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We report a measurement of the ratio RðD�Þ ¼ BðB̄0 → D�þτ−ν̄τÞ=BðB̄0 → D�þl−ν̄lÞ, where l
denotes an electron or a muon. The results are based on a data sample containing 772 × 106 BB̄ pairs
recorded at the ϒð4SÞ resonance with the Belle detector at the KEKB eþe− collider. We select a sample of
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B0B̄0 pairs by reconstructing both B mesons in semileptonic decays to D�∓l�. We measure
RðD�Þ ¼ 0.302� 0.030ðstatÞ � 0.011ðsystÞ, which is within 1.6σ of the Standard Model theoretical
expectation, where the standard deviation σ includes systematic uncertainties. We use this measurement to
constrain several scenarios of new physics in a model-independent approach.

DOI: 10.1103/PhysRevD.94.072007

I. INTRODUCTION

Semitauonic B meson decays of the type b → cτντ [1]
are sensitive probes to search for physics beyond the
Standard Model (SM). Charged Higgs bosons, which
appear in supersymmetry [2] and other models with at
least two Higgs doublets [3], may contribute measurably
to the decays due to the large mass of the τ. Similarly,
leptoquarks [4], which carry both baryon number and
lepton number, may also contribute to this process. The
ratio of branching fractions

RðDð�ÞÞ ¼ BðB̄ → Dð�Þτ−ν̄τÞ
BðB̄ → Dð�Þl−ν̄lÞ

ðl ¼ e; μÞ ð1Þ

is typically used instead of the absolute branching fraction
of B̄ → Dð�Þτ−ν̄τ to reduce several systematic uncertainties,
such as those on the experimental efficiency, the magnitude
of the Cabibbo-Kobayashi-Maskawa matrix element jVcbj
and the semileptonic decay form factors. The SM calcu-
lations on these ratios predict RðD�Þ ¼ 0.252� 0.003 [5]
and RðDÞ ¼ 0.297� 0.017 [6,7] with a precision of
better than 2% and 6% for RðD�Þ and RðDÞ, respectively.
Consistent values of RðDÞ are predicted using lattice
quantum chromodynamics (QCD) calculations: RðDÞ ¼
0.299� 0.011 [8] and RðDÞ ¼ 0.300� 0.008 [9].
Exclusive semitauonic B decays were first observed by
Belle [10], with subsequent studies reported by Belle
[11,12], BABAR [7], and LHCb [13]. All the experimental
results are consistent with each other, and the average
values of Refs. [7,12,13] are RðD�Þ ¼ 0.322� 0.018�
0.012 and RðDÞ ¼ 0.391� 0.041� 0.028 [14], which
exceed the SM predictions by 3.0σ and 1.7σ, respectively.
The combined analysis of RðD�Þ and RðDÞ, taking into
account measurement correlations, finds that the deviation
is 3.9σ from the SM prediction [14].
So far, measurements of RðDð�ÞÞ at the B factories have

been performed using hadronic [7,12] or inclusive tagging
methods [10,11]. Semileptonic tagging methods have been
employed in studies of B− → τ−ν̄τ decays and have been
shown to have similar experimental precision to that of the
hadronic tagging method [15,16]. In this paper, we report
the first measurement of RðD�Þ using the semileptonic
tagging method. We reconstruct signal B0B̄0 events in
modes where one B decays semitauonically, B̄0 →
D�þτ−ν̄τ followed by τ− → l−ν̄lντ (referred to hereafter
as Bsig), and the other B decays in a semileptonic channel

B̄0 → D�þl−ν̄l (referred to hereafter as Btag). In order
to form RðD�Þ, we also reconstruct normalization
B0B̄0 events in modes where both B mesons decay to
D�þl−ν̄l.

II. DETECTOR AND MONTE CARLO
SIMULATION

We use the full ϒð4SÞ data sample containing 772 ×
106 BB̄ pairs recorded with the Belle detector [17] at the
KEKB eþe− collider [18]. The Belle detector is a general-
purpose magnetic spectrometer, which consists of a silicon
vertex detector (SVD), a 50-layer central drift chamber
(CDC), an array of aerogel threshold Cherenkov counters
(ACCs), time-of-flight scintillation counters (TOFs), and
an electromagnetic calorimeter (ECL) comprising CsI(Tl)
crystals. The devices are located inside a superconducting
solenoid coil that provides a 1.5 T magnetic field. An iron
flux-return yoke located outside the coil is instrumented
to detect K0

L mesons and to identify muons (KLM). The
detector is described in detail elsewhere [17].
To determine the reconstruction efficiency and proba-

bility density functions (PDFs) for signal, normalization,
and background processes, we use Monte Carlo (MC)
simulated events, which are generated with the EvtGen
event generator [19] and simulated with the GEANT3

package [20]. The MC samples for signal events are
generated using the decay model based on the heavy quark
effective theory (HQET) in Ref. [21]. The normalization
mode is simulated using HQET, and reweighted according
to the current world-average form factor values:
ρ2 ¼ 1.207� 0.015� 0.021, R1 ¼ 1.403� 0.033, and
R2 ¼ 0.854� 0.020 [14]. Background B → D��lνl events
are simulated with the Isgur-Scora-Grinstein-Wise (ISGW)
[22] model and reweighted to match the kinematics
predicted by the Leibovich-Ligeti-Stewart-Wise (LLSW)
model [23]. Here, D�� denotes the orbitally excited states
D1, D�

2, D1
0, and D�

0. Radially excited states are neglected.
We consider D�� decays to a Dð�Þ and a pion, a ρ or an η
meson, or a pair of pions, where branching fractions are
assumed based on quantum-number, phase-space, and
isospin arguments. The sample sizes of the signal, BB̄,
and continuum qq̄ (q ¼ u, d, s, c) production processes
correspond to about 40, 10, and 6 times the integrated
luminosity of the on-resonance ϒð4SÞ data sample,
respectively.
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III. EVENT SELECTION

Charged particle tracks are reconstructed with the SVD
and the CDC. All tracks other than K0

S → πþπ− decay
daughters are required to originate from near the interaction
point (IP). Electrons are identified by a combination of the
specific ionization (dE=dx) in the CDC, the ratio of the
cluster energy in the ECL to the track momentum measured
with the SVD and the CDC, the response of the ACC, the
shower shape in the ECL, and the match between the
positions of the shower and the track at the ECL [24]. To
recover bremsstrahlung photons from electrons, we add the
four-momentum of each photon detected within 0.05 rad of
the original track direction to the electron momentum.
Muons are identified by the track penetration depth and hit
distribution in the KLM [25]. Charged kaons are identified
by combining information from the dE=dx in the CDC, the
flight time measured with the TOF, and the response of the
ACC [26]. We do not apply any particle identification
criteria on charged pions.
Candidate K0

S mesons are formed by combining two
oppositely charged tracks with pion mass hypotheses. We
require their invariant mass to lie within 15 MeV=c2 of the
nominalK0 mass [27], which corresponds to approximately
7σ, where σ denotes the resolution of the πþπ− invariant
mass. We then impose the following additional require-
ments: both pion tracks must have a large distance of closest
approach to the IP in the plane perpendicular to the electron
beam line; the pion tracks must intersect at a commonvertex
that is displaced from the IP; and the momentum vector of
the K0

S candidate should originate from the IP.
Neutral pion candidates are formed from pairs of photons

with further criteria specific to whether the π0 is from aD�þ
decay or a D decay. For neutral pions from D decays, we
require the photon daughter energies to be greater than
50 MeV, the cosine of the angle in the laboratory frame
between the two photons to be greater than zero, and the γγ
invariant mass to be within −15 and þ10 MeV=c2 of the
nominal π0 mass [27], which corresponds to approximately
�1.8σ. Photons are measured as an energy cluster in the
ECLwith no associated charged tracks. Amass-constrained
fit is then performed to obtain the π0 momentum. For neutral
pions from D�þ decays, which have lower energies, we
require one photon to have an energy of at least 50MeVand
the other to have an energy of at least 20 MeV. We also
require a narrowwindowaround the diphoton invariantmass
to compensate for the lower photon-energy requirement:
within 10 MeV=c2 of the nominal π0 mass, which corre-
sponds to approximately �1.6σ.
Neutral D mesons are reconstructed in the following

decay modes: D0 → K−πþ, K0
Sπ

0, KþK−, πþπ−, K0
Sπ

þπ−,
K−πþπ0, πþπ−π0, K0

SK
þK−, K−πþπþπ−, and K0

Sπ
þπ−π0.

Charged D mesons are reconstructed in the following
modes: Dþ → K0

Sπ
þ, K−πþπþ, K0

Sπ
þπ0, KþK−πþ, and

K0
Sπ

þπþπ−. The combined reconstructed branching

fractions are 37% and 22% for D0 and Dþ, respectively.
For D decay modes without a π0 in the final state, we
require the invariant mass of the D candidates to be within
15 MeV=c2 of the D0 or Dþ mass, which corresponds to a
window of approximately �3σ. For modes with a π0 in the
final state, we require a wider invariant mass window: from
−45 to þ30 MeV=c2 around the nominal D0 mass for D0

candidates, and from −36 to þ24 MeV=c2 around the
nominal Dþ mass for Dþ candidates. These windows
correspond to approximately [−1.2σ, þ1.8σ] and [−1.0σ,
þ1.5σ], respectively, in resolution. Candidate D�þ mesons
are formed by combining D0 and πþ candidates or Dþ and
π0 candidates. To improve the resolution of the D� −D
mass difference, ΔM, for the D�þ → D0πþ decay mode,
the charged pion track from the D�þ is refitted to the D0

decay vertex. We requireΔM to be within 2.5 MeV=c2 and
2.0 MeV=c2, respectively, around the value of the nominal
D� −D mass difference for the D�þ → D0πþ and D�þ →
Dþπ0 decay modes. These windows correspond to �3.2σ
and �2.0σ, respectively, in resolution. We apply a tighter
window in the D�þ → Dþπ0 decay mode to suppress a
large contribution to the background arising from falsely
reconstructed neutral pions.
To tag semileptonic B decays, we combine D�þ and

lepton candidates of opposite electric charge and calculate
the cosine of the angle between the momentum of the B
meson and the D�l system in the ϒð4SÞ rest frame, under
the assumption that only one massless particle is not
reconstructed:

cos θB−D�l ≡ 2EbeamED�l −m2
Bc

4 −M2
D�lc

4

2j~pBj · j~pD�ljc2
; ð2Þ

where Ebeam is the energy of the beam, and ED�l, ~pD�l, and
MD�l are the energy, momentum, and mass, respectively, of
the D�l system. The variable mB is the nominal B meson
mass [27], and ~pB is the nominal B meson momentum. All
variables are defined in the ϒð4SÞ rest frame. Figure 1
shows the cos θB−D�l distribution for signal and normali-
zation decay modes in MC samples. Correctly recon-
structed B candidates in the normalization decay mode
are expected to have a value of cos θB−D�l between −1 and
þ1. Correctly reconstructed B candidates in the signal
decay mode and falsely reconstructed B candidates tend to
have values of cos θB−D�l below the physical region due to
contributions from additional particles.
In each event we require two taggedB candidates that are

opposite in flavor. Signal events may have the same flavor
due to BB̄ mixing; however, we veto such events as they
lead to an ambiguous D�l pair assignment and a larger
combinatorial background. We require that at most one B
meson be reconstructed from a Dþ mode to avoid a large
background from fake neutral pions when forming D�
candidates. In each signal event, we assign the candidate
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with the lower value of cos θB−D�l (referred to hereafter as
cos θsigB−D�l) as Bsig. The probability of falsely assigning the
Bsig as the Btag for signal events is about 3%, according to
MC simulation.
After the identification of the Bsig and Btag candidates,

we apply further background suppression criteria. On the
tag side, we require −2.0 < cos θtagB−D�l < þ1.5 to select
B → D�lνl. On the signal side, we require the D�
momentum in the ϒð4SÞ rest frame to be less than
2.0 GeV=c, while, on the tag side, we require it to be less
than 2.5 GeV=c, which accounts for the lepton mass
difference. Finally, we require that events contain no extra
charged tracks, K0

S candidates, or π
0 candidates, which are

reconstructed with the same criteria as those used for the D
candidates.
At this stage, the probability of finding multiple

candidates is 7%, which is mainly caused by swapped
pions between signal and tag sides. When multiple
candidates are found in an event, we select a single
candidate, which has the smallest sum of two chi-square
in vertex-constrained fits for the D mesons, among
multiple candidates. In the final sample, the fraction of
signal and normalization events are estimated to be 5%
and 68% from the MC simulation.

IV. SIGNAL, NORMALIZATION, AND
BACKGROUND SEPARATION

To separate reconstructed signal and normalization
events, we employ a neural network using the
NeuroBayes software package [28]. The variables used
as inputs to the network are cos θsigB−D�l, the missing mass
squared M2

miss ¼ ð2Ebeam −
P

iEiÞ2=c4 − jPi ~pij2=c2, and
the visible energy Evis ¼

P
iEi, where ðEi; ~piÞ is the four-

momentum of particle i in the ϒð4SÞ rest frame. The most

powerful observable in separating signal and normalization
is cos θsigB−D�l. The neural network is trained using MC
samples of signal and normalization events. We will use the
neural network classifier as one of the fitting variables for
the measurement of RðD�Þ without any selection on the
neural network classifier. Typically, for a requirement the
neural network classifier to be larger than 0.8, 82% of
the signal is kept while rejecting 97% of the normalization
events.
The dominant background contributions arise from

events with misreconstructed Dð�Þ mesons (denoted fakes).
The subdominant contributions arise from two sources in
which D� mesons from both Bsig and Btag are correctly
reconstructed. One source is B → D��lνl, where the D��

meson decays to Dð�Þ and other particles. The other source
is B → XcD� events, where one D� meson is correctly
reconstructed and the other charmed meson Xc decays
semileptonically. If the hadrons in the semileptonic Xc
decay are not identified, such events can mimic signal.
Similarly, events in which Xc is a Dþ

s meson decaying into
τþντ can also mimic signal.
To separate signal and normalization events from back-

ground processes, we place a criterion on the sum of the
energies of neutral clusters detected in the ECL that are not
associated with reconstructed particles, denoted as EECL.
To mitigate the effects of photons related to beam back-
ground in the energy sum, we only include clusters with
energies greater than 50, 100, and 150 MeV, respectively,
from the barrel, forward, and backward calorimeter regions,
defined in Ref. [17]. Signal and normalization events peak
near zero in EECL, while background events can populate a
wider range as shown in Fig. 2. We require EECL to be less
than 1.2 GeV.
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FIG. 2. The EECL distributions for the signal (solid red circles),
the normalization (open black circles), and the background (open
blue triangles) taken from MC simulation, where the EECL is
defined as the sum of the energies of neutral clusters detected in
the ECL that are not associated with reconstructed particles.
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FIG. 1. The cos θB−D�l distributions for B̄0 → D�þτ−ν̄τ (solid
red circles) and B̄0 → D�þl−ν̄l (open black circles) taken from a
MC simulation.
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V. MC CALIBRATION

To improve the accuracy of the MC simulation, we apply
a series of calibration factors determined from control
sample measurements. The lepton identification efficien-
cies are separately corrected for electrons and for muons to
account for differences between the detector responses in
the data and MC. Correction factors for lepton identifica-
tion efficiencies are evaluated as functions of the momen-
tum and direction of the lepton using eþe− → eþe−lþl−

and J=ψ → lþl− decays. We reweight the events to
account for differing Dð�Þ yields between the data and MC.
The differing yields of correctly reconstructed Dð�Þ

mesons in the data and MC affect theRðD�Þmeasurement,
as it biases the determination of the background contribu-
tion. Calibration factors for events with both correctly and
falsely reconstructed D mesons are estimated for each D
meson decay mode using a two-dimensional fit toMD. For
this calibration, we use samples with all selection criteria
other than D mass and ΔM applied. A two-dimensional
PDF is constructed by taking the product of the one-
dimensional functions forMD. The PDF in each dimension
is the sum of a signal component and a background
component modeled with a first-order polynomial. The
signal component is a triple Gaussian for D0 decay modes
without a π0 and a Crystal Ball function [29] plus a
Gaussian for D0 decay modes with a π0 and Dþ decay
modes. In this calibration, we do not distinguish signal and
tag sides. To estimate calibration factors for specific D
decay modes, we fit samples in which one D meson is
reconstructed in a specific mode while the other is
reconstructed in any signal mode. From the ratios of data
to MC samples in signal and background yields, we derive
calibration factors of the specific decay mode for events
with correctly and falsely reconstructed D mesons. We
cannot independently determine calibration factors for all
D meson decay modes, as we use other decay modes when
we calibrate each specific decay mode of a given D meson.
To estimate all the calibration factors correctly, we first
perform the two-dimensional fit for each decay mode
without weighting factors, and then iterate the fits using
resultant weighting factors until all calibration factors
converge.
Similarly, we estimate calibration factors for events

with correctly and falsely reconstructed D� mesons from
a two-dimensional fit to ΔM. Calibration factors for events
with correctly and falsely reconstructed D� mesons are
separately estimated for subsequent decay to D0 and Dþ
mesons. For this calibration, we use samples in which one
D� meson is reconstructed from D0πþ and the other D�

meson is reconstructed from Dþπ0. We apply derived
calibration factors to samples, in which both D� mesons
are reconstructed from D0πþ, and find good agreement.
Eventually, the deviations of the yields between the MC
sample and the data reduce from 1.1σ to 0.2σ for the yields

of correctly reconstructed D� mesons and from 8.7σ to
0.3σ for the yields of falsely reconstructed D� mesons,
where σ is the quadratic sum of statistical error from a
two-dimensional fit to ΔM in the data and MC.

VI. MAXIMUM-LIKELIHOOD FIT

We extract the yields of the signal and normalization
processes from a two-dimensional extended maximum-
likelihood fit to the neural network classifier output
ONB and EECL. The likelihood function consists of five
components: signal, normalization, fake Dð�Þ events,
B → D��lνl, and other backgrounds (predominantly from
B → XcD�). The PDFs of all components are determined
from a MC simulation. There are significant correlations
between ONB and EECL in the normalization and back-
ground components, but not for the signal. We therefore
construct the normalization and background PDFs using
two-dimensional histograms and apply a smoothing pro-
cedure to account for its limited statistical power [30]. The
signal PDF is the product of one-dimensional histograms in
ONB and EECL.
Three parameters are floated in the final fit: the yields of

the signal, normalization, and B → D��lνl components.
The yield of fake Dð�Þ events is fixed to the value estimated
from sidebands in the ΔM distribution. Since the PDF
shape of fake Dð�Þ events depends on the composition of
signal, normalization, B → D��lνl, and other back-
grounds, the relative contributions of these processes to
the fake Dð�Þ component are described as a function of the
three fit parameters. The yields of other backgrounds are
fixed to the values expected from MC simulation. The ratio
RðD�Þ is given by the formula

RðD�Þ ¼ 1

2Bðτ− → l−ν̄lντÞ
·
εnorm
εsig

·
Nsig

Nnorm
; ð3Þ

where εsigðnormÞ and NsigðnormÞ are the reconstruction effi-
ciency and yields of signal (normalization) events. We use
Bðτ− → l−ν̄lντÞ ¼ 0.176� 0.003 as the average of the
world averages for l ¼ e and l ¼ μ [27]. The ratio of
efficiencies, εnorm=εsig, is estimated to be 1.289� 0.015
from the MC simulation. The difference between
reconstruction efficiencies of signal and normalization
events arises from their distinct lepton momentum distri-
butions, and the different event criteria on theD� momenta.
To validate the fit procedure, we perform the fitting to

multiple subsets of the available MC samples. Furthermore,
we validate the fit procedure by a large number of
pseudoexperiments. We have not observed any bias.

VII. PDF VALIDATION

We validate the PDFs used in the fitting procedure by
analyzing various control samples. For fakeDð�Þ events, we
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study the ΔM sidebands, where we find good agreement in
both ONB and EECL. For B → D�lνl decays, we require
one B meson to be reconstructed with the hadronic tagging
method [31] and the other B meson reconstructed with the
nominal criteria of this analysis. We find good agreement
between the data and MC in the EECL, M2

miss, and Evis

distributions, but small discrepancies in the cos θB−D�l
distributions [32], which we incorporate as a systematic
uncertainty.

VIII. SYSTEMATIC UNCERTAINTIES

To estimate the systematic uncertainties on RðD�Þ, we
vary every fixed parameter in turn by one standard
deviation and repeat the fit. The systematic uncertainties
are summarized in Table I. The dominant systematic
uncertainty arises from the limited size of the MC samples:
to estimate this uncertainty, we recalculate PDFs for signal,
normalization, fake Dð�Þ events, B → D��lνl, and other
backgrounds by generating toy MC samples from the
nominal PDFs according to Poisson statistics and repeat
the fit with the new PDFs.
Small discrepancies between the data and MC are found

in the cos θB−D�l distributions in the hadronic tagged
samples. We estimate it as “PDF shape of the normalization
in cos θB−D�l” in Table I by correcting the cos θB−D�l
distribution in MC samples according to the observed
discrepancies, and repeating the fit.
The branching fractions of the B → D��lνl decay

modes and the decays of the D�� mesons are not well
known and therefore contribute significantly to the total
PDF uncertainty for B → D��lνl decays. The branching
fraction of each B → D��lνl decay is varied within its
uncertainty. The uncertainties are assumed to be �6% for
D1, �10% for D�

2, �83% for D1
0, and �100% for D�

0,

including the limited knowledge of theD�� decays. We also
consider the impact of contributions from radially excited
Dð2SÞ and D�ð2SÞ, where we assume the branching
fractions of B → Dð�Þð2SÞlνl to be as large as 0.5%.
The yield of fake D� events is fixed to the value

estimated from sidebands in the ΔM distribution. We vary
this yield within its uncertainties. We also vary the
calibration factors for D meson decay modes within their
uncertainties for events with falsely reconstructed Dð�Þ
events.
The yields of other background processes, predomi-

nantly from B → XcD� events, are fixed to the values
estimated from MC simulation. We consider variations on
the yield and shape of the PDF of these background
processes within their measured uncertainties. The uncer-
tainties for the B → XcD� channels are assumed to be�8%
for B → D�

sD�−, �14% for B → DsD�−, �8% for
B → D�þD�−, and �10% for B → DþD�−. Furthermore,
we add an uncertainty of �4% due to the size of the MC
sample. We determine the uncertainty from the branching
fraction of Ds → τντ decay (which may peak near the
signal in the EECL distribution) to be negligible.
The reconstruction efficiency ratio of signal to normali-

zation events is varied within its uncertainty, which is
limited by the size of the MC samples for signal events.
We include other minor systematic uncertainties from

two sources: one related to the parameters that are used for
the reweighting of the semileptonic B → Dð�ð�ÞÞlνl decays
from the ISGW model to the LLSW model, and the other
from the branching fraction of τ− → l−ν̄lντ decay [27].
The total systematic uncertainty is estimated by summing
the above uncertainties in quadrature.

IX. RESULTS

The ONB and EECL projections of the fitted distributions
are shown in Fig. 3. The yields of signal and normalization
events are measured to be 231� 23ðstatÞ and 2800�
57ðstatÞ, respectively. The ratio RðD�Þ is found to be

RðD�Þ ¼ 0.302� 0.030� 0.011; ð4Þ

where the first uncertainty is statistical and the second
systematic (and likewise for all following results).
We calculate the statistical significance of the signal asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−2 lnðL0=LmaxÞ

p
, where Lmax and L0 are the maximum

likelihood and the likelihood obtained assuming zero signal
yield, respectively. We obtain a statistical significance of
13.8σ. We also estimate the compatibility of the measured
value of RðD�Þ and the SM prediction. The effect of
systematic uncertainties is included by convolving the
likelihood function with a Gaussian distribution. We
conclude that our result is larger than the SM prediction
by 1.6σ.

TABLE I. Summary of the systematic uncertainties on RðD�Þ
for electron and muon modes combined and separated. The
uncertainties are relative and are given in percent.

RðD�Þ (%)

Sources lsig ¼ e, μ lsig ¼ e lsig ¼ μ

MC size for each PDF shape 2.2 2.5 3.9
PDF shape of the normalization
in cos θB−D�l

þ1.1−0.0 þ2.1−0.0 þ2.8−0.0

PDF shape of B → D��lνl þ1.0−1.7 þ0.7−1.3 þ2.2−3.3
PDF shape and yields of
fake Dð�Þ

1.4 1.6 1.6

PDF shape and yields of
B → XcD�

1.1 1.2 1.1

Reconstruction efficiency
ratio εnorm=εsig

1.2 1.5 1.9

Modeling of semileptonic decay 0.2 0.2 0.3
Bðτ− → l−ν̄lντÞ 0.2 0.2 0.2
Total systematic uncertainty þ3.4−3.5 þ4.1−3.7 þ5.9−5.8
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X. CROSS-CHECKS

To determine the consistency of the measured value of
RðD�Þ among τ final states, we divide the data samples by
lepton flavor on the signal side and fit them separately.
All PDFs for electron and muon channels are separately
constructed from the MC samples. The efficiency ratios
εnorm=εsig are estimated to be 1.107� 0.016 and 1.591�
0.030 for electron and muon channels of the tau decays,
respectively. We obtain

RðD�Þ ¼ 0.311� 0.038� 0.013 ðlsig ¼ eÞ; ð5Þ

RðD�Þ ¼ 0.304� 0.051� 0.018 ðlsig ¼ μÞ: ð6Þ

The systematic uncertainties are summarized in Table I.
These two results are consistent with each other.
To study B → D��lνl background contributions, we

require an additional π0 with respect to the nominal event
selection. In this control sample, we calculate E0

ECL, which
is defined as the remaining energy after the energy deposit
from the additional π0 is removed from EECL. The
B → D��lνl background contributions are extracted from
the control samples using the nominal fitting method,
replacing EECL with E0

ECL, which is defined as EECL

without the energy deposit from the additional π0 [32].
We find consistent results for the branching fractions of
B → D��lνl in the control and signal samples.

XI. NEW-PHYSICS COMPATIBILITY TESTS

Assuming all neutrinos are left-handed, the effective
Hamiltonian that contains all possible four-fermion oper-
ators for the b → cτντ decay can be described as follows
[21]:

Heff ¼
4GFffiffiffi

2
p Vcb

�
OV1

þ
X

X¼S1;S2;V1;V2;T

CXOX

�
; ð7Þ

where the four-Fermi operators, OX, are defined as

OS1 ¼ ðc̄LbRÞðτ̄RντLÞ; ð8Þ

OS2 ¼ ðc̄RbLÞðτ̄RντLÞ; ð9Þ

OV1
¼ ðc̄LγμbLÞðτ̄LγμντLÞ; ð10Þ

OV2
¼ ðc̄RγμbRÞðτ̄LγμντLÞ; ð11Þ

OT ¼ ðc̄RσμνbLÞðτ̄RσμνντLÞ; ð12Þ

and the CX parameters are the Wilson coefficients of OX.
We investigate the compatibility of the data samples
with new physics using a model-independent approach,
separately examining the impact of each operator. In each
new-physics scenario, we take into account changes in
the efficiency and fit PDF shapes using dedicated signal
simulation. We set the Wilson coefficients to be real in all
cases. Since OV1

is just the SM operator, it would change
only RðD�Þ, but not the kinematic distributions. In the
type-II two-Higgs doublet model (2HDM), the relevant
Wilson coefficients are given as CS1 ¼ −mbmτ tan2 β=m2

Hþ

and CS2 ¼ −mcmτ=m2
Hþ , where tan β is the ratio of the

vacuum expectation values of the two-Higgs doublets, and
mb,mc,mτ, andmHþ are the masses of the b quark, c quark,
τ lepton, and charged Higgs boson. Since the contribution
from CS2 is almost negligibly small except for the light
charged Higgs boson, we neglect the contribution from CS2
in the type-II 2HDM.
Various leptoquark models have been presented to

explain anomalies in RðDð�ÞÞ in Ref. [4]. In addition to
the model-independent study, we study two representative
models: R2 and S1. Model R2 contains scalar leptoquarks of
the type ð3; 2Þ7=6 using the notation ðSUð3Þc; SUð2ÞLÞY ,
where SUð3Þc is the representation under the generators of
QCD, SUð2ÞL is the representation under the generators of
weak isospin, and Y is the weak hypercharge. Model S1
contains leptoquarks of the type ð3�; 1Þ1=3. In these lep-
toquark models, the relevant Wilson coefficients are related
by CS2 ¼ þ7.8CT for the R2-type leptoquark model and
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FIG. 3. Projections of the fit results with data points overlaid for (left) the neural network classifier output, ONB, and the EECL
distribution in (center) the signal-enhanced region, ONB > 0.8, and (right) the normalization-enhanced region, ONB < 0.8. The
background categories are described in detail in the text, where “others” refers to predominantly B → XcD� decays.
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CS2 ¼ −7.8CT for the S1-type leptoquark model at the b
quark mass scale, assuming a leptoquark mass scale of
1 TeV=c2. Although the V1 operator can appear independ-
ently of the S2 and T operators in the S1-type leptoquark
model, we assume no contribution from the V1 operator in
this study.
Figure 4 shows the dependence of the efficiency and

measured values ofRðD�Þ as a function of the values of the
respective parameters in the type-II 2HDM and the R2-type
leptoquark model. Efficiency variations for other scenarios
are shown in Ref. [32]. We find that efficiencies increase by
up to 17% for OV2

and OT , mainly due to the variation of
the D� momentum distribution. Similarly, the efficiencies
increase by up to 16% and 11% in R2- and S1-type
leptoquark models, respectively, which include contribu-
tions fromOT . In other scenarios, the efficiency variation is
6% or less. Figure 5 shows the dependency of the measured
values ofRðD�Þ on the values of the respective parameters
in the type-II 2HDM and the R2-type leptoquark model.
The allowed regions with 68% confidence level (C.L.) of
the respective parameters are summarized in Table II.
In Refs. [7] and [12], the q2 ≡ ðpB − pD� Þ2 spectra are

examined in order to study the effects of new physics

beyond the SM. Since q2 cannot be calculated here due to
the neutrino in the decay of the Btag, we use instead the
momenta of the D� and the l in Bsig at the ϒð4SÞ rest
frame. Figure 6 shows the momentum distributions of the
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TABLE II. Allowed regions with a 68% C.L. of Wilson
coefficients [21]. −4.25 < CS1 < −3.09 corresponds to
0.65 GeV−1 < tan β=mHþ < 0.76 GeV−1 in a type-II 2HDM,
where mb ¼ 4.20 GeV=c2, mc ¼ 0.901 GeV=c2 [33] and mτ ¼
1.77682 GeV=c2 [27] are used.

Allowed regions

Models or
operators Parameters (68% C.L.)

OS1 CS1 ½−4.25;−3.09�, ½þ0.44;þ1.57�
OS2 CS2 ½−1.56;−0.43�, ½þ3.12;þ4.28�
OV1

CV1
½−2.15;−2.03�, ½þ0.05;þ0.15�

OV2
CV2

½−0.17; 0.00�, ½þ1.83;þ1.96�
OT CT ½−0.06;−0.01�, ½þ0.34;þ0.39�
R2-type
leptoquark

CTð¼ þCS2=7.8Þ ½−0.05;−0.01�, ½þ0.34;þ0.38�

S1-type
leptoquark

CTð¼ −CS2=7.8Þ ½−0.07;−0.01�, ½þ0.22;þ0.28�
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background-subtracted data in the region of ONB > 0.8
and EECL < 0.5 GeV for the SM, type-II 2HDM with
tan β=mHþ ¼ 0.7 GeV−1, and the R2-type leptoquark
model with CT ¼ þ0.36. The PDF shapes of background
events are taken from the MC simulation and normalized to
the yields obtained by the fitting. Table III shows p values
for all scenarios, where we include only the statistical
uncertainty. We find our data are compatible with the SM
and additional contributions from scalar and vector oper-
ators; large additional contributions from tensor operator or
the R2- and S1-type leptoquark models are disfavored.

XII. CONCLUSION

In conclusion, we report the first measurement ofRðD�Þ
with a semileptonic tagging method using a data sample
containing 772 × 106BB̄ pairs collected with the Belle
detector. The result is

RðD�Þ ¼ 0.302� 0.030� 0.011; ð13Þ
which is within 1.6σ of the SM prediction including
systematic uncertainties, and is in good agreement with
other measurements by Belle [10–12], BABAR [7], and
LHCb [13]. The result is statistically independent of earlier
Belle measurements. We investigate the compatibility of
the data samples with new physics in a model-independent
method by adding the operators one by one. We also study
two types of leptoquark models. We find our data allow the
additional contributions from scalar and vector operators
while disfavoring large additional contributions from a
tensor operator with þ0.34 < CT < þ0.39, an R2-type
leptoquark model with þ0.34 < CT < þ0.38, or an S1-
type leptoquark model with þ0.22 < CT < þ0.28, when
considering the impact on the decay kinematics.
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TABLE III. p values for each scenario from the momentum
distributions of the D� or the lepton on the signal side in
the ϒð4SÞ rest frame, where we include only the statistical
uncertainty.

p values (%)

Model or operator Parameter pD� pl

SM 37.6 25.8
Type-II 2HDM tan β

mHþ ¼ 0.7 GeV−1 37.9 22.5

OV2
CV2

¼ þ1.88 24.1 18.6
OT CT ¼ þ0.36 0.9 19.2
R2-type leptoquark model CT ¼ þ0.36 1.4 16.2
S1-type leptoquark model CT ¼ þ0.26 1.1 15.4
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