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We present a study of the flavor form factors in the framework of a hard-wall AdS/QCD model and
compare with the available experimental data. We obtain the flavor form factors by decomposing the Dirac
and Pauli form factors for the nucleons using the charge and isospin symmetry. Further, we present a
detailed study of the flavor structures of the charge and anomalous magnetization densities in the transverse
plane. Both the unpolarized and the transversely polarized nucleons are considered here. We compare the
AdS/QCD results with two standard phenomenological parametrizations.
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I. INTRODUCTION

In recent years, tremendous interest has grown in AdS/
QCD correspondence, which has emerged as one of the
most promising techniques to investigate the structure of
mesons and nucleons. A weakly coupled gravity theory
in AdSdþ1 can be related to a conformal theory at the
d-dimensional boundary by the AdS=CFT conjecture [1]. In
the last decade, AdS=CFT has been applied to explain
several QCD phenomena [2,3]. To apply AdS=CFT in QCD,
one needs to break the conformal invariance. In the hard-wall
model, one sets an IR cutoff at z0 ¼ 1=ΛQCD, while in the
soft-wall model, a confining potential in z is introduced to
break the conformal invariance. AdS/QCD gives only the
semiclassical approximation of QCD, and it has been
developed by several groups for the baryon [4–11]. So
far, various aspects of hadron properties, e.g., hadron mass
spectrum, generalized parton distribution functions (GPDs),
meson and nucleon form factors, transverse densities,
structure functions, etc., have been successfully described
by AdS/QCD [8–23]. The first computation of nucleon
transition form factors in AdS/QCD was described in [24].
Recently, a quark-scalar diquark [25] and a quark-vector
diquark [26] models have been developed for the nucleon,
where the wave functions are constructed from the soft-wall
AdS/QCD correspondence, and this has been extensively
used to investigate many interesting properties of nucleons
[27–30]. In the meson sector, AdS/QCD has also been
successfully applied to predict the branching ratios for

decays of B0 and B0
s into ρ mesons [31], isospin asymmetry

and branching ratios for the B → K�γ decays [32], transition
form factors [33,34], etc. The result with the AdS/QCDwave
functions agrees very well with the experimental data for ρ
meson electroproduction [35]. In the baryon sector, there are
many other applications; e.g., semiempirical hadronic trans-
verse momentum density distributions have been calculated
in [36], and the form factor of spin-3=2 baryons (Δ
resonance) and also the transition form factor between Δ
and nucleon have been studied in [37]. To study the baryon

spectrum at finite temperature, an AdS/QCDmodel has been
proposed in [38]. Recently, it has been shown that the
superconformal quantum mechanics can be precisely
mapped to AdS/QCD [39]. The superconformal quantum
mechanics together with light-front AdS/QCD has revealed
the importance of conformal symmetry and its breaking
within the algebraic structure for understanding the confine-
ment mechanism of QCD [40,41].
Electromagnetic form factors (EFFs) are the fundamental

quantities to understand the internal structure of the
nucleons and have been measured in many experiments.
For a detailed review on this subject, we refer the reader to
the articles [42–44]. The charge and magnetization den-
sities in the transverse plane are defined as the two-
dimensional Fourier transformation of the EFFs. The first
moments of the GPDs are related to the EFFs. The
transverse densities are also intimately related to the zero
skewness GPDs. Using charge and isospin symmetries, the
contributions of individual quarks to the nucleon charge
and magnetization densities are obtained from the flavor
decompositions of the transverse densities. The densities in
the transverse plane corresponding to individual quarks are
given by the moment of the GPDs in the transverse impact
parameter space [45]. The form factors involve initial and
final states with different momenta, and three-dimensional
Fourier transforms cannot have the interpretation of den-
sities, but the transverse densities defined at fixed light-
front time have a proper density interpretation [46–48].
The nucleon transverse charge and magnetization

densities have been evaluated in [16] using the holographic
model developed in [8]. Model-independent charge den-
sities in the transverse plane for nucleons in the infinite-
momentum frame have been shown in [49], whereas the
transverse charge densities for a transversely polarized
nucleon have been studied in [50,51]. The long-range
behaviors of the unpolarized quark transverse charge
densities of the nucleons have been investigated in [52].
Using methods of dispersion analysis and chiral effective
field theory, transverse densities in the nucleon’s chiral

PHYSICAL REVIEW D 94, 073001 (2016)

2470-0010=2016=94(7)=073001(13) 073001-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.073001
http://dx.doi.org/10.1103/PhysRevD.94.073001
http://dx.doi.org/10.1103/PhysRevD.94.073001
http://dx.doi.org/10.1103/PhysRevD.94.073001


periphery [i.e., at a distance b ¼ Oð1=mπÞ] have been
analyzed in [53]. In [54], the transverse charge and mag-
netization densities for the quarks have been studied in a
chiral quark-soliton model. Kelly [55] proposed a para-
metrization of the nucleon Sachs form factors in terms of
charge andmagnetization densities usingLaguerre-Gaussian
expansion. The flavor dependence of the transverse densities
in different models of GPDs has been reported in [56,57].
In this work, we consider a hard-wall AdS/QCD model.

Although the hard-wall AdS/QCD model is a simple and
useful model to describe various hadronic properties, it has
some shortcomings when trying to describe the observed
meson spectrum [14,15]. This model for the meson is
degenerate with respect to the orbital quantum number L,
which leads to identical trajectories for pseudoscalar and
vector mesons. Thus, it fails to account for the important
L ¼ jLzj ¼ 1 triplet splitting a-meson states for different
values of J. Again, for higher quantum excitations, the
spectrum in this model behaves as M ∼ 2nþ L, whereas
experimentally the usual Regge dependence is found as
M2 ∼ nþ L [58]. In the hard-wall model, the radial modes
are not well described; therefore, the first radial AdS
eigenvalue has a mass 1.77 GeV, which is very high
compared to the mass of the observed first radial excitation
of the meson, the πð1300Þ. A similar difficulty has also
been observed in nucleon resonance where the first AdS
radial state has a mass 1.85 GeV, which is, thus, hard to
identify with the Roper Nð1440Þ resonance [14]. In spite of
these shortcomings, many other interesting works have
been done for the meson and baryon sectors in the hard-
wall AdS/QCD model; see, e.g., [59–63].
In general, soft-wall AdS/QCD models have some

advantages compared to hard-wall models. In particular,
the hadronic mass spectrum in soft-wall models exhibits
Regge-like behavior. There are two different soft-wall AdS/
QCD models for the nucleon electromagnetic form factors
developed by Brodsky and Téramond [14] (we refer to
them as soft I) [14] and Abidin and Carlson [8] (we refer to
them as soft II) [8]. The soft I is constructed by weighing
the different Fock-state component by the charges and spin
projections of the quark constituents as dictated by the
SU(6) spin-flavor symmetry. In soft II, the authors have
introduced an additional gauge invariant nonminimal cou-
pling term which gives an anomalous contribution to the
Dirac form factors. The form of the Pauli form factors in
these two models is identical, but the main difference is
in the Dirac form factors. Note that the Pauli form factors in
the AdS/QCD models are mainly of phenomenological
origin. A study of the flavor decompositions of the nucleon
form factors in the soft-wall AdS/QCD models has been
done in [18,64]. One can find that the flavor form factors in
the soft I are in good agreement with the experimental data,
but the soft II deviates from the data of flavor form factors.
Only for Fd

1 at higher Q
2, the soft I deviates from the data,

and the soft II gives a better overall description. Again, it can

be noticed that the soft II describes well the experimental
data of the electric Sachs form factor for the neutron [8,64].
But, except forGn

EðQ2Þ, the obtained nucleon form factors in
the hard-wall model are in better agreement with data
compared to the soft II, as can be seen in [8]. Recently a
comprehensive analysis of the nucleon electromagnetic form
factors and their flavor decomposition within the framework
of light-front holographic QCD including higher Fock
components has been presented in [65]. In the present work,
we compute the flavor decompositions of the nucleon EFFs
in the hard-wall AdS/QCD model formulated by Abidin and
Carlson [8] and compare with the experimental data as well
as with the soft-wall AdS/QCD models (soft I and soft II).
We observe that the individual flavor form factors deviate at
higher Q2 from the experimental data, but this model
produces desirable data for some ratios of flavor form
factors such as Fd

1=F
u
1 and Gd

E=G
d
M. Except for F

d
1, other

flavor form factors described by soft I are better than the
consequences obtained in the hard-wall model. Then we
show a detailed analysis of the flavor-dependent transverse
densities and the flavors contributions to the nucleon
densities calculated in this model and compare with the
two global parametrizations of Kelly [66] and Bradford et al.
[67]. It is found that the hard-wall model is able to generate
good data for the neutron transverse charge densities which
are better than those obtained in the soft-wall models [19].
Using the charge and isospin symmetry, we evaluate the
flavor form factors Fq

1 and Fq
2 for the quarks by decom-

posing the nucleon form factors F1 and F2. The Fourier
transforms of these EFFs provide the charge and magneti-
zation densities in the transverse plane.
The paper is organized as follows. A brief description of

the EFFs in the hard-wall AdS/QCD model has been has
given in Sec. II. The results of the flavor form factors are
compared with experimental data in this section. The
charge and magnetization densities in the transverse plane
for both unpolarized and transversely polarized nucleons
have been analyzed in Sec. III. We also study the individual
flavor contributions in this section. At the end, we provide a
brief summary in Sec. IV.

II. HARD-WALL ADS/QCD MODEL FOR
NUCLEON FORM FACTORS

For the nucleon electromagnetic form factors, we con-
sider the hard-wall model of AdS/QCD proposed by Abidin
and Carlson [8]. A sharp cutoff in z is introduced in this
model, which breaks the conformal invariance and allows
QCD mass scale and confinement. The action in the hard-
wall model is written as [8]

S ¼
Z

d4xdz
ffiffiffi
g

p �
i
2
ΨeMA ΓADMΨ

−
i
2
ðDMΨÞeMA ΓAΨ −MΨΨ

�
; ð1Þ
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FIG. 1. The plots show a comparison of the ratio of Pauli and Dirac form factors for the proton between the hard- and soft-wall models
in AdS/QCD. (a) The ratio is multiplied by Q2 ¼ −q2 ¼ −t an (b) the ratio is divided by κp. The experimental data are taken from
Refs. [75–79]. The solid red line represents the hard-wall AdS/QCD model, the blue dashed line represents the soft-wall AdS/QCD
model (soft I) [18], and black dashed-dot line is for the soft-wall model (soft II) [8].
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FIG. 2. Plots of flavor-dependent form factors for the u and d quarks. The experimental data are taken from [69–71]. The solid red line
represents the hard-wall AdS/QCDmodel, and the blue dashed and black dashed-dot lines represent the soft-wall AdS/QCDmodels [18]
and [8], respectively.
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where eMA ¼ zδMA is the inverse vielbein. The covariant
derivative is DM ¼ ∂M þ 1

8
ωMAB½ΓA;ΓB� − iVM, where the

spin connections are ωμzν ¼ −ωμνz ¼ 1
z ημν. The Dirac

gamma matrices satisfy the anticommutation relation
fΓA;ΓBg ¼ 2ηAB. In d ¼ 4 dimensions, ΓA ¼ ðγμ;−iγ5Þ.
The relevant term in the action in Eq. (1) which generates
the Dirac form factor F1 is given by

SD ¼
Z

d4xdz
ffiffiffi
g

p
ΨeMA ΓAVMΨ: ð2Þ

However, the action in Eq. (1) is unable to produce the spin
flip (Pauli) form factors F2. To get the Pauli form factors,
one needs to add the following extra gauge invariant term to
the action [8]

ηS;V

Z
d4xdz

ffiffiffi
g

p i
2
ΨeMA e

N
B ½ΓA;ΓB�FðS;VÞ

MN Ψ; ð3Þ

where FMN ¼ ∂MVN − ∂NVM, and the isoscalar and iso-
vector components of the vector field are denoted by the

indices S and V. This additional term Eq. (3) to the action
also provides an anomalous contribution to the Dirac form
factors. Thus, the form factors for the proton and neutron in
this model are given by [8]

Fp
1 ðQ2Þ ¼ C1ðQ2Þ þ ηpC2ðQ2Þ; ð4Þ

Fn
1ðQ2Þ ¼ ηnC2ðQ2Þ; ð5Þ

Fp=n
2 ðQ2Þ ¼ ηp=nC3ðQ2Þ; ð6Þ

where ηp=nC2ðQ2Þ is the anomalous contribution to the
Dirac form factor coming from the additional term to the
AdS action in Eq. (3). The functions CiðQ2Þ are defined as

C1ðQ2Þ ¼
Z

dz
VðQ2; zÞ

2z3
ðψ2

LðzÞ þ ψ2
RðzÞÞ; ð7Þ

C2ðQ2Þ ¼
Z

dz
∂zVðQ2; zÞ

2z2
ðψ2

LðzÞ − ψ2
RðzÞÞ; ð8Þ
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FIG. 3. Fq
2=ðκqFq

1Þ plotted against Q2 (a) for the u quark and (b) for the d quark.
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C3ðQ2Þ ¼
Z

dz
2mnVðQ2; zÞ

z2
ψLðzÞψRðzÞ; ð9Þ

and the parameters are ηp ¼ ðηV þ ηSÞ=2, and ηn ¼
ðηV − ηSÞ=2. The limit of the integration is zero to the

cutoff value z0 ¼ ð0.245 GeVÞ−1. The upper cutoff was
fixed in Ref. [8] to determine the nucleon and rho-meson
masses. The other parameters are determined from the
normalization conditions of the Pauli form factor at
Q2 ¼ 0 and are given by ηp ¼ 0.448 and ηn ¼ −0.478.
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The normalizable modes ψLðzÞ and ψRðzÞ are given
by [8]

ψLðzÞ ¼
ffiffiffi
2

p
z2J2ðmnzÞ

z0J2ðmnz0Þ
; ψRðzÞ ¼

ffiffiffi
2

p
z2J1ðmnzÞ

z0J2ðmnz0Þ
:

ð10Þ

The bulk-to-boundary propagator for the hard-wall AdS/
QCD model is given by [68]

VðQ; zÞ ¼ Qz

�
K0ðQz0Þ
I0ðQz0Þ

I1ðQzÞ þ K1ðQzÞ
�
; ð11Þ

where Jν, Iν, and Kν are the Bessel and modified Bessel
functions.

A. Flavor decompositions of nucleon
form factors

In order to evaluate the flavor form factors, we write the
flavor decompositions of the nucleon form factors in a

straightforward way using the charge and isospin
symmetry [69]

Fu
i ¼ 2Fp

i þ Fn
i and Fd

i ¼ Fp
i þ 2Fn

i ; ði ¼ 1; 2Þ
ð12Þ

with the normalizations Fu
1ð0Þ ¼ 2, Fu

2ð0Þ ¼ κu and
Fd
1ð0Þ ¼ 1, Fd

2ð0Þ ¼ κd, where the anomalous magnetic
moments for the up and down quarks are κu ¼ 2κp þ κn ¼
1.673 and κd ¼ κp þ 2κn ¼ −2.033. One can also define
the Sachs form factors for the quarks in the same way as
Dirac and Pauli form factors

Gp
E;M ¼ euGu

E;M þ edGd
E;M;

Gn
E;M ¼ euGd

E;M þ edGu
E;M; ð13Þ

where eq denotes the charge of quark q; thus, Gu
E;M ¼

2Gp
E;M þ Gn

E;M and Gd
E;M ¼ Gp

E;M þ 2Gn
E;M, the Q2 ¼ 0

values of these form factors Gu
Eð0Þ ¼ 2, Gd

Eð0Þ ¼ 1, and
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the magnetic moments are Gu
Mð0Þ ¼ μu ¼ ð2μp þ μnÞ ¼

3.67μN , Gd
Mð0Þ ¼ μd ¼ ð2μn þ μpÞ ¼ −1.033μN . The

Sachs form factors are expressed in terms of Dirac and
Pauli form factors as

Gp=n
E ðQ2Þ ¼ Fp=n

1 ðQ2Þ − Q2

4M2
Fp=n
2 ðQ2Þ; ð14Þ

Gp=n
M ðQ2Þ ¼ Fp=n

1 ðQ2Þ þ Fp=n
2 ðQ2Þ: ð15Þ

Recently, there have been a lot of studies of flavor form
factors; Qattan and Arrington [70] have analyzed the flavor
decomposition of the form factors using a similar method
as [69] but included the two photon exchange processes in
the Rosenbluth separation. The experimental data for flavor
form factors are used to fit the GPDs for up and down
quarks and also estimated the total angular momentum
contribution of each flavor by evaluating Ji’s sum rule in
[71]. In [72], the nucleon and flavor form factors have been
studied in a light-front quark-diquark model. In [73], the

flavor form factors are also discussed using a model for
GPDs. The flavor decomposition of the nucleon Sachs form
factors in a relativistic quark model based on Goldstone-
bon exchange have been studied in [74] and compared with
the experimental data. The flavor form factors have also
been studied in the SU(3) chiral quark-soliton model
in [54].
It was shown in [69] that the ratio of Pauli and Dirac

form factors for the quark F2=F1 is almost constant,
whereas the Q2 dependence for the ratio of the proton
Fp
2=F

p
1 is proportional to 1=Q2. For Q2 > 1 GeV2, the

experimental data for Fd
2 and F

d
1 are roughly proportional to

1=Q4 but the dropoff of Fu
2 and F

u
1 is more gradual [69]. In

Fig. 1, we show the ratio of the Pauli and Dirac form factors
for the proton calculated in the framework of the hard-wall
AdS/QCD model. The Pauli and Dirac form factors for the
u and d quarks are shown in Fig. 2. One notices that at
higher Q2, the flavor form factors in the hard-wall model
deviate from the experimental data, and the deviations
are larger for the u quark than for the d quark. For Fd

1, the
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hard-wall AdS/QCD model provides a better result than the
soft I, but the overall description of soft II at higher Q2 is
better compared to both the soft-I and the hard-wall AdS/
QCD models. On the other hand, for the other three flavor
form factors as shown in Figs. 2(a), 2(c), and 2(d), the soft I
produces much better data than the hard-wall and soft-II
models. We show the ratio of the Pauli and Dirac form
factors for each flavor in Fig. 3. The ratios Fd

1=F
u
1 and

κuFd
2=ðκdFu

2Þ are shown in Fig. 4. In Fig. 5, we show the
ratios of the Sachs form factors Gq

E=ðμqGq
MÞ for the u and d

quarks. The plots show that the hard-wall AdS/QCD model
reproduces reasonably good data for the ratios Fd

1=F
u
1 and

Gd
E=ðμdGd

MÞ, whereas the soft-wall AdS/QCD models are
unable to reproduce good data for the ratios of flavor form
factors which involve the Fd

1 . It should be mentioned here

that at lowQ2, the description of Fp
2=F

p
1 (see Fig. 1) in both

soft-wall models is better than that of the hard-wall model,
but at higher Q2, it is a little better in the hard-wall model.

III. TRANSVERSE CHARGE AND
MAGNETIZATION DENSITIES

The transverse charge density for an unpolarized nucleon is
givenby theFourier transformof theDirac formfactor [49,51]

ρchðbÞ ¼
Z

d2q⊥
ð2πÞ2 F1ðq2Þeiq⊥:b⊥

¼
Z

∞

0

dQ
2π

QJ0ðQbÞF1ðQ2Þ; ð16Þ
where the impact parameter b ¼ jb⊥j represents the position
from the transverse center ofmassof thenucleon, andJ0 is the
cylindrical Bessel function of order zero. The charge density
for flavor ρqfch can also bewritten as Eq. (16)withF1 replaced
by Fq

1. The magnetization density can be defined by a similar
fashion to have the formula

~ρMðbÞ ¼
Z

d2q⊥
ð2πÞ2 F2ðq2Þeiq⊥:b⊥

¼
Z

∞

0

dQ
2π

QJ0ðQbÞF2ðQ2Þ; ð17Þ
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whereas

ρmðbÞ ¼ −b
∂ ~ρMðbÞ
∂b ¼ b

Z
∞

0

dQ
2π

Q2J1ðQbÞF2ðQ2Þ:

ð18Þ
ρmðbÞ has been interpreted as an anomalous magnetization
density [47]. Actual experimental data are unavailable for the
charge andmagnetization densities, as these quantities are not
directlymeasured in experiments.An approximate estimation
of ρchðbÞ and ρmðbÞ for the proton has been done from
experimental data of the formfactor inRef. [48].Toget the full
information about the transverse charge and magnetization
densities inside the nucleon, one needs to evaluate these
quantities for different quarks.

A. Transverse densities for flavor

The decompositions of the transverse charge and mag-
netization densities for the nucleon can be defined in a
similar way as the electromagnetic form factors [69]. In
terms of two flavors, one can write the charge density
decompositions as [19]

ρpch ¼ euρufch þ edρdfch;

ρnch ¼ euρdfch þ edρufch; ð19Þ

where eu and ed are the charges of the u and d quarks,
respectively. It has been shown in Ref. [49] that under the
charge and isospin symmetry, the u, d quark densities in the
proton are the same as the d, u densities in the neutron. It is
straightforward to write down the transverse charge density
for the u and d quark as [19,49]

ρuchðbÞ ¼ ρpch þ
ρnch
2

¼ ρufch
2

;

ρdchðbÞ ¼ ρpch þ 2ρnch ¼ ρdfch; ð20Þ

where ρqchðbÞ is the charge density of each quark, and ρqfch
is the charge density for each flavor. We also decompose
the anomalous magnetization density in a similar fashion as
the charge density in Eqs. (19) and (20).
We show the charge and anomalous magnetization

densities for the unpolarized proton in Figs. 6(a) and 6(b).
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The contributions of the flavors to the proton densities
eu=dρ

u=d
fch and eu=dρ

u=d
fm are shown in Figs. 6(c) and 6(d).

Similarly, the charge and anomalousmagnetization densities
for the unpolarized neutron are shown in Figs. 7(a) and 7(b),
and the corresponding contributions of flavors ed=uρ

u=d
fch

and ed=uρ
u=d
fm are shown in Figs. 7(c) and 7(d). The plots

suggest that the predictions of the hard-wall AdS/QCD
model for the unpolarized transverse densities are more or
less in agreement with the two different global parametriza-
tions of Kelly [66] and Bradford et al. [67]. At the center of
mass (b ¼ 0), the hard-wall AdS/QCD prediction shows a
little higher value of the charge densities compared to the
parametrizations. We should mention here that the soft-wall
AdS/QCDmodels [8,14] fail to reproduce the neutron charge
density at small b as shown in [19]. The unpolarized charge
density for the neutron [Fig. 7(a)] displays a behavior having
a negatively charged core surrounded by a ring of positive
charge density, and the negative interior core shifts towards
the center of mass in the case of the hard-wall AdS/QCD
model. The contribution of the u quark in the proton charge
density is large enough compared to the d quark, whereas the
contribution of the u quark is almost twice that of the d quark
in the neutron charge density. In the case of anomalous

magnetization density, the d quark contribution in the
neutron is quite high compared to the u quark. The charge
and anomalous magnetization densities of the individual
quarks for the unpolarized nucleon are shown in Fig. 8.
Again at small b, the hard-wall AdS/QCD model disagrees
with the parametrizations of Kelly [66] and Bradford et al.
[67] for both quark charge densities and gives a higher value.
For the quark anomalous magnetization densities, the hard-
wall AdS/QCD model is in good agreement with the
parametrizations.

B. Charge densities for a transversely
polarized nucleon

The charge density in the transverse plane for a trans-
versely polarized nucleon is given by [19,51]

ρTðbÞ ¼ ρch − sinðϕb − ϕsÞ
1

2Mb
ρm; ð21Þ

where the mass of nucleon isM, the transverse polarization
direction of the nucleon is denoted by S⊥ ¼ ðcosϕsx̂þ
sinϕsŷÞ, and the transverse impact parameter is given by
b⊥ ¼ bðcosϕbx̂þ sinϕbŷÞ. Without loss of generality,
we take the polarization direction of the nucleon along
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the x axis, i.e., ϕs ¼ 0. The first term in Eq. (21) is the
unpolarized charge density, and the second term gives an
indication of the deviation from the circular symmetry of
the unpolarized charge density [51]. We show the charge
densities for the proton and neutron polarized along the
x axis in Figs. 9(a) and 9(b). The individual u and d quark
charge densities for the nucleon polarized along the x axis
are shown in Figs. 9(c) and 9(d). Again, the AdS/QCD
model is in good agreement with the parametrizations,
except that it provides larger peak densities than the
parametrizations.
We compare the AdS/QCD results of the charge densities

for the unpolarized and transversely polarized proton in
Fig. 10(a), and a similar plot for the neutron is shown in
Fig. 10(b). As expected, the deviation of the transversely
polarized density from the unpolarized density is quite
large for the neutron compared to the proton. This is
because of much higher anomalous magnetization density
than the unpolarized charge densities for the neutron,
whereas for the proton, the unpolarized charge density is
large enough compared to the anomalous magnetization
density. Similar behavior has been seen in [19,47,51,54].
The u and d quark charge densities for the transversely

polarized and unpolarized nucleon are shown in Figs. 10(c)
and 10(d). Because of a similar reason, as stated before for
nucleons, the deviation from the symmetric unpolarized
density is more for the d quark than for the u quark. One
can notice that the shifting of the charge density is the
opposite for the u and d quarks. The reason is that the
anomalous magnetization density is negative for the d
quark but positive for the u quark. A top view of three-
dimensional charge densities for nucleons in the transverse
plane is shown in Fig. 11. Figures 11(a) and 11(b) represent
the charge densities for the unpolarized proton and proton
polarized along the x direction. Figures 11(c) and 11(d)
represent the same for the neutron. The unpolarized charge
densities are axially symmetric. One notices that the charge
density for the transversely polarized proton gets displaced
towards the negative by direction, and due to the large
negative anomalous magnetic moment, which leads to an
induced electric dipole moment in the y direction, the
charge density for the transversely polarized neutron shows
a dipole pattern. In Figs. 12(a)–12(d), we show the top view
of the u and d quarks’ three-dimensional charge densities in
the transverse plane for both the unpolarized and trans-
versely polarized nucleons. It shows that the displacement
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of the charge density is more in the case of the d quark and
opposite the direction of the u quark.

IV. SUMMARY

In this paper, we have studied the flavor decompositions
of the nucleon form factors for the u and d quarks in a hard-
wall AdS/QCD model, and the consequences are compared
with the experimental data and with two different soft-wall
AdS/QCD models. It has been observed that the Dirac and
Pauli form factors of each flavor in this model deviate at
higher Q2 from the experimental data. Compared with the
soft-wall models, it can be concluded that for Fd

1 only, the
hard-wall AdS/QCD model gives a better description than
the soft I. However, the overall description of Fd

1 predicted
by the soft II is better, particularly at higher Q2. For Fu

1 and

Fu=d
2 , soft I describes the data much better compared to the

hard-wall and the other soft-wall models. Again, the ratios
of the flavor form factors such as Fd

1=F
u
1 andG

d
E=G

d
M in the

hard-wall model agree well with the experimental data, but
the ratios which involve Fd

1 are not well described by the
soft-wall models. It can also be noted that in the higher Q2

region, the hard-wall model generates better data of
Q2Fp

2=F
p
1 as compared to the soft-wall models, whereas

at lowQ2, the result is better in the soft-wall models than in
the hard-wall model.
We have also presented a detailed study of the transverse

charge and anomalous magnetization densities for the

nucleons as well as the flavor decompositions of the
densities in the same hard-wall AdS/QCD model. The
results have been compared with the two standard phe-
nomenological parametrizations of the form factors. We
have considered both the unpolarized and the transversely
polarized nucleons in this work. Our analysis shows that
the AdS/QCD model is in good agreement with the
parametrizations at higher b but deviates at lower b. The
unpolarized densities are axially symmetric in the trans-
verse plane, while the densities for the transversely polar-
ized nucleons get displaced along the y direction if the
nucleon is polarized along the x direction. This hard-wall
AdS/QCD model produces a much better result for the
charge density of the unpolarized neutron than the soft-wall
AdS/QCD models as shown in [19]. The charge density for
the transversely polarized neutron shows a dipole pattern in
the transverse plane. We have also studied the transverse
charge and anomalous magnetization densities for the
individual u and d quarks. It has been found that the
distortion in the d quark charge density is much stronger
than that for the u quark, and the densities get shifted in the
opposite direction of each other for the transversely
polarized nucleon.
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