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We study the gauge-independent observables associated with two interesting stationary configurations of
the Standard Model Higgs potential (extrapolated to high energy according to the present state of the art,
namely the next-to-next-to-leading order): i) the value of the top mass ensuring the stability of the SM
electroweak minimum and ii) the value of the Higgs potential at a rising inflection point. We examine in
detail and reappraise the experimental and theoretical uncertainties which plague their determination,
finding that i) the stability of the SM is compatible with the present data at the 1.5σ level and ii) despite the
large theoretical error plaguing the value of the Higgs potential at a rising inflection point, the application of
such a configuration to models of primordial inflation displays a 3σ tension with the recent bounds on the
tensor-to-scalar ratio of cosmological perturbations.
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I. INTRODUCTION

The extrapolation of the Standard Model (SM) Higgs
potential at high energy via the renormalization group
equation (RGE) is an interesting task [1,2]. On one hand,
the SM can be considered valid up to some energy scale
only if the electroweak minimum is stable, or at least
metastable. On the other hand, the shape of the Higgs
potential at high energy could have some impact on the
dynamics of the early Universe. Two stationary configu-
rations of the SM Higgs potential turn out to be particularly
relevant: i) the case of two degenerate vacua [3], that is the
condition for electroweak vacuum stability, and ii) the case
of a rising inflection point at high energy [4], close to the
Planck scale.
Our goal is to perform a detailed and updated study of

the gauge-independent observables associated with such
stationary configurations, building on the recent progress
made in both the theoretical and the experimental sides.
We extrapolate the SM Higgs potential up to high energy
according to the present state of the art, namely the next-
to-next-to-leading order (NNLO), and study in particular
i) the value of the top mass ensuring stability of the SM
electroweak minimum and ii) the value of the Higgs
potential at the rising inflection point. We examine in
detail and reappraise in a critical way the experimental and
theoretical uncertainties which plague their determination.
The inputs necessary to carry out the extrapolation are

the low energy values of the three gauge couplings, the top
quark and the Higgs masses. Since the discovery of the
Higgs boson [5,6], a lot of work has been done in the
direction of refining the calculation of the RGE-improved

Higgs effective potential at high energy. As for the
matching with the experimental inputs at low energy,
progress was made in Refs. [7–10]. A better understanding
of how to extract gauge-invariant observables [11,12] from
the (gauge-dependent) effective potential is worth mention-
ing. Particularly relevant for the sake of the present analysis
are the insights about the effective potential expansion in
the case that the Higgs quartic coupling is small [13,14],
this progress justifies the method used in previous analysis
[7–9] to carry out the calculation of the effective potential
at NNLO.
On the experimental side, the situation has also changed

a bit in the last years. It is worth mentioning the better
knowledge of the Higgs mass, now measured with signifi-
cant precision by ATLAS and CMS [15]: mH ¼
125.09� 0.21ðstatÞ � 0.11ðsystÞ GeV. On the other hand,
it was recognized that the error in the determination of the
strong coupling constant has been previously underesti-
mated by a factor of 2, so that the present world average is
αs ¼ 0.1181� 0.0013 [16]. Another open issue much
debated in the literature is the determination of the top
pole mass from the Monte Carlo (MC) mass [17–19]; the
combined measurements of the Tevatron and LHC give, for
the latter, mMC

t ¼ 173.34� 0.76 GeV [20].
Taking into account all these developments, we

update the analysis of Refs. [7–10,21–23], reappraising
in a critical way the experimental and theoretical
uncertainties which plague the determination of the top
mass value ensuring stability of the SM electroweak
minimum. We find that stability of the SM is consistent
with the present data at the 1.5σ level. Previous claims of a
stronger tension at the 2σ level [7–9] are, in our opinion,
due to the previous underestimation of the experimental
error on αs.
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We also examine in a systematic way the theoretical and
experimental uncertainties plaguing the calculation of the
value of the Higgs potential at a rising inflection point. It
turns out that, despite the largeness of these uncertainties,
applications of such configuration to models of primordial
inflation are disfavored at 3σ by the recent bounds on the
tensor-to-scalar ratio of cosmological perturbations. Claims
of an even stronger tension [24,25] are, in our opinion, due
to an underestimation of the theoretical errors involved in
the calculation.
The paper is organized as follows. In Sec. II, we present

the details of the NNLO calculation, as the matching,
running and effective potential expansion. We introduce the
two stationary configurations in Sec. III, discussing the
gauge invariance of the observables related to them.
Section IV is devoted to the study of two degenerate vacua,
while Sec. V is devoted to the inflection point configura-
tion. Comments about the effect of higher-dimensional
operators from an unknown gravitational sector are made in
Sec. VI. The conclusions are drawn in Sec. VII.

II. CALCULATION’S STATE OF THE ART

The normalization of the Higgs quartic coupling λ is
chosen in this paper so that the potential for the physical
Higgs ϕ contained in the Higgs doublet H ¼ ð0 ðϕþ vÞ=ffiffiffi
2

p ÞT is given, at tree level, by

VðϕÞ ¼ λ

6

�
jHj2 − v2

2

�
2

≈
λ

24
ϕ4; ð1Þ

where v ¼ 1=ð ffiffiffi
2

p
GμÞ1=2 ¼ 246.221 GeV and Gμ is the

Fermi constant from muon decay [26]. The approximation
in Eq. (1) holds when considering large field values.
According to our normalization, the physical Higgs mass
satisfies the tree-level relationm2

H ¼ λv2=3. In addition, the
mass of the fermion f reads, at tree level, mf ¼ hfv=

ffiffiffi
2

p
,

where hf denotes the associated Yukawa coupling.
In order to extrapolate the behavior of the Higgs

potential at very high energies, we adopt the MS scheme
and consider the matching and RGE evolution for the
relevant couplings which, in addition to the Higgs quartic
coupling λ, are the gauge couplings g, g0, g3; the top
Yukawa coupling, ht; and the anomalous dimension of the
Higgs field, γ. We then compute the RGE-improved Higgs
effective potential.
As anticipated, we perform this calculation according to

the present state of the art, namely the NNLO. Before
discussing in detail the procedure associated to matching,
running, and effective potential expansion, we review the
basic ideas of the RGE to introduce our notation.
In applications where the effective potential VeffðϕÞ at

large ϕ is needed, as is the case for our analysis, potentially
large logarithms appear, of the type logðϕ=μÞwhere μ is the
renormalization scale, which may spoil the applicability of

perturbation theory. The standard way to treat such loga-
rithms is by means of the RGE. The fact that, for fixed
values of the bare parameters, the effective potential
must be independent of the renormalization scale μ means
that [27]

�
μ
∂
∂μþ βi

∂
∂λi − γ

∂
∂ϕ

�
Veff ¼ 0; ð2Þ

where

βi ¼ μ
dλi
dμ

; γ ¼ −
μ

ϕ

dϕ
dμ

ð3Þ

are the β-functions corresponding to each of the SM
couplings λi and the anomalous dimension of the back-
ground field, respectively.
The formal solution of the RGE is

Veffðμ; λi;ϕÞ ¼ VeffðμðtÞ; λiðtÞ;ϕðtÞÞ; ð4Þ

where

μðtÞ ¼ etμ; ϕðtÞ ¼ eΓðtÞϕ;

ΓðtÞ ¼ −
Z

t

0

γðλðt0ÞÞdt0 ð5Þ

and λiðtÞ are the SM running couplings, determined by the
equation

dλiðtÞ
dt

¼ βiðλiðtÞÞ ð6Þ

and subject to the boundary conditions λið0Þ ¼ λi. The
usefulness of the RGE is that t can be chosen in such a way
that the convergence of perturbation theory is improved,
which is the case for instance when ϕðtÞ=μðtÞ ¼ Oð1Þ.
Since in our calculation the boundary conditions are

given at the top quark mass, mt, we will take μ ¼ mt in
Eq. (5) from now on.

A. Matching

In order to derive the values of the relevant parameters
(g, g0, g3, ht, λ) at the top pole mass, mt, we exploit the
results of the most recent analysis about the matching
procedure, performed by Bednyakov et al. [10]. This paper
uses as input parameters at mZ those from the 2014 release
of the Particle Data Group (PDG) [26]. Such parameters are
evolved in the context of the SM as an effective theory with
five flavors and then matched to the six-flavors theory at
mt. The procedure is carried out by including corrections
up to Oðα2emÞ, OðαemαsÞ, and Oðα4sÞ, where αem and αs are
the fine structure constant and the strong gauge coupling,
respectively. The theoretical uncertainties in the results
due to unknown higher-order corrections are estimated
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considering both scale variations and truncation errors.
The matching is thus carried out at the NNLO (actually
even slightly beyond for the strong gauge coupling
contribution).
Although in our analysis we use the complete results of

Ref. [10] [see in particular their Eq. (6) and Table I], we
provide here some simplified expressions which capture the
dominant dependences and sources of uncertainty. It is well
known that, for the sake of the present calculation, the most
significant uncertainties are those associated with the
determination of g3ðmtÞ, htðmtÞ, λðmtÞ, while uncertainties
in the matching of gðmtÞ, g0ðmtÞ are negligible. Let us
consider the former three couplings in turn, following
closely the procedure of Bednyakov et al. [10] but updating
it when necessary by means of the latest (September 2015)
release of the PDG [16]:

(i) The uncertainty in the value of g3ðmtÞ is essentially
dominated by the experimental error on the value of

αð5Þs , the strong coupling constant at mZ in the SM
with five flavors,

g3ðmtÞ≃ 1.1636þ 5.8 × 10−3
αð5Þs − αð5;expÞs

Δαð5;expÞs

; ð7Þ

where the present (PDG revised version of
September 2015) [16] world average experimental

value, αð5;expÞs ¼ 0.1181, and its associated 1σ error,

Δαð5;expÞs ¼ 0.0013, have been used as reference
values. Notice that Ref. [10] used instead as a

reference value αð5;expÞs ¼ 0.1185, with 1σ error

given by Δαð5;expÞs ¼ 0.0006 [26]; previous analyses

like e.g. Refs. [7–9] used αð5;expÞs ¼ 0.1184, with 1σ

error given by Δαð5;expÞs ¼ 0.0007 [28]. The exper-
imental error is approximately doubled at present
because of a previous underestimation of the un-
certainty in the lattice results.

(ii) The uncertainty on λðmtÞ is dominated by the
experimental uncertainty on the Higgs mass mH
and by the theoretical uncertainty associated to the
matching procedure (scale variation and truncation,
here added in quadrature)

λðmtÞ≃ 0.7554þ 2.9 × 10−3
mH −mexp

H

Δmexp
H

� 4.8 × 10−3; ð8Þ

where we used as reference values the most
recent ATLAS and CMS combination,1 mexp

H ¼
125.09 GeV, with 1σ error given by Δmexp

H ¼
0.24 GeV [15]. Notice that in Eq. (8) the theoretical
error is pretty large, being equivalent to a 1.6σ
variation in mH. In the previous literature, there is
some difference about the size of the theoretical
error: for instance, the theoretical error of the
recent analysis by Bednyakov et al. [10] is about
the half of the one quoted in the well-known
analysis by Degrassi et al. [7], due to the inclusion
[10] of all corrections up to Oðα2emÞ, OðαemαsÞ,
and Oðα4sÞ. On the other hand, Buttazzo et al. [9]
quote an error which is five times smaller than the
one of Ref. [7]; according to our previous analysis
[22], the upper error is as small as the one of
Ref. [9], but the lower error is indeed consistent
with Ref. [7]. Clearly, it would be worth it to
assess and further refine the present error in the
matching of λ.

(iii) The uncertainty on htðmtÞ is mainly affected by the
experimental error on the top pole massmt itself, but
also the theoretical uncertainty associated to the
matching procedure (scale variation and truncation,
here added in quadrature) is sizable,

htðmtÞ≃ 0.9359þ 4.4 × 10−3
mt −mexp

t

Δmexp
t

� 1.4 × 10−3; ð9Þ

where we used as reference values those of the first
joint Tevatron and LHC analysis, mexp

t ¼
173.34 GeV and Δmexp

t ¼ 0.76 GeV [20]. The
theoretical uncertainty in Eq. (9) is consistent with
the one of Refs. [7,9].2 Since the top mass is
extracted by fitting MC computed distributions to
experimental data, what is really measured is a MC
parameter, mMC

t .
According to some authors [29], although it is common to

identify the top quark pole mass mt with mMC
t , the uncer-

tainty in the translation from the MC mass definition to a
theoretically well-defined short distance mass definition at a
low scale should currently be estimated to be of the order of
1 GeV [30]; if this were the case [10,21,22], the customary

TABLE I. Coefficients for Eq. (13) in the Landau gauge.

p t W Z ϕ χ

Np −12 6 3 1 3
Cp 3=2 5=6 5=6 3=2 3=2
κp h2=2 g2=4 ðg2 þ g02Þ=4 3λ λ

1Again, we update the result of Ref. [10] by using the
most recent LHC data, instead of mexp

H ¼ 125.7 GeV and
Δmexp

H ¼ 0.4 GeV, quoted in the 2014 version of the PDG
[26]. Notice also that within our convention the value of λ is
six times the one of Ref. [10].

2The latter quotes an error on the matching of ht which is three
times smaller than the one in Eq. (9) but includes an error of
OðΛQCDÞ, i.e. about 0.3 GeV, in the definition of mt, to account
for nonperturbative uncertainties associated with the relation
between the measured value of the top mass and the actual
definition of the top pole mass.
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confidence ellipses with respect to mMC
t and mH (more on

this in Sec. IV) should be taken with a grain of salt.
Other authors [18,19] argued that measurements

relying on the reconstruction of top-decay products
yield results which are actually close to the top quark pole
mass, although there are theoretical uncertainties due
to the approximations contained in the MC shower
models, namely missing loop and width corrections and
color-reconnection effects. The discrepancy between MC
and pole masses was estimated in Ref. [31], by identifying
the MC mass as a Soft-Collinear Effective Theory (SCET)
jet mass, evaluated at a scale given by the shower infrared
cutoff, i.e. Oð1 GeVÞ, in eþe− → tt̄ collisions. As dis-
cussed in Ref. [19], such a discrepancy amounts to about
200 MeV. In addition, the renormalon ambiguity affecting
the pole mass was recently estimated [18] as the size of the
last converging term in the M̄S=pole relation, obtained
extrapolating to higher orders the four-loop computation in
Ref. [32] and amounting to less than 100 MeV. The four-
loop correction was also obtained in semianalytical form in
Ref. [33], finding agreement with Ref. [32].

B. Running

The β-functions can be organized as a sum of contri-
butions with increasing number of loops,

d
dt

λiðtÞ ¼ κβð1Þλi
þ κ2βð2Þλi

þ κ3βð3Þλi
þ � � � ; ð10Þ

where κ ¼ 1=ð16π2Þ and the apex on the β-functions
represents the loop order.
Here, we are interested in the RGE dependence of the

couplings (g, g0, g3, ht, λ, γ). The one-loop and two-loop
expressions for the β-functions in the SM are well known
and can be found e.g. in Ford et al. [34]. The complete
three-loop β-functions for the SM have been computed
more recently: as for the SM gauge couplings, they have
been presented by Mihaila et al. in Refs. [35,36]; as for
λ, ht, and the Higgs anomalous dimension, they have
been presented by Chetyrkin and Zoller in Refs. [37,38]
and by Bednyakov et al. in Refs. [39–42]. The dominant
four-loop contribution to the running of the strong gauge
coupling has been also computed recently; see
Refs. [43,44]. In our NNLO analysis, we include all
these contributions.3

C. RGE-improved effective potential

As already stressed, t can be chosen in such a way that
the convergence of perturbation theory is improved.

Without sticking, for the time being, to any specific choice
of scale, the RGE-improved effective potential at high field
values can be rewritten as

Veffðϕ; tÞ ≈
λeffðϕ; tÞ

24
ϕ4; ð11Þ

where λeffðϕ; tÞ takes into account wave function
normalization and can be expanded as sum of tree level
plus increasing loop contributions:

λeffðϕ; tÞ ¼ e4ΓðtÞ½λðtÞþ λð1Þðϕ; tÞþ λð2Þðϕ; tÞþ � � ��: ð12Þ

In particular, the one-loop Coleman-Weinberg contribu-
tion [46] is

λð1Þðϕ; tÞ ¼ 6
1

ð4πÞ2
X

p

Npκ
2
pðtÞ

�
log

κpðtÞe2ΓðtÞϕ2

μðtÞ2 − Cp

�
;

ð13Þ

where, generically, p runs over the top quark, W, Z,
Higgs, and Goldstone bosons contributions. The coeffi-
cients Np, Cp, κp are listed in the table below for the
Landau gauge (see e.g. Table 2 of Ref. [11] for a general
Rξ gauge).
The two-loop contribution λð2Þðϕ; tÞ was derived by

Ford et al. in Ref. [34] and, in the limit λ → 0, was cast
in a more compact form in Refs. [7,9]. We verified,
consistently with these works, that the error committed
in this approximation is less than 10% and can thus be
neglected.
It is clear that when λðtÞ becomes negative, the Higgs

and Goldstone contributions in Eq. (13) are small but
complex, and this represents a problem in the numerical
analysis of the stability of the electroweak vacuum. Indeed,
in Refs. [7,9], the potential was calculated at the two-loop
level, but by setting to zero the Higgs and Goldstone
contributions in Eq. (13). In Ref. [22], we rather decided to
calculate the potential only at the tree level because, for the
sake of the analysis of the electroweak vacuum stability, the
numerical difference with respect to the previous method is
negligible.
Some authors [14,47] recently showed that the procedure

of Refs. [7,9] is actually theoretically justified when λ is
small (say λ ∼ ℏ); in this case, the sum over p does not have
to include the Higgs and Goldstone’s contributions, which
rather have to be accounted for in the two-loop effective
potential, which practically coincides with the expression
derived in Refs. [7,9].
For the stationary configurations we are interested in—

two degenerate minima and a rising point of inflection—it
happens that λ is small (and could be negative); we thus
adopt the procedure outlined in Ref. [14].

3We do not include the four-loop contribution to the Higgs
self-coupling, anomalous dimension of the Higgs field and top
Yukawa β-functions calculated very recently by Chetyrkin and
Zoller [45]. A numerical estimate of these terms by the same
authors leads to the conclusion that they are negligible with
respect to the other sources of uncertainty.
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III. ON THE GAUGE (IN)DEPENDENCE

Another aspect of the present calculation is represented
by the well-known fact that the RGE-improved effective
potential is gauge dependent, although the value of the top
mass corresponding to the stability bound is not [9]. To
introduce the issue, let us consider the argument presented
by Di Luzio et al. in Ref. [11] for the case of two degenerate
vacua, generalizing it to any stationary configuration (here,
we use mt instead of mH).
Let us assume that all the parameters of the SM are

exactly determined, except for the top mass. After
choosing the renormalization scale t, the RGE-improved
effective potential, Veffðϕ; mt; ξÞ, is a function of ϕ, the
top mass mt, and the gauge-fixing parameters, collec-
tively denoted by ξ. One can think of mt as a free
parameter, the variation of which modifies the shape of
the effective potential, as sketched in Fig. 1 for the
Landau gauge. Starting from top to bottom, the shape of
the Higgs potential changes, going from stability to
instability by increasing the top mass.
The absolute stability bound on the top mass can be

obtained by defining a critical mass, mc
t , for which the

value of the effective potential at the electroweak minimum,
ϕew, and at a second minimum, ϕc > ϕew, are the same:

∂Veff

∂ϕ
����
ϕew;mc

t

¼ ∂Veff

∂ϕ
����
ϕc;mc

t

¼ 0;

Veffðϕew; mc
t ; ξÞ − Veffðϕc; mc

t ; ξÞ ¼ 0: ð14Þ

Slightly reducing mt, one finds another particular value of
the top mass, mi

t, such that the Higgs potential displays a
rising point of inflection at ϕi > ϕew:

∂Veff

∂ϕ
����
ϕew;mi

t

¼ ∂Veff

∂ϕ
����
ϕi;mi

t

¼ 0;
∂2Veff

∂ϕ2

����
ϕi;mi

t

¼ 0: ð15Þ

Due to the explicit presence of ξ in the vacuum stability
and/or inflection point conditions, it is not obvious a priori
which are the physical (gauge-independent) observables
entering the vacuum stability and/or inflection point
analysis.
The basic tool, in order to capture the gauge-invariant

content of the effective potential, is given by the Nielsen
identity [48]

�
ξ
∂
∂ξþ Cðϕ; ξÞ ∂

∂ϕ
�
Veffðϕ; ξÞ ¼ 0; ð16Þ

where Cðϕ; ξÞ is a correlator of which the explicit expres-
sion will not be needed for our argument. The equation
means that Veffðϕ; ξÞ is constant along the characteristics of
the equation, which are the curves in the ðϕ; ξÞ plane for
which dξ ¼ ξ=Cðϕ; ξÞdϕ.
In particular, the identity says that the effective

potential is gauge independent where it is stationary.
Due to the fact that the value of the effective potential at
any stationary point ϕs (as is the case for ϕew, ϕc, ϕi) is
gauge invariant,

∂Veffðϕ; ξÞ
∂ϕ

����
ϕs;mt

¼ 0 →
∂Veffðϕ; ξÞ

∂ξ
����
ϕs;mt

¼ 0; ð17Þ

its value at the extremum can be calculated working in
any particular gauge, say the Landau gauge,

Veffðϕs; mt; ξÞ ¼ VeffðϕL
s ; mt; 0Þ; ð18Þ

where ϕL
s is the field evaluated in a stationary point in

Landau gauge.
We want to check explicitly that, contrary to ϕs, the

particular values of mt ensuring criticality, mc
t , and an

inflection point, mi
t, are gauge independent. Let us call

them collectively ms
t (s ¼ c, i) and denote by V̄s the

associated value of the effective potential in the Landau
gauge:

Veffðϕs; ms
t ; ξÞ ¼ VeffðϕL

s ; ms
t ; 0Þ≡ V̄s: ð19Þ

Inverting Eq. (19) (together with the stationary condition)
would yield gauge-dependent field and top mass values:
ϕs ¼ ϕsðξÞ and ms

t ¼ ms
t ðξÞ. We apply a total derivative

with respect to ξ to Eq. (18) and obtain

∂Veff

∂ξ
����
ϕs;ms

t

þ ∂Veff

∂mt

����
ϕs;ms

t

∂ms
t

∂ξ þ ∂Veff

∂ϕ
����
ϕs;ms

t

∂ϕs

∂ξ ¼ 0; ð20Þ

where the third and first terms in the lhs vanish because of
the stationary condition and the Nielsen identity, respec-
tively. Since in general ∂Veff∂mt

j
ϕs;ms

t
≠ 0, we obtain that

∂ms
t∂ξ ¼ 0. We can conclude that the peculiar values of mt

FIG. 1. Sketch of the shape of SM effective potential at high
energy in the Landau gauge, for increasing values of the top mass
from top to bottom. Two peculiar stationary configurations can be
identified: two degenerate vacua and a rising point of inflection,
associated, respectively, to mc

t and mi
t.
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ensuring stationary configurations, like two degenerate
vacua or an inflection point, are gauge independent.
Notice that the above argument can be easily generalized

to the case in which we treat as free parameters not only
the top mass but all other input parameters entering in the
calculation of the effective potential, as for instance the
Higgs mass and αs. Let us call them ~f ¼ ðmt;mH; αs;…Þ,
so that Veffðϕ; ~f; ξÞ. In this case, the generalization of
Eq. (20) is simply

∂Veff

∂ξ
����
ϕs;~f

s
þ
X

i

∂Veff

∂fi
����
ϕs;~f

s

∂fsi
∂ξ þ ∂Veff

∂ϕ
����
ϕs;~f

s

∂ϕs

∂ξ ¼ 0:

ð21Þ

As before, the last and the first terms in the lhs vanish
because of the stationary condition and the Nielsen identity,
respectively. Since in general ∂Veff∂fi jϕs;~f

s ≠ 0, we obtain
∂fsi∂ξ ¼ 0. The peculiar values of the input parameters
ensuring stationary configurations, like two degenerate
vacua or an inflection point, are thus gauge independent.
Working in the Landau gauge is thus perfectly consistent

in order to calculate the value of the effective potential at a
stationary point, V̄s, or the value of the top mass providing
it,4ms

t . Nevertheless, one has to be aware that the truncation
of the effective potential loop expansion at some loop order
introduces an unavoidable theoretical error both in V̄s and
inms

t . For this sake, it is useful to define the parameter α via

μðtÞ ¼ αϕ ð22Þ

and study the dependence of V̄s and ms
t on α. The higher

the order of the loop expansion to be considered, the less
the dependence on α. This will be shown explicitly in the
next two sections, where we study in detail the case of two
degenerate vacua and the case of a rising inflection point at
high energies, respectively.

IV. TWO DEGENERATE VACUA

As discussed in the previous section, once mH and αð5Þs

have been fixed, the value of the top mass for which the SM
displays two degenerate vacua, mc

t , is a gauge-invariant
quantity. This value is, however, plagued by experimental
and theoretical errors, which we now discuss in turn.
The experimental error is the one associated to the

precision with which we know the input parameters at
the matching scale mt. The uncertainty on mc

t due to

varying αð5Þs in its 1σ range is �0.37 GeV, while the
uncertainty due to varying mH in its 1σ range is
�0.12 GeV. This can be graphically seen in Fig. 2, where

mc
t is displayed as a function of mH for selected values of

αð5Þs ; in particular, the solid line refers to its central value,
while the dotted, short, and long dashed lines refer to the
1σ, 2σ, and 3σ deviations, respectively. In the region below
(above) the line, the potential is stable (metastable).
Theoretical errors comes from the approximations

done in the three steps of the calculation, matching at
mt, running from mt up to high scales, and effective
potential expansion:

(i) As already seen in Sec. II A, the theoretical error in
the NNLO matching (scale variation and truncation)
of λ is equivalent to a variation in mH by about 1.6σ
(�0.38 GeV), which in turn means an error onmc

t of
about �0.19 GeV. The theoretical error in the
NNLO matching (scale variation and truncation)
of ht is equivalent to a variation in mt by about 0.3σ,
which translates into an uncertainty of about
�0.25 GeV on mc

t . Combining in quadrature, the
theoretical uncertainty on mc

t due to the NNLO
matching turns out to be about �0.32 GeV: this
means that the position of the straight lines in Fig. 2
can be shifted up or down by about 0.32 GeV, as
represented by the (red) arrow for the central value

of αð5Þs .
(ii) The theoretical uncertainty associated to the order of

the β-functions in the RGE can be estimated by
adding the order of magnitude of the unknown
subsequent correction. For the NNLO, it turns out
that the impact of the subsequent four-loop correc-
tion on mc

t is of order 10−5 GeV and is thus
negligible.

FIG. 2. Lines for which the Higgs potential develops a second
degenerate minimum at high energy. The solid line corresponds

to the central value of αð5Þs ; the dashed lines are obtained by

varying αð5Þs in its experimental range, up to 3σ. The (red)
arrow represents the theoretical error in the position of the
lines. The (green) shaded regions are the covariance
ellipses obtained combining mMC

t ¼ 173.34� 0.76 GeV and
mexp

H ¼ 125.09� 0.24 GeV; the probability of finding mMC
t

and mH inside the inner (central, outer) ellipse is equal to
68.2% (95.5%, 99.7%).

4Of course, this applies also to the other input parameters, but
here we focus on mt as it is the one associated to the largest
uncertainty.
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(iii) A way to estimate the theoretical uncertainty on
mc

t associated to the order of the expansion of the
effective potential is to study its dependence on α.
In Fig. 3, we show this dependence by varying α
in the interval 0.1–10, while keeping the other
parameters fixed at their central values. For com-
parison, we display the dependence obtained by
performing the calculation of the effective potential
at the tree (long-dashed), one-loop (short-dashed),
and two-loop (solid) levels. A few comments are
in order here. The renormalization scale μðtÞ
depends on α via Eq. (22) so that, at the tree
level, the Higgs potential does not depend explic-
itly on μðtÞ but only implicitly via the dependence
of the running couplings; for this reason, in Fig. 3,
the dependence on α for tree level is negligible,
and we find mc

t ≈ 171.02 GeV. At one loop, the
dependence on α is explicit, but the variation is
anyway small, being about 0.05 GeV. The two-
loop order further improves the independence on
α; we can conclude that the error on mc

t at the
NNLO is very small, �0.005 GeV.

Summarizing, the theoretical error that mostly affects
the NNLO calculation of mc

t is the one in the matching,
while those in the truncation of the loop expansion in the
β-functions and in the effective potential expansions are
negligible.
We can conclude that the result of the NNLO calcu-

lation is

mc
t ¼ 171.08� 0.37αs � 0.12mH

� 0.32th GeV; ð23Þ

where the first two errors are the 1σ variations of αð5Þs and
mH. Our results for the value of mc

t update and improve5

but, modulo the doubling of the experimental error in αð5Þs ,
are essentially consistent with those of the most recent
literature [7–10,21,22].
The above value of mc

t has to be compared with the
experimental determination of the top pole mass, mt. The
present value of the MC top mass is mMC

t ¼ 173.34�
0.76 GeV [20] and would imply a difference withmc

t at the
level of about 1.7σ. This can be graphically seen in Fig. 2,
where the (shaded) ellipses are the covariance ellipses for a
two-valued Gaussian density, obtained by combining the
present experimental values of the MC top mass and Higgs
mass, so that the probability of being inside the smaller,
central, and larger ellipses is, respectively, 68.2%, 95.5%,
and 99.7%. However, as discussed in Sec. II A, the uncer-
tainty in the identification between the pole and MC top
mass is currently estimated to be of order 200 MeV [18,19]
(or even 1 GeV for the most conservative groups [29]); this
would further reduce the difference, say at the 1.5σ level.
Statistically speaking, a tension at the 1.5σ level supports
the stability and metastability at the 14% and 86% C.L.,
respectively. Physically speaking, in our opinion, it is even
too strong to use the term “tension" when speaking of a
1.5σ deviation.
As a result, the updated calculation of the experimental

and theoretical uncertainties on mc
t in addition to the

uncertainty in the identification of the MC and pole top
masses lead us to conclude that the configuration with two
degenerate vacua is at present compatible with the exper-
imental data.
Our conclusions agree with those of Ref. [10]. Previous

claims that stability is disfavored at more than the 95%
level [7,9] are due, in our opinion, to the previous under-
estimation of two uncertainties—the experimental one in
the determination of αð5Þs and the theoretical one in the
identification of the MC and pole top masses—together
with a less conservative interpretation (with respect to ours)
of the significance of the results.
It is clear that, in order to discriminate in a robust way

between stability and metastability, it would be crucial to
reduce the experimental uncertainties in bothmt and α

ð5Þ
s . A

reduction of the theoretical error in the matching would
also be welcome.
As a final remark, notice that a recent measurement of

the top pole mass by the CMS Collaboration is mCMS
t ¼

172.38� 0.66 GeV [49]. The shaded ellipses in this case
would change as shown in Fig. 4, and the discrepancy with
mc

t would thus further decrease, at less than 1σ. It will be
very interesting to see if such a low value will be confirmed
by future LHC data.

V. INFLECTION POINT

We now turn to the inflection point configuration
assuming, as usual, that the potential at the electroweak
minimum is zero. Such a configuration could be relevant

FIG. 3. Dependence of mc
t on α, for the increasing level of the

effective potential expansion. We choose the central values for

mH and αð5Þs .

5The calculation of the theoretical error associated to the
truncation at the two-loop order has (to our knowledge) not been
shown so far.
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for the class of models of primordial inflation based on a
shallow false minimum [4,50–52]. In particular, the
highness of the effective potential at an inflection point,
let us call it V̄i, could be directly linked to the ratio of the
scalar-to-tensor modes of primordial perturbations, r, via
the relation

V̄i ¼
3π2

2
rAs; ð24Þ

where the amplitude of scalar perturbations is As ¼ 2.2 ×
10−9 [53]. It is thus relevant for models of primordial
inflation to assess the size of the experimental and
theoretical errors in the calculation of V̄i.
Experimental uncertainties on V̄i can be estimated as

follows. We let mH vary in its 3σ experimental range, and

for fixed values of αð5Þs , we determine mi
t, the value of the

top mass needed to have an inflection point (which is so
close to mc

t that one can read it from the stability line of
Fig. 2). We then evaluate the effective potential at this
point, V̄i. The result is displayed in Fig. 5: one can see that
V̄1=4
i spans 1 order of magnitude, as it varies from 2 ×

1016 GeV up to 2 × 1017 GeV, for decreasing values of

αð5Þs ; the dependence on mH is less dramatic but still
relevant, being about 50%.
We divide the theoretical errors in three categories, as

done before:
(i) Theoretical errors associated to matching of λ at

NNLO have an impact on mc
t of about �0.19 GeV

(see Fig. 2 in the previous section) and an impact on
log10ðV̄1=4

i =GeVÞ of about �0.08, namely a 20%
variation of V̄1=4

i . As for the NNLO matching of ht,

the impact onmc
t is of about�0.25 GeV, but there is

no significant impact on V̄i. As a consequence of the
theoretical error in the matching, the lines in Fig. 5
could be shifted up or down by about 0.08; for the

central value of αð5Þs , this is represented in Fig. 5 by
the (red) arrow and solid lines. The theoretical error
due to the NNLO matching is thus slightly smaller
than the experimental error due to the 1σ variation
of αð5Þ.

(ii) The order of magnitude of the theoretical errors
associated to the β-functions at NNLO can be
estimated by studying the impact of the subsequent
correction; it turns out that V̄1=4

i changes at the per
mille level. Such an error is thus negligible.

(iii) The theoretical uncertainty associated to the fact that
we truncate the effective potential at two loops can
be estimated by studying the dependence of V̄i on α.

We fix αð5Þs andmH at their central values and display
in Fig. 6 the resulting value of V̄1=4

i by means of the
solid line; for comparison, we display also the
dependences obtained at tree6 (long-dashed) and
one-loop (short-dashed) levels. Notice that the
dependence of V̄i on α at the tree-level is implicit,7

but significant: the tree-level calculation of V̄1=4
i is

uncertain by more than 1 order of magnitude. The
one-loop corrections flatten the dependence on α so
that the uncertainty on V̄1=4

i gets reduced down to

FIG. 5. Dependence of V̄1=4
i onmH for fixed values of αð5Þs . The

(red) arrow and solid lines show the theoretical error due to the
matching of λ (positive contribution to λ for the upper line,
negative for the lower one). The right vertical axis displays the
associated value of the tensor-to-scalar ratio r, according
to Eq. (24).

FIG. 4. Lines for which the Higgs potential develops a second
degenerate minimum at high energy. The solid line corresponds

to the central value of αð5Þs ; the dashed lines are obtained by

varying αð5Þs in its experimental range, up to 3σ. The (red) arrow
represents the theoretical error in the position of the lines. The
(green) shaded regions are the covariance ellipses obtained
combining mCMS

t ¼ 172.38� 0.66 GeV [49] and mexp
H ¼

125.09� 0.24 GeV.

6We checked that our results for the tree level with α ¼ 1 agree
with those obtained in Refs. [22,52]. In these works, the
potential was indeed calculated only at the tree level, without
providing any estimate for the theoretical uncertainty because
of neglecting higher loops.

7Indeed, Veff ∝ λðlnðαϕ=mtÞÞ.
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about 20%; this uncertainty is comparable to the
theoretical one due to the matching. The two-loop
correction further flattens the dependence on α and
allows one to estimate V̄1=4

i with a 5% precision.
Summarizing, the theoretical error that mostly affects the

calculation of V̄i at the NNLO is the one associated to the
matching. The theoretical error in the truncation of
the effective potential is smaller that the theoretical error
in the matching only including the two-loop correction to
the effective potential.
We can conclude that the result of the NNLO calcu-

lation is

log10V̄
1=4
i ¼ 16.77� 0.11αs � 0.05mH

� 0.08th; ð25Þ

where the first two errors refer to the 1σ variations of αð5Þs

and mH, respectively, while the theoretical error is
essentially dominated by the one in the matching.
As anticipated, a precise determination of V̄i is important

for models of inflation based on the idea of a shallow false
minimum [4,50–52] as, in these models, V̄i and r are linked
via Eq. (24). In view of such an application, the right axis of
Fig. 5 reports the corresponding value of r. Notice that the

dependence of r on αð5Þs and mH is extremely strong; when
the latter are varied in their 3σ range, r spans about 4 orders
of magnitude, from 0.1 to 1000. In addition, the theoretical
error in the matching implies an uncertainty on r by a factor
of about 2.
According to the 2015 analysis of the Planck

Collaboration, the present upper bound on the tensor-to-
scalar ratio is r < 0.12 at 95% C.L. [54], as also confirmed
by the recent joint analysis with the BICEP2 Collaboration
[55]. Due to Eq. (24), this would translate into to the bound
log10 V̄

1=4
i < 16.28 at 95% C.L.; this implies a tension with

Eq. (25) at about 3σ.
This can be graphically seen in Fig. 7, where the contour

levels of r in the plane ðmH; α
ð5Þ
s Þ are shown. Even invoking

the uncertainty due to the matching (red-dashed lines), a
value for r as small as 0.12 (red-solid line) could be

obtained only with αð5Þs in its upper 3σ range, while the
values of mH, and also mt (see Fig. 2), could stay inside
their 1σ interval.
Avalue for r close to 0.2, as claimed by BICEP2 in 2013

[56], would have been compatible at about 2σ with a model
based on a shallow false minimum. With the inclusion of
the theoretical error and the slight changes in the central
values of the input parameters, the present calculation
supersedes the results obtained in the previous paper [52],
where the calculation of the effective potential was done
only at tree level (due to the yet unsolved problem of
the inclusion of the one-loop correction when λ turns
negative [14]).
The present results have to be compared with those of the

most recent detailed analysis on the inflection point
configuration, performed by Ballesteros et al. [25]. The
latter work includes the two-loop correction to the Higgs
effective potential but, at our understanding, does not
include the theoretical error in the matching (which is
actually the dominant one according to us). This may
justify their stronger exclusion of the inflection point
configuration. Apart from this detail, the results of the
two analyses are in substantial agreement. The even
stronger exclusion of the inflection point configuration
found in Ref. [24] might be also due to an underestimation
of the theoretical errors, together with the previous under-
estimation of the experimental uncertainty on αð5Þs .

VI. GRAVITATIONAL CONTRIBUTION:
EFFECTS OF PHYSICS AT MP

Through this work, we assumed the SM to be valid all
the way up to the Planck scale. Near the cutoff of the theory,
large Planckian effects are possible, but without a satis-
factory comprehension of quantum gravity effects (with a
reliable UV completion of the theory), there is no hope to

FIG. 6. Dependence of V̄1=4
i on α. For definiteness, αð5Þs andmH

are assigned to their central values.
FIG. 7. Contour levels of r in the plane ðmH; α

ð5Þ
s Þ. The

theoretical uncertainty corresponding to r ¼ 0.12 is shown by
means of the (red) dashed lines. The shaded regions are the
covariance ellipses indicating that the probability of finding the

experimental values of mH and αð5Þs inside the ellipses are,
respectively, 68.2%, 95.4%, and 99.7%.
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calculate them. The usual approach in this sense is to
consider a tower of a nonrenormalizable operators sup-
pressed by the cutoff in an effective theory scenario below
MP [12,57–61], leading to a modification of the SM Higgs
potential:

VðϕÞ ¼ λ

24
ϕ4 þ λ6

6

ϕ6

M2
P
þ λ8

8

ϕ8

M4
P
þO

�
ϕ10

M6
P

�
: ð26Þ

Without any protecting symmetry, these corrections have to
be taken into account. In this way, assuming order 1 values
for the new unknown couplings λ6 and λ8, treated as free
parameters, it is in principle possible to estimate the impact
of gravitational physics. The effects of these higher-order
operators turn out to be heavily dependent on the choice of
the free couplings toward both stability and instability; it is
not clear why gravitational physics should make the
potential more unstable or vice versa. The approach of
Eq. (26) has, however, raised some concerns [62], as the
method is based on an effective theory expansion that
breaks down when ϕ ∼MP. The use of an effective theory
close to its cutoff might not be fully reliable.

VII. CONCLUSIONS

We studied in detail gauge-independent observables
associated with two interesting stationary configurations
of the SM Higgs potential extrapolated at the NNLO: i) the
value of the top mass ensuring the stability of the SM
electroweak minimum and ii) the value of the Higgs
potential at a rising inflection point. We reappraised in a
critical way the experimental and theoretical uncertainties
plaguing their determination.
Considering the updated value of the experimental error

on αð5Þs , the issue of the determination of the top pole mass
from the MC one, and the theoretical uncertainty

associated to the matching, we find that the stability of
the SM is compatible with the present data at the level of
1.5σ. Stability of the SM Higgs potential is thus, in our
opinion, a viable possibility. In order to robustly dis-
criminate between stability and metastability, higher
precision measurements of the top quark pole mass and

of αð5Þs would be needed. For the time being, we can
wonder if the fact that the Higgs potential is so close to a
configuration with two degenerate vacua is telling us
something deep [12].
As for the configuration of a rising inflection point, we

find that, despite the large theoretical error plaguing the
value of the Higgs potential at the inflection point, the
application of such a configuration to models of primor-
dial inflation based on a shallow false minimum displays a
3σ tension with the recent bounds on the tensor-to-scalar
ratio of cosmological perturbations. The tension is essen-

tially due to the value of αð5Þs , instead of the top or Higgs

masses. Hence, if αð5Þs will turn out to be in its present 3σ
range, such models will be rescued; otherwise, modifi-
cations due to new physics will be necessarily intro-
duced [25,63].
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