼
1

6
ffiffiffi
3

p j cos 2θj;

jI1j ¼
2

9
jðcos θ cosφ1 − sin θ cosφ2Þ

× ðcos θ sinφ1 − sin θ sinφ2Þj;

jI2j ¼
1

9
j cos 2θ sin ð2φ1 − 2φ2Þj: ð3:48Þ

FIG. 6. The prediction for YB=Yobs
B as a function of η in case I(b) with ðφ1;φ2Þ ¼ ð17π

18
;− π

6
Þ, where θbf is the best fit value of θ. We

choose M1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, and blue dashed
lines correspond to ðK1; K2; K3Þ ¼ ðþ;þ;�Þ; ðþ;−;�Þ, and ð−;þ;�Þ, respectively. The experimentally observed value Yobs

B is
represented by the horizontal black dashed line.
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We find that the mixing angles and Dirac CP violating phase
fulfill the following sum rule:

cosδCP¼
cos2θ13cot2θ23ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3cos2θ13−1

p
sinθ13

≃
ffiffiffi
2

p ðπ=4−θ23Þ
θ13

: ð3:49Þ

Therefore, thevalue of δCP is closely relatedwith the deviation
of θ23 from maximal mixing. Inputting the 3σ regions
0.0188 ≤ sin2 θ13 ≤ 0.0251 and 0.385 ≤ sin2 θ23 ≤ 0.644
from the global fit [46], we see cos δCP can be any value in
the interval of ½−1; 1�. Hence, no definite prediction can be

FIG. 7. The prediction for YB=Yobs
B as a function of η in case I(b) with ðφ1;φ2Þ ¼ ð17π

18
; π
3
Þ, where θbf is the best fit value of θ. We

chooseM1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, blue dashed lines
correspond to ðK1; K2; K3Þ ¼ ðþ;þ;�Þ; ðþ;−;�Þ, and ð−;þ;�Þ, respectively. The experimentally observed value Yobs

B is represented
by the horizontal black dashed line.

FIG. 8. The prediction for YB=Yobs
B as a function of η in case I(b) with ðφ1;φ2Þ ¼ ð17π

18
; π
2
Þ, where θbf is the best fit value of θ. We

choose M1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, and blue dashed
lines correspond to ðK1; K2; K3Þ ¼ ðþ;þ;�Þ; ðþ;−;�Þ, and ð−;þ;�Þ, respectively. The experimentally observed value Yobs

B is
represented by the horizontal black dashed line.
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made for δCP at present. However, if the uncertainty of
the atmospheric mixing angle θ23 is reduced considerably
by future neutrino experiments, the above sum rule in
Eq. (3.49) could impose a strong constraint on the value
of δCP.
As shown in Table V, the group Gf ¼ S4 can give rise to

the mixing patterns UIIðaÞ and UIIðbÞ with ðφ1;φ2Þ¼ðπ;0Þ.
Then the atmospheric angle θ23 as well as the Dirac CP
phase δCP are predicted to be maximal while both Majorana
phases are 0 or π. In fact, UIIðaÞ and UIIðbÞ are essentially
the same mixing pattern in this case, since they are related
by the redefinition of θ and Qν,

UIIðbÞðθ;φ1 ¼ π;φ2 ¼ 0Þ

¼ UIIðaÞ
�
π

2
− θ;φ1 ¼ π;φ2 ¼ 0

�
diagð1; 1;−1Þ:

ð3:50Þ

Furthermore we find there are two best fit solutions
θbf ¼ 0.192π; 0.308πð0.192π; 0.308πÞ for UIIðaÞ in the
case of the NO (IO) spectrum, and the minimal value of
the χ2 function is χ2min ¼ 8.843 (12.565).
Regarding the 0νββ decay, the effective mass jmeej is

given by

jmeej ¼
1

3
jm1ðeiφ1 cos θ − eiφ2 sin θÞ2 þ q1m2

þ q2m3ðeiφ2 cos θ þ eiφ1 sin θÞ2j; ð3:51Þ

where q1; q2 ¼ �1. The predicted values of jmeej are
displayed in Fig. 9, where we require that the three lepton
mixing angles are within the experimentally preferred 3σ
ranges. For the smallest group Gf ¼ S4, one sees that jmeej
is determined to be around 0.015 or 0.048 eV in the case of
the IO spectrum, which is accessible to the future experi-
ments searching for 0νββ decay. In the case of NO, jmeej
could be smaller than 10−4 eV for certain values of the
lightest neutrino mass, because cancellation between differ-
ent terms in the expression of jmeej can take place.
The residual symmetry enforces the second column of

the PMNS to be trimaximal in this case. Therefore, the R
matrix is of the form ofC13 given in Eq. (3.28). We can read
out the CP invariants Iα13 relevant to leptogenesis as

Ie13 ¼
1

3
sin ðφ1 − φ2Þ;

Iμ13 ¼ −
1

3
cos

�
π

6
− φ1 þ φ2

�
;

Iτ13 ¼
1

3
cos

�
π

6
þ φ1 − φ2

�
: ð3:52Þ

TABLE V. The predictions for PMNS matrix of the formUIIðaÞ andUIIðbÞ, where the first column shows the group identification in the
GAP system, and the second column displays the achievable values of the parameters φ1 and φ2. We have shown at most two
representative flavor symmetry groups in the first column. If there is only one group predicting the corresponding values of φ1 and φ2 in
the second column, this unique group would be listed. The full results of our analysis are provided at the web site [47]. The subscripts Δ
and Δ0 indicate that the corresponding groups belong to the type D group series Dð0Þ

n;n ≅ Δð6n2Þ and Dð1Þ
9n0;3n0 ≅ ðZ9n0 × Z3n0 Þ ⋊ S3,

respectively.

Group Id ðφ1;φ2Þ
½24; 12�

▵
, [48, 30] ðπ; 0Þ

½96; 64�
▵
, [192, 182] ð− 7π

12
; π
3
Þ, ð− 7π

12
; π
3
Þ, ð− 3π

4
; π
4
Þ

½384; 568�
▵
,

[768, 1085335]
ð π
24
;− π

24
Þ, ð π

24
;− π

24
Þ, ðπ

6
;− 19π

24
Þ, ðπ

6
;− 19π

24
Þ, ð− 7π

24
;− 5π

24
Þ, ð− 7π

24
;− 5π

24
Þ, ð− 5π

12
; 13π
24
Þ, ð− 5π

12
; 13π
24
Þ, ðπ

8
;− 7π

8
Þ

½600; 179�
▵
,

[1200, 682]
ð− π

5
; 7π
10
Þ, ð− π

5
; 7π
10
Þ, ð− π

5
; 4π
5
Þ, ð− π

5
; 9π
10
Þ, ð− π

5
; 9π
10
Þ, ð− 7π

15
; 7π
15
Þ, ð− 7π

15
; 7π
15
Þ, ð− π

10
; 0Þ, ð− π

10
; 0Þ, ð− 23π

30
; 4π
15
Þ, ð− 23π

30
; 4π
15
Þ,

ð− 3π
5
; 2π
5
Þ, ð11π

15
; 2π
3
Þ, ð11π

15
; 2π
3
Þ, ð− 2π

3
;− 19π

30
Þ, ð− 2π

3
;− 19π

30
Þ, ð2π

15
; π
15
Þ, ð2π

15
; π
15
Þ, ð− 8π

15
; 13π
30
Þ, ð− 8π

15
; 13π
30
Þ

½648; 259�
▵
0 ,

[648, 260]
ð5π
9
;− 7π

18
Þ, ð5π

9
;− 7π

18
Þ, ð2π

3
;− π

3
Þ, ð− 7π

9
; 5π
18
Þ, ð− 7π

9
; 5π
18
Þ, ð− 4π

9
;− 5π

9
Þ, ð− 4π

9
;− 5π

9
Þ, ð− 2π

9
;− π

9
Þ, ð− 2π

9
;− π

9
Þ

½1176; 243�
▵ ð− 2π

7
; 5π
7
Þ, ð20π

21
; π
21
Þ, ð20π

21
; π
21
Þ, ð3π

7
;− 4π

7
Þ, ð19π

21
; 17π
21
Þ, ð19π

21
; 17π
21
Þ, ð5π

21
;− 2π

3
Þ, ð5π

21
;− 2π

3
Þ, ð19π

42
;− 2π

3
Þ, ð19π

42
;− 2π

3
Þ, ð− π

6
; 17π
21
Þ,

ð− π
6
; 17π
21
Þ, ð− 17π

21
;− 29π

42
Þ, ð− 17π

21
;− 29π

42
Þ, ð− π

7
; 6π
7
Þ, ð11π

21
; 17π
42
Þ, ð11π

21
; 17π
42
Þ, ð− 17π

21
; 5π
21
Þ, ð− 17π

21
; 5π
21
Þ, ð− 11π

21
; 8π
21
Þ,

ð− 11π
21

; 8π
21
Þ, ð− 11π

21
; 11π
21
Þ, ð− 11π

21
; 11π
21
Þ, ðπ

7
;− 11π

14
Þ, ðπ

7
;− 11π

14
Þ, ð− 11π

21
;− 23π

42
Þ, ð− 11π

21
;− 23π

42
Þ, ð2π

21
;− 20π

21
Þ, ð2π

21
;− 20π

21
Þ,

ð0;− 13π
14
Þ, ð0;− 13π

14
Þ, ð− 13π

21
; 11π
42
Þ, ð− 13π

21
; 11π
42
Þ, ð− 11π

14
;− 5π

7
Þ, ð− 11π

14
;− 5π

7
Þ, ð− 11π

42
; 16π
21
Þ, ð− 11π

42
; 16π
21
Þ, ð− 8π

21
; 2π
3
Þ,

ð− 8π
21
; 2π
3
Þ, ð− 8π

21
;− 17π

42
Þ, ð− 8π

21
;− 17π

42
Þ, ð4π

7
; 9π
14
Þ, ð4π

7
; 9π
14
Þ

½1536; 408544632�
▵ ð− 47π

48
;− 23π

24
Þ, ð− 47π

48
;− 23π

24
Þ, ð5π

16
; 5π
16
Þ, ð− 11π

48
;− 7π

48
Þ, ð− 11π

48
;− 7π

48
Þ, ð− 7π

16
; 9π
16
Þ, ð23π

48
;− 29π

48
Þ, ð23π

48
;− 29π

48
Þ,

ð− 23π
48

;− 7π
12
Þ, ð− 23π

48
;− 7π

12
Þ, ð− π

8
;− π

16
Þ, ð− π

8
;− π

16
Þ, ð9π

16
;− π

2
Þ, ð9π

16
;− π

2
Þ, ð− 5π

48
;− π

12
Þ, ð− 5π

48
;− π

12
Þ, ð37π

48
; 35π
48
Þ,

ð37π
48

; 35π
48
Þ, ð− 29π

48
; 17π
48
Þ, ð− 29π

48
; 17π
48
Þ, ð35π

48
;− π

6
Þ, ð35π

48
;− π

6
Þ, ð11π

16
;− π

4
Þ, ð11π

16
;− π

4
Þ, ð− 31π

48
; 11π
24
Þ, ð− 31π

48
; 11π
24
Þ,

ð π
48
; 47π
48
Þ, ð π

48
; 47π
48
Þ, ð3π

16
; π
8
Þ, ð3π

16
; π
8
Þ, ð− 5π

24
;− 11π

48
Þ, ð− 5π

24
;− 11π

48
Þ, ðπ

6
; 7π
48
Þ, ðπ

6
; 7π
48
Þ, ð17π

24
;− 19π

48
Þ, ð17π

24
;− 19π

48
Þ
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The numerical results of the baryon asymmetry for ðφ1;φ2Þ ¼ ðπ; 0Þ are shown in Fig. 10. It is easy to see that the
observed baryon asymmetry could be generated via leptogenesis except in the case of the NO spectrum
with ðK1; K2; K3Þ ¼ ð−;�;þÞ.
Case III

UIII ¼ 1ffiffiffi
3

p

0
BB@

ffiffiffi
2

p
eiφ1 sinφ2 1

ffiffiffi
2

p
eiφ1 cosφ2ffiffiffi

2
p

eiφ1 cos ðφ2 þ π
6
Þ 1 −

ffiffiffi
2

p
eiφ1 sin ðφ2 þ π

6
Þ

−
ffiffiffi
2

p
eiφ1 cos ðφ2 − π

6
Þ 1

ffiffiffi
2

p
eiφ1 sin ðφ2 − π

6
Þ

1
CCAS13ðθÞQ†

ν; ð3:53Þ

where φ1 and φ2 are rational angles, and their values are
determined by the residual symmetries. The admissible
values of φ1 and φ2 and the representative flavor symmetry
groups found from our group scan up to order 2000 are
summarized in Table VI. The full results are available at our
web site [47]. Similar to case II, the second column of the
mixing matrix is ð1; 1; 1ÞT= ffiffiffi

3
p

as well. In particular, all the
six row permutations lead to the same mixing pattern, if
the freedom of redefining the parameters θ, φ1, and φ2 is
taken into account. For this mixing matrix UðIIIÞ in
Eq. (3.53), the mixing angles read

sin2θ13 ¼
2

3
cos2ðθ − φ2Þ;

sin2θ12 ¼
1

3 − 2cos2ðθ − φ2Þ
;

sin2θ23 ¼
sin ð2θ − 2φ2 þ π

6
Þ − 1

cos ð2θ − 2φ2Þ − 2
; ð3:54Þ

which fulfill the following sum rules:

3cos2θ13sin2θ12 ¼ 1;

sin2θ23 ¼
1

2
� 1

2
tan θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 − tan2θ13

q
: ð3:55Þ

Inserting the best fit value sin2θ13 ¼ 0.0218 [46], we
obtain

sin2θ12 ≃ 0.341;

sin2θ23 ≃ 0.395 or 0.605; ð3:56Þ

which are compatible with the present experimental
data. By precisely measuring the solar and atmospheric
mixing angles, the reactor neutrino experiment JUNO and
long baseline neutrino oscillation experiments DUNE and
Hyper-Kamiokande are able to exclude this mixing pattern
or provide strong evidence for its relevance. Furthermore,
the CP invariants are given by

JCP ¼ I2 ¼ 0;

jI1j ¼
2

9
j sin 2φ1jsin2ðθ − φ2Þ; ð3:57Þ

which leads to

δCP;α31¼0 or π;α21 ðmod πÞ¼�2φ1: ð3:58Þ

This indicates that both Dirac CP phase δCP and Majorana
phase α31 are always trivial in this case. Subsequently we
find for the effective Majorana mass jmeej the following
expression:
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FIG. 9. Predictions of the 0νββ decay effective mass jmeej with
respect to the lightest neutrino mass mlightest for the mixing
patterns UIIðaÞ and UIIðbÞ. The red (blue) dashed lines indicate the
most general allowed regions for the IO (NO) spectrum obtained
by varying the mixing parameters within their 3σ ranges [46]. The
orange (cyan) areas denote the achievable values of jmeej when
φ1 and φ2 are taken to be free continuous parameters in the case
of IO (NO). The purple and green regions are the theoretical
predictions of the smallest flavor symmetry group which can
generate these two mixing patterns. Note that the purple (green)
region overlaps the orange (cyan) one. The present most stringent
upper limits jmeej < 0.120 eV from EXO-200 [63,64] and Kam-
LAND-ZEN [65] is shown by horizontal grey band. The vertical
grey exclusion band is the current limit on mlightest from the
cosmological data of

P
mi < 0.230 eV by the Planck Collabo-

ration [66].
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jmeej ¼
1

3
j2m1e2iφ1sin2ðθ − φ2Þ þ q1m2

þ 2q2m3e2iφ1cos2ðθ − φ2Þj: ð3:59Þ

We plot jmeej as a function of the lightest neutrino mass
mlightest in Fig. 11. For the smallest flavor symmetry group
A4 which predicts ðφ1;φ2Þ ¼ ðπ; 2π=3Þ, all the three CP
violation phases are conserved. As a result, the effective
mass jmeej is close to 0.027 or 0.042 eV in case of IO
spectrum. It is notable that there is no cancellation in jmeej
for any values of mlightest in the case of NO, and thus jmeej
has a lower bound jmeej ≥ 2.52 × 10−3 eV.
As regards the leptogenesis, we find that both rephase

invariant Iα13 and the CP asymmetry ϵα are vanishing,

Ie13 ¼ Iμ13 ¼ Iτ13 ¼ 0; ϵe ¼ ϵμ ¼ ϵτ ¼ 0: ð3:60Þ

Hence the net baryon asymmetry cannot be generated in
this case, and appropriate subleading corrections are
necessary in order to make the leptogenesis viable.

FIG. 10. The prediction for YB=Yobs
B as a function of η in case II with ðφ1;φ2Þ ¼ ðπ; 0Þ, where θbf is the best fit value of θ. We choose

M1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines
correspond to ðK1; K2; K3Þ ¼ ðþ;�;þÞ; ðþ;�;−Þ, and ð−;�;þÞ, respectively. The experimentally observed value Yobs

B is represented
by the horizontal black dashed line.

TABLE VI. The predictions for PMNS matrix of the form UIII ,
where the first column shows the group identification in the GAP

system, and the second column displays the achievable values of
the parameters φ1 and φ2. We have shown at most two
representative flavor symmetry groups in the first column. If
there is only one group predicting the corresponding values of φ1

and φ2 in the second column, this unique group would be listed.
The full results of our analysis are provided at the web site [47].
The subscripts Δ and Δ0 indicate that the corresponding

groups belong to the type D group series Dð0Þ
n;n ≅ Δð6n2Þ and

Dð1Þ
9n0;3n0 ≅ ðZ9n0 × Z3n0 Þ ⋊ S3, respectively.

Group Id ðφ1;φ2Þ
[12, 3], ½24; 12�

▵ ðπ; 2π
3
Þ

½96; 64�
▵
, [192, 182] ð− 3π

4
; 2π
3
Þ

½384; 568�
▵
, [768, 1085335] ð− 7π

8
; 0Þ

½600; 179�
▵
, [1200, 682] ð− 3π

5
; π
6
Þ, ð4π

5
; π
6
Þ

½648; 259�
▵
0 , [648, 260] ðπ

3
; 2π
3
Þ

½1176; 243�
▵ ð3π

7
; π
6
Þ, ð5π

7
; π
6
Þ, ð6π

7
; 2π
3
Þ

½1536; 408544632�
▵ ð− 7π

16
; π
6
Þ, ð5π

16
; π
6
Þ
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Case IV

UIVðaÞ ¼

0
BBBBBB@

−
ffiffiffiffiffi
ϕgffiffi
5

p
q ffiffiffiffiffiffiffiffi

1ffiffi
5

p
ϕg

q
0

ffiffiffiffiffiffiffiffiffiffi
1

2
ffiffi
5

p
ϕg

q ffiffiffiffiffiffiffi
ϕg

2
ffiffi
5

p
q

− 1ffiffi
2

p

ffiffiffiffiffiffiffiffiffiffi
1

2
ffiffi
5

p
ϕg

q ffiffiffiffiffiffiffi
ϕg

2
ffiffi
5

p
q

1ffiffi
2

p

1
CCCCCCA
S13ðθÞQ†

ν;

UIVðbÞ ¼

0
BBBBBB@

−i
ffiffiffiffiffi
ϕgffiffi
5

p
q ffiffiffiffiffiffiffiffi

1ffiffi
5

p
ϕg

q
0

i
ffiffiffiffiffiffiffiffiffiffi

1

2
ffiffi
5

p
ϕg

q ffiffiffiffiffiffiffi
ϕg

2
ffiffi
5

p
q

− 1ffiffi
2

p

i
ffiffiffiffiffiffiffiffiffiffi

1

2
ffiffi
5

p
ϕg

q ffiffiffiffiffiffiffi
ϕg

2
ffiffi
5

p
q

1ffiffi
2

p

1
CCCCCCA
S13ðθÞQ†

ν; ð3:61Þ

where ϕg ¼ ð ffiffiffi
5

p þ 1Þ=2 is the golden ratio. Notice that
UIVðbÞ can be obtained from UIVðaÞ by multiplying the
factor i in its first column. Our group scanning reveals that
these two mixing patterns can be obtained from the groups
½60; 5� ≅ A5, [120,35], [180,19] and many others shown in
the web site. Indeed, this case has been found in previous
work on A5 flavor symmetry and generalized CP [18–20],

and our results coincide with those. The PMNS mixing
matrix UIVðaÞ leads to the following expressions for the
mixing angles:

sin2θ13 ¼
ϕgffiffiffi
5

p sin2θ;

sin2θ12 ¼
4 − 2ϕg

5 − 2ϕg þ cos 2θ
;

sin2θ23 ¼
1

2
−

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3 − ϕg

p
sin 2θ

3ϕg − 2þ ϕg cos 2θ
: ð3:62Þ

Obviously UIVðaÞ is a real matrix, therefore all the three CP
invariants vanish,

JCP ¼ I1 ¼ I2 ¼ 0; ð3:63Þ

which implies that each of the CP violation phases
δCP; α21; α31 is either 0 or π. Moreover, we see that the
mixing angles fulfill the following sum rules:

sin2θ12cos2θ13 ¼
3 − ϕg

5
;

sin2θ23 −
1

2
¼ �ðϕg − 1Þ tan θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðϕg − 2Þtan2θ13

q
:

ð3:64Þ

Using the 3σ range of the reactor mixing angle 0.0188 ≤
sin2θ13 ≤ 0.0251 [46], we get

0.282 ≤ sin2θ12 ≤ 0.284;

0.401 ≤ sin2θ23 ≤ 0.415 or

0.585 ≤ sin2θ23 ≤ 0.599: ð3:65Þ

These predictions for θ12 and θ23 will be testable at
future neutrino facilities such as JUNO, DUNE, Hyper-
Kamiokande and so on. For the mixing matrix UIVðbÞ, the
mixing angles read

sin2θ13 ¼
ϕgffiffiffi
5

p sin2θ;

sin2θ12 ¼
4 − 2ϕg

5 − 2ϕg þ cos 2θ
;

sin2θ23 ¼
1

2
: ð3:66Þ

The solar and reactor mixing angles have the same form
as that of UIVðaÞ, and consequently the correlation
sin2θ12cos2θ13 ¼ ð3 − ϕgÞ=5 given in Eq. (3.64) still holds.
The minimum value of χ2 is χ2min ¼ 4.045ð7.742Þ obtained
at the best fitting values θbf ¼ �0.056πð�0.056πÞ for
NO (IO) spectrum. For the CP violating phases, we find
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FIG. 11. Predictions of the 0νββ decay effective mass jmeej
with respect to the lightest neutrino mass mlightest for the mixing
patternUIII . The red (blue) dashed lines indicate the most general
allowed regions for IO (NO) spectrum obtained by varying the
mixing parameters within their 3σ ranges [46]. The orange (cyan)
areas denote the achievable values of jmeej when φ1 and φ2 are
taken to be free continuous parameters in the case of IO (NO).
The purple and green regions are the theoretical predictions of the
smallest flavor symmetry group which can generate this mixing
pattern. Note that the purple (green) region overlaps the orange
(cyan) one. The present most stringent upper limits jmeej <
0.120 eV from EXO-200 [63,64] and KamLAND-ZEN [65] is
shown by horizontal grey band. The vertical grey exclusion band
is the current limit on mlightest from the cosmological data ofP

mi < 0.230 eV by the Planck Collaboration [66].
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δCP is exactly maximal while both Majorana phases α21 and
α31 are trivial with

jJCPj ¼
1

4

ffiffiffiffiffiffiffiffiffi
ϕg

5
ffiffiffi
5

p
s

j sin 2θj; I1 ¼ I2 ¼ 0: ð3:67Þ

In this case, the general expression for the effective mass
jmeej is

jmeej ¼
1ffiffiffi
5

p jϕgm1cos2θ þ ϕ−1
g q1m2 þ ϕgq2m3sin2θj;

for UIVðaÞ;

jmeej ¼
1ffiffiffi
5

p jϕgm1cos2θ − ϕ−1
g q1m2 þ ϕgq2m3sin2θj;

for UIVðbÞ; ð3:68Þ

where q1; q2 ¼ �1. Therefore the same values of jmeej
would be obtained if the parameter q1 is of opposite sign
for UIVðaÞ and UIVðbÞ. After considering all possible
values of q1 and q2, we display the allowed regions of
jmeej in Fig. 12. We see that jmeej is close to 0.021 or
0.048 eV for IO while it is smaller than 10−4 eV for
0.0016 eV ≤ mlightest ≤ 0.0024 eV and 0.0051 eV ≤
mlightest ≤ 0.0061 eV in the case NO.

Then we come to study the resulting predictions for
leptogenesis. All the rephasing invariants Iα13 are deter-
mined to be zero for UIVðaÞ so that the CP asymmetries ϵα
vanish and the matter-antimatter asymmetry of the
Universe cannot be generated without high order correc-
tions. For the PMNS mixing matrix UIVðbÞ, we find

Ie13 ¼ 0; Iμ13 ¼ −Iτ13 ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4
ffiffiffi
5

p
ϕg

s
: ð3:69Þ

We plot the values of YB versus η in Fig. 13. It is easy
to see that the observed baryon asymmetry can be obtained
via leptogenesis except in the case of NO with
ðK1; K2; K3Þ ¼ ð−;�;þÞ.
Case V

UVðaÞ ¼ 1

2

0
BB@

ϕg 1 ϕg − 1

ϕg − 1 −ϕg 1

1 1 − ϕg −ϕg

1
CCAS23ðθÞQ†

ν

UVðbÞ ¼ 1

2

0
B@

ϕg 1 ϕg − 1

1 1 − ϕg −ϕg

ϕg − 1 −ϕg 1

1
CAS23ðθÞQ†

ν:

ð3:70Þ

Notice that these two mixing matrices are related through a
exchange of the second and third rows. Similar to case IV,
this mixing pattern can be obtained from the flavor
symmetry groups ½60; 5� ≅ A5, [120,35], [180,19] etc. in
combination with generalized CP. Earlier studies of this
mixing pattern in the context of A5 flavor symmetry andCP
can be found in Refs. [18–20]. We can extract the following
results for the mixing angles:

sin2θ13 ¼
ðcos θ − ϕg sin θÞ2

4ϕ2
g

;

sin2θ12 ¼
ðϕg cos θ þ sin θÞ2

4ϕ2
g − ðcos θ − ϕg sin θÞ2

;

sin2θ23 ¼
ϕ2
gðcos θ þ ϕg sin θÞ2

4ϕ2
g − ðcos θ − ϕg sin θÞ2

for UVðaÞ;

sin2θ23 ¼
ðsin θ − ϕ2

g cos θÞ2
4ϕ2

g − ðcos θ − ϕg sin θÞ2
for UVðbÞ: ð3:71Þ

For the mixing pattern UVðaÞ, the global minimum of χ2 is
χ2min ¼ 6.190ð6.434Þ obtained at the best fitting
values θbf ¼ 0.095πð0.095πÞ for NO (IO) spectrum.
Accordingly the mixing angles at θ ¼ θbf are given by
sin2 θ12 ¼ 0.331, sin2 θ13 ¼ 0.022, and sin2 θ23 ¼ 0.524
which are in excellent agreement with experimental
data. For the PMNS matrix UVðbÞ, χ2 is minimized at
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FIG. 12. Predictions of the 0νββ decay effective mass jmeej
with respect to the lightest neutrino mass mlightest for the mixing
patterns UIVðaÞ and UIVðbÞ. The red (blue) dashed lines indicate
the most general allowed regions for the IO (NO) spectrum
obtained by varying the mixing parameters within their 3σ
ranges [46]. The purple and green regions are the theoretical
predictions of these two mixing patterns. The present most
stringent upper limits jmeej < 0.120 eV from EXO-200
[63,64] and KamLAND-ZEN [65] are shown by a horizontal
grey band. The vertical grey exclusion band is the current limit on
mlightest from the cosmological data of

P
mi < 0.230 eV by the

Planck Collaboration [66].
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the best fitting point θbf ¼ 0.095πð0.094πÞ with χ2min ¼
4.477ð11.799Þ, and the values obtained for the mixing
angles are sin2 θ12 ¼ 0.331, sin2 θ13 ¼ 0.022, and
sin2 θ23 ¼ 0.476. The CP invariants JCP, I1, and I2 are
found to vanish exactly so that both Dirac and Majorana
CP phases take CP conserving values 0 and π. Similarly
the bilinear invariants Iα23 are also zero. Hence, a baryon
asymmetry cannot be obtained in this case unless the
residual symmetries are further broken by higher order
contributions. Furthermore, the two PMNS mixing matri-
ces UVðaÞ and UVðbÞ yield the same expression for the
effective Majorana mass jmeej

jmeej ¼
1

4
jϕ2

gm1 þ q1m2ðcos θ þ ϕ−1
g sin θÞ2

þ q2m3ðsin θ − ϕ−1
g cos θÞ2j ð3:72Þ

with q1; q2 ¼ �1. The predicted values of jmeej from
this mixing pattern are shown in Fig. 14. We find that
jmeej is around 0.016 or 0.048 eV in the case of the IO
spectrum, and it can be approximately vanishing for NO
due to strong cancellations if the lightest neutrino mass is

in the narrow range of 0.0023 eV ≤ mlightest ≤ 0.0034 eV
and 0.0067 eV ≤ mlightest ≤ 0.0078 eV.
Case VI

UVI ¼ 1

2
ffiffiffi
3

p

0
BB@

ð ffiffiffi
3

p
− 1Þeiφ 2 −ð ffiffiffi

3
p þ 1Þeiðφþ3π

4
Þ

−ð ffiffiffi
3

p þ 1Þeiφ 2 ð ffiffiffi
3

p
− 1Þeiðφþ3π

4
Þ

2eiφ 2 2eiðφþ3π
4
Þ

1
CCA

× S13ðθÞQ†
ν; ð3:73Þ

where φ ¼ arctanð2 − ffiffiffi
7

p Þ. This mixing pattern has not
been discussed in the literature as far as we know. It can be
achieved from the flavor symmetry groups [168,42],
[336,209], [504,157] and others which are listed at the
web site [47]. The group [168,42] exactly is the known
group Σð168Þ ≅ PSLð2; 7Þ. It is the automorphism group
of the Klein quartic as well as the symmetry group of
the Fano plane. It is the second-smallest non-Abelian
simple group after the alternating group A5. It has important
applications in algebra, geometry, and number theory.
Σð168Þ has also been recognized as quite interesting in
discrete flavor symmetry theory [62]. Notice that one
column of the PMNS matrix is ð1; 1; 1ÞT= ffiffiffi

3
p

in this case,

FIG. 13. The prediction for YB=Yobs
B as a function of η in case IV(b), where θbf is the best fit value of θ. We choose

M1 ¼ 5 × 1011 GeV and the lightest neutrino mass m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines
correspond to ðK1; K2; K3Þ ¼ ðþ;�;þÞ; ðþ;�;−Þ, and ð−;�;þÞ respectively. The experimentally observed value Yobs

B is represented
by the horizontal black dashed line.
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and it should be identified as the second column in order to
be compatible with the experimental data on lepton mixing
angles. For the mixing matrices arising from the six
possible row permutations of UVI, four of them can
accommodate the experimental data

UVIðaÞ ¼ UVI
PMNS; UVIðbÞ ¼ P132UVI

PMNS;

UVIðcÞ ¼ P213UVI
PMNS; UVIðdÞ ¼ P231UVI

PMNS: ð3:74Þ

One sees that UVIðbÞ and UVIðdÞ can be obtained from
UVIðaÞ and UVIðcÞ respectively by exchanging the second
and third rows. From the mixing matrices UVIðaÞ and
UVIðbÞ, the mixing angles and the three CP rephasing
invariants can be read out as

sin2θ13 ¼
1

12
ð4þ 2

ffiffiffi
3

p
cos2θþ

ffiffiffi
2

p
sin2θÞ;

sin2θ12 ¼
4

8− 2
ffiffiffi
3

p
cos2θ−

ffiffiffi
2

p
sin2θ

;

sin2θ23 ¼
4− 2

ffiffiffi
3

p
cos2θþ ffiffiffi

2
p

sin2θ

8− 2
ffiffiffi
3

p
cos2θ−

ffiffiffi
2

p
sin2θ

for UVIðaÞ;

sin2θ23 ¼
4− 2

ffiffiffi
2

p
sin2θ

8− 2
ffiffiffi
3

p
cos2θ−

ffiffiffi
2

p
sin2θ

for UVIðbÞ;

jJCPj ¼
1

6
ffiffiffi
6

p j sin2θj;

jI2j ¼
1

36
j cos2θ−

ffiffiffi
6

p
sin2θj;

jI1j ¼
1

72
j2

ffiffiffi
7

p
−

ffiffiffi
3

p
þð2−

ffiffiffiffiffi
21

p
Þ cos2θ−

ffiffiffiffiffi
14

p
sin2θj:
ð3:75Þ

Then we can derive the following sum rules among the
mixing angles

sin2θ12cos2θ13 ¼
1

3
;

sin2θ23cos2θ13 ¼
1

42

�
9þ 15 cos 2θ13

� 2
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 cos 2θ13 − 9 cos 4θ13 − 4

p �
for UVIðaÞ;

sin2θ23cos2θ13 ¼
1

21

�
6þ 3 cos 2θ13

�
ffiffiffi
3

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 cos 2θ13 − 9 cos 4θ13 − 4

p �
for UVIðbÞ: ð3:76Þ

Plugging in the best fitting value of the reactor angle
sin2 θ13 ¼ 0.0218 [46], we have

sin2θ12 ¼ 0.341;

sin2θ23 ¼ 0.559 or 0.578 for UVIðaÞ;

sin2θ23 ¼ 0.441 or 0.422 for UVIðbÞ: ð3:77Þ

Obviously the atmospheric mixing angle θ23 is nonmax-
imal in this case. The results of our χ2 analysis are
summarized in Table VII. The mixing matrices UVIðcÞ

and UVIðdÞ give rise to the following results for mixing
angles and CP invariants:

sin2θ13 ¼
1

12
ð4− 2

ffiffiffi
3

p
cos2θþ

ffiffiffi
2

p
sin2θÞ;

sin2θ12 ¼
4

8þ 2
ffiffiffi
3

p
cos2θ−

ffiffiffi
2

p
sin2θ

;

sin2θ23 ¼
4þ 2

ffiffiffi
3

p
cos2θþ ffiffiffi

2
p

sin2θ

8þ 2
ffiffiffi
3

p
cos2θ−

ffiffiffi
2

p
sin2θ

for UVIðcÞ;

sin2θ23 ¼
4− 2

ffiffiffi
2

p
sin2θ

8þ 2
ffiffiffi
3

p
cos2θ−

ffiffiffi
2

p
sin2θ

for UVIðdÞ;

jJCPj ¼
1

6
ffiffiffi
6

p j sin2θj; jI2j ¼
1

36
jcos2θþ

ffiffiffi
6

p
sin2θj;

jI1j ¼
1

72
j2

ffiffiffi
7

p
þ

ffiffiffi
3

p
þ ð2þ

ffiffiffiffiffi
21

p
Þcos2θ−

ffiffiffiffiffi
14

p
sin2θj:
ð3:78Þ
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FIG. 14. Predictions of the 0νββ decay effective mass jmeej with
respect to the lightest neutrino massmlightest for the mixing patterns
UVðaÞ and UVðbÞ. The red (blue) dashed lines indicate the most
general allowed regions for the IO (NO) spectrum obtained by
varying the mixing parameters within their 3σ ranges [46]. The
purple and green regions are the theoretical predictions of these two
mixing patterns. The present most stringent upper limits jmeej <
0.120 eV from EXO-200 [63,64] and KamLAND-ZEN [65] is
shown by horizontal grey band. The vertical grey exclusion band is
the current limit onmlightest from the cosmological data of

P
mi <

0.230 eV by the Planck Collaboration [66].
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We find the sum rules in Eq. (3.76) and consequently the
estimates given in Eq. (3.77) are satisfied as well.
Furthermore, the sum rule of Eq. (3.49) among the mixing
angles and Dirac CP phase is fulfilled for all the above four

permutations of the PMNS matrix. Consequently the
comments below Eq. (3.49) also hold true here. As regards
the neutrinoless double beta decay, the predictions for the
effective mass jmeej are given by

jmeej ¼
1

12
jðð

ffiffiffi
3

p
− 1Þeiφ cos θ þ ð1þ

ffiffiffi
3

p
Þeið3π4þφÞ sin θÞ2m1 þ 4q1m2

þ q2m3ðð1þ
ffiffiffi
3

p
Þeið3π4þφÞ cos θ − ð

ffiffiffi
3

p
− 1Þeiφ sin θÞ2j for UVIðaÞ and UVIðbÞ; ð3:79Þ

jmeej ¼
1

12
jðð1þ

ffiffiffi
3

p
Þeiφ cos θ þ ð

ffiffiffi
3

p
− 1Þeið3π4þφÞ sin θÞ2m1 þ 4q1m2

þ q2m3ðð
ffiffiffi
3

p
− 1Þeið3π4þφÞ cos θ − ð1þ

ffiffiffi
3

p
Þeiφ sin θÞ2j for UVIðcÞ and UVIðdÞ: ð3:80Þ

The parameter θ freely varies in the range of ½0; π�, and the
observed values of the lepton mixing angles are required to
be reproduced at 3σ level. The admissible regions of jmeej
as a function of mlightest are displayed in Fig. 15. We can
read off from this figure that jmIO

ee j≃ 0.019 or 0.046 eVand
jmNO

ee j ≥ 0.00052 eV for the mixing patterns UVIðaÞ and
UVIðbÞ while jmIO

ee j≃ 0.030 or 0.040 eV and jmNO
ee j ≥

0.0018 eV for the mixing patternsUVIðcÞ andUVIðdÞ, where
jmIO

ee j and jmNO
ee j are the 0νββ decay effective masses

corresponding to IO and NO mass orderings, respectively.
Then we turn to study the implication for leptogenesis.

One can read out the lepton asymmetry parameters Iα13 as
follows:

Ie13¼ Iμ13¼
1

6
ffiffiffi
2

p ; Iτ13¼−
1

3
ffiffiffi
2

p for UVIðaÞ and UVIðcÞ;

Ie13¼ Iτ13¼
1

6
ffiffiffi
2

p ; Iμ13¼−
1

3
ffiffiffi
2

p for UVIðbÞ and UVIðdÞ;

ð3:81Þ

which are constant values. The numerical results for YB as a
function of η are plotted in Figs. 16 and 17. We can see that

the observed baryon asymmetry can be interpreted as an
effect of leptogenesis for certain values of the parameters
K1;2;3, as listed in Table VII.
Case VII

UVIIðaÞ ¼ 1

2
ffiffiffi
6

p

0
BBB@

−
ffiffi
3

p
s3

2
ffiffiffi
2

p s2−s1
s1s2ffiffi

3
p
s2

2
ffiffiffi
2

p
− s1þs3

s1s3ffiffi
3

p
s1

2
ffiffiffi
2

p s2þs3
s2s3

1
CCCAS23ðθÞQ†

ν;

UVIIðbÞ ¼ 1

2
ffiffiffi
6

p

0
BBB@

−
ffiffi
3

p
s3

2
ffiffiffi
2

p s2−s1
s1s2ffiffi

3
p
s1

2
ffiffiffi
2

p s2þs3
s2s3ffiffi

3
p
s2

2
ffiffiffi
2

p
− s1þs3

s1s3

1
CCCAS23ðθÞQ†

ν;

ð3:82Þ
where sn ≡ sinð2nπ=7Þ with n ¼ 1, 2, 3. We note that
UVIIðaÞ and UVIIðbÞ are related by the exchange of the
second and third rows. Similar to case VI, this mixing
pattern can also be obtained from the flavor symmetry
groups ½168; 42� ≅ Σð168Þ, [336,209], [504,157] and so
forth in combination with generalized CP [47]. In this case,
the column fixed by residual symmetry is

TABLE VII. Results of the χ2 analysis for case VI. We show the best fit value θbf of the parameter θ, and χ2min is the global minimum of
the χ2 function. The mixing angles and the CP violating phases for θ ¼ θbf are given as well. Note that the CP parity matrixQν can shift
the Majorana phases α21 and α031 by π. In the last column we give the values of K1;2;3 for which the observed baryon asymmetry can be
generated via leptogenesis. The values in the square brackets are the corresponding results for the case of IO mass spectrum.

θbf=π χ2min sin2 θ13 sin2 θ12 sin2 θ23 δCP=π α21=π α031=π ðK1; K2; K3Þ

UVIðaÞ 0.572 12.028 0.0222 0.341 0.554 0.667 0.839 0.106 ðþ;�;þÞ; ðþ;�;−Þ
[0.555] [8.007] [0.0218] [0.341] [0.578] [0.763] [0.845] [0.926] ½ðþ;�;þÞ; ðþ;�;−Þ�

UVIðbÞ 0.569 8.133 0.0219 0.341 0.443 1.680 0.839 0.082 ðþ;�;þÞ; ðþ;�;−Þ
[0.576] [20.586] [0.0227] [0.341] [0.452] [1.646] [0.837] [0.146] ½ðþ;�;þÞ; ðþ;�;−Þ�

UVIðcÞ 0.928 12.028 0.0222 0.341 0.554 1.333 0.392 0.894 ðþ;�;þÞ; ðþ;�;−Þ
[0.945] [8.007] [0.0218] [0.341] [0.578] [1.237] [0.385] [0.074] ½ð−;�;þÞ�

UVIðdÞ 0.931 8.133 0.0219 0.341 0.443 0.320 0.391 0.918 ðþ;�;þÞ; ðþ;�;−Þ
[0.924] [20.586] [0.0227] [0.341] [0.452] [0.354] [0.393] [0.854] ½ð−;�;þÞ�
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FIG. 15. Predictions of the 0νββ decay effective mass jmeej with respect to the lightest neutrino mass mlightest in the case VI. The left
panel is the result for the mixing patterns UIðaÞ and UIðbÞ, and the right panel is for UIðcÞ and UIðdÞ. The red (blue) dashed lines indicate
the most general allowed regions for IO (NO) spectrum obtained by varying the mixing parameters within their 3σ ranges [46]. The
purple and green regions are the theoretical predictions of these two mixing patterns. The present most stringent upper limits jmeej <
0.120 eV from EXO-200 [63,64] and KamLAND-ZEN [65] is shown by horizontal grey band. The vertical grey exclusion band is the
current limit on mlightest from the cosmological data of

P
mi < 0.230 eV by the Planck Collaboration [66].

FIG. 16. The prediction for YB=Yobs
B as a function of η in case VI(a) and case VI(b) at the best fit value θbf , where the first and second

rows correspond to the mixing patterns UVIðaÞ and UVIðbÞ respectively. We choose M1 ¼ 5 × 1011 GeV and the lightest neutrino mass
m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines correspond to ðK1; K2; K3Þ ¼ ðþ;�;þÞ; ðþ;�;−Þ,
and ð−;�;þÞ, respectively. The experimentally observed value Yobs

B is represented by the horizontal black dashed line.
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1

2
ffiffiffi
2

p

0
B@

−1=s3
1=s2
1=s1

1
CA ≈

0
B@

−0.815
0.363

0.452

1
CA; or

1

2
ffiffiffi
2

p

0
B@

−1=s3
1=s1
1=s2

1
CA ≈

0
B@

−0.815
0.452

0.363

1
CA: ð3:83Þ

It should be identified with the first column of the PMNS matrix to be in accordance with the experimental data. From the
mixing matrices in Eq. (3.82), we find the following results for the lepton mixing angles:

sin2θ13 ¼
ð2 ffiffiffi

2
p

s1s2 sin θ þ ðs1 − s2Þ cos θÞ2
24s21s

2
2

;

sin2θ12 ¼
ð2 ffiffiffi

2
p

s1s2 cos θ þ ðs2 − s1Þ sin θÞ2
2

ffiffiffi
2

p
s1s2ðs2 − s1Þ sin 2θ − ðs2 − s1Þ2cos2θ þ 4s21s

2
2ðcos 2θ þ 5Þ ;

sin2θ23 ¼
s22ð2

ffiffiffi
2

p
s1s3 sin θ þ ðs1 þ s3Þ cos θÞ2

s23ð2
ffiffiffi
2

p
s1s2ðs2 − s1Þ sin 2θ − ðs2 − s1Þ2cos2θ þ 4s21s

2
2ðcos 2θ þ 5ÞÞ for UVIIðaÞ;

sin2θ23 ¼
s21ð2

ffiffiffi
2

p
s2s3 sin θ − ðs2 þ s3Þ cos θÞ2

s23ð2
ffiffiffi
2

p
s1s2ðs2 − s1Þ sin 2θ − ðs2 − s1Þ2cos2θ þ 4s21s

2
2ðcos 2θ þ 5ÞÞ for UVIIðbÞ; ð3:84Þ

and

JCP ¼ I1 ¼ I2 ¼ 0; ð3:85Þ

FIG. 17. The prediction for YB=Yobs
B as a function of η in case VI(c) and case VI(d) at the best fit value θbf , where the first and second

rows correspond to the mixing patterns UVIðcÞ and UVIðdÞ, respectively. We choose M1 ¼ 5 × 1011 GeV and the lightest neutrino mass
m1 ðorm3Þ ¼ 0.01 eV. The red dotted, green dot-dashed, and blue dashed lines correspond to ðK1; K2; K3Þ ¼ ðþ;�;þÞ; ðþ;�;−Þ,
and ð−;�;þÞ, respectively. The experimentally observed value Yobs

B is represented by the horizontal black dashed line.
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which implies that all the three CP violating phases δCP, α21, and α31 are trivial. Expressing the parameter θ in terms of θ13,
we can obtain the sum rules among the lepton mixing angles,

8cos2θ12cos2θ13 ¼
1

s23
;

sin2θ23cos2θ13 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið8cos2θ13s23 − 1Þðs22ð8s23 − 1Þ − s23Þ
p � s3 sin θ13

�
2

s22ð8s23 − 1Þ2 for UVIIðaÞ;

sin2θ23cos2θ13 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ð8cos2θ13s23 − 1Þðs21ð8s23 − 1Þ − s23Þ
p

� s3 sin θ13
�
2

s21ð8s23 − 1Þ2 for UVIIðbÞ: ð3:86Þ

Given the best fitting value of the reactor mixing angle
sin2θ13 ¼ 0.0218 [46], we obtain

sin2θ12¼0.321; sin2θ23¼0.399 or 0.601: ð3:87Þ

For this mixing pattern, the effective Majorana neutrino
mass jmeej is given by

jmeej ¼
1

24

���� 3m1

s23
þ q1m2

�
2

ffiffiffi
2

p
cos θ þ

�
1

s1
−

1

s2

�
sin θ

�
2

þ q2m3

�
−2

ffiffiffi
2

p
sin θ þ

�
1

s1
−

1

s2

�
cos θ

�
2
����:
ð3:88Þ

As shown in Fig. 18, jmeej is around 0.017 or 0.048 eV in
the case of IO, while a noticeable cancellation occurs such
that jmeej can be smaller than 10−4 eV for NO if the lightest
neutrino mass lies in the interval [0.0022,0.0032] or
[0.0064,0.0074] eV. Regarding the predictions for lepto-
genesis, all the relevant CP invariants Iα23 as well as the
lepton asymmetries ϵα are zero. Thus, a model, realizing
this pattern at leading order, should receive moderate
corrections to interpret the observed baryon asymmetry
as an effect of leptogenesis.

B. Mixing patterns derived from the variant
of semidirect approach

In this approach, the residual flavor symmetries in the
neutrino and charged lepton sectors are K4 ×Hν

CP and
Z2 ×Hl

CP, respectively. The prediction for the PMNS
mixing matrix can be straightforwardly extracted from
Eq. (2.51). It is remarkable that the resulting mixing matrix
has one row which is determined by the residual sym-
metries and which does not depend on the free parameter θ.
In exactly the same manner as the semidirect approach in
Sec. III A, we perform a comprehensive scan over all
possible finite discrete groups of the order less than 2000
with the help of GAP. We find only one type of mixing
pattern which can accommodate the experimental data on

lepton mixing angles for particular choices of the free
parameter θ

UVIIIðaÞ ¼ 1

2
ST13ðθÞ

0
BB@

ffiffiffi
2

p
eiφ1 −

ffiffiffi
2

p
eiφ1 0

1 1 −
ffiffiffi
2

p
eiφ2

1 1
ffiffiffi
2

p
eiφ2

1
CCAQ†

ν;

UVIIIðbÞ ¼ P132U
VIIIðaÞ
PMNS ; ð3:89Þ

where the viable values of φ1, φ2 and the representative
flavor symmetry groups are summarized in Table VIII.
Notice that all these mixing patterns can be reproduced
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FIG. 18. The predictions of the 0νββ decay effective mass jmeej
with respect to the lightest neutrino mass mlightest for the mixing
patterns UVIIðaÞ and UVIIðbÞ. The red (blue) dashed lines indicate
the most general allowed regions for the IO (NO) spectrum
obtained by varying the mixing parameters within their 3σ ranges
[46]. The purple and green regions are the theoretical predictions
of these two mixing patterns. The present most stringent
upper limits jmeej < 0.120 eV from EXO-200 [63,64] and
KamLAND-ZEN [65] is shown by horizontal grey band. The
vertical grey exclusion band is the current limit on mlightest from
the cosmological data of

P
mi < 0.230 eV by the Planck

Collaboration [66].
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from the type D group series Δð6n2Þ and Dð1Þ
9n;3n, and the

small flavor symmetry groups S4 andΔð96Þ already allow a
reasonable fit to the experimental data for this type of
mixing pattern. This is consistent with the findings in

Ref. [12]. Obvious UVIIIðbÞ
PMNS is obtained from UVIIIðaÞ

PMNS by
exchanging the second and third rows. In this case, the row
that is fixed by residual symmetry is ð1; 1;− ffiffiffi

2
p

eiφ2Þ=2, and
it could be the second or the third row of the PMNS mixing
matrix. The predictions for the mixing angles read as

sin2θ13 ¼
1

2
sin2θ;

sin2θ12 ¼
1

2
þ

ffiffiffi
2

p
sin 2θ cosφ1

3þ cos 2θ
;

sin2θ23 ¼
2

3þ cos 2θ
for UVIIIðaÞ;

sin2θ23 ¼
1þ cos 2θ
3þ cos 2θ

for UVIIIðbÞ; ð3:90Þ

and the CP invariants take the form����JCPj ¼ 1

8
ffiffiffi
2

p j sin 2θ sinφ1j;

jI1j ¼
1

8
ffiffiffi
2

p jð1þ 3 cos 2θÞ sin 2θ sinφ1j;

jI2j ¼
sin2θ
8

j
ffiffiffi
2

p
sin 2θ sinð2φ2 − φ1Þ

− 2cos2θ sin 2ðφ2 − φ1Þ − sin2θ sin 2φ2j: ð3:91Þ

We easily see that the reactor and atmospheric mixing
angles are related by

sin2θ23 ¼
1

2cos2θ13
for UVIIIðaÞ;

sin2θ23 ¼
cos 2θ13
2cos2θ13

for UVIIIðbÞ: ð3:92Þ

Given the 3σ range 0.0188 ≤ sin2θ13 ≤ 0.0251 of θ13 [46],
the atmospheric mixing angle θ23 is determined to lie in the
region of

0.510 ≤ sin2θ23 ≤ 0.513 for UVIIIðaÞ;

0.487 ≤ sin2θ23 ≤ 0.490 for UVIIIðbÞ; ð3:93Þ
which deviates from maximal mixing slightly. Similarly
the sum rule among the reactor and solar mixing angles is
given by

sin2θ12 ¼
1

2
� tan θ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − tan2θ13

q
cosφ1; ð3:94Þ

where the “+” and “−” signs are valid, 0 < θ < π=2 and
π=2 < θ < π, respectively. For the experimentally favored
3σ interval of the reactor mixing angle, we get

0.342 ≤ sin2θ12 ≤ 0.363: ð3:95Þ

As a example, for sin2 θ13 ¼ 0.0251 (θ≃ 0.072π or
θ≃ 1.928π) and φ1 ¼ π (or 0), we find the value of the

TABLE VIII. The predictions for PMNS matrix of the form UVIIIðaÞ and UVIIIðbÞ, where the first column shows the group
identification in the GAP system, and the second column displays the achievable values of the parameters φ1 and φ2. We have shown at
most two representative flavor symmetry groups in the first column. If there is only one group predicting the corresponding values
of φ1 and φ2 in the second column, this unique group would be listed. The full results of our analysis are provided at the web site [47].

The subscripts Δ and Δ0 indicate that the corresponding groups belong to the type D group series Dð0Þ
n;n ≅ Δð6n2Þ and

Dð1Þ
9n0;3n0 ≅ ðZ9n0 × Z3n0 Þ ⋊ S3, respectively.

Group Id ðφ1;φ2Þ
½24; 12�

▵
, [48, 48] ðπ; πÞ

½96; 64�
▵
, [192, 944] ð0; 3π

4
Þ

½384; 568�
▵
, [768, 1085727] ðπ

8
;− 5π

8
Þ, ðπ

8
; πÞ, ð0; 7π

8
Þ, ðπ

8
;− 7π

8
Þ, ð− 7π

8
; 3π
4
Þ

½600; 179�
▵
, [1200, 1011] ð0;− 4π

5
Þ, ð0;− 9π

10
Þ, ð− π

10
; 9π
10
Þ, ð− π

5
;− 4π

5
Þ, ð− π

10
; 7π
10
Þ, ð− π

5
; πÞ, ð− π

5
; 9π
10
Þ, ð− π

10
;− 9π

10
Þ,

ð− π
5
; 4π
5
Þ, ð− π

10
; πÞ, ð− π

10
;− 7π

10
Þ, ð− π

5
;− 9π

10
Þ

½648; 259�
▵
0 , [648, 260] ð− 5π

6
; 2π
3
Þ, ð− 5π

6
; πÞ, ð− 5π

6
;− 2π

3
Þ, ð−π;− 5π

6
Þ

½1176; 243�
▵ ð0;− 5π

7
Þ, ð0;− 13π

14
Þ, ð13π

14
;− 13π

14
Þ, ð13π

14
;− 9π

14
Þ, ð13π

14
;− 6π

7
Þ, ð− 6π

7
; 13π
14
Þ, ð0;− 6π

7
Þ, ð− π

14
; 13π
14
Þ,

ð13π
14

; 5π
7
Þ, ð3π

14
; πÞ, ð13π

14
; πÞ, ðπ

7
; 4π
7
Þ, ð3π

14
; 5π
7
Þ, ð− π

14
; 11π
14
Þ, ð− 11π

14
; 13π
14
Þ, ðπ

7
; 11π
14
Þ, ð3π

14
;− 6π

7
Þ, ðπ

7
; πÞ,

ð3π
14
; 6π
7
Þ, ðπ

7
;− 11π

14
Þ, ð3π

14
;− 13π

14
Þ, ð3π

14
;− 5π

7
Þ, ðπ

7
;− 6π

7
Þ, ðπ

7
;− 9π

14
Þ

½1536; 408544632�
▵ ð− 13π

16
; 7π
8
Þ, ð π

16
; 13π
16
Þ, ð π

16
; πÞ, ð π

16
;− 13π

16
Þ, ð π

16
; 7π
8
Þ, ð−π; 15π

16
Þ, ð π

16
;− 15π

16
Þ, ð π

16
;− 3π

4
Þ, ð π

16
;− 9π

16
Þ,

ð3π
16
;− 11π

16
Þ, ðπ

8
;− 13π

16
Þ, ð3π

16
;− 7π

8
Þ, ðπ

8
; 13π
16
Þ, ð3π

16
; 15π
16
Þ, ð3π

16
;− 3π

4
Þ, ð3π

16
; πÞ, ð0; 11π

16
Þ, ðπ

8
; 15π
16
Þ,

ð3π
16
;− 15π
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Þ, ðπ

8
; 9π
16
Þ, ð3π

16
; 11π
16
Þ, ð− 15π

16
; 5π
8
Þ
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solar mixing angle sin2 θ12 ≃ 0.342 which is within the 3σ
range. Therefore sin2 θ12 is generically predicted to be
close to its 3σ upper limit in this case.1 Notice that better
agreement of the predicted values of sin2 θ12 with the
experimental results could be achieved in a concrete model
with small corrections.
Moreover, we find that the Dirac CP phase is correlated

with the mixing angles as follows:

cos δCP ¼ �ð3 cos 2θ13 − 1Þ cot 2θ12
4

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cos 2θ13

p
sin θ13

; ð3:96Þ

where the “þ” and “−” correspond to UVIIIðaÞ and UVIIIðbÞ,
respectively. If the reactor and solar mixing angles vary
within the 3σ intervals 0.0188 ≤ sin2 θ13 ≤ 0.0251 and
0.270 ≤ sin2 θ12 ≤ 0.344 [46], we obtain

cos δCP ∈ �½0.983; 1�: ð3:97Þ

Hence, δCP is predicted to be around 0 or π in this case.
This mixing pattern would be ruled out if large CP
violation effect is discovered in planned long baseline
experiments.
From the mixing matrix shown in Eq. (3.89), we can

extract the expression for the effective Majorana mass jmeej,

jmeej ¼
1

4
jm1ð

ffiffiffi
2

p
eiφ1 cos θ − sin θÞ2

þ q1m2ðsin θ þ
ffiffiffi
2

p
eiφ1 cos θÞ2

þ 2q2m3e2iφ2sin2θj; ð3:98Þ

with q1;2 ¼ �1. We plot the possible region of jmeej
as a function of the lightest neutrino mass mlightest in
Fig. 19. In the limit of jGfj → ∞, we see that the entire
3σ region for IO and a sizable part for NO can be
reproduced. For the particular value of ðφ1;φ2Þ ¼ ðπ; πÞ,
which can be achieved from the S4 flavor symmetry
combined with CP symmetry, we can read off from this
figure jmIO

ee j≃ 0.015 eV or jmIO
eej≃ 0.048 eV and jmNO

ee j is
highly suppressed for 0.0026 eV ≤ mlightest ≤ 0.0031 eV
and 0.0079 eV ≤ mlightest ≤ 0.0084 eV.
As has been shown in Ref. [29], if a Klein four flavor

symmetry is preserved by the neutrino mass matrix, all the
leptogenesis CP asymmetries ϵα would vanish and this
result is independent of the concrete form of the residual
Klein flavor symmetry transformation. Since the residual
flavor symmetry of the neutrino sector is K4 in the variant
of the semidirect approach, a net baryon asymmetry cannot
be generated, and appropriate higher order corrections are
necessary to have successful leptogenesis.

IV. CONCLUSIONS

Flavor and CP symmetries have been widely used to
predict leptonic mixing parameters. In the present work,
we take into account the generalized CP symmetry and
perform an exhaustive scan of the lepton mixing patterns
which can be obtained from the discrete finite groups up to
order 2000 with the help of computer program GAP. The
generalized CP transformations are required to correspond
to class-inverting automorphisms of the flavor symmetry
groupGf, so that the consistency conditions between flavor
and CP symmetry can be fulfilled. If Gf does not possess a
class-inverting automorphism, a CP symmetry could pos-
sibly be consistently defined in a model which contains
only a subset of irreducible representations of Gf.
The flavor and CP symmetries have to be broken at low

energy. The PMNS mixing matrix is fully fixed by the
residual symmetries of the neutrino and charged lepton
mass matrices, and we do not need to consider how the
residual symmetries are dynamically realized. In this work,
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FIG. 19. Predictions of the 0νββ decay effective mass jmeej
with respect to the lightest neutrino mass mlightest for the mixing
patternsUVIIIðaÞ andUVIIIðbÞ. The red (blue) dashed lines indicate
the most general allowed regions for IO (NO) spectrum obtained
by varying the mixing parameters within their 3σ ranges [46]. The
orange (cyan) areas denote the achievable values of jmeej when
φ1 and φ2 are taken to be free continuous parameters in the case
of IO (NO). The purple and green regions are the theoretical
predictions of the smallest flavor symmetry group which can
generate these two mixing patterns. Note that the purple (green)
region overlaps the orange (cyan) one. The present most stringent
upper limits jmeej < 0.120 eV from EXO-200 [63,64] and Kam-
LAND-ZEN [65] are shown by the horizontal grey band. The
vertical grey exclusion band is the current limit on mlightest from
the cosmological data of

P
mi < 0.230 eV by the Planck

Collaboration [66].

1The 3σ ranges of sin2 θ12 obtained by distinct global fitting
groups have some minor difference: 0.270 ≤ sin2θ12 ≤ 0.344
from the NuFIT group [46], 0.278 ≤ sin2θ12 ≤ 0.375 from the
Valencia group [67], and 0.250 ≤ sin2θ12 ≤ 0.354 given by the
Italian group [68].
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we have considered two scenarios: the semidirect approach
and the variant of the semidirect approach. In the semidirect
approach, the residual symmetries of the charged lepton
and neutrino mass matrices are Gl ⋊ Hl

CP and Z2 ×Hν
CP,

respectively, where Gl can be any Abelian subgroup of Gf

capable of distinguishing the three generations. In the
variant of the semidirect approach, the flavor and CP
symmetries are assumed to be broken down to Z2 ×Hl

CP
and K4 ×Hν

CP in the charged lepton and neutrino sectors
respectively. The PMNS matrix can be determined from
the representation matrix of the residual symmetry without
reconstructing the neutrino and charged lepton mass
matrices, and the master formula is given by Eq. (2.27)
and Eq. (2.51), respectively. We see that the PMNS matrix
depends on only a free parameter θ which can take values in
the range of ½0; πÞ in both approaches. Nevertheless, one
column of the PMNS matrix is fixed to certain constant
value by the residual symmetry in the semidirect approach
while one row is fixed in its variant.
For each discrete flavor group which has a faithful three-

dimensional irreducible representation and a class-inverting
outer automorphism, all the possible remnant symmetries
and the resulting predictions for lepton flavor mixing are
studied. All these results are available at our web site [47].
We find that all the mixing patterns which can accom-
modate the experimental data on the mixing angles can be
organized into eight different cases up to possible permu-
tations of rows and columns. It is remarkable that the
mixing matrices of case I, case II, and case III can be

reproduced from the Δð6n2Þ or Dð1Þ
9n;3n groups combined

with the CP symmetry. The list of the mixing matrices

associated with Δð6n2Þ and Dð1Þ
9n;3n agrees exactly with

those given in Refs. [23,26,27]. The smallest group which
can produce the mixing patterns of case IVand case V is the
alternating group A5. These two mixing patterns have really
been found in the literature of A5 flavor symmetry with
generalized CP [18–20]. The mixing patterns of case VI
and case VII are completely new as far as we know. They
can be achieved from the flavor symmetry group Σð168Þ ≅
PSLð2; 7Þ and CP symmetry. The second column of the
resulting PMNS mixing matrix is trimaximal in case II,
case III, and case VI, and therefore the sum rule
3sin2θ12cos2θ13 ¼ 1 is satisfied and the solar mixing
angle is bounded from below sin2θ12 ≥ 1=3. In the variant
of the semidirect approach, only one type of mixing
matrix denoted as case VIII can yield a good fit to the
experimental data, and one row of the PMNS matrix is
ð1; 1;− ffiffiffi

2
p

eiφ2Þ=2. The solar mixing angle θ12 is predicted
to the close to its 3σ upper bound, and the atmospheric
mixing angle is around sin2θ23 ≃ 0.49 or sin2 θ23 ≃ 0.51.
As a result, the paradigm of the generalized CP symemtry
should be testable by precisely measuring θ12 and θ23 at
future reactor neutrino experiments such as JUNO and long
baseline experiments DUNE and Hyper-K.

Furthermore, the implications of residual symmetry in
0νββ decay and flavored thermal leptogenesis are studied.
The predicted values of the effective Majorana mass jmeej
are within the sensitivity of planned experiments for IO
neutrino mass spectrum, the known cancellation of the
different terms in jmeej may occur in the case of NO
although jmeej could have a nontrivial lower limit for a
certain finite group. As regards the leptogenesis, the R
matrix in the Casas-Ibarra parametrization only depends
on one single parameter η because of the constraint
imposed by remnant symmetry. The total lepton asymmetry
ϵ1 ≡ ϵe þ ϵμ þ ϵτ is determined to be zero such that the
unflavored leptogenesis does not work. On the other hand,
all the lepton charge asymmetries ϵα (α ¼ e, μ, τ) are
vanishing in case III, case V, case VII, and case VIII;
consequently, the matter-antimatter asymmetry of the
Universe cannot be explained via leptogenesis unless
the postulated residual symmetry is further broken at the
subleading level. For the remaining case I, case II, case IV,
and case VI, the measured value of the baryon asymmetry
can be generated for certain values of the parameters η
and K1;2;3 which are determined by the CP parity of the
neutrino states.
Many interesting mixing patterns and the associated

residual symmetry found in this work provide new oppor-
tunity for model building. So far lepton flavor mixing is
derived from group theoretical considerations without
any dynamical input. It would be interesting to construct
concrete models in which the breaking of the symmetry
group to the residual symmetry is achieved dynamically.
Usually the desired symmetry breaking is spontaneous
due to nonvanishing vacuum expectation values of
some flavons. The general procedure of building a
dynamical model is proposed in [69]. The models in
Refs. [10–13,15,17,18] provide good examples of how
to realize the desired residual symmetry in a specific model.
Inspired by the above promising results obtained for lepton
mixing, it is appealing to investigate whether the quark
mixing angles and the precisely measured CP violating
phase can be obtained as a result of mismatched remnant
symmetries in the down quark and up quark sectors if the
generalized CP symmetry is considered.
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APPENDIX: EQUIVALENT CONDITIONS
OF DISTINCT MIXING PATTERNS

In both the semidirect approach and the variant of the
semidirect approach discussed in Sec. II, two distinct
residual symmetries could lead to the same PMNS mixing
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matrix up to permutations of rows and columns and
redefinition of the free parameter θ and the CP parity
matrixQν. Then the lepton mixing matrices following from
these two residual symmetries would be called equivalent.
For example, the mixing matrices predicted by two residual
symmetries conjugate under a group element are equiv-
alent, as shown in the end of Sec. II. In the following, we
shall derive the most general equivalent conditions for both
approaches.

1. Equivalence in semidirect approach

Let us consider two generic residual symmetries in the
semidirect approach; their predictions for the lepton mixing
matrix can be written as

U1 ¼ Q†
l1P

T
l1Σ1S23ðθ1ÞPν1Q

†
ν1;

U2 ¼ Q†
l2P

T
l2Σ2S23ðθ2ÞPν2Q

†
ν2; ðA1Þ

where Σ ¼ Σ†
lΣν, and Σ1 and Σ2 are the corresponding

results of Σ for the two postulated residual symmetries.
Ql1;2 are arbitrary diagonal phase matrices and Qν1;2 are
unitary diagonal matrices with nonvanishing entries �1
and �i. Pl1;2 and Pν1;2 are permutation matrices, and they
can take the six possible forms in Eq. (3.7). Moreover, θ1
and θ2 are free continuous parameters within the funda-
mental interval of ½0; πÞ. For any given values of θ1 and the
matrices Ql1, Pl1, Qν1, Pν1, if the corresponding values
of θ2 as well as Ql2, Pl2, Qν2, Pν2 can be found such the
equality U1 ¼ U2 is fulfilled, these two residual sym-
metries would be equivalent, i.e.,

Q†
l1P

T
l1Σ1S23ðθ1ÞPν1Q

†
ν1 ¼ Q†

l2P
T
l2Σ2S23ðθ2ÞPν2Q

†
ν2;

ðA2Þ

from which we can define a matrix Ξ which is independent
of θ1 and θ2 as follows:

Ξ≡ Σ†
1Pl1Ql1Q

†
l2P

T
l2Σ2

¼ S23ðθ1ÞPν1Q
†
ν1Qν2PT

ν2S
T
23ðθ2Þ: ðA3Þ

For convenience, introducing the notations Pl ¼ Pl1PT
l2,

Ql¼Pl2Ql1Q
†
l2P

T
l2, Pν¼Pν1PT

ν2, and Qν¼Pν2Qν1Q
†
ν2P

T
ν2,

then we have

Ξ ¼ Σ†
1PlQlΣ2 ¼ S23ðθ1ÞPνQνST23ðθ2Þ; ðA4Þ

which implies

ΞΞT ¼ S23ðθ1ÞQ02
ν ST23ðθ1Þ; ðA5Þ

where Q0
ν ¼ PνQνPT

ν . Since Ξ doesn’t depend on the
parameters θ1 and θ2, the right-hand side of the above

equation has to be independent of θ1. This requires Q0
ν

should be of the form

Q02
ν ¼ �diagð1;�12×2Þ: ðA6Þ

Therefore the (22) and (33) elements ofQ0
ν are either�1 or

�i simultaneously while the (11) element denoted as qν is
independently �1 and �i. Without loss of generality,
we assume that the fixed column by residual symmetries
is the first column of the PMNS matrix; thus, the
permutation matrices Pν1 and Pν2 as well as Pν can be
either P123 or P132. Using the properties ST23ðθÞ¼S23ð−θÞ,
P132S23ðθÞ ¼ S23ð−θÞP132, and diagð1; 1;−1ÞS23ðθÞ ¼
S23ð−θÞdiagð1; 1;−1Þ, we can obtain

Ξ ¼ Σ†
1PlQlΣ2 ¼ S23ðθ1ÞQ0

νPνST23ðθ2Þ ¼ S23ðθ0ÞQ0
νPν;

ðA7Þ

where θ0 ¼ θ1 � θ2, and “þ” and “−” depend on the values
of Q0

ν and Pν. Assuming the common first column of Σ1

and Σ2 is v1, then the (11) entry of the Ξ matrix is

v†1PlQlv1 ¼ qν: ðA8Þ

We parametrize v1 and Ql as v1 ¼ ða; b; cÞT and Ql ¼
diagðeiα1 ; eiα2 ; eiα3Þ, where a, b, c can be set to be positive
real numbers by redefining the charged lepton fields with
the property a2 þ b2 þ c2 ¼ 1. In the following we shall
discuss the constraints of Eqs. (A7) and (A8) for the six
possible forms of Pl one by one.
First, in the case of Pl ¼ P123 ¼ 13×3, Eq. (A8) becomes

eiα1a2 þ eiα2b2 þ eiα3c2 ¼ qν: ðA9Þ

Taking the absolute value of the both sides of this equation,
we obtain

jeiα1a2 þ eiα2b2 þ eiα3c2j ≤ a2 þ b2 þ c2 ¼ 1 ¼ jqνj:
ðA10Þ

This equality is fulfilled if and only if

eiα1 ¼ eiα2 ¼ eiα3 ¼ qν: ðA11Þ

Thus Ql ¼ qν13×3, and Eq. (A7) reduces to

Ω≡ Σ†
1PlΣ2 ¼ q�νS23ðθ0ÞQ0

νPν; ðA12Þ

which can be written into an equivalent and more compact
form

ΩΩT ¼ q�2ν Q02
ν ¼ diagð1;�12×2Þ: ðA13Þ
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Conversely, if the condition of Eq. (A12) or Eq. (A13) is
satisfied, one can easily see that the two PMNS mixing
matrices U1 and U2 in Eq. (A1) would be equivalent.
For the case of Pl ¼ P132, then Eq. (A8) becomes

eiα1a2 þ eiα2bcþ eiα3bc ¼ qν: ðA14Þ

Taking the absolute value on both sides of this equation,
we get

jeiα1a2 þ eiα2bcþ eiα3bcj ≤ a2 þ 2bc ≤ a2 þ b2 þ c2 ¼ 1;

ðA15Þ

which requires

eiα1 ¼ eiα2 ¼ eiα3 ; b ¼ c: ðA16Þ

Consequently, the equivalent condition in Eq. (A12)
and Eq. (A13) is also fulfilled with Pl ¼ P132. In other
words, if the second and third elements b and c of the fixed
column are the same, we should further consider the
equivalent condition of Eq. (A13) with Pl ¼ P132. In the
same manner, we can analyze the remaining cases of
Pl ¼ P213, P321, P231, and P312. The resulting constraints
on the phases α1;2;3 and the constraints on the elements a, b,
and c are summarized in Table IX. One can see that eiα1 ¼
eiα2 ¼ eiα3 ¼ qν always needs to be satisfied. As a conse-
quence, we summarize that the most general equivalent
condition of two mixing patterns is given by Eq. (A13) in
the semidirect approach, and Pl is the permutation matrix
under which the fixed column v1 is invariant Plv1 ¼ v1.

2. Equivalence in variant of the semidirect approach

Given two distinct set of residual symmetries in this
approach, as shown in Sec. II B, the lepton mixing matrices
read as

U1 ¼ Ql1PT
l1S

T
23ðθ1ÞΣ1Pν1Q

†
ν1;

U2 ¼ Ql2PT
l2S

T
23ðθ2ÞΣ2Pν2Q

†
ν2; ðA17Þ

where Σ ¼ Σ†
lΣν. In the following, we shall derive the

criteria to determine whether the above two PMNSmatrices
U1 and U2 are essentially the same up to rows and columns
permutations and the redefinition of the parameter θ. In
other words, if the solution(s) for θ2 and the Pl1;2, Ql1;2,
Pν1;2,Qν1;2 matrices can be found for any given value of θ1,
so that the equality U1 ¼ U2 is fulfilled, and then U1 and
U2 would be equivalent, i.e.,

Ql1PT
l1S

T
23ðθ1ÞΣ1Pν1Q

†
ν1 ¼ Ql2PT

l2S
T
23ðθ2ÞΣ2Pν2Q

†
ν2;

ðA18Þ

which leads to

Ξ≡ Σ1PνQνΣ
†
2 ¼ S23ðθ1ÞPlQlST23ðθ2Þ; ðA19Þ

with Pν ¼ Pν1PT
ν2, Qν ¼ Pν2Q

†
ν1Qν2PT

ν2, Pl ¼ Pl1PT
l2,

and Ql ¼ Pl2Q
†
l1Ql2PT

l2. Thus, the product of Ξ and its
transpose is

ΞΞT ¼ S23ðθ1ÞQ02
l S

T
23ðθ1Þ; ðA20Þ

where Q0
l ¼ PlQlPT

l is a diagonal phase matrix. Since Ξ is
a constant matrix and it does not depend on θ1, we have

Q0
l ¼ diagð�eiγ=2;�eiα=2;�eiα=2Þ; ðA21Þ

where α and γ are real, and “�” can be chosen independ-
ently. In the variant of the semidirect approach, one row of
the PMNS matrix is fixed by the postulated residual
symmetry. Without loss of generality, we assume that
the fixed row is the first row of the PMNS matrix. As a
result, the permutation matrices Pl1, Pl2, and Pl can be
either P123 or P132; thus, we obtain the equivalent condition

Ξ ¼ Σ1PνQνΣ†
2

¼ S23ðθ1ÞPlQlST23ðθ2Þ
¼ S23ðθ1ÞQ0

lPlST23ðθ2Þ
¼ Q0

lPlST23ðθ0Þ; ðA22Þ

with θ0 ¼ θ2 � θ1. If the two mixing patterns U1

and U2 are equivalent, the first row of Σ1 and Σ2 must
be equal, and it is denoted as u1 ¼ ðc1; c2; c3Þ ¼
ðjc1jeiδ1 ; jc2jeiδ2 ; jc3jeiδ3Þ with jc1j2 þ jc2j2 þ jc3j2 ¼ 1.
Notice that we can set the phases δ1 ¼ 0 and δ2;3 ∈
½0; π

2
Þ by redefining the matrices Ql and Qν. The (11)

element of Ξ can be read from Eq. (A22) as

u1PνQνu
†
1 ¼ �eiγ=2 ≡ ql: ðA23Þ

We parametrize Qν ¼ diagðqν1; qν2; qν3Þ and qν1;2;3 ¼ �1;
�i. In the following, we shall analyze the equivalent

TABLE IX. Constraints on the fixed column v1 ¼ ða; b; cÞT
and the phase matrix Ql ¼ diagðeiα1 ; eiα2 ; eiα3Þ imposed by the
equivalent condition in the semidirect approach.

Pl Constraint on α1;2;3 Constraint on a, b, and c

P123

eiα1 ¼ eiα2 ¼ eiα3 ¼ qν

…
P132 b ¼ c
P213 a ¼ b
P321 a ¼ c
P231 a ¼ b ¼ c
P312 a ¼ b ¼ c
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condition of Eq. (A22) and the constraint of Eq. (A23) for
the six possible values of Pν.
If Pν ¼ P123 ¼ 13×3, Eq. (A23) reduces to

qν1jc1j2 þ qν2jc2j2 þ qν3jc3j2 ¼ ql: ðA24Þ

Subsequently taking absolute value of the both sides of this
equation, we obtain

jqν1jc1j2 þ qν2jc2j2 þ qν3jc3j2j ¼ 1; ðA25Þ

which requires

qν1 ¼ qν2 ¼ qν3 ¼ ql: ðA26Þ

Therefore the equivalent condition of Eq. (A22) becomes

Ω≡ Σ1PνΣ
†
2 ¼ q�l Q

0
lPlST23ðθ0Þ; ðA27Þ

or equivalently

ΩΩT ¼ q�2l Q02
l ¼ diagð1; eiα0 ; eiα0 Þ; ðA28Þ

where α0 ¼ α − γ.
For the case of Pν ¼ P132, Eq. (A23) takes the form

qν1jc1j2 þ qν2c3c�2 þ qν3c2c�3 ¼ ql; ðA29Þ

from which we obtain

jqν1jc1j2 þ qν2c�2c3 þ qν3c2c�3j
≤ jc1j2 þ 2jc2jjc3j ≤ jc1j2 þ jc2j2 þ jc3j2 ¼ 1 ¼ jqlj:

ðA30Þ

Thus Eq. (A29) is satisfied if and only if

qν1 ¼ eiðδ3−δ2Þqν2 ¼ e−iðδ3−δ2Þqν3; jc2j ¼ jc3j; ðA31Þ

which leads to eiðδ3−δ2Þ ¼ �1;�i. Considering δ3 − δ2 ∈
ð− π

2
; π
2
Þ, we have

δ2 ¼ δ3; qν1 ¼ qν2 ¼ qν3 ¼ ql: ðA32Þ

Therefore the equivalent condition is still ΩΩT ¼
diagð1; eiα0 ; eiα0 Þ given by Eq. (A28) with Ω ¼ Σ1PνΣ†

2

and Pν ¼ P132.
For all the six possible values of Pν, the corresponding

constraints on the fixed row u1 ¼ ðjc1j; jc2jeiδ2 ; jc3jeiδ3Þ
and the phase matrix Qν ¼ diagðqν1; qν2; qν3Þ are summa-
rized in Table X. We see that the equivalent condition
can be written as ΩΩT ¼ diagð1; eiα0 ; eiα0 Þ with Ω ¼
Σ1PνQ0

νΣ
†
2. The matrix Q0

ν is an identity matrix Q0
ν ¼

13×3 in the case of Pν ¼ P123, P132, P213, and P321.
Nevertheless, depending on the values of δ2 and δ3, we
have Q0

ν ¼ 13×3, e−iπ=6diagð1; i; 1Þ, e−iπ=6diagð1; 1; iÞ, or
e−iπ=3diagð1; i; iÞ for Pν ¼ P231, P312. Using this simple
criteria, one can easily determine whether two residual
symmetries give rise to the same lepton mixing pattern.
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