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The Higgs boson mass and top quark mass imply that the Higgs quartic coupling vanishes around the
scale of 109–1013 GeV, depending on the precise value of the top quark mass. The vanishing quartic
coupling can be naturally addressed if the Higgs field originates from a five-dimensional gauge field and
the fifth dimension is compactified at the scale of the vanishing Higgs quartic coupling, which is a scenario
based on gauge-Higgs unification. We present a general prediction of the scenario on the proton decay
process p → π0eþ. In many gauge-Higgs unification models, the first-generation fermions are localized
towards an orbifold fixed point in order to realize the realistic Yukawa couplings. Hence, four-fermion
operators responsible for the proton decay can appear with a suppression of the five-dimensional Planck
scale (not the four-dimensional Planck scale). Since the five-dimensional Planck scale is connected to the
compactification scale, we have a correlation between the proton partial decay width and the top quark
mass. We show that the future Hyper-Kamiokande experiment may discover the proton decay if the top
quark pole mass is larger than about 172.5 GeV.
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The determination of the Higgs boson mass at mh ¼
125.09� 0.24 GeV [1], together with the top quark mass
measurement [2,3], has introduced a new energy scale to
the Standard Model (SM): the scale at which the Higgs
field quartic coupling vanishes through its renormalization
group (RG) running, hereafter denoted by Λcr, which is
located at about 109–1013 GeV depending sensitively on
the top quark mass. The SM can remain viable above the
scale Λcr, since the Universe is sufficiently long-lived even
if the Higgs quartic coupling turns negative above Λcr [4].
However, the scale Λcr may indicate some new physics
beyond the SM, in which the Higgs quartic coupling
vanishes above Λcr, and below Λcr, the theory is effectively
described by the SM where the RG running induces a
nonzero Higgs quartic coupling.
Gauge-Higgs unification [5] in a five-dimensional (5D)

Minkowski spacetime generally predicts the vanishing of
the Higgs quartic coupling above the compactification scale
of the fifth dimension, namely, the Kaluza-Klein (KK)
scale. This is because the Higgs field is embedded in the
fifth-dimensional component of a gauge field, and the
gauge symmetry forbids a tree-level potential for the Higgs
field. The gauge symmetry is explicitly broken in an
orbifold compactification of the fifth dimension, and the
resultant KK modes of gauge fields and bulk fermions
induce the Higgs potential radiatively. By matching the
effective potential generated by the tower of KK modes
with that generated by the zero mode, Ref. [6] has proved
the so-called “gauge-Higgs condition,”which states that the
Higgs quartic coupling vanishes at the KK scale in general
gauge-Higgs unification models. Hence, Λcr of the SMmay
suggest the KK scale of a gauge-Higgs unification model.

As a common prediction of 5D gauge-Higgs unification
models where Λcr of the SM corresponds to the KK scale,
we focus on the proton decay process p → π0eþ induced
by Planck-suppressed operators. At the orbifold fixed
points, quantum gravity can induce four-fermion operators
suppressed by the Planck scale of the 5D spacetime, M5.
Since fermions in the 5D spacetime couple with the Higgs
field with the strength of the weak gauge coupling, the SM
first-generation quarks and leptons are necessarily localized
towards an orbifold fixed point to avoid too-large Yukawa
couplings. Hence four-fermion operators involving the
first-generation fermions, which are responsible for the
p → π0eþ process, naturally arise with a factor of 1=M2

5.
This is in contrast with fermions that reside totally in the
bulk, for which, after integrating over the fifth dimension,
four-fermion operators arise with a factor of 1=M2

4 in the
four-dimensional (4D) effective theory, where M4 ≃
2.44 × 1018 GeV is the reduced Planck mass of the 4D
spacetime. M5 is tied to the compactification scale L by
M3

5L ¼ M2
4 and hence with the KK scale ∼1=L. We thus

find a correlation between Λcr of the SM and the partial
decay width for the p → π0eþ process. Furthermore, since
Λcr is sensitive to the top quark mass, the above correlation
is translated into that between the top quark mass and the
proton decay rate, which we will present in this paper.
The above correlation holds in general models of gauge-

Higgs unification provided the first-generation fermions
are localized towards an orbifold fixed point. In this paper,
however, we first present a concrete model of gauge-Higgs
unification where the first-generation matter is localized, to
prove that suchmodels exist, and thenwork in this particular
model to illustrate how the correlation is derived. For this
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purpose, we consider the minimal setup for gauge-Higgs
unification, which is similar to models in Refs. [7,8]. The
model is based on a 5D flat spacetime compactified on
S1=Z2 and contains an SUð3Þw ×Uð1Þv gauge group that is
explicitly broken into SUð2ÞL ×Uð1ÞY at the orbifold fixed
points. The massless component of the fifth-dimensional
SUð3Þw gauge field is identified with the SMHiggs field. In
the setup, the simplest mechanism is adopted to derive the
SM Yukawa couplings. We introduce 4D Weyl fermions
localized at an orbifold fixed point, and bulk Dirac fermions
in the 5D spacetime, whose left- or right-handed compo-
nents satisfy the Neumann condition at the orbifold fixed
point and mix with the localized fermions through 4D Dirac
mass terms. The SM fermions are given as mixtures of the
4Dand5D fermions, and their couplingswith theHiggs field
are controlled by the 4D Dirac mass. We further introduce
4D localized operators involving four 4D fermions at the
orbifold fixed point suppressed by the 5D Planck scaleM5,
which are responsible for the proton decay.
This paper is organized as follows: We first describe the

minimal setup for gauge-Higgs unification with emphasis on
the fermion sector. Next we review the effective theory
approach to gauge-Higgs unification studied in Ref. [6] and
derive the relation between Λcr and the KK scale. We then
introduce 5D Planck-suppressed operators that induce the
proton decay. Finally, we derive a correlation betweenΛcr and
the partialwidth of thep → eþπ0 process and present a plot of
the top quark pole mass versus the proton partial decay width.
We present the minimal setup for gauge-Higgs unifica-

tion. However, the following argument can be extended to
general models of gauge-Higgs unification. Note that since
the KK scale is as high as 109–1013 GeV, no experimental
constraints other than the proton decay rate apply to the
setup. We consider a 5D flat spacetime whose fifth
dimension is compactified on the orbifold S1=Z2. The fifth
dimension is parametrized by y in the range πR ≥ y ≥ −πR
with the points of y ¼ πR and y ¼ −πR identified. The
orbifolding identifies y with −y, which gives the orbifold
fixed points at y ¼ 0; πR. In the bulk, we introduce the
SUð3ÞC × SUð3Þw ×Uð1Þv gauge group, where SUð3ÞC is
the color in the SM.
We demand that the 4D and 5D components of the

SUð3Þw gauge field ðwμ; w5Þ and those of the Uð1Þv gauge
field ðvμ; v5Þ transform under the orbifolding as

wμðyÞ ¼ P†wμð−yÞP;
w5ðyÞ ¼ −P†w5ð−yÞP;
vμðyÞ ¼ vμð−yÞ;
v5ðyÞ ¼ −v5ð−yÞ

with P ¼

0
B@

−1 0 0

0 −1 0

0 0 1

1
CA; ð1Þ

where P acts in the SUð3Þw gauge space. It follows that the
boundary conditions at y ¼ 0; πR explicitly break SUð3Þw
into SUð2ÞL × Uð1ÞX, and accordingly, the gauge boson is
decomposed as 8 → 30 þ 2 ffiffi

3
p

=2 þ 2−
ffiffi
3

p
=2 þ 10, where the

subscripts denote Uð1ÞX charge. Note that 30 þ 10 of wμ,
2 ffiffi

3
p

=2 þ 2−
ffiffi
3

p
=2 of w5 and vμ satisfy Neumann conditions at

y ¼ 0; πR and thus have the zero mode in the KK
expansion, while the rest of the gauge fields satisfy
Dirichlet conditions and have no zero mode. We identify
SUð2ÞL with the SMweak gauge group and 2 ffiffi

3
p

=2 þ 2−
ffiffi
3

p
=2

of w5 with the SM Higgs field, and further assume that
Uð1ÞX ×Uð1Þv breaks into the SM hypercharge Uð1ÞY
leading to the correct Weinberg angle.
In the bulk, we introduce three copies of 5D Dirac

fermions Ψ’s in ð3; 3Þ, ð3; 6̄Þ and ð1; 10Þ representations of
SUð3ÞC × SUð3Þw with no Uð1Þv charge [they are in the
fundamental, symmetric and rank-three symmetric repre-
sentations of the SUð3Þw], and their partner ~Ψ’s with the
same gauge charge. We will see that the only role of ~Ψ is to
allow a Z2-invariant Dirac mass term between Ψ and ~Ψ
which makes the KK zero modes of Ψ and ~Ψ massive
and makes the model phenomenologically viable. The
bulk fermions always transform under the orbifolding as

Ψ̄ΨðyÞ ¼ −Ψ̄Ψð−yÞ, ~̄Ψ ~ΨðyÞ ¼ − ~̄Ψ ~Ψð−yÞ. We impose
the following boundary conditions:

Ψðy ¼ 0Þ ¼ −γ5RðPÞΨðy ¼ 0Þ;
Ψðy ¼ πRÞ ¼ −γ5RðPÞΨðy ¼ πRÞ;
~Ψðy ¼ 0Þ ¼ γ5RðPÞ ~Ψðy ¼ 0Þ;

~Ψðy ¼ πRÞ ¼ γ5RðPÞ ~Ψðy ¼ πRÞ; ð2Þ

where RðPÞ denotes P in the representation of SUð3Þw to
which Ψ and ~Ψ belong. Along the breaking of SUð3Þw →
SUð2ÞL ×Uð1ÞX at y ¼ 0; πR, each representation of
SUð3Þw is decomposed as 3 → 21=2

ffiffi
3

p þ 1−1=
ffiffi
3

p , 6̄ →
3−1=

ffiffi
3

p þ 21=2
ffiffi
3

p þ 12=
ffiffi
3

p and 10 → 4 ffiffi
3

p
=2 þ 30 þ 2−

ffiffi
3

p
=2þ

1−
ffiffi
3

p . Among the components of Ψ, the right-handed
components of the two ð3; 2Þ1=2 ffiffi

3
p ’s, ð1; 4Þ ffiffi

3
p

=2 and
ð1; 2Þ− ffiffi

3
p

=2 and the left-handed components of
ð3; 1Þ−1= ffiffi

3
p , ð3; 3Þ−1= ffiffi

3
p , ð3; 1Þ2= ffiffi

3
p , ð1; 3Þ0 and ð1; 1Þ− ffiffi

3
p

[each bracket denotes the SUð3ÞC × SUð2ÞL charge and
each subscript the Uð1ÞX charge] satisfy the Neumann
condition at the boundaries. As to ~Ψ, the same gauge
components with the opposite chirality satisfy the
Neumann condition.
At the orbifold fixed points, the gauge symmetry is

SUð3ÞC × SUð2ÞL ×Uð1ÞX ×Uð1Þv. At y ¼ 0, we intro-
duce three copies of 4D localized left-handed Weyl
fermions χ in ð3; 2Þ1=2 ffiffi

3
p and ð1; 2Þ− ffiffi

3
p

=2 representations
and right-handed Weyl fermions ~χ in ð3; 1Þ−1= ffiffi

3
p , ð3; 1Þ2= ffiffi

3
p
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and ð1; 1Þ− ffiffi
3

p representations of the SUð3ÞC × SUð2ÞL ×
Uð1ÞX gauge group, without Uð1Þv charge. These fermions
exactly correspond to the SM fermions. They have 4D
Dirac mass terms with the right-handed components of
the two ð3; 2Þ1=2 ffiffi

3
p ’s and ð1; 2Þ− ffiffi

3
p

=2 and the left-handed
components of ð3; 1Þ−1= ffiffi

3
p , ð3; 1Þ2= ffiffi

3
p and ð1; 1Þ− ffiffi

3
p of Ψ’s,

since they satisfy the Neumann condition. On the other
hand, the SM fermions do not couple with any components
of ~Ψ’s.
With the field content above, the action is schematically

written as

S¼
Z

d4x
Z

πR

−πR
dy

�
1

2
M3

5R−
1

2
tr½wMNwMN �−1

4
vMNvMN

þ iΨ̄γMDMΨþ i ~̄ΨγMDM
~Ψ− M̂ Ψ̄ ~Ψ−H:c:

þδðyÞðiχ̄σμDμχþ i ~̄χσ̄μDμ ~χþm1Ψ̄Rχþm2Ψ̄L ~χþH:c:Þ
�

ð3Þ

where M;N ¼ 0, 1, 2, 3, 5 are 5D spacetime indices, and
wMN and vMN denote the field strength of the SUð3Þw
gauge field ðwμ; w5Þ and the Uð1Þv gauge field ðvμ; v5Þ,
respectively. M̂ denotes the Z2-invariant 5D Dirac mass for
the bulk fermions, which gives Dirac mass to all the KK
modes including the zero mode. The second line represents
the Lagrangian localized at y ¼ 0, in which ΨR, ΨL denote
the components of Ψ that satisfy the Neumann condition at
y ¼ 0 and m1, m2 denote Dirac mass terms between them
and the 4D localized fermions. We write the massless mode
of the 2 ffiffi

3
p

=2 þ 2−
ffiffi
3

p
=2 component of w5, which we identify

with the SM Higgs field, asH. Then the action contains the
following term:

S ⊃
Z

d4x2πR½ig5ðΨ̄LHΨR − Ψ̄RH†ΨLÞ

þm1Ψ̄Rχ þm2Ψ̄L ~χ þ H:c:�; ð4Þ

from which we obtain the SM Yukawa coupling
~̄χHχ þ H:c: after integrating out ΨR, ΨL.
In Eq. (3),R denotes the scalar curvature andM5 the 5D

Planck mass, which is related to the 4D reduced Planck
mass M4 ≃ 2.44 × 1018 GeV as

2πRM3
5 ¼ M2

4: ð5Þ

The potential for the Higgs field H is zero at tree level
because it is a component of the gauge field w5. The
potential is generated through radiative corrections from
KK modes of the gauge bosons and bulk fermions.
Reference [6] has investigated the general model of
gauge-Higgs unification and has proved that, if the effective
potential for the Higgs field is induced by bulk fermions
satisfying the Neumann condition at both boundaries, the

running Higgs quartic coupling constant λðμÞ should fulfill
the following condition at the scale 1=ð2πRÞ:

λ

�
1

2πR

�
¼ 0; ð6Þ

which remains true even when the bulk fermions obtain
Dirac mass below the KK scale 1=R from a Z2-invariant 5D
Dirac mass term. The above statement applies to our setup
as long as we take M̂ in Eq. (3) below 1=R, since some
components of Ψ, ~Ψ that satisfy the Neumann condition at
y ¼ 0; πR are responsible for generating the Higgs poten-
tial. Then the scale at which the Higgs quartic coupling
vanishes, Λcr, coincides with 1=2π times the KK scale 1=R.
We introduce 5D Planck-suppressed operators localized

at the orbifold fixed point y ¼ 0. The first-generation
quarks and leptons are mostly composed of 4D fermions
localized at y ¼ 0, namely, the corresponding 4D Dirac
mass terms m1, m2 in Eq. (3) are small, because the first-
generation fermions have tiny couplings with the Higgs
field H, which is the 2 ffiffi

3
p

=2 þ 2−
ffiffi
3

p
=2 component of w5.

Hence, we can generally introduce four-fermion operators
among them, which are naturally suppressed by the 5D
Planck scale, and in particular, we have

ΔS ¼
Z

d4x

�
h1
M2

5

ϵabϵcdðqaqbÞðqcldÞ

þ h2
M2

5

ϵabϵcdðqaqcÞðqdlbÞ þ h3
M2

5

ϵabðqaqbÞðueÞ

þ h4
M2

5

ϵabðudÞðqalbÞ þ h5
M2

5

ðudÞðueÞ
�

ð7Þ

where q; u; d;l; e are the first-generation SM fermions, h1,
h2, h3, h4, h5 are Oð1Þ coupling constants, a, b, c, d
are isospin indices, and we take a spinor product inside
each set of parentheses. Here the contraction of color
indices is obvious. The partial width of the p → π0eþ
process is given by [9]

Γðp→ π0eþÞ ¼ ðm2
p−m2

π0
Þ2

64πf2πm3
p

ð1þDþFÞ2
�����β h1

M2
5

þ β
h2
M2

5

þα
h4
M2

5

����
2

þ
����α h3
M2

5

þ β
h5
M2

5

����
2
	

ð8Þ

where α and β parametrize the matrix elements for three-
quark operators between the vacuum and the one-proton
state, andD and F are parameters of the chiral Lagrangian.1

From Eqs. (5), (6) and (8), we obtain the following
relation between the scale Λcr at which the Higgs quartic
coupling vanishes and the proton decay partial width
Γðp → π0eþÞ:

1The effects of RG running on the operators are absorbed into
the definition of h1, h2, h3, h4, h5, which remains Oð1Þ.
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Γðp→ π0eþÞ¼ ðm2
p−m2

π0
Þ2

64πf2πm3
p

ð1þDþFÞ2ðjβh1þβh2

þαh4j2þjαh3þβh5j2Þ
�

1

M2
4Λcr

�
4=3

: ð9Þ

On the other hand, Λcr sensitively depends on the top quark
mass, whose connection to Λcr can be evaluated by solving
the RG equations for the Higgs quartic coupling. In our
setup, the massive KK modes of the gauge bosons and bulk
fermions have mass equal to or above 1=R. Additionally,
we assume that the Z2-invariant Dirac mass M̂ in Eq. (3)
pushes the mass of the KK zero mode of the bulk fermions
above 1=ð2πRÞ. Then the field content below the scale
1=ð2πRÞ is identical to the SM one, and hence we may use
the SM RG equations to evaluate Λcr, as it equals 1=ð2πRÞ.
Note that Λcr and hence Γðp → π0eþÞ as determined

above crucially rely on the assumption that the Higgs
quartic coupling follows the SM RG equation below the
scale 1=ð2πRÞ. It is possible that beyond-the-SM fields,
such as the dark matter, inflaton and right-handed neu-
trinos, couple with the Higgs field and alter the RG running
of the Higgs quartic coupling, thus invalidating our
prediction on the proton decay partial width. However,
since the SUð3Þw gauge symmetry severely restricts the
Higgs field interaction, it is natural to assume that the dark
matter field and inflaton do not directly couple with the
Higgs field, so their contributions to the RG equation arise
at two and higher loop levels and are thus tiny. Right-
handed neutrinos with large Majorana mass for the type-I
seesaw mechanism do couple with the Higgs field directly.
If the Majorana mass is above 1013 GeV, right-handed
neutrinos do not affect the evaluation of Λcr because it is
below 1013 GeV in the SM. If the Majorana mass is below
1013 GeV, the Yukawa coupling among the Higgs field, a
lepton doublet and a right-handed neutrino is smaller than
about 0.1 when the active neutrino mass is hierarchical, and
hence its impact on the RG equation is negligible. We thus
conclude that it is justifiable to use the SM RG equations
for determining Λcr even in the presence of the dark matter,
inflaton and right-handed neutrinos for the type-I seesaw
mechanism.
We numerically derive the correlation between the

proton decay partial width Γðp → π0eþÞ and the top quark
pole mass mpole

t . The parameters in the proton decay partial
width are set according to Ref. [9] as Dþ F ¼ 1.267 and
jαj ¼ jβj ¼ 0.009 GeV3. The two-loop SM RG equations
in Ref. [10] are used to evaluate Λcr, by fixing the Higgs
boson mass at mh ¼ 125.09 GeV, the W boson mass at
MW ¼ 80.384 GeV and the strong gauge coupling at the Z
boson pole at αSðMZÞ ¼ 0.1184, while varying the top
quark pole mass. The RG running of the Higgs quartic
coupling is shown in Fig. 1 for three representative cases
with mpole

t ¼ 171.44 GeV, 172.84 GeV and 174.24 GeV.
These values are cited from the 2σ range of the combined

result of the top quark mass measurement by the ATLAS
Collaboration [2]. Since the coupling constants h1, h2, h3,
h4, h5 are Oð1Þ but unknown, we vary ðjβh1 þ βh2 þ
αh4j2 þ jαh3 þ βh5j2Þ from 10jαj2 to 0.1jαj2. The result is
presented in Fig. 2, where the solid curve corresponds to
the case when jβh1 þ βh2 þ αh4j2 þ jαh3 þ βh5j2 ¼ jαj2,
and the lower and upper dashed curves, respectively,
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FIG. 1. RG running of the Higgs quartic coupling in the SM,
for three cases where the top quark pole mass is given by
mpole

t ¼ 171.44 GeV (upper dashed line), 172.84 GeV (middle
solid line) and 174.24 GeV (lower dashed line). The parameters
other than the top quark mass are fixed as mh ¼ 125.09 GeV,
MW ¼ 80.384 GeV and αSðMZÞ ¼ 0.1184.
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FIG. 2. The correlation between the top quark pole mass mpole
t

and the inverse of the proton decay partial width 1=Γðp → π0eþÞ.
The factor ðjβh1 þ βh2 þ αh4j2 þ jαh3 þ βh5j2Þ in Eq. (8) is
varied from 10jαj2 to 0.1jαj2 with jαj ¼ 0.009 GeV3, and the
lower dashed, solid and upper dashed curves correspond to the
cases when it equals 10jαj2, jαj2 and 0.1jαj2, respectively. The 2σ
experimental bound on 1=Γðp → π0eþÞ obtained at Super-
Kamiokande [11] is shown by the solid horizontal line, and
the 2σ sensitivity expected at Hyper-Kamiokande [12] is shown
by the dotted horizontal line. The 2σ range of the latest result of
the top quark mass measurement by the ATLAS Collaboration [2]
is shown by the vertical lines, with the solid one corresponding to
the central value and the dashed ones to the 2σ range.
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correspond to the cases when it equals 10jαj2 and 0.1jαj2.
Also shown are the current 2σ experimental bound on
the proton decay partial width obtained at the Super-
Kamiokande [11], 1=Γðp → π0eþÞ > 1.4 × 1034 yrs,
denoted by the solid horizontal line, and the 2σ
sensitivity expected at the Hyper-Kamiokande [12]
with a 5.6 Megaton · year exposure, 1=Γðp → π0eþÞ >
1.3 × 1035 yrs, denoted by the dotted horizontal line. As
a reference, we display the 2σ range of the latest combined
result of the top quark mass measurement by the ATLAS
Collaboration [2], which has reported mt ¼ 172.84�
0.70 GeV, by the vertical lines, with the solid one corre-
sponding to the central value and the dashed ones to the 2σ
range. The CMS Collaboration has reported a consistent
result [3]. Note that the ATLAS Collaboration has also
conducted the determination of the top quark pole mass by
employing the differential cross section for the production
of a top quark pairþ1 jet and has reportedmpole

t ¼ 173.7 −
2.1þ 2.3 GeV [13], in agreement with the corresponding
CMS result [14]. The figure tells us that if future deter-
minations of the top quark pole mass yield a value above
∼172.5 GeV, we have a chance to observe p → π0eþ
events at Hyper-Kamiokande.

To summarize, we have studied a scenario based on
gauge-Higgs unification where the scale at which the Higgs
quartic coupling vanishes in the SM corresponds to the KK
scale of the 5D compactified spacetime. The KK scale is
related to the 5D Planck scale. Since the first-generation
fermions are mostly localized at an orbifold fixed point,
quantum gravity can give rise to operators involving four
first-generation fermions suppressed by the square of the
5D Planck scale. Hence, the 5D Planck scale, or equiv-
alently the KK scale, determines the partial width of the
p → π0eþ process induced by 5D Planck-suppressed
operators. We have thus obtained a correlation between
the top quark mass, which controls the RG running of
the Higgs quartic coupling, and the proton partial decay
width. The correlation indicates that the future Hyper-
Kamiokande experiment may discover the proton decay if
the top quark pole mass is larger than about 172.5 GeV.
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