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A class of Polyakov-loop-modified Nambu–Jona-Lasinio models has been used to support a conjecture
that numerical simulations of lattice-regularized QCD defined with a chiral chemical potential can provide
information about the existence and location of a critical end point in the QCD phase diagram drawn in the
plane spanned by baryon chemical potential and temperature. That conjecture is challenged by conflicts
between the model results and analyses of the same problem using simulations of lattice-regularized QCD
(lQCD) and well-constrained Dyson-Schwinger equation (DSE) studies. We find the conflict is resolved
in favor of the lQCD and DSE predictions when both a physically motivated regularization is employed
to suppress the contribution of high-momentum quark modes in the definition of the effective potential
connected with the Polyakov-loop-modified Nambu–Jona-Lasinio models and the four-fermion coupling
in those models does not react strongly to changes in the mean field that is assumed to mock-up Polyakov-
loop dynamics. With the lQCD and DSE predictions thus confirmed, it seems unlikely that simulations
of lQCD with μ5 > 0 can shed any light on a critical end point in the regular QCD phase diagram.
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I. INTRODUCTION

One of the most basic questions in the Standard Model
refers to unfolding the state of strongly interacting matter at
extreme temperature and density; the former existed shortly
after the big bang, and the latter is thought to exist in the
core of compact astrophysical objects. QCD is supposed to
provide the answer, which hinges on the existence and
interplay between color confinement and dynamical chiral
symmetry breaking (DCSB), two emergent phenomena of
which the domains of persistence and disappearance
characterize a potentially very rich phase structure.
Confinement is most simply defined empirically: those
degrees of freedom used in defining the QCD Lagrangian
(gluons and quarks) do not exist as asymptotic states; i.e.
these partonic excitations do not propagate with integrity
over length scales that exceed some modest fraction of the
proton’s radius. The forces responsible for confinement
appear to generate more than 98% of the mass of visible
matter [1,2]. This is DCSB, a quantum field theoretical
effect that is expressed and explained via, inter alia, the
appearance of momentum-dependent mass functions for
quarks [3–6] and gluons [7–12] and helicity-flipping terms
in quark–gauge-boson vertices [13–18], all in the absence
of any Higgs-like mechanism.

Owing to the complexity of strong interaction theory,
attempts are often made to develop insight concerning
confinement, DCSB, and the associated phase diagram in
the plane spanned by quark chemical potential (μ) and
temperature (T) by using simple, tractable models. The
properties and predictions of one such class of models are
the subject of our analysis, namely, the Polyakov-loop-
modified Nambu–Jona-Lasinio (PNJL) models [19], which
introduce a mock-up of color confinement into the Nambu–
Jona-Lasinio (NJL) model through the expedient of a static
potential whose behavior is tuned to emulate Polyakov-
loop dynamics [20].
Chiral symmetry restoration in QCD is a second-order

transition in the chiral limit at nonzero temperature and
small chemical potential. This transforms into a crossover
at realistic values of the current-quark masses, and
numerous analyses suggest that it becomes a first-order
transition when the chemical potential exceeds a certain
minimum value, so that a critical end point (CEPχ)
should be a salient feature of the phase diagram [21].
Although the existence and location of CEPχ is currently
both a model-dependent statement, as reviewed, e.g. in
Refs. [22–24], and a problem that is intractable using
contemporary lattice-QCD (lQCD) algorithms [25], an
experimental search is underway [26,27].
In connection with theoretical analyses aimed at locating

CEPχ , it has been conjectured that numerical simulations of
lQCD defined with a chiral chemical potential, μ5, which
can be performed without complications [28], may serve as
a surrogate for simulations with μ ≠ 0, insofar as a critical
end point in the ðμ ¼ 0; μ5; TÞ-plane, CEP5, entails the
simultaneous existence of CEPχ in the ðμ; μ5 ¼ 0; TÞ-plane

*phycui@nju.edu.cn
†icloet@anl.gov
‡luya@smail.nju.edu.cn
§cdroberts@anl.gov∥s.schmidt@fz‑juelich.de
¶xuss@nju.edu.cn
**zonghs@nju.edu.cn

PHYSICAL REVIEW D 94, 071503(R) (2016)

2470-0010=2016=94(7)=071503(6) 071503-1 © 2016 American Physical Society

RAPID COMMUNICATIONS

http://dx.doi.org/10.1103/PhysRevD.94.071503
http://dx.doi.org/10.1103/PhysRevD.94.071503
http://dx.doi.org/10.1103/PhysRevD.94.071503
http://dx.doi.org/10.1103/PhysRevD.94.071503


and might also provide a means of determining the
approximate location of CEPχ [29]. The argument was
supported therein by results obtained using a PNJL model.
Notably, a CEP5 is also located in other models with similar
qualitative features [30–32], and μ5 > 0 was typically
found to decrease the temperature associated with chiral
symmetry restoration: Tχ

μ5>0
< Tχ

μ5¼0.
Taking this suggestion seriously, lattice simulations were

performed at μ5 ≠ 0, with a surprising outcome; viz., no
CEP5 was found, and, moreover, Tχ

μ5>0
> Tχ

μ5¼0 [28,33,34].
Both results contradict the model studies. In another
curious twist, the lQCD results were confirmed in studies
[35,36] that produced solutions of the dressed-quark gap
equation at ðμ; μ5; TÞ > 0 using an interaction kernel which
has typically produced sensible results for hadron proper-
ties in vacuum [37,38].
We are thus presented with a quandary: how might one

understand and reconcile this marked contradiction
between simple, but apparently robust, chiral-model pre-
dictions on one hand and lQCD and well-constrained
Dyson-Schwinger equation (DSE) studies on the other?
Resolving this predicament is the subject of our discus-

sion. We introduce the PNJL model in Sec. II, placing
particular emphasis on the issue of ultraviolet regularization,
which always plays a crucial role in any application of a
contact interaction [39–45]. Section III updates DSE pre-
dictions for the phase diagram of QCD with μ5 ≥ 0. That
establishes a context for the discussion in Sec. IV, which
canvasses the impact of different regularization schemes for
the PNJL model on the existence, location, and evolution
of CEP5 and CEPχ in that model, with very instructive
consequences. We summarize and conclude in Sec. V.

II. PNJL MODEL AND EFFECTIVE POTENTIAL

The PNJL model for two flavors of equal-mass quarks
may be defined by the following Lagrangian density,

L ¼ q̄ðγ ·DþmÞq −G½ðq̄qÞ2 þ ðq̄iγ5τqÞ2�
þ UðΦ; Φ̄;TÞ; ð1Þ

where m is the common current-quark mass; Dμ ¼∂μ þ iAμ, with AμðxÞ ¼ gsAa
μλ

a=2 describing the matrix-
valued gluon field configuration appropriate to the model;
G is the four-fermion interaction strength; and U is a
Polyakov-loop effective potential.
In general, the Polyakov loop is defined as the following

matrix in color space, SUcðNc ¼ 3Þ,

LðxÞ ¼ P exp

�
−i

Z
β

0

dx4A4ðx4; ~xÞ
�
; ð2Þ

where P is a path-ordering operator and β ¼ 1=T.
However, in connection with the PNJL model, it is custom-
ary to define LðxÞ in Polyakov gauge, which sets A4 static
and diagonal in color space, and require L† ¼ L (without

material implications [29]). With these conventions [19],
the model’s mean-field effective potential can be written
solely in terms of

Φ ¼ 1

Nc
TrcL ¼ Φ̄; ð3Þ

which evolves with the intensive thermodynamic variables
characterizing the medium. The domain of confinement
in the pure-gauge theory is expressed via Φ ¼ 0, whereas
Φ ¼ 1 defines the deconfined domain.
In terms of the classical background field in Eq. (3), an

efficacious representation of the Polyakov-loop effective
potential is provided by [46]

β4UðΦ̄;Φ;TÞ ¼ β4UðΦ;TÞ

¼ −
1

2
aðTÞΦ2 þ bðTÞ

× ln½1 − 6Φ2 þ 8Φ3 − 3Φ4�; ð4Þ
with ðt̄ ¼ T0=TÞ

aðt̄Þ ¼ a0 þ a1 t̄þ a2 t̄2; bðt̄Þ ¼ b3t̄3; ð5Þ
where the parameters, listed in Table I, were chosen [46] in
order to reproduce lattice results for pure-gauge QCD
thermodynamics and the T-dependence of the Polyakov
loop. Following Ref. [29], however, the value of T0 is
adjusted to account for the presence of dynamical quarks.
It is appropriate at this point to reflect upon the four-

fermion coupling, G, in Eq. (1), which is supposed to
contain information about gauge-sector dynamics. Since
that dynamics is also expressed in Φ, it can be argued,
e.g. Refs. [48,49], that a realistic model would replace
G → GðΦÞ. Naturally, however, any such statement intro-
duces additional model dependence. Herein, we therefore
explore two possibilities, viz.,

Ref: ½19�∶ G ¼ g ¼ constant; ð6aÞ

Refs: ½29; 32�∶ G ¼ g½1 − α1Φ2 − 2α2Φ3�; ð6bÞ
with the parameters in Table I chosen such that additional
aspects of the PNJL model are consistent with simulations
of lQCD [47].
Finally, in order to study the interplay between T and

regular and chiral chemical potentials, we define the action

TABLE I. Parameter values used herein to define the PNJL
model. Upper panel—Polyakov-loop potential, Eqs. (4) and (5)
[46,47]. Lower panel—NJL part of the Lagrangian density,
Eqs. (1) and (6) [47], with dimensioned quantities in MeV.

a0 a1 a2 b3 T0

3.51 −2.47 15.2 −1.75 190

m Λ gΛ2 α1 α2

5.5 631.5 2.2 0.2 0.2
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with an upper bound β on the dx4 integral and add the
following term to Eq. (1):

−q̄γ4½μþ μ5γ5�q: ð7Þ
Adopting the mean-field approximation, one obtains the

following effective potential for the PNJL model we have
described [29],

Ω ¼ ΩðM;Φ;T; μ; μ5Þ

¼ UðΦ;TÞ þ ðM −mÞ2
4G

− 2Nc

X
s¼�1

Z
d3 ~p
ð2πÞ3 ωs

−
2

β

X
s¼�1

Z
d3 ~p
ð2πÞ3 ln½FþF−�; ð8Þ

where M is the DCSB-induced mass gap,

ωs ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsj~pj − μ5Þ2 þM2

q
; ð9Þ

F� ¼ 1þ 3Φ½e−βω�
s þ e−2βω

�
s � þ e−3βω

�
s ; ð10Þ

ω�
s ¼ ωs � μ. At this point, one can determine the evolu-

tion of the quark mass gap with intensive parameters via the
simultaneous solution of the extremal conditions:

∂Ω
∂M ¼ 0 ¼ ∂Ω

∂Φ : ð11Þ

It is worth noting that s in Eqs. (8)–(10) is a chirality
label, the sum over which appears owing to the presence of
μ5 in the model. Furthermore, the coupling between quarks
and the Polyakov loop is prominently expressed through
F� in Eq. (10): in the gauge-confined phase, Φ ¼ 0, and
one has a standard NJL-model effective potential; but for
Φ ≠ 0, Ω contains couplings ∼Φe−βM, and consequently
the deconfinement transition encoded in the Polyakov loop
can influence the chiral transition, expressed in the behav-
ior of the quark mass gap.
Hitherto, we have not explicitly addressed the question

of regularization for the PNJL model. The last term in the
second line of Eq. (8),

ΩV ¼ 2Nc

X
s¼�1

Z
d3 ~p
ð2πÞ3 ωs; ð12Þ

is plainly divergent so that Ω is meaningless as written.
A regularization procedure must be introduced. We employ
a hard cutoff, viz., Λ in the lower panel of Table I. Using
that value, and m and g listed therewith, a good description
of in-vacuum pion properties is obtained.
The question which now arises, however, is what to do

with the remaining integral in Eq. (8). The quantity

ΩF ¼ 2

β

X
s¼�1

Z
d3 ~p
ð2πÞ3 ln½FþF−� ð13Þ

is finite, so a cutoff is not strictly necessary, and none is
used in Refs. [19,29–32,46]. However, we question the
spirit of this choice.
One justifies a regularization of ΩV , Eq. (12), by obser-

ving that QCD is asymptotically free, so high-momentum
modes should not materially influence nonperturbative
strong interaction phenomena. Indeed, the contact interac-
tion itself can broadly be reconciled with QCD by
imagining that the necessary regularization function is a
coarse but useful representation of the transition between
nonperturbative infrared dynamics, such as gluon mass
generation [7–12], and the domain of asymptotic freedom.
Adopting this perspective, it seems that internal consistency
requires one to use a definition of ΩF which employs the
same (or similar) cutoff used in connection with ΩV .
We will subsequently, therefore, compare results obtained

with two procedures: (i) ðΩΛ
V;ΩΛ

F Þ, also explored in
Refs. [50–53],1 and (ii) ðΩΛ

V;ΩΛ→∞
F Þ. The difference

between these two definitions is depicted in Fig. 1. Given
that the discrepancy grows with increasing μ5 (and T, μ),
it should not be surprising if considerable disparity were
to emerge between the predictions made by (i) and (ii)
concerning the existence and location of CEPχ;5, which, if at
all, are likely to be found at larger values of the intensive
parameters. Indeed, in the context of the problem we study,
marked sensitivity to a model’s definition, as expressed in
the regularization scheme, was found in Refs. [54–57].

III. DSE PREDICTIONS

As a prelude to detailing results obtained with the PNJL
model, we recapitulate and update predictions for the
location of the critical end point, ðμðμ5Þ; Tðμ5ÞÞ, associated
with the chiral symmetry restoring transition, which have
been obtained using DSE methods. In this, we follow
Ref. [36], using the rainbow-ladder truncation [58] of

FIG. 1. Comparison between ΩΛ
F (dashed, purple curve) and

Ω∞
F (solid blue curve), evaluated with ðT ¼ 0.1; μ ¼ 0.2Þ GeV.

This comparison is not qualitatively sensitive to the precise values
of ðT; μÞ, and similar differences are also evident if one chooses T
or μ as the independent variable.

1A more sophisticated expression of this idea was exploited in
Ref. [44] in order to reconcile NJL and lQCD results relating to
the pseudocritical temperature in magnetized quark matter.
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the dressed-quark gap equation with the interaction in
Ref. [22],

g2DμνðknÞ ¼ D0

4π2

σ6
k2ne−k

2
n=σ2 ; ð14Þ

whereD0 ¼ ð0.96 GeVÞ2, kn ¼ ð~k;ωnÞ, and ωn ¼ 2nπT is
a boson Matsubara frequency. Here and in the following,
we locate the CEP by studying the behavior of the chiral
susceptibility, χM, defined via the dressed-quark mass
function [59,60]: the CEP is positioned at that set of
intensive parameters for which ½1=χM� → 0 [22].
The results of this analysis, obtained with current-quark

mass m ¼ 5 MeV, are depicted in Fig. 2. We used two
values of the strength parameter, σ, as indicated in Fig. 2. In
the limit σ → 0, the interaction approaches a δ-function
[61]. Plainly, the temperature associated with the critical
end point increases with μ5, but, although the correlated
chemical potential does initially decrease with μ5, it fails to
reach μ ¼ 0, and hence there is no CEP5. The DSE
predictions are evidently in qualitative agreement with
those obtained using lQCD [28,33,34] but therefore differ
markedly from the PNJL model results [29–32].
The lower panel of Fig. 2 exhibits some curious features.

First, with decreasing σ, the value of μ at the CEP in the
ðμ; μ5; TÞ-hyperplane decreases on a measurable domain
containing μ5 ¼ 0. This is explained by the fact that in the
limit σ → 0 CEPχ lies at μ ¼ 0 for m ¼ 0 [62]. The second
curious feature is that for each value of σ there is a critical
value of μ5 ¼ μi5ðσÞ such that ∀ μ5 > μi5ðσÞ the value of μ

associated with the critical end point in the ðμ; μ5; TÞ-
hyperplane is independent of μ5. We have established that
this constant value of μ ¼ μi is determined by the current-
quark mass, μi ¼ μiðmÞ: with m ¼ 5 MeV, μi ≈ 40 MeV,
and μi ≈ 90 MeV for m ¼ 15 MeV. Accordingly,
∀ μ < μiðm ≠ 0Þ, the chiral transition is a crossover.
The existence and evolution of μiðmÞ can be understood
by exposing the impact ofm on the analytic structure of the
dressed-quark propagator [63,64], and in this, too, the
algebraic model of Ref. [62] can be used profitably.

IV. PNJL MODEL: RESULTS AND REMARKS

We turn now to a discussion of results obtained using the
PNJL model. In Fig. 3, we depict trajectories of the critical
end point for the chiral symmetry restoring transition
obtained when the PNJL model is defined using Ω∞

F , i.e.
eschewing a limitation on the high-momentum modes in
the last term of the effective potential [19,29–32,46], and
with both choices of the NJL four-fermion coupling
identified in Eqs. (6). Evidently, irrespective of the latter
choice, and in contradistinction to lQCD and DSE results,
a CEP5 exists. On the other hand, it is apparent that if
one uses G ¼ g ¼ constant, Eq. (6a), then the temperature
associated with the critical end point for the chiral
symmetry restoring transition does increase with μ5, in
agreement with lQCD and DSE analyses. This, however,
is not the definition employed in Refs. [29,32,47]; they
employed Eq. (6b).

FIG. 2. DSE predictions for the location of the critical end point
associated with the chiral symmetry restoring transition,
ðμðμ5Þ; Tðμ5ÞÞ: Tðμ5Þ, upper panel, and μðμ5Þ, lower panel,
computed with two different values of the mass scale, σ, which
determines the interaction strength in Eq. (14). All curves in both
panels were computed as described in Ref. [36].

FIG. 3. Location of the critical end point associated with the
chiral symmetry restoring transition, ðμðμ5Þ; Tðμ5ÞÞ, computed
using the PNJL model defined with Ω∞

F : Tðμ5Þ, upper panel,
and μðμ5Þ, lower panel. The dashed curves are obtained using
a constant NJL coupling, Eq. (6a), and the solid curves with
a Φ-dependent coupling, Eq. (6b).

Z.-F. CUI et al. PHYSICAL REVIEW D 94, 071503(R) (2016)

071503-4

RAPID COMMUNICATIONS



In Fig. 4, we depict trajectories of the critical end point
obtained with the ΩΛ

F -PNJL model, i.e. produced by
introducing a physically motivated cutoff on the high-
momentum modes in the last term of the effective potential,
and with both choices of the four-fermion coupling identified
in Eqs. (6). We observe first that when using ΩΛ

F one should
restrict the domain of model applicability to values of the
intensive parameters which lie below the cutoff, i.e. μ5 ≲ Λ
in the present instance; results on this domain can reasonably
be expected to be sensible. (This limitation can be eliminated
by using a better regularization scheme [39–45], but such
improvements have no material implications for the present
discussion.) Bearing the restriction in mind, it then becomes
apparent that the ΩΛ

F -defined PNJL-model predictions
obtained with G ¼ g ¼ constant, Eq. (6a), are qualitatively
in agreement with lQCD and DSE results: the temperature
associated with the critical end point of the chiral transition
increases with μ5, and there is no CEP5.
Evidently, as anticipated in the conclusion to Sec. II, the

differences highlighted by Fig. 1 have a significant impact
on the PNJL model’s qualitative features. This is illustrated
further by Fig. 5, which shows that there is a critical value
for the physically motivated cutoff employed in connection
with ΩF , Λc, such that no CEP5 exists for any Λ < Λc.
The result Λc ≈ Λ highlights again the importance of an
internally consistent limitation on the contribution to the
effective potential from high-momentum quark modes.

V. CONCLUSION

We set out to reconcile marked differences between
predictions made by a class Polyakov-loop-modified
Nambu–Jona-Lasinio models for the behavior of the chiral
symmetry restoring transition in the presence of a chiral
chemical potential, μ5, and those produced by lattice-QCD
(lQCD) and DSE studies which provide a good description
of low-energy π- and ρ-meson properties. We found that the
resolution lies with the nature of the regularization scheme
employed to define the PNJL models. All approaches are in
qualitative agreement (Fig. 4 cf. Fig. 2) so long as both (i) a
regularization procedure is employed to suppress high-
momentum quark modes in all terms that appear in the
definition of the effective potential connected with the
PNJL models, which seems a physically sensible require-
ment, and (ii) the four-fermion coupling in those models
does not react very strongly to changes in the mean-field
that is assumed to mock-up Polyakov-loop dynamics. If
one accepts this as providing the more realistic definition of
PNJL models, then, on their domain of validity, the model
predictions agree with those made by lQCD and DSE
studies, and consequently there is no longer reason to
expect that simulations of lQCD with μ5 > 0 will shed any
light on the existence and location of a critical end point in
the phase diagram of QCD in the ðT; μÞ-plane.
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FIG. 4. Location of the critical end point associated with the
chiral symmetry restoring transition, ðTðμ5Þ; μðμ5ÞÞ, computed
using the PNJL model defined with ΩΛ

F : Tðμ5Þ, upper panel,
and μðμ5Þ, lower panel. The dashed curves are obtained using a
constant NJL coupling, Eq. (6a), and the solid curves with a
Φ-dependent coupling, Eq. (6b). The vertical lines mark the point
μ5 ¼ Λ, viz., the upper boundary for any sensible interpretation
of the model’s results.

FIG. 5. Trajectories of the chemical potential associated with
the chiral transition’s critical end point, μðμ5Þ, computed with
G ¼ g ¼ constant, Eq. (6a), in PNJL models defined using
various different values for the cutoff on the last term in the
effective potential, Eq. (13): ΩΛ0

F : Λ=Λ0 ¼ 0, 0.92, 0.99, 1.
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