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We show that the masses of the lowest-lying heavy baryons can be very well described in a pion mean-
field approach. We consider a heavy baryon as a system consisting of the Nc − 1 light quarks that induce
the pion mean field and a heavy quark as a static color source under the influence of this mean field. In this
approach we derive a number of model-independent relations and calculate the heavy-baryon masses using
those of the lowest-lying light baryons as input. The results are in remarkable agreement with the
experimental data. In addition, the mass of the Ω�

b baryon is predicted.
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I. HEAVY BARYONS AND PION MEAN FIELD

In a naive quark model, a heavy baryon consists of a
heavy quark and two light quarks. When the mass of the
heavy quark mQ → ∞, the spin of the heavy quark SQ is
conserved, which indicates that the spin of the light-quark
degrees of freedom is also conserved: SL ≡ S − SQ [1–3].
Because of this heavy-quark spin symmetry, the total spin
of the light quarks can be considered as a good quantum
number. This suggests that in the first approximation a
heavy baryon can be viewed as a bound state of a heavy
quark and a diquark. Thus, the flavor SUð3Þf representa-
tions of the lowest-lying heavy baryons are 3 ⊗ 3 ¼ 3̄ ⊕ 6,
of which the antitriplet has SL ¼ 0 and total S ¼ 1=2 and
the sextet has SL ¼ 1 with S ¼ 1=2 and S ¼ 3=2. Since in
the limit mQ → ∞ the heavy quark inside a heavy baryon
can be regarded as a static color source, the dynamics of
heavy baryons is governed by the light quarks.
It is clear that the complete description of heavy baryons

requires more involved treatment of light quarks. In the
present paper, we propose to describe the dynamics of
the light subsystem in a heavy baryon within a mean-field
approach with a hedgehog [4] symmetry, motivated by
Ref. [5]. Mean-field approximations provide often a simple
physical picture, so they have been widely applied in a
variety of fields in physics: the Thomas-Fermi approxima-
tion in atomic physics, the Ginzburg-Landau theory for
superconductivity, the Bethe method in statistical physics,
and shell models in nuclear physics, to name a few. In the
seminal papers [6], Witten has argued that, to the leading
order in 1=Nc expansion, the lowest-lying light baryons can

be also viewed as bound states of Nc valence quarks in a
mean field. In the limit of the large number of colors (Nc),
the lowest-lying light baryons consist of Nc valence quarks
that produce an effective pion mean field, which arises
from the vacuum polarization. The Nc valence quarks are
influenced by this pion mean field. The chiral-quark soliton
model (χQSM) is constructed, based on this picture [7–9].
This mean field and a hedgehog symmetry allow one to
derive the effective collective Hamiltonian that includes an
explicit breaking of SUð3Þf symmetry. The Hamiltonian
involves the dynamical coefficients, which can be com-
puted explicitly within the χQSM [10] in terms of the
relativistic single particle quark states in the soliton back-
ground configuration. What will be important in the
following is that the quark-soliton configuration has a
trivial color structure: it consists of Nc copies of a colorless
soliton. This means that in the leading order all dynamical
coefficients—so-called moments of inertia—of the effec-
tive Hamiltonian are proportional to Nc. If the mean field is
generated—as in the present case—by Nc − 1, rather than
by Nc quarks, these coefficients have to be appropriately
rescaled.
In the large Nc limit, heavy baryons consist of a heavy

quark and Nc − 1 light quarks rather than a diquark. In this
limit, the Nc − 1 valence quarks produce again the pion
mean field, and the system can be described as a quark-
soliton system. In the case of the light baryons, the SUð3Þf
space of the effective Hamiltonian is subject to a constraint
imposed by the Nc valence quarks, Y 0 ¼ Nc=3, that selects
the lowest allowed representations: 8 and 10. In the heavy-
baryon case, the constraint is modified Y 0 ¼ ðNc − 1Þ=3
due to the presence of the Nc − 1 valence quarks, and
the lowest allowed representations are 3̄ and 6. The model
predicts the structure of the symmetry breaking and
allows one to compute numerical values of the dynamical
coefficients.
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In the general framework of this mean-field picture, one
can extract the moments of inertia from the experimental
data on the masses of the lowest-lying light-quark baryons
without relying on any model calculation [11,12]. Such an
analysis has been performed recently in Ref. [13], and the
dynamical parameters have been determined with high
accuracy. In the present work, we shall use these values for
the description of heavy-baryon masses. Additionally, we
shall introduce a spin-spin interaction [14] to remove spin-
1=2 and -3=2 degeneracy of the sextet states. The hyperfine
coupling—the only parameter undetermined from the light
sector—will be fixed from the experimental data.

II. COLLECTIVE HAMILTONIAN

The SU(3) soliton is constructed in terms of a hedgehog
[4] ansatz, which couples three first Gell-Mann matrices

with a unit space vector ~n · ~λ. It is an extended object, and
therefore its quantization is similar the textbook quantiza-
tion of a rigid body. This requires one to identify the zero
modes, which in the case of a hedgehog correspond to the
space rotations and the rotations in the flavor space. Since
the soliton lives in the isospin SU(2) subspace of the SU(3)
group, the rotation along the hypercharge axis is not
dynamical, and the corresponding generalized momentum
produces a constraint: the only representations of the SU(3)
group that are allowed must contain states with hyper-
charge Y 0 (called right hypercharge) of which the actual
value depends on the number of valence quarks. Moreover,
the isospin of the states with hypercharge equal to Y 0 is
equal to the soliton spin. Details can be found in
Refs. [10,15]. A general form of the collective rotational
Hamiltonian for the light quark takes therefore a form of the
quantized symmetric top rotating in the flavor SU(3) space,

Hrot
ðp;qÞ ¼ Msol þ

1

2I1

X3
i¼1

Ĵ2i þ
1

2I2

X7
a¼4

Ĵ2a; ð1Þ

where Ĵi are generators of the SU(3) group, the first three
components of which correspond to the soliton spin. I1;2
stand for the moments of inertia, and Msol is a classical
soliton mass. Note that Ĵ8 corresponding to Y 0 does not
appear in Eq. (1). It is, however, convenient to add and
subtract Ĵ28; then, the corresponding eigenvalues of Eq. (1)
in the representation R ¼ ðp; qÞ read

Erot
ðp;qÞ ¼ Msol þ

JðJ þ 1Þ
2I1

þ C2ðp; qÞ − JðJ þ 1Þ − 3=4Y 02

2I2
; ð2Þ

where C2 denotes the SU(3) Casimir and J stands for spin.
The baryon collective eigenfunctions are expressed in
terms of the SU(3) Wigner D functions (see Refs. [10,13]
for details). The right hypercharge imposes a constraint on

the quantization of the chiral soliton, which for baryons
takes the following form: Y 0 ¼Nc=3. This constraint selects
a tower of allowed rotational excitations of the SU(3)
hedgehog, which are identical as in the quark model. This
has been considered as a success of the collective quan-
tization resulting in a duality between the chiral soliton
picture and the constituent quark model. In the case of
heavy baryons, as already mentioned, Y 0 ¼ ðNc − 1Þ=3.
Then, the lowest rotational excitations appear to be
ðp; qÞ ¼ ð0; 1Þ (or 3̄) with SL ¼ J ¼ 0 and (2,0) (or 6)
with SL ¼ 1.

III. EXPLICIT SU(3) SYMMETRY BREAKING

The mass splittings in a heavy-baryon multiplet arise
from the explicit flavor SU(3) symmetry breaking caused
by the strange current quark mass ms. The collective
Hamiltonian of explicit SUð3Þf symmetry breaking in
the light sector [10] reads

Hbr ¼ αDð8Þ
88 þ βŶ þ γffiffiffi

3
p

X3
i¼1

Dð8Þ
8i Ĵi; ð3Þ

where α, β, and γ are given in terms of the moments of
inertia I1;2 and K1;2 and the pion-nucleon sigma term
ΣπN ¼ ðmu þmdÞhNjūuþ d̄djNi=2 ¼ ðmu þmdÞσ:

α ¼ −
2ms

3
σ − βY 0; β ¼ −

msK2

I2
;

γ ¼ 2msK1

I1
þ 2β: ð4Þ

In Eq. (4), we have explicitly included Y 0, which is equal to
1 for the light baryons.
In Ref. [13], the dynamical parameters α, β, and γ have

been determined separately by using the experimental data
for the baryon octet masses, theΩmass, and the mass of the
putative pentaquark Θþ, taking into account isospin sym-
metry breaking including the electromagnetic interactions
[16]. The values of α, β, and γ that have been obtained by χ2

minimization [13] read as follows:

α ¼ −255.03� 5.82 MeV;

β ¼ −140.04� 3.20 MeV;

γ ¼ −101.08� 2.33 MeV: ð5Þ
When we apply the mean-field approach to heavy

baryons, Y 0 is equal to Y 0 ¼ ðNc − 1Þ=3. Analogously,
as explained previously, the expressions for the moments of
inertia and ΣπN need to be modified by a multiplicative
factor of ðNc − 1Þ=Nc. Thus, the ms mass splittings of the
heavy baryons should be calculated in terms of β and γ
from Eq. (5), while the value of α should be modified:

α → ᾱ ¼ Nc − 1

Nc
α: ð6Þ
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The masses of the antitriplet and the sextet baryons
(without spin-spin interactions) are then expressed as

MQ
B;R ¼ MQ

R þ δRY; ð7Þ

where MQ
R ¼ mQ þ Erot

ðp;qÞ is called the center mass of a

heavy baryon in representationR. The explicit expressions
for MQ

3̄
and MQ

6 are written respectively as

MQ
3̄
¼ mQ þMsol þ

�
Nc

Nc − 1

�
1

2I2
;

MQ
6 ¼ MQ

3̄
þ
�

Nc

Nc − 1

�
1

I1
; ð8Þ

where we have modified the moments of inertia I1 and I2 as
explained above. The term proportional to the hypercharge
Y comes from the explicit SUð3Þf symmetry breaking in
Eq. (3). Parameters δ3̄ and δ6 are defined as

δ3̄ ¼
3

8
ᾱþ β; δ6 ¼

3

20
ᾱþ β −

3

10
γ: ð9Þ

In order to remove the degeneracy between sextet spin-
1=2 and −3=2 states, we introduce the spin-spin interaction
Hamiltonian expressed as

HLQ ¼ 2

3

κ

mQMsol
SL · SQ ¼ 2

3

ϰ

mQ
SL · SQ; ð10Þ

where κ denotes the flavor-independent hyperfine coupling.
The operators SL and SQ represent the spin operators for
the soliton and the heavy quark, respectively. Msol has
been incorporated into an unknown coefficient ϰ. The
Hamiltonian HLQ does not affect the 3̄ states, since in this
case SL ¼ 0. In 6 SL ¼ 1, and it couples to SQ producing
two multiplets S ¼ 1=2 and S ¼ 3=2. The respective
splittings read as follows,

MQ
B;61=2

¼ MQ
B;6 −

2

3

ϰ

mQ
;

MQ
B;63=2

¼ MQ
B;6 þ

1

3

ϰ

mQ
; ð11Þ

giving the 3=2 − 1=2 splitting

MQ
B;63=2

−MQ
B;61=2

¼ ϰ

mQ
: ð12Þ

That is, ϰ can be determined by using the center values of
the sextet masses. We list the expressions for the heavy-
baryon masses in Table I.

IV. MODEL-INDEPENDENT RELATIONS

The mass formulas given in Table I imply relations
that do not depend upon actual values of the model

parameters—so called model-independent relations.1 An
immediate consequence of the mass formulas of Table I is
the equal mass splittings separately in the 3̄ and 6. Note that
the mass splittings are independent of the spin and of the
heavy-quark mass. These relations are indeed very well
satisfied.2 For the 3̄, we have (in MeV)

−δ3̄ ¼ 182.9� 0.3jΞc−Λc
¼ 173.6� 0.7jΞb−Λb

; ð13Þ

which is satisfied with 7% accuracy. In the case of the 6, we
have more relations (in MeV):

−δ6 ¼ 123.3� 2.1jΞ0
c−Σc

¼ 118.4� 2.7jΩc−Ξ0
c

¼ 127.8� 0.8jΞ�
c−Σ�

c
¼ 120.0� 2.0jΩ�

c−Ξ�
c

¼ 121.6� 1.3jΞ0
b−Σb

¼ 113.0� 1.9jΩb−Ξ0
b

¼ 121.7� 1.3jΞ�
b−Σ

�
b
: ð14Þ

We see that the equality of splittings is quite accurate (at the
6% level). From the spread of splittings in Eq. (14), we can
make the first prediction of the mass of Ω�

b that is not yet
measured, taking as an input the experimental mass of Ξ�

b:

MΩ�
b
¼ ð6068 − 6083Þ MeV: ð15Þ

Using the mass formulas presented in Table I, we are
able to determine the centers of the heavy-baryon masses,

MQ
3̄
¼ MΛQ

þ 2MΞQ

3
; MQ

6 ¼
MQ

61=2
þ 2MQ

63=2

3
; ð16Þ

where

TABLE I. Expressions for the masses of the heavy baryons.

RJ BQ T Y MBQ

3̄1=2
ΛQ 0 2

3
2
3
δ3̄ þMQ

3̄

ΞQ
1
2

− 1
3

− 1
3
δ3̄ þMQ

3̄

61=2

ΣQ 1 2
3

2
3
δ6 − 2ϰ=3mQ þMQ

6

Ξ0
Q

1
2

− 1
3

− 1
3
δ6 − 2ϰ=3mQ þMQ

6

ΩQ 0 − 4
3

− 4
3
δ6 − 2ϰ=3mQ þMQ

6

63=2

Σ�
Q 1 2

3
2
3
δ6 þ ϰ=3mQ þMQ

6

Ξ�
Q

1
2

− 1
3

− 1
3
δ6 þ ϰ=3mQ þMQ

6

Ω�
Q 0 − 4

3
− 4

3
δ6 þ ϰ=3mQ þMQ

6

1The term “model-independent relations” in the present con-
text was first used in Ref. [11]. It refers to the fact that the
operators that appear, e.g., in (3) follow from the hedgehog
symmetry, rather than from a specific model.

2All model-independent relations are checked using the data
from [17] quoted in Tables II and III. For isospin multiplets, an
average mass is used.

PION MEAN FIELDS AND HEAVY BARYONS PHYSICAL REVIEW D 94, 071502(R) (2016)

071502-3

RAPID COMMUNICATIONS



MQ
61=2

¼
3MΣQ

þ 2MΞ0
Q
þMΩQ

6
;

MQ
63=2

¼
3MΣ�

Q
þ 2MΞ�

Q
þMΩ�

Q

6
; ð17Þ

with MQ
61=2;3=2

given in Eq. (11). Equation (17) cannot be

used in the b sector, because we do not know MΩ�
b
.

Fortunately, we can determine the centers of the multiplets
without invoking ΩQ masses. Defining

SðΣQÞ ¼
MΣQ

þ 2MΣ�
Q

3
¼ MQ

6 þ 2

3
δ6;

SðΞQÞ ¼
MΞ0

Q
þ 2MΞ�

Q

3
¼ MQ

6 −
1

3
δ6; ð18Þ

we have

MQ
6 ¼ SðΣQÞ þ 2SðΞQÞ

3
: ð19Þ

For the sextet in the c sector, Eqs. (16) and (19) can be
regarded as a model-independent relation,

Mc
6 ¼ 2579.6� 0.4jEq:ð16Þ ¼ 2580.8� 0.5jEq:ð19Þ; ð20Þ

in MeV. Relation (20) is fulfilled with unprecedented
accuracy. For the 3 and for the 6 in the b sector, we have

Mc
3̄
¼ ð24087.4� 0.2ÞjEq:ð16Þ MeV;

Mb
3̄
¼ ð5735.2� 0.4ÞjEq:ð16Þ MeV;

Mb
6 ¼ ð5908.0� 0.3ÞjEq:ð19Þ MeV: ð21Þ

Apart from equal splittings in 6 (14), mass formulas of
Table I admit a sum rule:

MΩ�
Q
¼ 2MΞ0

Q
þMΣ�

Q
− 2MΣQ

: ð22Þ

Equation (22) yields ð2764.5� 3.1Þ MeV for MΩ�
c
, which

is 1.4 MeV below the experiment, and predicts

MΩ�
b
¼ ð6076.8� 2.25Þ MeV; ð23Þ

which falls in the range of Eq. (15).
Equation (8) provides yet another model-independent

relation, allowing one to determine the moment of inertia I1
either from the c or from the b sector,

1

I1
¼ 2

3
ðMQ

6 −MQ
3̄
Þ ¼ 114.7jc ¼ 115.2jb; ð24Þ

in MeV.3 The reason for the equality of splittings between
the multiplet centers can be traced back to the fact that it

comes only from the energy of the rotational excitations,
which are flavor blind in the present approach. Moreover,
the effects of the SUð3Þf symmetry breaking are simply the
same both for the charm and bottom baryons, since they are
solely due to the presence of the light quarks inside a heavy
baryon. The relation of Eq. (24) is indeed very accurate, but
it undershoots by 30% the value of 1=I1 extracted from the
light sector equal to 160 MeV.
Another set of model-independent relations is not

directly related to the specifics of the soliton model but
provides a test of our assumption concerning the spin
interactions of Eq. (12),

ϰ

mc
¼ 64.5� 0.8jΣc

¼ 69.1� 2.1jΞc
¼ 70.7� 2.6jΩc

ϰ

mb
¼ 20.2� 1.9jΣb

¼ 20.3� 0.1jΞb
ð25Þ

(in MeV). Equation (25) provides yet another prediction for
the Ω�

b mass,

MΩ�
b
¼ MΩb

þ ϰ

mb
¼ ð6068.3� 2.1Þ MeV; ð26Þ

in good agreement with Eq. (23). From the ratios of the spin
splittings (25), we can determine the ratio of the heavy-
quark masses:

mc

mb
¼ 0.29 − 0.31: ð27Þ

The experimental values of the M̄S heavy-quark masses
lead tomc=mb ¼ 0.305 inserted, where both massesmQ are
evaluated at the renormalization point μ ¼ mQ [17]. Of
course, heavy-quark masses in the effective models, like the
one considered in this paper, may differ from the QCD
masses. It is therefore encouraging that we get the mass
ratio close to the ratio of the QCD masses.

V. MASSES OF HEAVY BARYONS

Having determined ϰ=mQ, using the numerical values of
ᾱ, β, and γ from Eqs. (5) and (6), we can predict the masses
of the lowest-lying (3̄ and 6) heavy baryons. As we have
already mentioned, the determination of I1 from the heavy-
quark sector and from the light sector differ by 30%.
Therefore, in the following, we shall use the center masses
MQ

3̄
and MQ

6 as given by Eqs. (20) and (21).
As a first check, let us compare the values of δ

parameters determined from the light sector through
Eqs. (9),

δ3̄ ¼ −203.8� 3.5 MeV;

δ6 ¼ −135.2� 3.3 MeV; ð28Þ
with the values following from the heavy sector given in
Eqs. (13) and (14). We see that the light sector values (28)

3A similar relation is found in Ref. [18] with a different factor
and in a different context.
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underestimate the heavy-quark determination (13) and (14)
by approximately 13%. Interestingly, the ratio δ3̄=δ6 ¼ 1.5
is almost exactly equal to the ratio of the average splittings
as given in Eqs. (13) and (14). The accuracy of the
predictions given in Eq. (28) deserves a comment. Equal
splittings in 3̄ or 6 are analogous to the Gell-Mann–Okubo
mass formulas for the light-baryon decuplet and follow
solely from the SUð3Þf group properties. However, the
relation between the splittings in 3̄ and 6 is a complicated
dynamical question. The fact that chiral dynamics with an
input from the light-baryon sector alone reproduces δ3̄
and δ6 with good accuracy is therefore by far not trivial.
The fact that the ratio δ3̄=δ6 is reproduced even better
suggests a multiplicative modification of these parameters
by a common factor, which may be due e.g. to a slight
change of ms in the heavy-baryon environment.
In the following, we shall use Mc

6 ¼ 2580.8 MeV and
Eq. (21) for the multiplet centers, δ parameters from
Eq. (28), and the average values for the hyperfine splittings:
ϰ=mc ¼ð68.1�1.1ÞMeV and ϰ=mb ¼ ð20.3� 1.0Þ MeV.
In order to quantify the quality of the predictions, we

introduce deviation ξQ ¼ ðMBQ

th −M
BQ
expÞ=MBQ

exp, where M
BQ

th

represents the prediction of the present work, whereasM
BQ
exp

stands for the experimental value. The results presented in
Tables II and III are in remarkable agreement with
the experimental data within 0.7% or less. Note that the
uncertainties in Tables II and III include those from the
multiplet centers, ϰ=mQ, α, β, and γ.

In the last row of Table III, the mass of the Ω�
b is

predicted,

MΩ�
b
¼ ð6095.0� 4.4� 24Þ MeV; ð29Þ

where �24 MeV corresponds to the overall accuracy of of
the model which we assume to be, as for the other bottom
states, within the 0.4% range. This result lies slightly above
the other predictions obtained in Eqs. (15), (23), and (26).

VI. SUMMARY AND OUTLOOK

In the present paper, we have applied a pion mean-field
approach with hedgehog symmetry to the description of the
heavy-baryon masses, which essentially assumes that the
heavy quark (c or b) is surrounded by a pion mean field
or a light-quark soliton produced from the Nc − 1 valence
quarks. This assumption leads to a number of model-
independent predictions: (i) the soliton quantization forcing
heavy baryons to have the SUð3Þf structure 3̄with spin 1=2
and the 6 with spin 1=2 and 3=2 with approximate degen-
eracy of the sextets, (ii) equal mass splittings within the
multiplets given in Eqs. (13) and (14) that do not depend on
the heavy-quark mass, (iii) equal splittings between 3̄ and 6
for the c and b sectors (24), and (iv) the sum rule that allows
one to calculate the mass of Ω�

Q in Eq. (22).
We have completed the model by adding the hyperfine

interaction that is inversely proportional to the heavy-quark
mass in Eq. (10). This assumption proved to very accurate
as shown in Eq. (27), and the pertinent coefficient has been
determined from the mass splittings in Eq. (25).
Next, we have used the three parameters extracted from

the light-baryon sector in Eq. (5) to calculate heavy-baryon
masses. The soliton has been assumed to be exactly the
same as in the case of the light baryons with one exception:
all moments of intertia have been rescaled by a factor of
ðNc − 1Þ=Nc, because there are Nc − 1 rather than Nc
valence quarks in a heavy baryon. With this modification,
the predictions for the heavy-baryon masses turned out to
be within 0.5% range when compared with the experiment
data. Unfortunately, the splitting of the multiplet centers of
mass equal to 3=2I1 turned out to be 30% off the light-
baryon prediction. This result suggests that, apart from the
ðNc − 1Þ=Nc factor, moments of inertia can be further
modified in the presence of the heavy quark. These
modifications to the large extent cancel in the ratios that
enter Eq. (4) except for the ΣπN term in the definition of α.
We have checked, however, that varying ΣπN by �30%
changes δ3̄ by �8.6 MeV and δ6 by �3.5 MeV. Such a
change will not affect the quality of the predictions for the
heavy-baryon masses presented in this paper.
Finally, we have presented four different predictions of

the Ω�
b mass: (i) from the spread of the ms splittings in 6

(15), (ii) from theΩ�
Q sum rule (23), (iii) from the hyperfine

splittings (26), and (iv) finally in Eq. (29). All these
estimates are consistent and point to the value of MΩ�

b

TABLE II. The results of the masses of the charmed baryons in
comparison with the experimental data.

RQ
J

Bc Mass Experiment [17] Deviation ξc

3̄c1=2
Λc 2272.5� 2.3 2286.5� 0.1 −0.006
Ξc 2476.3� 1.2 2469.4� 0.3 0.003

6c1=2

Σc 2445.3� 2.5 2453.5� 0.1 −0.003
Ξ0
c 2580.5� 1.6 2576.8� 2.1 0.001

Ωc 2715.7� 4.5 2695.2� 1.7 0.008

6c3=2

Σ�
c 2513.4� 2.3 2518.1� 0.8 −0.002

Ξ�
c 2648.6� 1.3 2645.9� 0.4 0.001

Ω�
c 2783.8� 4.5 2765.9� 2.0 0.006

TABLE III. The results of the masses of the bottom baryons in
comparison with the experimental data.

RQ
J

Bb Mass Experiment [17] Deviation ξb

3̄b1=2
Λb 5599.3� 2.4 5619.5� 0.2 −0.004
Ξb 5803.1� 1.2 5793.1� 0.7 0.002

6b1=2

Σb 5804.3� 2.4 5813.4� 1.3 −0.002
Ξ0
b 5939.5� 1.5 5935.0� 0.05 0.001

Ωb 6074.7� 4.5 6048.0� 1.9 0.004

6b3=2

Σ�
b 5824.6� 2.3 5833.6� 1.3 −0.002

Ξ�
b 5959.8� 1.2 5955.3� 0.1 0.001

Ω�
b 6095.0� 4.4 − −
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within the range of Eq. (15). Only the prediction of
Eq. (29) based on the parameters of the light-baryons
sector was obtained as slightly higher than the other ones.
We anticipate that the mass of Ω�

b will soon be measured at
the LHC.
The present work has clear physical implications. The

mean fields of the pion play indeed a crucial role in
explaining not only the masses of the lowest-lying baryons
in the light-quark sector but also those of the heavy
baryons. The feedback of the heavy quark on the light
sector may be of order of 30%, but it largely cancels in the

heavy-baryon splittings. This aspect of the pion mean field
deserves further study.
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