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As an extension to our previous work, we study the transport properties of the Witten-Sakai-Sugimoto
model in the black D4-brane background with smeared D0 branes (D0-D4/D8 system). Because of the
presence of the D0 branes, in the bubble configuration, this model is holographically dual to four-
dimensional QCD or Yang-Mills theory with a Chern-Simons term, and the number density of the
D0 branes corresponds to the coupling constant (θ angle) of the Chern-Simons term in the dual field theory.
In this paper, we accordingly focus on the small number density of the D0 branes to study the sound mode
in the black D0-D4 brane system since the coupling of the Chern-Simons term should be quite weak in
QCD. Then, we derive its five-dimensional effective theory and analytically compute the speed of sound
and the sound wave attenuation in the approach of gauge/gravity duality. Our result shows the speed of
sound and the sound wave attenuation are modified by the presence of the D0 branes. Thus, they depend on
the θ angle or chiral potential in this holographic description.
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I. INTRODUCTION

Since the gauge/gravity duality or AdS=CFT correspon-
dence was proposed, it has been a valuable tool in
analyzing near-equilibrium dynamics of the strongly
coupled plasma for a long time [1–5]. Many people believe
that the QCD quark-gluon plasma (QGP) has been pro-
duced in heavy-ion collision experiments at the Relativistic
Heavy-ion Collider in recent years [6–8], and thus the
potential application of gauge/gravity or AdS=CFT corre-
spondence for the hydrodynamic description of QGP has
become the most important motivation of research in this
direction. On the other hand, as one famous top-down
prototype of holographic QCD, the Witten-Sakai-Sugimoto
model [9–11] introduces a supergravity description based
on the geometric background generated by Nc D4 branes
compactified on a cycle. Naturally, studying the strongly
coupled hydrodynamics of QCD has become one of the
most interesting aspects of this holographic model [12–14].
The Witten-Sakai-Sugimoto model is realizing dual

[15,16] to a four-dimensional QCD-like theory in the
large-Nc limit. Specifically, the D4 branes are compactified
on a cycle with appropriate boundary conditions; therefore,
the dual field theory is nonconformal and nonsupersym-
metric and couples to the Kaluza-Klein field in the adjoint
representation. Additionally, there are Nf species of mass-
less flavored quarks introduced by embedding Nf pairs of
probe D8=D8 branes. In the D4 solitonic solution, the
flavor D8=D8 branes are connected in the IR region, which

holographically corresponds to the broken chiral symmetry
in the dual field theory, and the light mesons come from the
world volume theory on the connected D8=D8 branes in its
low-energy effective theory.
Previously, the setup of the original Witten-Sakai-

Sugimoto model was parallely implanted into the D4 brane
background with smeared D0 branes [17] as an extension
(i.e., the D0-D4/D8 brane system). And this system is
holographically dual to the QCD or Yang-Mills theory with
a topological term (i.e., the Chern-Simons term). It would
be more clear if we take into account the action of the
D4 branes in the presence of the smeared D0 branes,

SD4
¼ −μ4Tr

Z
d4xdx4e−ϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− det ðGþ F Þ

p

þ μ4

Z
C5 þ

1

2
μ4

Z
C1∧F∧F ; ð1:1Þ

where μ4 ¼ ð2πÞ−4l−5s , ls is the size of the string, G is the
induced metric, and F ¼ 2πα0F, which is proportional to
the gauge field strength on the D4 brane. C1 and C5 are the
Romand-Romand 1- and 5- forms, respectively, and x4

represents the periodic direction which is wrapped on the
cycle. Obviously, the Yang-Mill action comes from the
leading order of the first part in Eq. (1.1) [i.e., the Dirac-
Born-Infield action] if it could be expanded by small F .
In the bubble background of the Witten-Sakai-Sugimoto
model in the D0-D4 background, we have the solution
C1 ∼ θdx4 [17], and thus the last term in Eq. (1.1) could be
integrated as
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Z
Sx4

C1 ∼ θ;
Z
Sx4×R

4

C1∧F∧F ∼ θ

Z
R4

F∧F : ð1:2Þ

Consequently, the theory on the world volume of the D4
branes holographically corresponds to the QCD or Yang-
Mills theory with a topological term as shown in Eq. (1.2).
Phenomenologically, this topological term (1.2) may lead
to some observable effects such as the chiral magnetic
effect (or some other effect in the glueball condensation)
[18,19]. Therefore, while the experimental upper bounds on
θ are quite small, the θ dependence in QCD or Yang-Mills
theory is very interesting. Motivated by these, we have had
many previous works on this D0-D4/D8 holographic
system such as Refs. [20–22] (also see other people’s
work about the holographic θ dependence in Refs. [23,24]).
Although the dual field theory of this system is less clear1,
in this manuscript, we would like to extend the study to the
hydrodynamics in the black D0-D4 system since the θ
angle is related to the chiral potential as [25].
The background geometry of the black D0-D4 brane

system also satisfies the condition of Refs. [30,31], so the
shear viscosity η saturates the universal viscosity bound as
in Ref. [32],

η

s
¼ 1

4π
; ð1:3Þ

where s is the entropy density. It shows η=s should not be
affected by the presence of the D0 branes (in other words,
the θ angle). Hence, we are going to take a next step toward
understanding transport phenomena in four-dimensional
gauge plasma, i.e., to study the sound waves in this
holographic system. And much research of the sound
waves by holographic duality could be reviewed, such as
Refs. [33,34], also in the original Witten-Sakai-Sugimoto
model [12]. Therefore, as a generalization and comparison
to the present results in Ref. [12], it would be quite
interesting to consider the influence of the θ angle or
chiral potential on the sound mode by this holographic
system.
In this paper, after this Introduction, we will review the

geometry of the black D0-D4 system briefly in Sec. II.
Then, we derive the five-dimensionally effective theory of
this system in Sec. III. Because of the presence of the
D0 branes, it shows there should be a vector field in the
effective theory, which is in addition to what has been
studied in Ref. [12]. Interestingly, this vector might relate to

some other observable effect.2 Moreover, we find our
effective theory is also similar to the resultant theory in
Refs. [35,36]. In Sec. IV, we study the fluctuations of
the relevant fields in its effective theory and discuss how
to simplify the following computations for the sound
mode. Then, in Sec. V, the speed of the sound and
the sound wave attenuation are accordingly calculated in
the hydrodynamic limit. We find they are affected by the
presence of the D0 branes, and this may be interpreted as
the modification from the θ angle (1.2) in the viewpoint of
the dual field theory, or in other words, the speed of the
sound and the sound wave attenuation depend on the chiral
potential (μ5) in this holographic description. The final
section is the summary and discussion of this paper.

II. REVIEW OF D0-D4 BACKGROUND

We are going to review the black D0-D4 system briefly
in this section, and some results have been presented in
Refs. [17,20–22,37,38]. In the Einstein frame, the black
brane solution of Nc D4 brane with N0 smeared D0 branes
reads [17,38]

ds2 ¼ H
−3
8

4 ½−H−7
8

0 fTðUÞðdx0Þ2 þH
1
8

0δijdx
idxj

þH
1
8

0ðdS1Þ2� þH
5
8

4H
1
8

0

�
dU2

fTðUÞ þ U2dΩ2
4

�

e−ðΦ−Φ0Þ ¼ H1=4
4 =H3=4

0 ; F2 ¼
1ffiffiffiffi
2!

p A
U4

1

H2
0

dU∧dx0;

F4 ¼
1ffiffiffiffi
4!

p Bϵ4; ð2:1Þ

where

A¼ð2πlsÞ7gsN0

ω4V4

; B¼ð2πlsÞ3gsNc

ω4

; eΦ0 ¼ gs;

H4¼ 1þU3
Q4

U3
; H0 ¼ 1þU3

Q0

U3
; fTðUÞ¼ 1−

U3
Λ

U3
:

ð2:2Þ

We have used gs, dΩ4, ϵ4, and ω4 ¼ 8π2=3 to represent
the string coupling, the line element, the volume form, and
the volume of a unit S4, respectively. UΛ represents
the position of the horizon, and V4 is the volume of the
D4 brane. Notice that x4 is the periodic direction and the
D0-branes have been smeared in the xi, i ¼ 1, 2, 3 and x4

directions homogeneously. Moreover, for the readers’
convenience, the relation between the integration para-
meters A, B, UQ0

, and UQ4
is given as [17]

1While the confined geometry of the original Witten-Sakai-
Sugimoto model corresponds to the confinement phase, it is
less clear for the deconfined geometry (black brane back-
ground) in the dual field theory. It has been discussed in
Refs. [26,27] and also in our previous study [28,29]. In this
sense, as an implanted version of the original Witten-Sakai-
Sugimoto model, the dual field theory of the black D0-D4/D8
system is also less clear.

2This additional vector may be related to the chiral vortical
separation effect [14]; we would like to do a future study of it in
our framework.
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A¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

Q0
ðU3

Q0
þU3

ΛÞ
q

;

B¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U3

Q4
ðU3

Q4
þU3

ΛÞ
q

: ð2:3Þ

By taking the near-horizon limit, i.e., fixing U=α0 and
UΛ=α0 where α0 ¼ l2s , we have the relations

U3
Q4

→ πα03=2gsNc ¼
βg2YMNcl2s

4π
≡ R3;

H4ðUΛÞ →
R3

U3
Λ

;

β →
4π

3
U−1=2

Λ R3=2H1=2
0 ðUΛÞ; ð2:4Þ

where β is the size of the periodic time direction.
Consequently, in the near-horizon limit, the black brane
solution (2.1) becomes

ds2¼
�
U
R

�9
8½−H−7

8

0 fTðUÞðdx0Þ2þH
1
8

0δijdx
idxjþH

1
8

0ðdS1Þ2�

þ
�
R
U

�15
8

H
1
8

0

�
dU2

fTðUÞþU2dΩ2
4

�

eΦ¼gs

�
U
R

�
3=4

H3=4
0 : ð2:5Þ

Then, the deformed relations in the presence of D0 branes
to the variables in QCD are

R3 ¼ λl2s
2MKK

; gs ¼
λ

2πMKKNcls
;

UΛ ¼ 2

9
MKKλl2sH0ðUΛÞ; ð2:6Þ

where λ ¼ g2YMNc is the ’t Hooft coupling constant and
MKK is the mass scale.

III. DIMENSIONAL REDUCTION TO
FIVE-DIMENSIONAL THEORY

As we are going to study the hydrodynamics by
AdS5=CFT4 duality and the bulk fields in the D0-D4
background are described by ten-dimensional type-IIA
supergravity, in this section, let us first employ the standard
Kaluza-Klein reduction on S1 × S4 as [12,33,36], to derive
the five-dimensionally effective theory of this system. In
the Einstein frame, the ten-dimensional action of type-IIA
supergravity is given as

SIIA ¼ 1

2k20

Z
d10x

ffiffiffiffiffiffiffi
−G

p �
Rð10Þ −

1

2
∇MΦ∇MΦ − eΦ=2jF4j2

− e3Φ=2jF2j2
�
; ð3:1Þ

where ϕ is the dilaton and F4 and F2 are the Romand-
Romand 4- and 2-form field strengths, respectively.
We have used G to represent the determinant of ten-
dimensional metric GMN , where the indexes (M, N) run
from 0 to 9, and the ansatz of the metric

ds2ð10Þ ¼ GMNdxMdxN

¼ e−
10
3
fgabdxadxb þ e2fþ8wðdS1Þ2 þ e2f−2wdΩ2

4;

ð3:2Þ

where xa represents xa ¼ fxμ; Ug, μ ¼ 0, 1…3, would be
helpful for the dimensional reduction. Furthermore, we
have assumed that the S1 × S4 dependence could be
trivially reduced, which means the fields f and w do not
depend on S1 × S4. By using the ansatz (3.2), we could
obtain some useful relations, which are

ffiffiffiffiffiffiffi
−G

p
¼ ffiffiffiffiffiffi

−g
p

e−
10
3
fg1=24 ;ffiffiffiffiffiffiffi

−G
p

jF4j2 ¼ B2e−8ðf−wÞ
ffiffiffiffiffiffi
−g

p
e−

10
3
fg1=24 ;ffiffiffiffiffiffiffi

−G
p

jF2j2 ¼
ffiffiffiffiffiffi
−g

p
FabFcdgacgbde

10
3
fg1=24 ;ffiffiffiffiffiffiffi

−G
p ∇MΦ∇MΦ ¼ ffiffiffiffiffiffi

−g
p

g1=24 ∇aΦ∇aΦ; ð3:3Þ

where g4 represents the determinant of the metric on S4 and
gab is the five-dimensional metric. The relation between the
ten-dimensional Rð10Þ and five-dimensional Rð5Þ curvature
scalar is given as3

Rð10Þ ¼ e
10
3
f

�
Rð5Þ − 20gab∂aw∂bw −

40

3
gab∂af∂bf

�

þ 12e−2ðf−wÞ: ð3:4Þ

After inserting Eq. (3.4) into Eq. (3.1) and integrating over
S1 × S4, we obtain the five-dimensional effective action,
which takes the form

S5d¼
πV4

k20

Z
d5x

ffiffiffiffiffiffi
−g

p �
Rð5Þ−

1

2
gab∂aΦ∂bΦ−20gab∂aw∂bw

−
40

3
gab∂af∂bf−P−e

10
3
fþ3

2
ΦFabFcdgacgbd

�
; ð3:5Þ

where V4 represents the volume of the 4-sphere and

P ¼ B2e
Φ
2
−34

3
fþ8w − 12e−

16
3
fþ2w: ð3:6Þ

The equations of motion for Φ, w, f, and gab could be
obtained from Eq. (3.5) and are as follows:

3Wewill not give the full relation in Eq. (3.4) since there would
be some additional total derivatives if imposing the full relation of
Eq. (3.4) to the action (3.1). Those terms have thus been dropped.
So, only the relevant terms are given in Eq. (3.4).
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gab∇a∇bf−
3

80

∂P
∂f −

1

8
e
10
3
fþ3

2
ΦFabFcdgacgbd ¼ 0;

gab∇a∇bw−
1

40

∂P
∂w¼ 0;

gab∇a∇bΦ−
∂P
∂Φ−

3

2
e
10
3
fþ3

2
ΦFabFcdgacgbd ¼ 0;

∂a½
ffiffiffiffiffiffi
−g

p
e
10
3
fþ3

2
ΦFab� ¼ 0;

1

2
∂aΦ∂bΦþ20∂aw∂bwþ40

3
∂af∂bfþ

1

3
gabP

þ
�
2FcaFc

b−
1

3
gabFcdFcd

�
e
10
3
fþ3

2
Φ¼Rð5dÞ

ab :

ð3:7Þ

We have used Fab to represent the components of the
Romand-Romand 2-form F2. Then, let us consider the five-
dimensional ansatz of the metric as

ds2ð5Þ ¼ −c21dt2 þ c22δijdx
idxj þ c23dU

2; ð3:8Þ

which is obtained from the following corresponding ten-
dimensional metric (3.2):

ds2ð10Þ ¼ e−
10
3
f½−c21dt2 þ c22δijdx

idxj þ c23dU
2�

þ e2fþ8wðdS1Þ2 þ e2ðf−wÞdΩ2
4: ð3:9Þ

Comparing Eq. (3.9) to the black brane solution of the
Witten-Sakai-Sugimoto model in the D0-D4 background
(2.1) leads to the relations

f ¼ 1

16
logH0 þ

13

80
logU;

w ¼ 1

10
logU;

c1 ¼ f1=2T U5=6H−1=3
0 ;

c2 ¼ H1=6
0 U5=6;

c3 ¼ f−1=2T H1=6
0 U−2=3; ð3:10Þ

where we have set gs ¼ R ¼ 1 for convenience (as a

comparison to Ref. [12]) so that B ¼
ffiffi
9
2

q
. One can verify

the reduced functions in Eq. (3.10) satisfy the five-
dimensional effective equations of motion (3.7) consis-
tently. Consequently, we obtain the five-dimensional effec-
tive action (3.5) and its solution (3.9), (3.10) of our D0-D4
brane system. However, a difference from the original
D4-brane system is that there is an additional vector
field Ca in the low-energy effective theory of which the
field strength is the Romand-Romand 2-form defined
as Fab ¼ ∂aCb − ∂bCa.

IV. FLUCTUATIONS

In this section, let us study the fluctuations of the
relevant fields in the black D0-D4 background with the
replacements4

gab → gab þ hab;

f → f þ δf;

w → wþ δw;

Φ → Φþ δΦ;

Ca → Ca þ δCa; ð4:1Þ

where fhab; δf; δw; δΦ; δCag are the fluctuations, while
fgab; f; w;Φ; Cag are the background configurations
of the D0-D4 system, i.e., the classical solution of the
equations of motion (3.7). For the fluctuations of the
metric, we are going to choose the following gauge as
[12,33,34,36]:

haU ¼ 0: ð4:2Þ

Furthermore, we have assumed that the fluctuations
of the metric depend on ft; z; Ug5 only; i.e., the system
we are considering is Oð2Þ rotationally symmetric in the
x − y plane.
In the linearized case, the following sets of the metric

are decoupled from each other because of the Oð2Þ
symmetry [34]:

fh12g;
fh11 − h22g;
fh01; h13g;
fh02; h23g;
fh00; hαα ¼ h11 þ h22; h03; h33g: ð4:3Þ

While the first three sets in Eq. (4.3) are related to the shear
modes, the last set corresponds to the sound waves,
which is the concern in this manuscript. Besides, there
are additional fluctuations as fδf; δw; δΦ; δCag from the
dimension-reductional scalars and vector. As a comparison,
let us employ the similar conventions as [12,33,36] by
introducing6

4By the solution for the D0-D4 background (2.1), we have
assumed that only one component of Ca is nonzero which is Ct.

5The coordinate xμ could be identified as ft; x; y; zg.
6It would not be confused with Eqs. (1.1) and (1.2) if we

use the same F to represent the fluctuation of the function f
here.
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h00 ¼ e−iωtþiqx3c21Htt; h03 ¼ e−iωtþiqx3c22Htz; hαα ¼ e−iωtþiqx3c22Hαα; h33 ¼ e−iωtþiqx3c22Hzz;

δf ¼ e−iωtþiqx3F ; δw ¼ e−iωtþiqx3W; δΦ ¼ e−iωtþiqx3φ; δCa ¼ e−iωtþiqx3Ca; ð4:4Þ

where the definitions of the functions c1 and c2 have been given in Eq. (3.10) and fHtt; Htz; Hαα; Hzz;F ;W;φ; Cag
are the functions which depend on the radial coordinate U only. By inserting Eq. (4.1) and (4.4) into Eq. (3.7)
and expanding all the equations of motion at a linearized level, we obtain five ordinary differential equations as
in the Appendix, and the relevant equations are collected once we evaluate Eqs. (A1)–(A5) by Eqs. (3.9), (3.10),
and (4.4),

0 ¼ H00
tt þ

�
ln
c21c

3
2

c3

�0
H0

tt − ½ln c1�0H0
ii −

c23
c21

�
q2

c21
c22

Htt þ ω2Hii þ 2ωqHtz

�

−
2

3
c23

�∂P
∂f F þ ∂P

∂wW þ ∂P
∂Φφ

�
þ
�
6c01c

0
2

c1c2
−
2c01c

0
3

c1c3
þ 2c001

c1
þ 2

3
c23P

�
Htt

þ 4FtU

9c21
e
10
3
fþ3

2
Φð12F̂tU þ 20FtUF þ 9FtUφÞ; ð4:5Þ

0 ¼ H00
tz þ

�
ln

c52
c1c3

�0
H0

tz þ qω
c23
c22

Hαα þ
�
2c01c

0
2

c1c2
þ 4c022

c22
−
2c02c

0
3

c2c3
þ 2c002

c22
þ 2

3
c23P

�
Htz

×
4FtU

3c21
e
10
3
fþ3

2
Φ

�
3F̂3U

c21
c22

þ FtUHtz

�
; ð4:6Þ

0 ¼ H00
aa þ

�
ln
c1c52
c3

�0
H0

aa þ
c23
c21

�
ω2 − q2

c21
c22

�
Haa þ ðH0

zz −H0
ttÞ½ln c22�0

þ
�
4c1c3c022 þ 2c2c3c01c

0
2 − 2c2c1c02c

0
3

c1c22c3
þ 2c002

c2
þ 2

3
c23P

�
Haa þ

4

3
c23

�∂P
∂f F þ ∂P

∂wW þ ∂P
∂Φφ

�

þ 4FtU

9c21
e
10
3
fþ3

2
Φð20FtUF þ 12F̂tU þ 6FtUHtt þ 3FtUHaa þ 9FtUφÞ; ð4:7Þ

0 ¼ H00
zz þ

�
ln
c1c42
c3

�0
H0

zz þ ðH0
aa −H0

ttÞ½ln c2�0 þ
c23
c21

�
ω2Hzz þ 2ωqHtz þ q2

c21
c22

ðHtt −HaaÞ
�

þHzz

�
c01c

0
2

c1c2
þ c022

c22
−
c02c

0
3

c2c3
þ 2c002

c2
þ 2

3
c23P

�
þ 2

3
c23

�∂P
∂f F þ ∂P

∂wW þ ∂P
∂Φφ

�

þ 2FtU

9c21
e
10
3
fþ3

2
Φð12F̂tU þ 20FtUF þ 6FtUHtt þ 6FtUHzz þ 9FtUφÞ; ð4:8Þ

0 ¼ F 00 þ
�
ln
c1c32
c3

�0
F 0 þ 1

2
f0ðH0

ii −H0
ttÞ þ

c23
c21

�
ω2 − q2

c21
c22

�
F −

3

80
c23

�∂2P
∂f2 F þ ∂2P

∂f∂wW þ ∂2P
∂f∂Φφ

�

þ FtU

24c21
e
10
3
fþ3

2
Φð12F̂tU þ 20FtUF þ 6FtUHtt þ 9FtUφÞ; ð4:9Þ

0 ¼ W 00 þ
�
ln
c1c32
c3

�0
W 0 þ 1

2
w0ðH0

ii −H0
ttÞ þ

c23
c21

�
ω2 − q2

c21
c22

�
W −

1

40
c23

� ∂2P
∂w∂fF þ ∂2P

∂w2
W þ ∂2P

∂w∂Φφ

�
; ð4:10Þ

0 ¼ φ00 þ
�
ln
c1c32
c3

�0
φ0 þ 1

2
Φ0ðH0

ii −H0
ttÞ þ

c23
c21

�
ω2 − q2

c21
c22

�
φ − c23

� ∂2P
∂Φ∂fF þ ∂2P

∂Φ∂wW þ ∂2P
∂Φ2

φ

�

þ FtU

2c21
e
10
3
fþ3

2
Φð12F̂tU þ 20FtUF þ 6FtUHtt þ 9FtUφÞ; ð4:11Þ
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where F̂ab ¼ Aeiωt−iqx3ð∂aδCb − ∂bδCaÞ.7 Besides, there are three additional first-order constraints which come from
association with the (partially) fixed diffeomorphism invariance,8

0 ¼ ω

�
H0

ii þ
�
ln
c2
c1

�0
Hii

�
þ q

�
H0

tz þ 2

�
ln
c2
c1

�0
Htz

�
þ ω

�
80

3
f0F þ 40w0W þ Φ0φ

�
; ð4:12Þ

0 ¼ q

�
H0

tt −
�
ln
c2
c1

�0
Htt

�
þ c22
c21

ωH0
tz − qH0

aa þ 4iF̂tz
FtU

c21
e
10
3
fþ3

2
Φ − q

�
80

3
f0F þ 40w0W þ Φ0φ

�
; ð4:13Þ

0 ¼ ½ln c1c22�0H0
ii − ½ln c32�0H0

tt þ
c23
c21

�
ω2Hii þ 2ωqHtz þ q2

c21
c22

ðHtt −HaaÞ
�

þ c23

�∂P
∂f F þ ∂P

∂wW þ ∂P
∂Φφ

�
−
�
80

3
f0F 0 þ 40w0W 0 þ Φ0φ0

�
þ 2

3
c23PðHii −HttÞ

þ
�
c01c

0
2

c1c2
þ 2c022

c22
−
c02c

0
3

c2c3
þ c002

c2

�
Hii þ

�
c01c

0
3

c1c3
−
3c01c

0
2

c1c2
−
c001
c1

�
Htt

þ FtU

3c21
e
10
3
fþ3

2
Φð12F̂tU þ 20FtUF þ 10FtUHtt þ 2FtUHaa þ 2FtUHzz þ 9FtUφÞ: ð4:14Þ

Notice that we do not give the relations of the fluctuations from the equation of motion for the vector field Ca, since this
vector part corresponds to the diffusive or transverse channel [34], which are less relevant to the sound modes [34].
Therefore, we will not attempt to discuss more about the vector part, and thus we can simply set δCa ¼ 0 if studying the
sound mode only. Nevertheless, the surviving equations of motion from Eqs. (4.5)–(4.14) are still complicated. On the other
hand, the parameterA related to the coupling constant of the topological term in the dual field theory as [as shown in (1.2)]
could be very small, thus it simplifies the calculation greatly if considering the leading order in smallA expansion of all the
equations in Eqs. (4.5)–(4.14). Then, if we introduce the gauge-invariant variables as [12,33,34,36]

ZH ¼ 4
q
ω
Htz þ 2Hzz −Haa

�
1 −

q2

ω2

c01c1
c02c2

�
þ 2

q2

ω2

c21
c22

Htt; Zf ¼ F −
f0

½ln c42�0
Haa;

Zw ¼ W −
w0

½ln c42�0
Haa; ZΦ ¼ φ −

Φ0

½ln c42�0
Haa ð4:15Þ

with a new coordinate

x ¼ c1
c2

; ð4:16Þ

then we find the decoupled equations of motion for Z’s by imposing Eqs. (4.5)–(4.14) in the small A expansion as

0¼d2ZH

dx2
þ
�
3q2ð2x2−1Þþ5ω2

xð5ω2−q2ð3þ2x2ÞÞþA2h1ðxÞ
�
dZH

dx

þ
�
4

9

ð−ω2þq2x2Þðq2ð3þ2x2Þ−5ω2Þ−18q2UΛx2ð1−x2Þ5=3
ð5ω2−q2ð3þ2x2ÞÞð1−x2Þ5=3x2UΛ

þA2h2ðxÞ
�
ZH

þ
�
4

15

q2ð−3q2þ5ω2Þ
ω2ð5ω2−q2ð3þ2x2ÞÞþA2g1ðxÞ

�
κþOðA4Þ;

0¼d2κ
dx2

þ
�
1

x
þA2g2ðxÞ

�
dκ
dx

þ
�

4ðω2−q2x2Þ
9UΛx2ð1−x2Þ5=3þA2g3ðxÞ

�
κþOðA4Þ; ð4:17Þ

7By this definition, there would be an i factor in F̂tz once we calculate the derivative with respect to z or x3. In this sense, Eq. (4.13) is
a real equation although there is an i factor.

8In fact, there are more additional equations from the vanished components of the linearized Ricci tensor. We have checked that those
equations determine the vanished components of δFab. As a result, the nonzero and relevant components of δFab mixed to the sound
mode are only δFtz, δFzU , and δFtU. So, the nonzero components of δCa could be δCt only if CU and δCU are gauged by CU, δCU ¼ 0.
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where

κ ¼ 48Zw þ 9Zϕ þ 52Zf;

h1ðxÞ ¼
2ðq4ð54 − 33x2 þ 84x4 þ 20x6Þ − 10q2ð9þ 16x4Þω2 þ 125x2ω4Þ

45xU6
Λðq2ð3þ 2x2Þ − 5ω2Þ2 ;

h2ðxÞ ¼
4

1215x2ð−1þ x2Þ2U7
Λðq2ð3þ 2x2Þ − 5ω2Þ

× ½5q6x2ð1 − x2Þ1=3ð−27þ 36x4 þ 16x6Þ þ 125ð3 − 4x2Þð1 − x2Þ1=3ω6

þ 15q2ω2ð27ð−1þ x2Þ3ð−3þ 2x2ÞUΛ þ 5ð1 − x2Þ1=3ð−6 − x2 þ 12x4Þω2Þ
− 3q4ð27ð−1þ x2Þ3ð−9þ 4x2ÞUΛ þ 5ð1 − x2Þ1=3ð−9 − 30x2 þ 32x4 þ 32x6Þω2Þ�: ð4:18Þ

We will not give the explicit formula of the functions
g1;2;3ðxÞ used in Eq. (4.17) since they are too messy and
lengthy. Moreover, in the next section, it will be clear that
the functions g1;2;3ðxÞ are actually less useful to the
calculations for the sound mode because the sound mode
is relevant to ZH only.

V. HYDRODYNAMIC LIMIT IN THE
SMALL A EXPANSION

In this section, let us study the physical fluctuation
equations (4.17) in the hydrodynamic limit, i.e.,
ω → 0; q → 0, but with ω

q fixed as a constant. As in many
discussions, only the leading and next-to-leading solution
(in the small q expansion) of Eq. (4.17) is needed. On the
hand, since the sound mode is relevant to ZH instead of κ,
so, similar to the discussions and calculations in
Refs. [12,33,34,36], we can simply choose κ ¼ 0 as the
solution for Eq. (4.17) consistently,9 and for ZH, we find
that at the horizon x → 0þ, ZH → x� iω

2πTx−A;10 By imposing
the incoming boundary condition on all physical modes, we
assume that

ZH ¼ x−
iω
2πTx−AzH; ð5:1Þ

where zH must be regular at the horizon. Additionally, since
we are interested in the hydrodynamic pole dispersion
relation in the stress-energy correlation, it would be
convenient to parametrize the ω and q as

ω ¼ vsq − iq2Γ; ð5:2Þ

where

ω ¼ ω

2πT
; q ¼ q

2πT
ð5:3Þ

and vs and Γ are the speed of sound and the sound wave
attenuation, respectively, which would be determined from
the pole dispersion relation. Without the loss of generality,
we can choose the boundary condition for zH as [12]

zHjx→0þ ¼ 1; zHjx→1−
¼ 0: ð5:4Þ

By expanding zH with small q, we assume

zH ¼ zH;0 þ iqzH;1: ð5:5Þ

Inserting Eqs. (5.1)–(5.4) into Eq. (4.17) in the small q and
A expansion with κ ¼ 0, we obtain the following equations
for zH;0 and zH;1 as

0 ¼ z00H;0 −
6x2 þ 5v2s − 3

xð2x2 − 5v2s þ 3Þ z
0
0;H þ 8

2x2 − 5v2s þ 3
z0;H

þA
��

1

x2
þ 6x2 þ 5v2s − 3

x2ð2x2 − 5v2s þ 3Þ
�
z0;H −

2

x
z00;H

�
ð5:6Þ

for leading order in Oðq0Þ and

0¼z00H;1þ
3−5v2s−6x2

xð3−5v2sþ2x2Þz
0
H;1þ

8

3−5v2sþ2x2
zH;1þ

2vsð40x2Γþ20x2v2s−25v4sþ30v2s−4x4−12x2−9Þ
xð2x2−5v2sþ3Þ2 z0H;0

−
8vsð−2x2þ5v2s−3þ10ΓÞ

ð2x2−5v2sþ3Þ2 zH;0−A
�
2z0H;1

x
−

8

3−5v2sþ2x2
zH;1þ

2vsð40x2Γþ20x2v2s−25v4sþ30v2s−4x4−12x2−9Þ
x2ð2x2−5v2sþ3Þ2 zH;0

�
:

ð5:7Þ

9It has been discussed that κ ¼ 0 could be a solution for theA ¼ 0 case [12], so it is also consistent with this solution for κ in the small
A case.

10As A > 0, it means x−A is also singular if x → 0. This behavior at the horizon is a bit different from the original D4-brane system;
however, it should be consistent in the small A limit.
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for next-to-leading order in Oðq1Þ. Then, the solution for Eq. (5.6) can be obtained as

zH;0 ¼
ð3 − 3A − 5v2s þ 5Av2s − 2x2 − 2Ax2ÞC1

1 − 5A − 5v2s þ 5Av2s
þ ð3 − 3A − 5v2s þ 5Av2s − 2x2 − 2Ax2Þ

2ð1þAÞ2ð1 − 5A − 5v2s þ 5Av2sÞ

× xA
�
1

A
−

4ð−3þ 5v2sÞ
ð−1þAÞð−3þ 5v2s þ 2x2 þAð3 − 5v2s þ 2x2ÞÞ

�
C2; ð5:8Þ

where C1;2 are two integration constants. We impose the
boundary condition (5.4) for zH;0,

zH;0jx→1− ¼ 0: ð5:9Þ

Besides, in order to compare our solution (5.8) with
Ref. [12], we further require

zH;0jx→0þ ¼ 1: ð5:10Þ

Thus, the relation between the integration constants C1;2 is
obtained as

C2 ¼ −
2Að−1þA2Þ2C2

1

4Aþ C1 − 2AC1 þA2C1

: ð5:11Þ

The solution (5.8) should be definitely able to return to [12]
in the small A limit, and in this sense, we have the
following extra relations:

C1 ¼
1 − 5v2s
3 − 5v2s

; C2 ∼OðA4Þ: ð5:12Þ

Accordingly, it yields

vs ≃ 1ffiffiffi
5

p −
2Affiffiffi
5

p þOðA2Þ: ð5:13Þ

So, the speed of the sound wave is shifted shown as
Eq. (5.13). Then, the equation of motion for zH;1 could be
obtain from Eq. (5.7) by inserting the solution of (5.8),
(5.13), (5.11), and (5.12). However, the resultant equation
from Eq. (5.7) is too complicated to solve analytically.
Hence, we expand zH;1 in the small A case as

zH;1ðxÞ ¼ XðxÞ þAYðxÞ þOðA2Þ: ð5:14Þ

By the expansion (5.14), we obtain the decoupled equation
for XðxÞ in leading order OðA0Þ as

0¼X 00 þ ð1−3x2Þ
xð1þx2ÞX

0 þ 4

1þx2
X þ 8−20Γffiffiffi

5
p ð1þx2Þ ; ð5:15Þ

and the equation for YðxÞ in the next-to-leading order
OðA1Þ is

0 ¼ Y00 þ −2ð−1þ x2Þ2X 0 þ ð1 − 2x2 − 3x4ÞY0

xð1þ x2Þ2 þ 4ð−1þ x2Þ2X þ 4ð1þ x2ÞY
ð1þ x2Þ2

þ 4 − 4x6 þ x4ð−22þ 125ΓÞ þ x2ð−46þ 205ΓÞ
2

ffiffiffi
5

p
x2ð1þ x2Þ2 : ð5:16Þ

The solution for Eqs. (5.15) and (5.16) could be found as

XðxÞ ¼ 1ffiffiffi
5

p ð5Γ − 2Þ þD1ð−1þ x2Þ þD2ð−2 − ln xþ x2 ln xÞ

YðxÞ ¼ ð−1þ x2ÞE1 þ E2ð−2 − ln xþ x2 ln xÞ þ 1

40
ð2

ffiffiffi
5

p
− 165

ffiffiffi
5

p
Γ

− 160D2 − 160D2 ln x − 32
ffiffiffi
5

p
ln x − 8

ffiffiffi
5

p
ln2xþ 8

ffiffiffi
5

p
x2ln2x − 40D2ln2xþ 40x2D2ln2xÞ; ð5:17Þ

where D1;2 and E1;2 are the integration constants. Since we have required that zH;1 must be regular at the horizon, it yields

E2 ¼
1ffiffiffi
5

p
A
; D2 ¼ −

1ffiffiffi
5

p : ð5:18Þ

Then, imposing the boundary condition (5.4) to (5.14) with Eq. (5.17), we obtain
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D1 ¼ −AE1;

Γ≃ 2

5
þ 4

5
AþOðA2Þ; ð5:19Þ

which shows how the sound wave attenuation is also
shifted by A.

VI. SUMMARY AND DISCUSSION

In this paper, first we studied the five-dimensional
effective theory of our black D0-D4 system by the dimen-
sional reduction (Kaluza-Klein reduction). It contains an
additional vector field to the five-dimensional effective
theory of the original D4-brane system as [12]. Then,
employing a technique similar to that in Refs. [12,33], the
physical fluctuations in the five-dimensional effective
theory of our D0-D4 system was also studied. Although
the dual field theory of the black D0-D4 system is not
completely clear (which is also the case for the original
D4-brane system), we calculated the speed of sound and the
sound wave attenuation in the hydrodynamic limit by using
our five-dimensional effective theory. Particularly, we
focused on the small A expansion in our calculations since
the parameter A is related to the θ angle (the number
density of D0 branes), which should be very small in QCD.
While our solution of the gauge-invariant variable (5.8),

(5.14) is quite different, it could return to [12] if expanded by
small A. Accordingly, it is allowed to compare our result
with Ref. [12]. Equations (5.13) and (5.19) show the speed
of sound and the sound wave attenuation are all shifted by
the presence of the D0 branes, and they return to the results
in [12] consistently if setting A ¼ 0 (i.e., no D0 branes).
Because of Eq. (1.2), Eqs. (5.13) and (5.19) could be
interpreted as the modification from the θ angle or the
chiral potential to the speed of sound and the sound
wave attenuation. In hydrodynamics, the speed of sound
depends on the mass of fermions and bosons and also the

temperature [33]. But our holographic result suggests an
additional θ dependence or chiral potential dependence if the
topological term of QCD or Yang-Mills theory is considered,
and as the leading-order modification from the topological
term (the θ angle), it shows that the speed of sound decreases
while the sound wave attenuation increases.11

Besides, we need to keep in mind the simplification and
the approximation used in our calculations. First, we do not
consider the fluctuations from the vector since this part is less
relevant to the sound mode [13,34], so we simply turn off
this part. However, this may lead to some observable effects
such as the chiral vortical separation effect in hydrodynam-
ics. Thus, a future study about it would be interesting and
natural. Second, the solution for κ (the combination of the
gauge invariant variable with Zw, Zf, and ZΦ) has been
chosen as κ ¼ 0. This solution for κ is a rough choice, while
it is consistent with its equation of motion (4.17) (and also
consistent with its boundary condition in Ref. [12]).
Therefore, a further improvement to take into account the
solution of κ is also needed, although it might not change the
results about the sound modes qualitatively.
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APPENDIX: THE EQUATIONS OF MOTION
FOR THE RELEVANT FIELDS

In this Appendix, we collect the equations of motion for
the fluctuations in the five-dimensional effective theory.
From Eq. (3.7), at the linearized level, the equations for
the fluctuations are

gab½∂a∂bδf − ðΓc
ab∂cδf þ Γð1Þc

ab ∂cfÞ� − hab∇a∇bf −
3

80

� ∂2P
∂f∂Φ δΦþ ∂2P

∂f2 δf þ ∂2P
∂f∂w δw

�

−
1

8
e
10
3
fþ3

2
Φ

�
2FabδFab − hacgbdFabFcd − FabFcdgachbd þ

10

3
FabFabδf þ 3

2
FabFabδΦ

�
¼ 0; ðA1Þ

gab½∂a∂bδw − ðΓc
ab∂cδwþ Γð1Þc

ab ∂cwÞ� − hab∇a∇bw −
1

40

� ∂2P
∂w∂Φ δΦþ ∂2P

∂w2
δwþ ∂2P

∂w∂f δf
�

¼ 0; ðA2Þ

gab½∂a∂bδΦ − ðΓc
ab∂cδΦþ Γð1Þc

ab ∂cΦÞ� − hab∇a∇bΦ −
�∂2P
∂Φ2

δΦþ ∂2P
∂Φ∂f δf þ ∂2P

∂Φ∂w δw

�

−
3

2
e
10
3
fþ3

2
Φ

�
2FabδFab − hacgbdFabFcd − FabFcdgachbd þ

10

3
FabFabδf þ 3

2
FabFabδΦ

�
¼ 0; ðA3Þ

11We noted a recent work [39], which studies the same holographic system, after submitting the first version of this manuscript to the
arXiv, and our result is qualitatively similar to Ref. [39].
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∂a

� ffiffiffiffiffiffi
−g

p
e
10
3
fþ3

2
Φ

�
10

3
Fabδf þ 3

2
FabδΦþ gacgbdδFcd − Fcdhcagbd − Fcdgcahbd

��
¼ 0; ðA4Þ

40

3
ð∂af∂bδf þ ∂aδf∂bfÞ þ 20ð∂aw∂bδwþ ∂aδw∂bwÞ þ

1

2
ð∂aΦ∂bδΦþ ∂aδΦ∂bΦÞ

þ 1

3
gab

�∂P
∂f δf þ ∂P

∂w δwþ ∂P
∂Φ δΦ

�
þ 1

3
habP þ

�
10

3
δf þ 3

2
δΦ

��
2FcaFc

b −
1

3
gabFcdFcd

�
e
10
3
fþ3

2
Φ

þ
�
2δFcaFc

b þ 2Fc
aδFcb − 2FcaFdbhcd −

2

3
gabFcdδFcd þ

2

3
gabFd

cFdehce −
1

3
habFcdFcd

�
e
10
3
fþ3

2
Φ ¼ Rð1Þ

ab ; ðA5Þ

where Γc
ab and Γð1Þc

ab are defined as

hab ¼ gacgbdhcd;

Γc
ab ¼

1

2
gdcð∂bgda þ ∂agdb − ∂dgabÞ;

Γð1Þc
ab ¼ 1

2
½gcdð∂ahdb þ ∂bhad − ∂dhabÞ − hcdð∂agdb þ ∂bgad − ∂dgabÞ� ðA6Þ

and Rð1Þ
ab is defined as

Rð1Þ
ab ¼ ∂aΓ

ð1Þc
cb − ∂bΓ

ð1Þc
ca þ Γð1Þc

ad Γd
cb þ Γc

adΓ
ð1Þd
cb − Γð1Þc

bd Γd
ca − Γc

bdΓ
ð1Þd
ca : ðA7Þ

Equations (4.5)–(4.14) could be obtained from Eqs. (A1)–(A5).
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