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Transition probability calculations of strong field particle processes in the Furry picture typically use
fermion Volkov solutions. These solutions have a relatively complicated spinor due to the interaction of
the electron spin with a strong external field, which in turn leads to unwieldy trace calculations. The
simplification of these calculations would aid theoretical studies of strong field phenomena such as the
predicted resonance behavior of higher order Furry picture processes. Here, Fierz transformations of
Volkov spinors are developed and applied to a first-order and a second-order Furry picture process.
Combined with symmetry properties, the techniques presented here are generally applicable and lead to
considerable simplification of Furry picture analytic calculations.
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I. INTRODUCTION

The advent of new ultrahigh intensity lasers for funda-
mental physics research [1,2] has led to a renewal in
theoretical interest in strong field physics processes [3].
The basic framework—inherited from the similar flurry of
work spurred by the invention of the laser itself in the 1960s
[4–7]—is quantum field theory in the Furry interaction
picture [8–10].
In the Furry interaction picture, the gauge field is

manipulated at Lagrangian level to result in scattering
processes which are nonperturbative with respect to the
strong external field and perturbative with respect to the
interaction between quantized fields. Scattering amplitudes
can be generated in the usual fashion with the S-matrix
[11,12] or path integral method [13].
Unlike Feynman processes in nonexternal field pertur-

bation theory, one-vertex processes in the Furry picture are
possible due to the contribution of momentum from the
external field. These include the one-photon pair produc-
tion and photon radiation processes that are much studied in
a variety of external fields and contexts [10,14–22]. Higher
order Furry picture processes exhibit a resonance structure
as propagators go on shell for a variety of experimentally
accessible particle kinematics [23–26].
This predicted resonance structure for the Furry picture

propagator is one important reason to study higher order
Furry picture processes in detail. The experimental inves-
tigation of this resonance structure is now feasible and
would be an important test of strong field physics theo-
retical predictions. Theoretical studies of higher order Furry
picture phenomena that exhibit this resonance behavior
include two-vertex Compton scattering [23,24,27–29], the
trident process [30–32] and loop processes [3,33–36].

The calculation of higher order Furry picture processes is
somewhat complicated by the relative complexity of the
scattering amplitudes [28]. In contrast, a relatively simple
analytic form and a simple method of calculating these
amplitudes would expedite future experimental searches for
Furry picture phenomena. It is the purpose of this paper to
lay the groundwork for a general simplification of Furry
picture scattering amplitudes using Fierz transformations
and general symmetry properties.
Fierz transformations, which allow the rearrangement of

Dirac spinors in quadrilinear occurrences, have proven
useful in reducing the complexity of multifermion inter-
actions [37,38]. Generalized Fierz relations which permit
any interchange of pairs of spinors in a quadrilinear
occurrence have been derived [39]. These relations have
been applied to chiral spinors [40] and spin-3=2 particles,
as well as the usual spin-1=2 particle [41]. To the author’s
knowledge, Fierz relations have not previously been
applied to Furry interaction picture processes.
Attempts have been made previously to simplify the

calculation of higher order Furry picture processes. Often,
kinematic approximations such as nonrelativistic [23] or
ultra-intense field intensity [4,5] assumptions have been
made. On other occasions, scattering geometries have been
restricted in order to simplify analytic forms [42]. More
recently, the dressed vertex has been manipulated to extract
a pseudotensor dependence on the external field [43], or by
exploiting gauge invariance to cancel terms [29].
Traditionally, exact solutions of fermions in a plane-

wave external field have been applied in Furry picture
calculations [44]. There are, however, solutions possible in
centrally symmetric (Coloumb) fields and in a combination
of Coulomb and plane-wave fields [45]. More recently,
pulsed fields appropriate for actual experiments involving
ultra-intense lasers have been applied to Furry picture
processes [19,21,46]. However, efforts to use pulsed fields
as a way to inhibit Furry picture resonance behavior appear*anthony.hartin@desy.de
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to be unsound [31]. Here, only the Volkov solution will be
considered, with an extension to pulsed external fields left
to future work.
The plan of this paper is as follows: Both the Volkov

fermion wave function and the strong field propagator will
be cast into alternative forms in which the action is
manifest in the spinor. Then, the Fierz transformation
for these so-called Volkov spinors will be determined. As
a means of testing this new application of the Fierz
transformation, the trace of the one-vertex photon radi-
ation process in a strong external plane-wave field will be
obtained and compared with results in the literature.
Finally, the method developed will be applied, as an
example, to the two-vertex Compton scattering in a strong
external field, and the result will be cross-checked with
the Klein-Nishina trace by letting the external field
strength tend to zero.
In terms of conventions, a metric with a (1, −1, −1, −1)

signature will be used. Natural units will be utilized and the
Lorenz gauge will be chosen. The Lorentz gauge requires
scalar products of external field 4-momentum and
4-potential to vanish, k:Ae ¼ 0, which will prove useful
in obtaining alternative forms for the Volkov solutions and
fermion propagator,

metric∶ gμν ¼ ð1;−1;−1;−1Þ;
units∶ c ¼ ℏ ¼ 4πϵ0 ¼ 1; e ¼ ffiffiffi

α
p

;

gauge∶ ∂μAe
μðk · xÞ ¼ 0 ⇒ k · A ¼ 0: ð1Þ

The only notation worth mentioning is the� superscript.
In all cases it indicates a linear combination, except for the
Volkov spinor V�, where it indicates the positive and
negative energy solutions.

II. VOLKOV SOLUTIONS AND FIERZ
TRANSFORMATIONS

In order to write down the scattering amplitude for a
Furry picture process, the Volkov wave-function solution
[44] ψFP

prx of an electron of momentum pμ ¼ ðϵ; ~pÞ, mass m
and spin r embedded in a plane-wave electromagnetic field

of potential Ae
xμ and momentum kμ ¼ ðω; ~kÞ is required,

ΨFP
prx ¼ npEpxupre−ip·x; np ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m

2ϵð2πÞ3
r

;

Epx ≡
�
1 −

Ae
xk

2ðk · pÞ
�
e−i

R
k·x2A

e
ξ
·p−Ae2

ξ
2k·p dξ;

Ae
xμ ≡ eAe

μðk · xÞ: ð2Þ
The Volkov solution can be cast into an alternative form,

by extracting the external field 4-momentum k, as a factor.
The commutation properties of the slash vector enabled
by the Lorenz gauge, combined with the Dirac equation,
give the equivalence of the two forms,

ΨFP
prx ¼ np½Πpx þm� k

2k · p
upre−iΔpx ;

Πpxμ ≡ pμ − Ae
xμ þ

2Ae
x · p − Ae2

x

2k · p
kμ;

Δpx ≡ p · xþ
Z

k·x 2Ae
ξ · p − Ae2

ξ

2k · p
dξ;

Π2
px ¼ p2 ¼ m2;

dΔpx

dxμ
¼ Πpxμ þ Ae

xμ: ð3Þ

This alternative form of the Volkov solution expresses
the spinor in terms of the classical kinematic momentum of
the electron in the external plane-wave field, which in turn
bears a close relationship to the Hamilton-Jacobi action
expressed in the phase. For shorthand, the spinor of the
alternative form of the Volkov solution can be referred to as
a Volkov spinor Vprx,

Vprx ≡ ½Πpx þm� k
2k · p

upr: ð4Þ

Armed with this alternative Volkov solution and its
Volkov spinor, Fierz transformations can be introduced
and then applied to the simplest one-vertex Furry picture
process.
The Fierz transformation allows the exchange of Dirac

spinors within a larger product of spinors and Dirac gamma
matrices arising in a scattering amplitude [47]. A basis set
containing five groups—scalar, vector, tensor, axial and
pseudoscalar (S, V, T, A, PS)—consisting of sixteen
matrices in total, is constructed,

Γi
J ∈ f1; γα; σαβ; γαγ5; γ5g≡ fΓS;ΓV;ΓT;ΓA;ΓPSg;

α; β ∈ ð1; 2; 3; 4Þ; β > α; σαβ ¼ i
2
ðγαγβ − γβγαÞ:

ð5Þ

The Fierz transformation is, at heart, a relationship
between the matrix components (denoted by subscripts
a, b, c, d) of the basis set under suitable contractions. The
relevant properties of the basis set are the closure relation
expressing orthogonality of matrix components under
contraction and completeness relations [38,39],

X
J

ðΓi
JÞdaðΓiJÞbc ¼ 4δbaδ

d
c; Γi

IΓ
j
J ∝ Γk

K;

M ¼
X
J

1

4
Tr½ΓJjM�Γj

J: ð6Þ

Using these relations, Dirac spinors u within a
quadrilinear (indicated by overbraces) can be swapped
according to
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½ūfrΓj
Juisūis0Γj Jufr0 �

¼ ½ðūfrÞaðΓj
JÞbaðuisÞbðūis0 ÞcðΓj JÞdcðufr0 Þd�

¼
X
K

FJK½ðūfrÞaðΓk
KÞdaðuisÞb

zfflffl}|fflffl{
ðūis0 ÞcðΓkKÞbcðufr0 Þd

zfflffl}|fflffl{
�

¼
X
K

FJK½ūfrΓk
Kufr0 �½ūis0Γk Kuis�;

where FJK ¼ 1

16
Tr½Γj

JΓk
KΓj JΓk K�: ð7Þ

The Fierz transformation matrix FJK is obtained from a
trace over the four basis matrices appearing in the trans-
formation and contains 5 × 5 entries spanning the five basis
groups [39]. The first index J refers to the rows, and K
refers to the columns of the matrix,

FJK ¼ 1

4

0
BBBBBB@

1 1 1
2

−1 1

4 −2 0 −2 −4
12 0 −2 0 12

−4 −2 0 −2 4

1 −1 1
2

1 1

1
CCCCCCA
: ð8Þ

The derivation of the Fierz transformation of Eq. (7)
emphasizes that the transformation involves a swap of
spinors on a component-by-component basis. Since that is
the case, then the spinor can be redefined (u → w≡ γμu)
so that its components include the components of its
neighbors,

½ūfrγμuisūis0γμufr0 �≡ ½w̄fr1 uis
z}|{

ūis01 wfr0
z}|{�

¼
X
K

FJK½w̄frΓk
Kwfr0 �½ūis0Γk Kuis�

≡X
K

FK½ūfrγμΓk
Kγμufr0 �½ūis0Γk Kuis�: ð9Þ

In this way, each subsequent row of the Fierz trans-
formation matrix can be obtained from its scalar row simply
by including the basis vector in a redefinition of the spinor
[38]. So, for instance, the vector row of the transformation
matrix FVK is obtained by contracting over the basis vector
associated with the scalar row FSK,

FSKγ
μΓKγμ → FVKΓK;

FSK ¼ 1 1 1
2

−1 1 Þ;
FVK ¼ ð 4 −2 0 −2 −4 Þ: ð10Þ

Now, the extension of Fierz transformations to Volkov
spinors should be obvious. The components of the Dirac
spinor can simply be redefined to be those of the Volkov

spinor V (and a product with additional ΓJ matrices if
desirable). The Fierz transformation for Volkov spinors
carries through virtually unchanged from the Fierz trans-
formation for Dirac spinors,

½V̄frxΓ
j
J V is

z}|{
V̄ is0x0Γj JVfr0x0

zffl}|ffl{
�

¼
X
K

FJK½V̄frxΓk
KVfr0x0 �½V̄ is0x0Γk KV isx�: ð11Þ

III. ONE-VERTEX FURRY PICTURE
PHOTON RADIATION

The Fierz transformation for Volkov spinors is to be
applied first to the Furry picture transition probability
for photon radiation from an electron in a strong
electromagnetic field—the high intensity Compton scat-
tering (HICS) process (Fig. 1). Here, it will not be
necessary to choose a specific form for the external field.
In order to cross-check the end result, an expression for
the transition probability trace in a general plane-wave
field, obtained by conventional methods [10], is used as a
comparison.
The Furry picture scattering amplitude for the

radiation of a photon (kf ; Afx) from an electron
(pi;ψFP

isx) can be written down with the aid of the
Feynman diagram of Fig. 1. Double lines indicate the
Volkov wave function,

MHICS
f i ¼ −ie

Z
d4x ψ̄FP

frxAfxψ
FP
isx: ð12Þ

In order to concentrate on the trace, the normalizations
and coupling constants will be dropped, and the phases and
space-time integrals will be implicit (x0 will indicate the
additional space-time integration variable after squaring the
amplitude). Photon polarizations will be summed, leaving
behind their gamma matrices. Spin sums will be performed
after the Fierz swap.
The square of the scattering amplitude yields a quadri-

linear in Volkov spinors, which can be transformed as

FIG. 1. Furry picture, one-vertex photon radiation.
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X
rsr’s’

½V̄frxγ
μV isx

z}|{
�½V̄ is0x0γμVfr0x0

zfflfflffl}|fflfflffl{
�

¼
X
rsr0s0

X
K

FSK½V̄frxγ
μΓk

KγμVfr0x0 �½V̄ is0x0Γk KV isx�

¼
X
K

FSKTr½V̄fxγ
μΓk

KγμVfx0 �Tr½V̄ix0Γk KV ix�: ð13Þ

After spin sums are performed, the Fierz transforma-
tion results in products of traces of Volkov spinor pairs
subtending a Dirac basis group, ΓK. The Volkov spinor
pair combination appears repeatedly in this and higher
order processes, suggesting that it should have its own
symbol, Q. Taking the contraction over Dirac basis
groups for granted (i.e., letting the index k be implicit
and allowing the contraction γμΓKγμ to automatically
select the vector row of the Fierz transformation matrix,
FVK),

Tr½V̄fxΓKVfx0 � ¼ Tr

�
kðΠfx þmÞΓKðΠfx0 þmÞk

ð2k · pfÞ2
ðpþmÞ

�

≡ Tr½QK
fxx0 ðpþmÞ�;

K ∈ ðS;V;T;A;PSÞ: ð14Þ

The Fierz index K is a general member of the Fierz basis
groups. However, the contraction that selects the vector
row of the Fierz transformation matrix automatically sets
tensor contributions to zero. Additionally, the pseudoscalar
group drops out since there are insufficient gamma matri-
ces, combined with γ5 in the trace, to give a nonzero
result.
Of the surviving Fierz groups (S, V, A), the symmetry of

the trace under cyclic permutation and reversal allows the
QK

fxx0 structure to appear in linear combinations QK�
fxx0 . For

the S,V groups only Qþ appears, and, for the A group
which changes sign under reversal, Q− appears,

QK�
fxx0 ≡

1

2
ðQK

fxx0 �QK
fx0xÞ; Π�

fxx0 ≡
1

2
ðΠfx �Πfx0 Þ;

QSþ
fxx0 ¼

mk
k · p

; QA−
fxx0 ¼

�
Π−α

fxx0 þ
kΠ−

fxx0Π
þ
fxx0γ

α

2k · p

�
γ5

k
k · p

;

QVþ
fxx0 ¼ Π†α

fxx0
k

k · p
; Π†α

fxx0 ≡Πþα
fxx0 þ

k
k · p

ðm2 −Πfx ·Πfx0 Þ:

ð15Þ

The traces over explicit forms of Q�, resulting in
scalar products of Π vectors, reduce to simpler forms
by using the conservation of energy-momentum at the
Furry picture (dressed) vertex (Fig. 1). As a result of
the properties of the alternative form of the Volkov
solution [Eq. (3)], and after some mathematical work
(Appendix A),

Z
∞

−∞
dxμðΠfx þ kf − ΠixÞμeiðΔfxþkf ·x−ΔixÞ

¼
Z

∞

−∞
dxμ

dðΔfx þ kf · x − ΔixÞ
dxμ

eiðΔfxþkf ·x−ΔixÞ ¼ 0:

ð16Þ

Consequently, under the space-time integrals,

ðΠfx − ΠixÞ2 ¼ 2m2 − 2Πfx · Πix ¼ k2f ¼ 0;

ðΠfx − Πfx0 Þ2 ¼ 2m2 − 2Πfx · Πfx0 ¼ ðAe
x − Ae

x0 Þ2 ≡ Axx0 ;

4Π−
ixx0 · Π

−
fx0x ¼ Πix · Πfx0 þ Πix0 · Πfx − 2m2;

4Π†
ixx0 · Π

†
fx0x ¼ Πix · Πfx0 þ Πix0 · Πfx þ 2m2

þ
�
k · pi

k · pf
þ k · pf

k · pi

�
Axx0 : ð17Þ

Returning to the square of the scattering amplitude for
the one-vertex radiation process and performing the traces,
we obtain

jMHICS
f i j2 ∝ 16m2 þ 8ðΠ−

ixx0 · Π
−
fx0x − Π†

ixx0 · Π
†
fx0xÞ

¼ 8m2 − 2

�
k · pi

k · pf
þ k · pf

k · pi

�
Axx0 : ð18Þ

This result for the Furry picture photon radiation trace in
Eq. (18) is the same as that obtained earlier for a general
plane-wave external field [10], i.e., the result in the
literature [4,5,14]. The Fierz transformation combined with
energy-momentum conservation eliminated extra terms and
led to the final result much faster than with the conventional
method (which is one long trace with standard Volkov
solutions).
Next, after discussing the propagator, this method will be

applied to a two-vertex Furry picture process whose
conventional trace calculations are difficult, even with
the aid of computer programs [48].

IV. FURRY PICTURE FERMION PROPAGATOR

In order to extend the Fierz transformation of Volkov
spinors to higher order processes, it is useful to transform
the Furry picture fermion propagator into a sum over
Volkov spinors in their alternative form. It will not be
necessary to consider the propagator denominator and its
unusual pole structure, beyond simply writing it down. The
phase part of the propagator plays a role in energy-
momentum conservation rules.
In its usual form, the Furry picture propagator is the free

propagator subtended by Volkov Ep functions [33],
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GFP
yx ¼ i

Z
d4p
ð2πÞ4 Epy

pþm
p2 −m2 þ iε

Ēpxeip·ðx−yÞ: ð19Þ

An alternative form for the propagator, similar to that
found for the Volkov solution in Eq. (3), can be obtained.
This alternative form, containing Π vectors, will once again
enable simpler traces through conservation of energy-
momentum at each vertex. Allowing the integration over
propagator momentum and the propagator phase to be
implicit (since we are only concerned with the trace
calculation),

GFP
yx ∝

ðΠpyþmÞ k
2k·pðpþmÞ k

2k·pðΠpxþmÞþ k
2k·pðp2−m2Þ

p2−m2þ iε
:

ð20Þ

The residual term k
2k·p ðp2 −m2Þ in Eq. (20) exists

because the propagator momentum is, in general, not on
shell. The residual term can be eliminated with a trick.
A special symbol m� is defined that has the property of

being the virtual momentum when it is squared and the
fermion mass when it appears on its own (these two rules
must be applied in order),

m2� → p2; m� → m: ð21Þ

Using m�, the propagator numerator can be represented
with Π vectors, as a single, symmetrical product,

GFP
yx ∝

ðΠpy þm�Þ k
2k·p ðpþm�Þ k

2k·p ðΠpx þm�Þ
p2 −m2 þ iε

: ð22Þ

In order to use this m� trick successfully, the appearance
of the propagator in a squared amplitude must contain a
separately labeled m� for each separate appearance.
The propagator numerator can now be represented by a

product of positive and negative energy Volkov spinors,
V�. Cross-terms V�

ptyV̄
∓
ptx vanish by orthogonality, and the

sum of end terms V�
ptyV̄�

ptx gives the Feynman form of the
Volkov propagator [49,50],

GFP
yx ¼ i

X
t

Z
d4p
ð2πÞ4

VptyV̄ptx

p2 −m2 þ iε
eiðΔpx−ΔpyÞ;

where Vpty ≡ Vþ
pty − V−

−pty: ð23Þ

In this final form, the Volkov propagator can be inserted
into a higher order Furry picture process, and Fierz trans-
formations for Volkov spinors can be fully exploited to
reduce the trace to its simplest form.

V. TWO-VERTEX, FURRY PICTURE
COMPTON SCATTERING

The method of Fierz swapping Volkov spinors will be
applied to a second-order Furry picture process, the
stimulated Compton scattering (SCS) process (Fig. 2).
The squared SCS amplitude will be simplified with the
use of the Fierz transformations of Sec. II and with the
alternative Volkov propagator decomposed into a spin sum
[Eq. (23)]. The aim is to write down the direct channel trace
in a simple form.
The direct channel amplitude of the SCS process, after

summing over photon polarizations, comprises two dressed
vertices consisting of four Volkov spinors in total. Leaving
the space-time integrations, spin sums, spin subscripts,
propagator denominator, phases, normalizations and cou-
pling constant implicit, we get

MSCS
f i ¼ −ie

Z
d4xd4yψ̄FP

fryAfyGFP
yxAixψ

FP
isx

→ V̄fyγ
μVpyV̄pxγ

νV ix: ð24Þ

Though there are twice as many spinors in the SCS
amplitude as compared to the one-vertex HICS amplitude,
there are correspondingly two energy-momentum conser-
vation rules grouped around each vertex and, possibly,
additional Fierz transformations. After making two Fierz
transformations (indicated by overbraces and underbraces)
which produce sums over two basis groups, J,K, and
carrying out the appropriate spin sums, a product of three
traces of familiar Q structures results,

V̄fyγ
μ Vpy

z}|{
V̄pxγ

νV ix|ffl{zffl}V̄ ix0γνVpx0|{z}V̄py0γμVfy0
zfflffl}|fflffl{

→
X
JK

FVJFVKTr½QJ
fy0yðpf þmÞ�Tr½QK

ixx0 ðpi þmÞ�

· Tr½QK
pxx0 ðpþm�0ÞQJ

py0yðpþm�Þ�: ð25Þ

The first two traces in Eq. (25) have the same form as
those obtained for the one-vertex HICS process. This
ensures that, once again, Q� combinations appear, and

fkfp

ip

fp

ip

fk

p

ik

p

ki

x

y

x

y

direct channel exchange channel

FIG. 2. Furry picture, two-vertex Compton scattering.
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only the (S,V,A) Fierz groups survive. The third trace of
Eq. (25) can also be reordered into Q� combinations via a
symmetry with respect to complex conjugation.
The integration over the space-time coordinate at each

vertex, say, x, appears with an additional x0 in the squared
amplitude. The dependence on both these space-time
coordinates appears as some function Fxx0 in the trace
with some phase Px − Px0 as

Z
dxdx0Fxx0eiðPx−Px0 Þ: ð26Þ

Assuming F is a real-valued function (and it is one if the
external field 4-potential Ae is written as a real function),
the operation of swapping x → x0 results in the complex
conjugate. However, since this is a squared amplitude,
taking the complex conjugate must leave it unchanged.
Therefore, the function F can be replaced by

Fxx0 →
1

2
½Fxx0 þ Fx0x�: ð27Þ

Moreover, this complex conjugate symmetry operation
must be applicable at each vertex separately since there
is no other way to ensure invariance with respect to
overall complex conjugation in the squared amplitude of
a multivertex process (see Appendix B). The vertex
independence of the complex conjugation symmetry allows
the Q� linear combinations to be formed in the third trace
of Eq. (25).
This third trace, however, contains non-mass-shell

4-momenta p with associated “alternative” masses (labeled
separately), m�; m�0 . Consequently, the Q� combinations
for non-mass-shell momenta contain extra terms which
reduce to their previous form [Eq. (15)] once the mass-shell
condition is applied,

QSþ
pxx0 ¼

ðm�þm�0Þk
2k ·p

;

QVþ
pxx0 ¼

�
Π†α

fxx0 þ
ðm�0 −m�ÞkΠþ

pxx0γ
α

4k ·p

�
k

k ·p
;

QA−
pxx0 ¼

�
Π−α

pxx0 þ
ðm�−m�0ÞkαΠ−

pxx0 þkΠ−
pxx0Π

þ
pxx0γ

α

2k ·p

�
γ5

k
k ·p

:

ð28Þ

Returning to the Fierz-swapped squared amplitude of the
SCS direct channel [Eq. (25)], applying the explicit forms
of the Q� combinations and performing the traces, a
compact form is obtained,

jMSCS
f i j2∝16ðp2−m2Þ½4m2−Xfp

y0y ·X
ip
xx0 �þ32Yfp

y0y ·Y
ip
xx0 ;

whereXip
xx0 ≡

�
Π†

ixx0 −
k ·pi

k ·p
Π−

pxx0

�

Y ip
xx0 ≡Π†

ixx0 ·Π
†
pxx0 −Π−

ixx0 ·Π
−
pxx0 −2m2: ð29Þ

The scalar products of Π vectors can be reduced to
simple forms, once again, by using conservation of energy-
momentum at each vertex. In the limit of vanishing field
strength, the Π− vectors go to zero, Π† goes to Πþ, Πþ
vectors lose their spatial dependence and reduce to simple
4-momenta, and the Klein-Nishina direct channel trace [51]
is easily obtained.
The above methods apply readily to the exchange

channel since only the internal momentum differs between
the direct (p≡ pd) and the exchange (p≡ pe) channels.
The interference terms (direct × exchange amplitudes),

however, have a different internal structure in the amplitude
with respect to contracted gamma matrices. In that case, the
Fierz swaps can be made between slightly different groups
of Volkov spinors and gamma matrices, and the same
structure results,

V̄fyγ
μVdy

zfflffl}|fflffl{
V̄dxγ

νV ixV̄ ix0γμVex0 V̄ey0γνVfy0
zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{

→ ½V ixV̄ ix0γμΓKγμ�V̄fyΓKVex0 V̄ey0γνVfy0|fflffl{zfflffl}V̄dxγ
ν Vdy|{z}

→ ½V ixV̄ ix0γμΓKγμ�½Vfy0V̄fyγνΓJγν�½V̄dxΓKVex0 V̄ey0ΓJVdy�: ð30Þ

Both the direct and exchange internal momenta appear in the third group of Fierz-swapped Volkov spinors in the
interference terms, so a further generalization of the Q� vectors, the most general one possible, is necessary,

QK
dxex0 ≡ V̄dxΓKVex0 ; QK�

dxex0 ≡
1

2
ðQK

dxex0 �QK
dx0exÞ; QSþ

dxex0 ¼
�
m� − Πþ

dxx0

2k · pd
þm�0 þ Πþ

exx0

2k · pe

�
k;

QVþ
dxex0 ¼

�
Πþα

exx0 þ
2m�m�0kα þ kðΠ−

dxx0Π
−
exx0 − Πþ

dxx0Π
þ
exx0 þm�0Πþ

dxx0 −m�Πþ
exx0 Þγα

4k · pd

�
k

k · pe
;

QA−
dxex0 ¼

�
Π−α

exx0 þ
2ðm�Π−

exx0 −m�0Π−
exx0 Þkα þ kðΠ−

dxx0Π
þ
exx0 − Πþ

dxx0Π
−
dxx0 Þγα

4k · pd

�
γ5

k
k · pe

: ð31Þ
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The above Q� vectors reduce to those of previous
incarnations [Eqs. (15) and (28)] when the internal
momenta pd; pe are the same and/or are on the mass shell.

VI. CONCLUSION

In this paper, a general method for simplifying scattering
amplitudes for Furry picture particle processes has been
developed, demonstrated and cross-checked in two cases. By
making Fierz swaps of Volkov spinors, and with application
of general energy-momentum conservation and complex
conjugation symmetries, the one-vertex photon radiation
(HICS) trace result was obtained with a few lines of algebra.
The two-vertex Compton scattering, a traditionally difficult
process to analytically calculate, was similarly obtained in
compact form. This method can be referred to as the Fierz
transformation of Volkov spinors (FTVS).
In preparation, the traditional Volkov solutions for

fermions embedded in an external, plane-wave, electro-
magnetic field were cast into an alternative form in which
the action of the electron embedded in the external field is
manifest in the Volkov spinor. The method of Fierz trans-
formations for Dirac spinor quadrilinears was extended to
Volkov spinors by taking note that the Fierz transformation
is a relation between a basis set of five groups with spinors
swapping component-wise.
When applying this Fierz swapping of Volkov spinors

to actual squared scattering amplitudes, repeated patterns
emerged. A structure of two Volkov spinors subtending a
Dirac basis group was given its own symbol QK, with the
superscript K ranging over the Dirac matrix basis groups.
When spin sums are performed, QK appears only once or
twice in a trace.
Because of contraction over Dirac gamma matrices,

arising from polarization sums, each appearance of a
Fierz transformation matrix is via its vector row. This,
combined with the limited size of the resultant traces,
ensures that only scalar, vector and axial basis groups
appear. The physical explanation for the (S, V, A) structure
is that, besides the photon vector current interaction, there
is also a coupling to the axial vector current provided by the
plane-wave external field [43]. Indeed, as the external field
vanishes, it can be seen analytically that axial parts of the
trace drop out.
Symmetry properties were applied. Invariance of the

squared amplitude under complex conjugation at each
vertex, combined with reversal symmetry of the trace,
allowed only three linear combinations, QSþ; QVþ; QA−.
Each of these linear combinations in turn led to simple
scalar products of Π vectors. Finally, conservation of
energy-momentum was used to simplify Π scalar products
further. The procedure was verified by obtaining known
results in one-vertex and two-vertex processes.
The FTVS method described above should be applicable

more generally. For instance, in an n-vertex Furry picture

process (Fig. 3), a quick “power counting” establishes the
expected structures.
An amplitude with n vertices will give rise to 2n Volkov

spinor pairs (i.e., 2n Q structures) when the amplitude is
squared. In turn, n Fierz swaps will give rise to n traces
each containing one QK structure. The remaining n Q
structures will appear in a single trace. There will be n sets
of complex conjugation symmetries to produce Q� linear
combinations, and n energy-momentum conservation
requirements that will ensure simple forms for the scalar
products of Π vectors.
FTVS can be applied to Furry picture helicity amplitudes

when specific spin-polarization states are the aim of the
calculation. In that case, the Dirac basis set can be reformed
as a helicity basis set, which is more efficient for Fierz
transformations of helicity amplitudes [40].
The extension of FTVS to pulsed or otherwise non-

plane-wave external fields [21,45] should present little
difficulty. The Fierz transformation and exploited sym-
metries are general. In terms of simple results it will be
useful to express the action of the electron in the spinor of
any non-Volkov solution.
Other Furry picture Feynman diagrams, those containing

internal photon lines and/or loops, should also be amenable
to FTVS. Loops are, in any case, related to tree-level
diagrams via cutting rules [52], so it is expected that FTVS
can seamlessly be applied. The Q structures are simply
an expression of the Volkov current through a dressed
vertex, which is the basis of a Furry picture perturbation
expansion.
It is expected that FTVS will prove useful for a range of

higher order Furry picture calculations. The author is
particularly interested in a detailed consideration of the
two-vertex SCS and associated processes. To that end, the
FTVS will be combined with a detailed treatment of
Volkov phases and propagator denominators in future
work. It is also anticipated that FTVS will prove useful,
for example, in a Bloch-Nordsieck-type proof [53,54] of
divergence cancellation and for the inclusion of one-
particle irreducible diagrams in complete Furry picture
propagators.
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FIG. 3. An n-vertex Furry picture process.
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APPENDIX A: ENERGY-MOMENTUM
CONSERVATION WITH VOLKOV SOLUTIONS

UNDER SPACE-TIME INTEGRATION

Energy-momentum conservation in strong field proc-
esses requires that the momentum flow through a dressed
vertex be zero,Z

∞

−∞
dxμðΠfx þ kf − ΠixÞμeiðΔfxþkf ·x−ΔixÞ ¼ 0: ðA1Þ

Equation (A1) has been demonstrated to be mathemati-
cally true in the context of linearly polarized laser fields
[4,20,31]. The solution presented here, for a general plane-
wave 4-potential Ae

μðk · xÞ, is based partly on [7] and makes
use of the Fourier expansion of a function f of arbitrary
period L [10],

fðk · xÞ≡ X∞
r¼−∞

Z
πL

−πL

dϕ
2πL

ei
r
L½ϕ−k·x�fðϕÞ: ðA2Þ

The relationship between the classical momentum and
the Hamilton-Jacobi action of the electron in the external
field [Eq. (3)] simplifies the integrand of Eq. (A1), and
the nonlinear dependence on the space-time variable,
say, fðk · xÞ, can be made linear by using the Fourier
expansion (A2),Z

∞

−∞
dxμðΠfx þ kf − ΠixÞμeiðΔfxþkf ·x−ΔixÞ

¼
Z

∞

−∞
dxμ

d
dxμ

½eiðΔfxþkf ·x−ΔixÞ�

¼
X∞
r¼−∞

Z
πL

−πL

dϕ
2πL

ei
r
LϕfðϕÞ

×
Z

∞

−∞
dxμ

d
dxμ

eiðpfþkf−pi−r
LkÞ·x: ðA3Þ

The derivative and integration with respect to space-time
result in a product of a delta function and its argument, and
the identity [Eq. (A1)] is proven,

Z
∞

−∞

dxμ
ð2πÞ4

d
dxμ

eiðpfþkf−pi−r
LkÞ·x

¼
�
pf þ kf − pi −

r
L
k
	
μ
δ4
�
pf þ kf − pi −

r
L
k
	
¼ 0:

ðA4Þ

APPENDIX B: COMPLEX CONJUGATION
SYMMETRY IN SQUARED AMPLITUDES

The configuration-space amplitude of a general, two-
vertex Furry picture particle process requires integration
over two space-time coordinates x, y, with additional x0; y0
coordinates (and integrations) appearing when the ampli-
tude is squared. Symmetries of the integrand of these space-
time integrals under the operation of complex conjugation
will be considered.
In a Furry picture process, there is a space-time

dependence in the spinor, say, fy; gx, and in the phase,
Px; Qy. The dependence in the squared amplitude
then appears as a product of subamplitudes and their
conjugates,

jMfij2 ∝
Z

dxdx0dydy0Tr½fygxḡx0 f̄y0 �eiðPx−Px0 ÞþiðQy−Qy0 Þ:

ðB1Þ

Using the symmetry properties of the trace, the depend-
ence on space-time coordinate conjugate pairs x, x0 and y,
y0 is separable (Fy0y ≡ f̄y0fy, Gxx0 ≡ gxḡx0 ),

Z
dxdx0dydy0Tr½Fy0ye

iðQy−Qy0 ÞGxx0eiðPx−Px0 Þ�: ðB2Þ

The integrand dependence on each conjugate pair of
space-time coordinates appears as a squared function times
an imaginary phase. Therefore, the operation of swapping
each space-time conjugate pair, x ↔ x0 or y ↔ y0, must
leave the integrand real valued, assuming the functions F,
G, P and Q are real valued. In other words, the imaginary
parts must vanish,

Z
dydy0Fy0y sin ðQy −Qy0 Þ ¼ 0: ðB3Þ

Writing the functions F and G in two terms which are
odd and even with respect to swapping the space-time
coordinates,

Fy0y ¼ Fþ
y0y þ F−

y0y; F�
y0y ≡

1

2
ðFy0y � Fyy0 Þ; ðB4Þ

the requirement of invariance under complex conjugation,
of the integrand of each squared subamplitude, ensures

Fy0y → Fþ
y0y; Gxx0 → Gþ

xx0 : ðB5Þ
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