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Level-rank duality relates the observables of two different Chern-Simons theories in which the roles of
the Chern-Simons level and the rank of the gauge group are exchanged. In this paper, we explore the
consequences of this duality in the realm of topological string theory. We show that this duality induces a
number of identities between the open Gromov-Witten invariants of the geometries associated with a knot

K and its mirror image ~K. We show how these identities arise both in the A model and in the dual B model.
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I. INTRODUCTION

The level-rank duality states that there is a correspon-
dence between the primary fields (and also the correlation
functions) of two seemingly different rational conformal
field theories, namely, the SUðNÞk and the SUðkÞN Wess-
Zumino-Witten (WZW) models [1,2].1 The isomorphism
between the vector space of conformal blocks of the WZW
model on a surface Σ and the Hilbert space of the quantized
Chern-Simons theory on Σ × R [5] lifts the level-rank
duality to a duality between two different Chern-Simons
theories. The consequences of this duality for the Chern-
Simons observables—which coincide with certain knot
invariants [5]—have been studied in a great detail in
Refs. [2,4]. An important consequence of this duality is
a simple relation between the colored HOMFLY invariants
of a knot K and its mirror knot ~K.
It is well known that Chern-Simons theory defined on a

three-manifold M is equivalent to the A-model open

topological string theory on the total space T�M→
π
M

[6]. The Chern-Simons partition function is written in terms
of the open topological string amplitudes with the target

space T�M→
π
M. In case of M ¼ S3, these open-string

amplitudes are efficiently captured by the closed-string
amplitudes of the resolved conifold geometry via the large
N duality [7]. Likewise, the Wilson loop expectation values
of Chern-Simons theory are encapsulated in the A-model
open topological string amplitudes on the same target

space, T�S3 →
π
S3, in the presence of probe D4 branes

[8]. In this manner, the large N duality maps the Chern-
Simons Wilson loop expectation value of a knotK to open-
string amplitudes of the resolved conifold geometry with
the insertion of a Lagrangian cycle associated to K.2

Roughly speaking, open-string amplitudes count the num-
ber of holomorphic maps from a genus g Riemann surface
with h boundary components to the target space

Oð−1Þ ⊕ Oð−1Þ → P1. The boundary components of
the Riemann surface are mapped to the Lagrangian cycle
associated to a given knot. The Lagrangian cycle provides
the appropriate boundary conditions for open strings.
Furthermore, mirror symmetry provides another way to
approach the problem of calculating open-string amplitudes
associated to the insertion of a Lagrangian cycle, by means
of the dual B-model geometry.
The large N duality makes an intriguing connection

between knot invariants and the open Gromov-Witten
invariants in the realm of topological string theory. A
natural question to ask in this context is how the level-rank
duality emerges in topological string theory. The level-rank
duality implies a number of identities for knot invariants.
Therefore, it is natural to expect from this duality the
induction of certain identities between the corresponding
open Gromov-Witten invariants. In this paper, we would
like to address this question from both the A-model and the
B-model perspectives.
From the A-model point of view, a knot K is substituted

by a Lagrangian cycle LK in T�S3 → S3. The construction
of the Lagrangian cycleLK was initiated in Refs. [10,11] by
constructing the conormal bundle to the knot K in the
ambient target space T�S3 → S3. However, the rigorous
construction of the Lagrangian cycles associated with an
algebraic knotK—before and after the large N transition—
was established in Ref. [12]. In this construction, replacing
an algebraic knot K by its mirror image ~K amounts to
changing the Lagrangian cycle LK to a new Lagrangian
which describes ~K in the topological string setup. This
would affect the relevant open string amplitudes and hence
the corresponding Gromov-Witten invariants. Tracing this
change in the amplitude, we figure out the identities
between the Gromov-Witten invariants associated with K
and its mirror image ~K.
In the B-model approach, the ambient space geometry is

the mirror of the resolved cornfield which is a noncompact
Calabi-Yau threefold. Under the dictionary of mirror
symmetry, the Lagrangian cycles will be translated to
holomorphic curves in the mirror ambient space. When

1The level-rank duality has been promoted to other classical
Lie groups as well [3,4].

2For a review of the subject, see Ref. [9].

PHYSICAL REVIEW D 94, 066010 (2016)

2470-0010=2016=94(6)=066010(9) 066010-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.066010
http://dx.doi.org/10.1103/PhysRevD.94.066010
http://dx.doi.org/10.1103/PhysRevD.94.066010
http://dx.doi.org/10.1103/PhysRevD.94.066010


one deals with toric Lagrangian cycles, the dictionary of the
mirror symmetry is quite explicit [13,14], and one knows
how to exactly construct the mirror curve associated with
the Harvey-Lawson Lagrangian cycles. However, the
Lagrangian cycles constructed in Ref. [12] are nontoric,
and the recipe of mirror symmetry is not applicable to this
situation, and one cannot easily figure out the correspond-
ing mirror curve associated with an algebraic knot K.
Nonetheless, one can deal with this problem in an indirect
way. It has been shown that the mirror curve associated
with a knot K in fact coincides with a topological invariant
of the knot, known as the augmentation polynomial [15].
This quantity appears in the context of knot contact
homology, and there are methods to calculate it (for a nice
review of the subject, see Refs. [16,17]). The higher genus
and higher hole amplitudes for knots are then constructed
using the techniques spelled out in a great detail in
Ref. [18]. We trace the effect of changing a knot K with
its mirror image ~K on the augmentation polynomial and
show how the identities between open Gromov-Witten
invariants of K and ~K are realized in the B model.
In this paper, we proceed as follows. In Sec. II, we show

that the level-rank duality of Chern-Simons theory leads to
a number of identities between the open Gromov-Witten
invariants associated with a knot K and its mirror ~K. In
Sec. III, we consider the Lagrangian cycles constructed in
Ref. [12] for an algebraic knot K. We show how the
Lagrangian cycles which describeK are affected whenK is
replaced by its mirror image ~K. Following the change in
Lagrangian cycles yields the identities of Sec. II between
the open Gromov-Witten invariants of K and ~K. In Sec. IV,
we illustrate how the identities found in Sec. II are realized
in the B-model approach.

II. CHERN-SIMONS CONSIDERATIONS

In knot theory, there are certain topological operations
which generate a new knot from a given knot. The first
of these operations, O, reverses the orientation of an
oriented knot along it,OðKÞ¼−K. The second operation,M,
is a reflection,3

Mðx; y; zÞ ¼ ðx; y;−zÞ; ð1Þ

of the ambient space. The image of a given knot K under
this map is the mirror image of K, and it is denoted by
~K ¼ MðKÞ. In this process, in the knot diagram of K, all
undercrossings are replaced by overcrossings and vice
versa. The third operation, P, is the composition of the
first two P ¼ O∘M. It turns out that fI;M;O; Pg, in which
I is the identity map, forms an Abelian group—isomorphic

to Z2 ⊕ Z2—under composition of maps. The mirror
image of a given knot K is not necessarily ambient isotopic
to K. Although for chiral knots a knot K and its mirror
image ~K are topologically distinct, their knot invariants are
closely related. It has been shown in Refs. [1,2] that in the
framework of Chern-Simons theory the relation between
the invariants of a knot K and its mirror ~K is governed by
the level-rank duality of Chern-Simons theory.
Although exchanging the roles of the rank and the level

of an affine Lie algebra GðNÞk is not a symmetry of the
algebra, it was shown thatGðNÞk andGðkÞN Chern-Simons
theories are dual to each other [1,3]. Specifically for
SUðNÞk and SUðkÞN Chern-Simons theories defined on
S3, the observables of the two theories are in a one-to-one
correspondence,

hWð ~KÞ
μ iSUðNÞk ¼ hWðKÞ

μt iSUðkÞN : ð2Þ

In Eq. (2), hWðKÞ
μ iSUðNÞk is the expectation value of the

Wilson operator around a knot K, and the Young tableau μ
specifies an irreducible highest-weight representation of
SUðNÞk. The Young tableau μt is the transpose of μ, and ~K
is the mirror of K. To make contact with knot invariants, it
is convenient to work with the two following parameters:

q ¼ exp

�
2πi

kþ N

�
; Q ¼ exp

�
2πiN
kþ N

�
: ð3Þ

The HOMFLY invariant associated to a knot K, colored
with representation μ, is related to the Wilson loop expect-
ation value along that knot in representation μ,

HðKÞ
μ ðQ; qÞ ¼ hWðKÞ

μ iUðNÞk
S00

; ð4Þ

where S00 is the partition function of Chern-Simons theory
on S3. Under the exchange k ↔ N, the quantum parameter
q remains invariant q ↔ q, and Q is replaced by its inverse
Q ↔ Q−1. After incorporating the contribution of the Uð1Þ
factor, the level-rank duality (2) implies

Hð ~KÞ
μ ðQ; qÞ ¼ ð−1ÞjμjHðKÞ

μt ðQ−1; qÞ: ð5Þ

We would like to explore the consequences of Eq. (5) for
open topological string amplitudes. It is well known that
Chern-Simons theory on S3 is equivalent to the topological
A model with the target T�S3 → S3 with Lagrangian
boundary conditions [6]. Roughly speaking, open string
amplitudes count the number of holomorphic maps from
the worldsheet—which is a genus g Riemann surface with h
boundary components—to the target space T�S3 → S3. In
this correspondence, q ¼ eigs and Q ¼ et, where t ¼ iNgs
is the ’t Hooft coupling constant. The genus g amplitude

3The mirror image of a knot K is independent of the choice
of M, because the image of K under any other orientation-
preserving homomorphism is ambient isotopic to ~K [19].

MASOUD SOROUSH PHYSICAL REVIEW D 94, 066010 (2016)

066010-2



with h boundaries and winding vector ~k associated to a knot
K is given in terms of the HOMFLY invariants of K in the
following way:

ωðKÞ
ðg;h;~kÞðQÞ ¼

��
log

�X
~k0
ZðKÞ
~k0

ðQ; qÞTr~k0V
��

Tr~kV

�
g2gþh−2
s

:

In the above expression, after the genus expansion, we only

pick the coefficient of g2gþh−2
s . The partition function ZðKÞ

~k
is given by

ZðKÞ
~k

ðQ; qÞ ¼
X

jμj¼lð~kÞ
χμðC~kÞH

ðKÞ
μ ðQ; qÞ

in which χμðC~kÞ is the character of the symmetric group
Slð~kÞ with conjugacy class C~k. Since the colored HOMFLY

invariants of K are all polynomials (after multiplication by
an appropriate factor Ql, where l is either an integer or a
half-integer number) in terms of Q, the amplitude

ωðKÞ
ðg;h;~kÞðQÞ is also a polynomial of Q. The open

Gromov-Witten invariants of K and the mirror knot ~K
are then obtained as

ωðKÞ
ðg;h;~kÞðQÞ ¼

Xdmax

d¼dmin

GWðKÞ
ðg;hÞðd; ~kÞQd;

ωð ~KÞ
ðg;h;~kÞðQÞ ¼

Xdmax

d¼dmin

GWð ~KÞ
ðg;hÞðd; ~kÞQd; ð6Þ

where dmin and dmax are the lowest and highest degrees of
nonvanishing Gromov-Witten invariants associated with

the genus g amplitude with h boundaries and winding ~k,
respectively. Because of Eq. (5), it is evident that there
should be relations between the open Gromov-Witten
invariants associated with K and ~K. To figure out this
relationship, let us first find how the two partition functions
are related,

Zð ~KÞ
~k

ðQ; qÞ ¼
X

jμj¼lð~kÞ
χμðC~kÞH

ð ~KÞ
μ ðQ; qÞ

¼ ð−1Þj~kj
X

jμj¼lð~kÞ
χμtðC~kÞH

ðKÞ
μt ðQ−1; qÞ

¼ ð−1Þj~kjZðKÞ
~k

ðQ−1; qÞ: ð7Þ

In the second line of Eq. (7), we have used Eq. (5) and the
fact that

χμtðC~kÞ ¼ ð−1Þj~kjþlð~kÞχμðC~kÞ; ð8Þ

where j~kj and lð~kÞ are the number of holes and the total

winding associated with the winding vector ~k, respectively.

To find the relation between the amplitudes associated with
K and ~K, we notice that Tr~k1V · Tr~k2V ¼ Tr~k1þ~k2

V and the

fact that j~kj1 þ j~k2j ¼ j~k1 þ ~k2j. These considerations
together with (6) and (7) result in the following simple
identity between the open Gromov-Witten invariants asso-
ciated with a knot K and its mirror ~K,4

GWð ~KÞ
ðg;hÞðd; ~kÞ ¼ ð−1ÞhGWðKÞ

ðg;hÞðdmin þ dmax − d; ~kÞ :
ð9Þ

The factor ð−1Þh has a physical interpretation in terms of
topological amplitudes. Once a knot K is exchanged by its
mirror ~K, the orientation of the Lagrangian cycle associated
with K is reversed. This in particular implies that the
orientation of all h circles of the corresponding amplitude,
which end on the Lagrangian cycle, are reversed, too. In
string theory language, this parity operation on the
Lagrangian brane changes the action by an overall minus
sign. Therefore, a genus g topological amplitude with h
boundary components on the corresponding D brane is
modified by a factor of ð−1Þh.
To manifestly illustrate the relationship (9), we have

presented the annulus amplitudes associated with the (5, 3)

torus knot and its mirror image gð5; 3Þ. Each row of the
following tables represents the annulus Gromov-Witten
invariant of the given torus knot with the degree specified
on the left. In these tables, f specifies the framing of
the knot.

(5, 3) GWð0;2Þðd; ~k ¼ f2gÞ
d ¼ 0 945þ 469=2f þ 49=2f2

d ¼ 1 −4620 − 1148f − 105f2

d ¼ 2 9225þ 4515=2f þ 365=2f2

d ¼ 3 −9600 − 2280f − 164f2

d ¼ 4 5475þ 1245f þ 80f2

d ¼ 5 −1620 − 348f − 20f2

d ¼ 6 195þ 39f þ 2f2

gð5; 3Þ GWð0;2Þðd; ~k ¼ f2gÞ
d ¼ 0 195þ 39f þ 2f2

d ¼ 1 −1620 − 348f − 20f2

d ¼ 2 5475þ 1245f þ 80f2

d ¼ 3 −9600 − 2280f − 164f2

d ¼ 4 9225þ 4515=2f þ 365=2f2

d ¼ 5 −4620 − 1148f − 105f2

d ¼ 6 945þ 469=2f þ 49=2f2

4For the case of the unknot, the special case of this relation for
disks (g ¼ 0, h ¼ 1) was proved in Ref. [20], using techniques of
mirror symmetry. Of course, the mirror image of the unknot is the
unknot itself, and this relation becomes a relation between disk
invariants of the unknot with different degrees.
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III. A MODEL

In this section, we would like to see how identity (9)
arises in the topological A model. In the A model, a knot K
is substituted by a Lagrangian cycle. The recipe for
constructing the correct Lagrangian cycle associated to a
general knot K is not yet known. However, for a large class
of knots, known as algebraic knots, the Lagrangian cycles
were delicately constructed in Ref. [12], based on the
previous works [10,11,21]. Although the Lagrangian cycles
associated with algebraic knots are known, due to their
complicated nature, one can explicitly compute topological
amplitudes (using localization techniques of Refs. [22–25])
only for a subclass of algebraic knots which preserve
certain C� symmetries. This subclass consists of torus
knots. In this section, we first explain what happens to the
Lagrangian cycles associated to an algebraic knot if one
substitutes a knot K by its mirror ~K. In the second step, we
show how this change leads to identity (9) for torus knots.
An algebraic knot is defined in the C2 plane. Let x and y

locally describe the C2 plane in consideration. An algebraic
knot is then defined as the intersection loci of the
holomorphic curve

Fðx; yÞ ¼ 0 ð10Þ

with the 3-sphere S3 ¼ fðx; yÞ ∈ C2jjxj2 þ jyj2 ¼ 2g. For
instance, an ðr; sÞ torus knot—in which r and s are coprime
numbers—is specified by

Fðr;sÞðx; yÞ ¼ xr − ys: ð11Þ

To see why the intersection of the holomorphic curve
Fðr;sÞðx; yÞ ¼ 0 with the 3-sphere S3 is a ðr; sÞ torus knot,
let us define the Clifford torus T2 ¼ S1θ × S1ϕ inside the
above 3-sphere, in which

S1θ ¼ fðx; yÞjx ¼ eiθ; y ¼ 0; 0 ≤ θ < 2πg
S1ϕ ¼ fðx; yÞjx ¼ 0; y ¼ eiϕ; 0 ≤ ϕ < 2πg: ð12Þ

When rθ − sϕ ¼ 2πk for any k ∈ Z, we find a torus knot
on the surface of the Clifford torus. Without loss of
generality, we set k ¼ 0, and we define sφ≡ θ. Then, a
ðr; sÞ torus knot is parametrized as

Kðr;sÞ ¼ fðx; yÞ ∈ C2jx ¼ eisφ; y ¼ eirφ; 0 ≤ φ < 2πg:

The mirror image of an algebraic knot K, defined by
Eq. (10), is obtained by the operation (1). In this setup,
the mirror reflection is equivalent to substituting one of
the coordinates of the ambient C2 plane by its complex
conjugate. Therefore, the mirror knot ~K is defined by

Fðx; ȳÞ ¼ 0; ð13Þ

where ȳ is the complex conjugate of y. This implies that the
mirror of a ðr; sÞ torus knot is parametrized as

~Kðr;sÞ ¼ fðx; yÞ ∈ C2jx ¼ eisφ; y ¼ e−irφ; 0 ≤ φ < 2πg:

Comparing ~Kðr;sÞ with Kðr;sÞ, it is clear that the mirror of a
ðr; sÞ torus knot is equivalent to the ð−r; sÞ torus knot,
confirming a well-known fact in knot theory.
Now, we would like to construct the Lagrangian cycles

associated with an algebraic knot and its mirror, following
Ref. [12]. The deformed conifold space Xμ is defined as a
hypersurface in C4,

Xμ ¼ fðx; y; z; wÞ ∈ C4jxz − yw ¼ μg; ð14Þ
which is equipped with the natural symplectic 2-form
induced from the ambient C4. Xμ is isomorphic to the

total space T�S3 →
π
S3. Defining z1 ¼ ðxþ zÞ=2, z2 ¼

−i=2ðx − zÞ, z3 ¼ −1=2ðy − wÞ, and z4 ¼ i=2ðyþ wÞ,
we realize

P
iz

2
i ¼ μ. Splitting zi into real and imaginary

parts zi ¼ xi þ iyi (xi, yi ∈ R), it is easy to see that

~x · ~y ¼ 0; j~xj2 þ j~yj2 ¼ μ: ð15Þ
Defining the symplectomorphism ϕμ∶Xμ → X,

ϕμð~x; ~yÞ≡ ð~u; ~vÞ ¼
�

~x
j~xj ;−j~xj~y

�
; ð16Þ

the total space T�S3 → S3 is realized as a subspace of
R4 ×R4,

j~uj ¼ 1; ~u · ~v ¼ 0; ð17Þ
in which the first equation specifies the 3-sphere base, and
~v is the normal direction.
To construct the Lagrangian associated with an algebraic

knot K, it is crucial for the Lagrangian LK to avoid the
singular point of the conifold as it goes through the large N
transition [12]. To achieve this, one has to consider a lift of
the knot K. A lift is an embedding of a circle γ in X
(γK∶S1 → X) such that the composition π∘γK∶S1 → S3 is
the knot K. For K to avoid self-intersection, it is also
important that γK intersects each fiber only once. Assuming
a lift γK exists,

ð~u; ~vÞ ¼ ð~fðθÞ; ~gðθÞÞ; θ ∈ ½0; 2π�; ð18Þ
then the Lagrangian cycle Lγ is constructed by

~u ¼ ~fðθÞ; _~fðθÞ · ð~v − gðθÞÞ ¼ 0: ð19Þ
The Lagrangian cycle associated to K in the deformed
conifold Xμ is then given by LK ¼ ϕ−1

μ ðLγKÞ. An explicit
lift for algebraic knots was constructed in Ref. [12]. The

starting point for γK is the holomorphic curve ZðKÞ
μ ⊂ Xμ,
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ZðKÞ
μ ¼ fFðx; yÞ ¼ 0g ∩ fFðz;−wÞ ¼ 0g: ð20Þ

We notice that ZðKÞ
μ ∩ Sμ ¼ K, in which Sμ is the vanishing

cycle of the deformed conifold. ZðKÞ
μ may have several

distinct connected components. We take one connected

component CðKÞ
μ ⊂ ZðKÞ

μ , which has a nontrivial intersection
with Sμ. The last ingredient in the construction of the lift γK
is the S2 bundle Pa ¼ fð~u; ~vÞ ∈ Xjj~vj ¼ ag where a ∈ Rþ
[12]. The lift γK is then given as the intersection of the

sphere bundle Pa and the image of CðKÞ
μ under the

symplectomorphism ϕμ,

γK ¼ Pa ∩ ϕμðCðKÞ
μ Þ: ð21Þ

As is clear from the construction of the Lagrangian cycle
LK, the choice of the knot K enters through the lift γK.
Therefore, in the construction of the Lagrangian cycle
associated with the mirror image ofK, we need to adjust the
corresponding lift accordingly. The only difference in the
construction of the lift γ ~K enters through the curve Zμ. For

the mirror knot ~K, the corresponding curve will be

Zð ~KÞ
μ ¼ fFðx; ȳÞ ¼ 0g ∩ fFðz;−w̄Þ ¼ 0g: ð22Þ

Choosing one connected component of Zð ~KÞ
μ , the lift

associated with ~K is given by

γ ~K ¼ Pa ∩ ϕμðCð ~KÞ
μ Þ: ð23Þ

As of now, the explicit calculation of topological string
amplitudes associated with the above Lagrangian cycles is
only possible for torus knots which preserve a certain C�
action. Here, in the remaining part of this section, we show
that the open Gromov-Witten invariants of LKðr;sÞ and L ~Kðr;sÞ

are related, when Kðr;sÞ is a ðr; sÞ torus knot. We notice that
LKðr;sÞ and L ~Kðr;sÞ preserve different C� symmetries,

ðx; y; z; wÞ ↦ ðeisφx; eirφy; e−isφz; e−irφwÞ
ðx; y; z; wÞ ↦ ðeisφx; e−irφy; e−isφz; eirφwÞ; ð24Þ

where the first and the second transformations are the
symmetries of LKðr;sÞ and L ~Kðr;sÞ , respectively. To carry out
the localization computation on the corresponding moduli
space of stable maps with boundary components, we have
to trace the above C� symmetries in the resolved conifold.
It is easy to see that the corresponding C� symmetries that
the proper Lagrangian cycles (LK and L ~K after large N
transition transform into new Lagrangian cycles of which
the construction has been spelled out in detail in Ref. [12])
preserve take the form

ðx; y; z; w; ½u1; u2�Þ ↦ ðeisφx; e�irφy; e−isφz;

e∓irφw; ½e−iðs�rÞφu1; u2�Þ; ð25Þ

where ½u1; u2� are the homogeneous coordinates of the P1

cycle after the small resolution. In above equation, the first
and the second choices of signs correspond to the circle
actions associated with Kðr;sÞ and ~Kðr;sÞ, respectively. This
choice of signs would also affect the weights of the
equivariant classes of the localization computation.
There are two ways to proceed. We can carry out the
localization computation for amplitudes case by case for
both Lagrangian cycles associated with Kðr;sÞ and ~Kðr;sÞ

with respect to their C� symmetries and verify Eq. (9). We
have checked Eq. (9) for several amplitudes with low genus
and winding, and the results are in agreement with Eq. (9).
However, we can draw a more general conclusion. It has
been shown in Ref. [12], by relating the Gromov-Witten
invariants of torus knots to those of the unknot, that one can
reproduce the Rosso-Jones formula [26] for the HOMFLY
polynomial of torus knots. We do not repeat this derivation
here. Following the same line of argument as in Ref. [12],
we can show that the generating functions for open
Gromov-Witten invariants of a ðr; sÞ torus knot and its
mirror image for the winding one are given by

Fðr;sÞ
1 ðQ; gsÞ ¼ ð−1Þs−1Q−s=2

×
X
jμj¼s

χμðCkðsÞ Þei
r
2sκμgsdimqμ

F
fðr;sÞ
1 ðQ; gsÞ ¼ ð−1Þs−1Q−s=2

×
X
jμj¼s

χμðCkðsÞ Þe−i
r
2sκμgsdimqμ: ð26Þ

These equations are precisely special cases of the Rosso-
Jones formula for a ðr; sÞ torus knot and its mirror imagegðr; sÞ. On the other hand, we know that the HOMFLY
invariants of a knot and its mirror are related by Eq. (5). As
a result, the identity (9) between Gromov-Witten invariants
of a knot K and its mirror image ~K is realized from the

A-model point of view for torus knots. Although Fðr;sÞ
1 and

F
fðr;sÞ
1 are only the one-point functions (with the winding

one for the boundary) associated to a ðr; sÞ torus knot and
its mirror gðr; sÞ, this derivation is generalized to higher hole
and higher winding Gromov-Witten invariants in a straight-
forward manner.
Before closing this section, we would like to comment

on the derivation of Ref. [27] for the HOMFLY invariants
of torus knots in the framework of the A model. In
Ref. [27], it was shown how one can calculate the
HOMFLY invariants of torus knots using the formalism
of the topological vertex [28]. The topological vertex
calculates open topological string amplitudes associated
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with toric Lagrangian cycles embedded in a toric Calabi-
Yau threefold. Taking advantage of the fact that a torus knot
is generated by an SLð2;ZÞ transformation of the unknot, it
was shown that the HOMFLY invariants of torus knots can
be captured by performing an appropriate SLð2;ZÞ trans-
formation on the toric Lagrangian cycle associated with the
unknot. In this derivation, the framing of the toric
Lagrangian cycle is a fraction of the framing of the torus
knot. The standard framings forKðr;sÞ and ~Kðr;sÞ torus knots
are rs and −rs, respectively. It was then shown that this
sign difference leads exactly to Eq. (5), specialized to a
ðr; sÞ torus knot and its mirror image.

IV. B MODEL

In the B-model approach, the open Gromov-Witten
invariants associated with toric geometries are calculated
as follows. One first calculates the disk instanton numbers
from an algebraic curve, known as the mirror curve. The
mirror curve is a noncompact Riemann surface and is the
generating function of disk instantons. In the second step,
the annulus instanton numbers are obtained from the
Bergman kernel of the mirror curve, which is determined
by the topology and geometry of the curve. Disk and
annulus instanton numbers are the ingredients for higher
invariants. The higher genus and higher hole invariants are
determined by the recursive procedure of Ref. [29].
In the present case, the situation is more subtle. First of

all, since the Lagrangian cycles in the Amodel are nontoric,
we cannot directly obtain the corresponding mirror curves
which determine the disk instantons. However, it was
shown in Ref. [15] that the mirror curve associated with
a knot K coincides with one of the topological invariants
associated with K, namely, its augmentation polynomial.5

The augmentation polynomial6 is an algebraic curve, and it
reproduces the A polynomial ofK in a certain limit. It turns
out that the augmentation polynomial can be constructed
only by the knowledge of the HOMFLY polynomials of K,
colored in totally symmetric representations. Suppose x and
y are the local coordinates on the mirror curve A (aug-
mentation polynomial). The curve can then be represented
as [15,27]

yðxÞ ¼ exp

�
x
d
dx

lim
gs→0

log
X∞
k¼0

HðKÞ
Sk

ðQ; qÞxk
�
; ð27Þ

where Sk is the kth totally symmetric representation
displayed by a Young diagram with total number of k
boxes sitting in a single row and q ¼ eigs . In the topological
string setup, the parameter Q corresponds to the area of the
base P1 of the resolved conifold geometry. For instance, the

augmentation polynomial associated with the trefoil knot
turns out to be

ð1 −QyÞ þ ðy3 − y4 þ 2y5 − 2Qy5

−Qy6 þQ2y7Þx − y9ð1 − yÞx2 ¼ 0: ð28Þ
Before discussing higher invariants in the B model, let us
see how Eq. (9) is realized in the B model at the level of
disks. To answer this question, we first notice that the disk
instanton numbers associated with K can also be con-
structed by only the knowledge of HOMFLY invariants of
K in totally antisymmetric representations

yðxÞ ¼ exp

�
−x

d
dx

lim
gs→0

log
X∞
k¼0

HðKÞ
Λk

ðQ; qÞxk
�
: ð29Þ

In Eq. (29), Λk is the kth totally antisymmetric representa-
tion displayed by a Young diagram with total number of k
boxes sitting in a single column. Now, let ~x and ~y be the
local coordinates on the mirror curve ~A associated with the
mirror knot ~K. Similar to K, the mirror curve associated to
~K can be constructed via Eq. (27) as

~yð~xÞ ¼ exp

�
~x
d
d~x

lim
gs→0

log
X∞
k¼0

Hð ~KÞ
Sk

ðQ; qÞ~xk
�
: ð30Þ

Using Eq. (5), we can rewrite Eq. (30) in terms of the
HOMFLY invariants of the original knot K in totally
antisymmetric representations,

~yð~xÞ ¼ exp

�
−~x

d
d~x

lim
gs→0

log
X∞
k¼0

HðKÞ
Λk

ðQ−1; qÞð−~xÞk
�
:

Comparing the above formula with Eq. (29) and noticing

the fact that the HOMFLY invariants HðKÞ
μ ðQ; qÞ are

polynomials in terms of Q, we arrive at

GWð ~KÞ
ð0;1Þðd; kÞ ¼ −GWðKÞ

ð0;1Þðdmin þ dmax − d; kÞ; ð31Þ

in which dmin and dmax are the lowest and the highest
degrees of nonvanishing disk Gromov-Witten invariants for
a given winding k, respectively. It is also evident that the
augmentation polynomial ~A associated with ~K is simply
obtained from A by sending x → −x and Q → Q−1. For
instance, for the mirror of the trefoil knot, we obtain the
corresponding augmentation polynomial from Eq. (28)
to be

QðQ − ~yÞ − ðQ2 ~y3 −Q2 ~y4 þ 2Q2 ~y5 − 2Q~y5

−Q~y6 þ ~y7Þ~x −Q2 ~y9ð1 − ~yÞ~x2 ¼ 0: ð32Þ

Now, we turn to higher invariants. The next step is to
determine the annulus instanton numbers associated to K.
Unlike the toric cases, the annulus numbers in this case are

5In general, the augmentation polynomial may be one irre-
ducible component of the mirror curve.

6For an introduction to the subject, see Refs. [16,17].

MASOUD SOROUSH PHYSICAL REVIEW D 94, 066010 (2016)

066010-6



not given by the Bergman kernel associated with the
augmentation polynomial [18]. However, it was shown in
Ref. [18] that there exists another symmetric bidifferential,
which is the generating function of all annulus instanton
numbers. It was shown in Ref. [18] how one can explicitly
construct this bidifferential (known as the physical annulus
kernel) for torus knots. This annulus kernel together with the
augmentation polynomial are the ingredients for a recursive
procedure to determine all other higher invariants. To see
how the annulus instanton numbers of K and ~K are related,
we first notice that all annuli can be extracted by only the
knowledge of HOMFLY invariants colored with at most
rows [18]. For brevity, let us concentrate on a specific

annulus with winding vector ~k ¼ f1; 1g. One can obtain the
instanton numbers associated with this annulus in the
following way:

Equivalently, it turns out that we can obtain all annulus
instanton numbers only with the knowledge of HOMFLY
invariants with at most two columns. For the annulus
~k ¼ f1; 1g, we have

The same expressions would hold for the annulus numbers
of themirror knot ~K if one uses theHOMFLYinvariants of ~K
accordingly. If we use Eq. (5), we easily realize that

Noticing that the HOMFLY invariants are polynomials in
terms of Q, we arrive at

GWð ~KÞ
ð0;2Þðd; f1; 1gÞ ¼ GWðKÞ

ð0;2Þðdmin þ dmax − d; f1; 1gÞ;

wheredmin anddmax are the lowest and the highest degrees of
nonvanishing annulus Gromov-Witten invariants for the

winding ~k ¼ f1; 1g, respectively. This argument is easily
generalized to any windings for the two boundary compo-
nents of an annulus instanton, and we find

GWð ~KÞ
ð0;2Þðd; ~kÞ ¼ GWðKÞ

ð0;2Þðdmin þ dmax − d; ~kÞ;

in which ~k ¼ f0; 0;…; 1; 0; 0;…; 1g is the winding vector
associated to a general annulus amplitude.
The higher genus and higher hole invariants associated

with K and ~K are obtained through the recursive procedure
of Refs. [29,30], with the kernels constructed in Ref. [18],

ΩðKÞ
ðg;hþ1Þðp;JÞ¼

X
i

Resq→aiKðp;qÞðΩðKÞ
ðg−1;hþ2Þðq; q̄;JÞ

þ
Xg
l¼0

X0

I⊂J
ΩðKÞ

ðl;jIjþ1Þðq;IÞΩðKÞ
ðg−l;h−jIjþ1Þðq̄;JnIÞ:

In the above, the differentials ΩðKÞ
ðg;hÞ are the generating

functions of genus g amplitudes with h boundary
components7

ΩðKÞ
ðg;hÞðx1;…; xhÞ ¼

X
j~kj¼h

ωðg;h;~kÞðQÞðxk11 � � � xkhh

þ permutationsÞdx1 � � � dxh: ð33Þ

The recursion kernel Kðp; qÞ is made of the physical
annulus kernel and the canonical meromorphic 1-form,
which generates disk instantons. It is easily seen that by
sending K → ~K the recursion kernel gets a minus sign and
its Q dependence is substituted by Q−1 in it. Then, by
induction, one recognizes that the identity (9) is fulfilled
among the Gromov-Witten invariants of K and ~K.
Before we conclude this section, there are three comments

in order. First, Ref. [31] proposes a mirror curve for torus
knots, based on the fact that a torus knot is produced from
unknot by an appropriate SLð2;ZÞ transformation. One may
ask how this curve is affected if one substitutes a torus knot by
its mirror image. In the construction of Ref. [31], the mirror
curve of a torus knot is obtained from the mirror curve of the
unknot via a rational framing transformation. This rational
number is determinedby the ratio of the two coprimenumbers
which define the torus knot. It turns out that the sign of the
rational framing transformationdetermineswhetherwewould
find the mirror curve associated with the torus knot or with its
mirror. By the rational framing transformation of the unknot
mirror curve, we find two distinct curves depending on the
sign of the rational framing. One curve corresponds to the
torus knot, and the other corresponds to themirror torus knot.
The second comment concerns links. The identity (9) is

not restricted to the case of knots but also holds for
Gromov-Witten invariants associated with links. The natu-
ral question is, in the case of links, how one realizes the
identity (9) in the B model. It was shown in Ref. [32] that
for the case of links, instead of mirror curves, one needs to

7For more details on notations, consult Ref. [18].
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work with a higher-dimensional variety. This variety
coincides with the augmentation variety of the link [32].
Similar to the case of knots, the augmentation variety of a
link can be merely constructed by the knowledge of
HOMFLY invariants of the link with n components,
colored with n totally symmetric representations. As we
saw in the case of knots, this variety can be equivalently
constructed in terms of HOMFLY invariants of the link,
colored with n totally antisymmetric representations. Using
the statement of the level-rank duality for the case of links
and following the same line of argument as for knots, we
easily find that Eq. (9) is fulfilled for the case of links.
Furthermore, we find that the augmentation variety of a
link is related to the augmentation variety of its mirror
by sending Q → Q−1 and xi → −xi (i ¼ 1; 2;…; n). For
higher genus and higher hole invariants of links, one would
first need to develop a suitable notion of the recursive
procedure of Ref. [30] for higher-dimensional varieties.
This recursive procedure for higher-dimensional varieties is
not known yet.
As the last comment, it is interesting to notice that the

level-rank duality holds for composite representations as

well. In case of UðNÞ, the most general irreducible
representation is specified by a pair of Young tableaus
[33]. HOMFLY invariants in composite representations are
related to amplitudes which are stretched between several
Lagrangian branes. Since the level-rank duality holds for
composite representations

Hð ~KÞ
½μ;ν�ðQ; qÞ ¼ ð−1ÞjμjþjνjHðKÞ

½μt;νt�ðQ−1; qÞ;

identity (9) is fulfilled for Gromov-Witten invariants
associated to stretched amplitudes.
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