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We identify the symmetry underlying the recently observed spectral-parameter transformations of
holographic Wilson loops alias minimal surfaces in AdS/CFT. The generator of this nonlocal symmetry is
shown to furnish a raising operator on the classical Yangian-type charges of symmetric coset models.
We explicitly demonstrate how this master symmetry acts on strong-coupling Wilson loops and indicate a
possible extension to arbitrary coupling.
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I. INTRODUCTION

The AdS/CFT correspondence furnishes a treasure
trove for mathematical structures, novel interrelations
and physical applications. In particular, its planar
integrability has inspired a multitude of innovative
methods and is in large part responsible for the progress
made toward confirming Maldacena’s conjecture. The
flagship duality between strings on AdS5 × S5 and four-
dimensional N ¼ 4 super–Yang-Mills theory represents
the best understood example of this class of dual
theories. The mathematical structure underlying its
integrability is Drinfel’d’s infinite-dimensional Yangian
algebra. This nonlocal symmetry is a typical feature of
integrable systems in two dimensions and lies at the
heart of string integrability at strong coupling of the
above duality [1,2]. Remarkably, Yangian symmetry
has also been discovered for various quantities on the
gauge theory side, including the dilatation operator [3],
scattering amplitudes [4] and Wilson loops [5,6]. In
this paper, we add another member to this family of
nonlocal symmetries in AdS/CFT. We demonstrate that
symmetric coset models allow for a nonlocal master
symmetry δ̂ that captures the models’ integrability and
has an intriguing set of features: it generates the
spectral parameter and acts as a level-raising operator
on the Yangian algebra. Mapping conserved charges to
conserved charges, δ̂ thus exhibits the characteristic
feature of a master symmetry in integrable models. We
establish that this nonlocal symmetry underlies the
recently observed spectral-parameter deformations of
holographic Wilson loops [7–11]. With an algebraic
understanding of the symmetry at hand, we may hope
to formulate a corresponding master symmetry at weak
or arbitrary coupling.

II. SYMMETRIC COSETS

In the context of the AdS/CFT correspondence, we are
primarily interested in strings in the hyperbolic space AdS5,
which can be identified with the coset SOð1; 5Þ=SOð5Þ.
However, our findings apply to arbitrary symmetric spaces
M ¼ G=H such that we can keep the discussion general.
The space M is symmetric, if the associated Lie algebras g
and h obey g ¼ h ⊕ m, such that

½h; h� ⊂ h; ½h;m� ⊂ m; ½m;m� ⊂ h: ð1Þ

The dynamical variable is the field gðzÞ ∈ G with z
denoting the complex worldsheet coordinate. To write
down the action of the model, we define the flat g-valued
Maurer-Cartan form

U ¼ g−1dg; dU þU∧U ¼ 0: ð2Þ

With U ¼ Aþ a, where A and a are projections of U onto
h and m, respectively, we can write the action as

S ¼
Z

trða∧ � aÞ: ð3Þ

The global g-symmetry is realized as the infinitesimal
transformation δϵg ¼ ϵg with ϵ ∈ g. The conservation law
for the Noether current associated with this symmetry,

j ¼ −2gag−1; ð4Þ

is equivalent to the equations of motion for g. This Noether
current is also flat and hence provides the basis for the
framework of integrability. The conservation equation and
flatness conditions for j are then usually packaged into the
condition that the Lax connection

lu ¼
u

1þ u2
ðujþ �jÞ; dlu þ lu∧lu ¼ 0 ð5Þ
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is flat for arbitrary values of the so-called spectral param-
eter u ∈ C. This Lax connection defines a flat deformation
Lu of the Maurer-Cartan form through the transformation

Lu ¼ U þ g−1lug; dLu þ Lu∧Lu ¼ 0; ð6Þ

and we have L0 ¼ U since l0 ¼ 0.

III. MASTER SYMMETRY

We now lift the spectral parameter from the level of Lax
connections to the physical field g. A deformation gu of g
can be defined by the following auxiliary linear problem,

dgu ¼ guLu; guðz0Þ ¼ gðz0Þ; ð7Þ

with z0 an arbitrary reference point on the worldsheet.
Due to the flatness of Lu, this initial value problem is well
defined and has a unique solution for simply connected
worldsheets. With the ansatz

guðzÞ ¼ χuðzÞgðzÞ; χuðz0Þ ¼ 1; ð8Þ

the defining equation (7) for gu is satisfied, provided that χu
is a solution of

dχu ¼ χulu: ð9Þ

Significantly, the transformation g↦gu preserves the action
and the equations of motion and hence represents a
symmetry. This was observed in Ref. [12] and will be
demonstrated below. Via the definitions (8) and (9), we
have thus shown that the spectral-parameter dependence
can be translated from the Lax connections into a defor-
mation of the field g. In order for gu to represent a physical
solution of the considered model, we need to restrict u to
real values. Expanding (9) about u ¼ 0, we find the action
of the (nonlocal) infinitesimal generator δ̂ as

δ̂gðzÞ ¼ χð0ÞðzÞgðzÞ; χð0ÞðzÞ ¼
Z

z

z0

�j: ð10Þ

On the projections of the Maurer-Cartan form (2), we thus
have

δ̂A ¼ 0; δ̂a ¼ −2 � a: ð11Þ

This directly shows that the equations of motion

d � aþ �a∧Aþ A∧ � a ¼ 0 ð12Þ

are invariant under the variation δ̂ due to the condition
daþ a∧Aþ A∧a ¼ 0, which follows from the flatness of
U. In fact, we may expand χu in a power series of u,

χu ¼
X∞
n¼0

χðn−1Þun; χð−1Þu ¼ 1; ð13Þ

which generates a whole tower of master symmetries

δ̂ug ¼ χ−1u
d
du

χug; δ̂u ¼
X∞
n¼0

unδ̂ðnÞ; ð14Þ

as will be argued below.
Let us pause here to indicate various connections to and

among the previous literature. The functions χðnÞ, which we
introduced to mediate between the undeformed and the
deformed solution (8), feature in the classical work of
Brézin, Itzykson, Zinn-Justin and Zuber (BIZZ) [13] as
auxiliary potentials for the construction of conserved
nonlocal currents. The BIZZ procedure is rather universal,
since it applies to any model possessing a flat and
conserved current and does not require the potentials
χðnÞ to be generators of a symmetry. The large trans-
formation (8) was studied in the context of generic
symmetric space models by Eichenherr and Forger, who
referred to it as a dual transformation that rotates a 1-form
into its Hodge dual [12], cf. Eq. (11). Employing similar
ideas, Schwarz provided an extensive analysis of nonlocal
symmetries of symmetric space models [14]. He discussed
the interesting Virasoro-like properties of the tower of
symmetries δ̂ðn>0Þ to which we add the master symmetry
δ̂ ¼ δ̂ð0Þ. More recently, Ishizeki, Kruczenski and Ziama
observed that via Eq. (7) the spectral-parameter deforma-
tion induces a family of minimal surface solutions in AdS3
[7]. Here, we identify the underlying nonlocal symmetry
transformation and its relation to the Yangian symmetries
of the model. In Ref. [15], Beisert and Lücker gave a
prescription for the construction of flat Lax connections,
which also rotates the components of the Maurer-Cartan
form into each other. Their method starts with an operator
acting on a flat connection instead of the physical field g but
was shown to extend to a multitude of integrable theories of
rational type.

IV. CLASSICAL YANGIAN

We now show that the integrability of symmetric space
models can be captured completely in terms of the global
Lie algebra symmetry δϵ and the master symmetry gen-
erated by δ̂. A general criterion for a variation δg ¼ ηg to be
a symmetry of the model is given by [16]

g−1d � ðdηþ ½j; η�Þg ∈ h: ð15Þ

This criterion at hand, it is not hard to show that if δ0
generates a symmetry, then so does its conjugation with χu:

δ0;ug ¼ χ−1u δ0ðχugÞ: ð16Þ

KLOSE, LOEBBERT, and MÜNKLER PHYSICAL REVIEW D 94, 066006 (2016)

066006-2



Hence, the above master symmetry allows us to turn a
symmetry δ0 into a one-parameter family of symmetries.
Applying this procedure to δ0 ¼ δϵ yields the tower of
nonlocal symmetries of Yangian type:

δϵ;ug ¼ χ−1u ϵχug; δϵ;u ¼
X∞
n¼0

unδðnÞϵ : ð17Þ

The associated conserved currents can be obtained by
iterative application of δ̂ to the flat Noether current j. At
subleading order, we find

δ̂j ¼ −2 � jþ ½χð0Þ; j�; ð18Þ

which yields the standard expressions for the Yangian
level-0 and level-1 charges:

Jð0Þ ¼
Z

�j; Jð1Þ ¼ 2

Z
jþ

Z
σ1<σ2

½�j1; �j2�: ð19Þ

The components of the Noether current j obey a Poisson
algebra that is similar to the case of the principal chiral
model, for which it was explicitly shown that the resulting
charges (19) span a classical Yangian algebra [17]. This can
be extended to the case of symmetric space models at hand
[16]. A closed expression for the tower of nonlocal currents
associated to the one-parameter family of transformations
(17) is given by

ju ¼ χu

�
j −

2u
1 − u2

� j
�
χ−1u ; ð20Þ

which obeys the relation δ̂ju ¼ ð1þ u2Þ d
du ju. It can be

shown that the variation δ̂u defined in (14) may be reex-
pressed as

δ̂ug ¼
1

1þ u2
χ−1u δ̂ðχugÞ; ð21Þ

i.e. in the form (16). This shows that δ̂u indeed provides a
one-parameter family of symmetries.
In order to see that the master symmetry δ̂ acts as a

raising operator on the Yangian charges, we introduce the
real parameter θ via the relation

eiθ ¼ 1 − iu
1þ iu

: ð22Þ

We then write the different levels of Yangian generators as
the coefficients in the expansion

JðθÞ ¼
X∞
n¼0

θn

n!
JðnÞ; JðθÞ ¼

Z
�juðθÞ; ð23Þ

which implies the raising relation

δ̂JðnÞ ¼ Jðnþ1Þ;
d
dθ

JðθÞ ¼ δ̂JðθÞ: ð24Þ

Hence, starting from the Lie algebra charge J, application of
δ̂ yields the infinite tower of Yangian charges.
Note that the Yangian algebra comes with a natural

lowering operator defined via δ̌ Jð1Þ ¼ Jð0Þ. The automor-
phism δ̌was introduced by Drinfel’d as a generator of the
spectral parameter [18] and is typically realized by the
Lorentz boost in two-dimensional quantum field theory
[19]. It is an open problem, however, whether a classical
realization of this lowering operator exists [17], which
underlines the algebraic interest in the above raising
operator δ̂.

V. NONLOCAL CASIMIR

Since δ̂ was defined as an on-shell symmetry, the
Noether procedure is in principle not applicable.
However, we are still able to derive associated conserved
currents using the equations of motion only in the form
dχu ¼ χulu. If an off-shell extension of the above sym-
metries exists, the current we derive will agree with the
respective Noether current on shell. Similar comments
apply to the Yangian symmetries as introduced above. In
the case of principal chiral models, it was shown that the
latter can be extended to off-shell symmetries [20,21].
For the master symmetry, we formally introduce a free,
local parameter ρðzÞ into the variation (10), i.e. we write
δ̂g ¼ ρχð0Þg, the application to the action of which yields

δ̂S ¼
Z

trð�jχð0ÞÞ∧dρ: ð25Þ

Here, it was used that dχð0Þ ¼ �j. Hence, we find that the
current ĵ ¼ trðjχð0ÞÞ is conserved and yields the conserved
charge

J ≔
Z

�ĵ ¼ 1

2
trðJJÞ: ð26Þ

This is the quadratic Casimir of the Lie algebra charge J,
and it comes as no surprise that it is conserved. However, it
is interesting that a symmetry δ̂ exists, which yields the
quadratic Casimir as an associated conserved charge.
In analogy to the tower of Yangian generators, we may

obtain a tower of Casimir charges by iterative application of
δ̂ to J:

JðθÞ ¼ 1

2
trðJðθÞ JðθÞÞ; δ̂JðθÞ ¼ d

dθ
JðθÞ: ð27Þ
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At subleading order, we find Jð1Þ ¼ trðJJð1ÞÞ, which can
easily be checked to Poisson-commute with the Lie algebra
generators J. It is worth noting that the Casimir J does not
generate the master symmetry δ̂ via its Poisson bracket with
the field g. The same holds for the nonlocal Yangian
symmetry which is generated via a Lie-Poisson action and
not by the ordinary symplectic action [22].
It turns out that the conjugation of the basic spacetime

symmetries (translations, boost, conformal transforma-
tions) with χu does not result in new transformations but
merely yields a u-dependent linear combination of space-
time and gauge symmetries, cf. Table I.

VI. ALGEBRA RELATIONS

An obvious aspect of interest is the algebra of the above
nonlocal symmetries. We find the following commutators

between the master and the Yangian variations δ̂ðnÞ and δðnÞϵ ,
respectively:

½δðnÞϵ1 ; δ
ðmÞ
ϵ2 � ¼ δðmþnÞ

½ϵ1;ϵ2� þ ð−1Þnan;mδðm−nÞ
½ϵ2;ϵ01�

½δ̂ðnÞ; δ̂ðmÞ� ¼ ðn −mÞδ̂ðnþmþ1Þ þ δ̂ðn−m−1Þ
m − δ̂ðm−n−1Þ

n

½δ̂ðnÞ; δðmÞ
ϵ � ¼ −m½δðmþnþ1Þ

ϵ þ ð−1Þnδðm−n−1Þ
ϵ �: ð28Þ

Here, we defined an;m ¼ ð1 − δm;0Þð1 − δn;0Þ as well

as the shorthand notations δ̂ðnÞm ¼ ðn − 2m − 1Þð−1Þmδ̂ðnÞ,
δð−nÞϵ ¼ ð−1ÞnδðnÞϵ0 and δ̂ð−nÞ ¼ 0. We furthermore obtain the
expression ϵ0 ¼ ϵjh − ϵjm, if we set gðz0Þ ¼ 1. Except for

the master symmetry δ̂ ¼ δ̂ð0Þ, the commutators of similar
generators were considered by Schwarz [14], who argued
that the δ̂ðn>0Þ relate to a centerless Virasoro-like algebra.
This relation to the Virasoro algebra is reminiscent of the
Sugawara construction and is a typical feature of master
symmetries in integrable models; see e.g. Refs. [23,24].
Note that the algebra of variations is not expected to
coincide with the Poisson algebra of charges since nonlocal
symmetries are typically generated in a nonlinear way [22].

VII. WILSON LOOPS

A beautiful arena for the application of the above master
symmetry is provided by the AdS/CFT correspondence
[25]. In particular, this duality relates the expectation value
of the Maldacena-Wilson loop inN ¼ 4 super–Yang-Mills

theory at strong coupling to a minimal surface in AdS5
ending on the loop contour γ [26,27]. Specifically, the
expectation value reads

WðγÞ ¼λ≫1
exp

�
−

ffiffiffi
λ

p

2π
ArenðγÞ

�
: ð29Þ

Here, ArenðγÞ denotes the appropriately renormalized area
of a minimal surface ending on the boundary contour γ. The
area functional is given by a string action in AdS5, and
since AdS5 is a symmetric space, the above setup applies.
In particular, we consider the master symmetry δ̂ as well as
the associated large transformation g↦gu and derive the
variation of a generic boundary curve γ under this sym-
metry. The derivation shows that the transformation maps
the conformal boundary to itself, which is essential for the
possibility of restricting the transformation to the class
of holographic Wilson loops. Moreover, one can show that
the transformation g↦gu is not only a formal symmetry of
the area functional but also a symmetry of the renormalized
area of the minimal surface; i.e. one has ArenðγÞ ¼
ArenðγuÞ [16].
In order to discuss the above transformations for minimal

surfaces in AdS5 ≃ SOð1; 5Þ=SOð5Þ in some detail, we
employ the standard generators MIJ of SOð1; 5Þ. These
generators obey

½MIJ;MKL� ¼ ηI½KML�J − ηJ½KML�I; ð30Þ

as well as trðMIJMKLÞ ¼ 2ηI½LηK�J. The gauge algebra
h ¼ soð5Þ is spanned by Mμν and Mμ5 for μ; ν ¼ 1;…; 4.
In order to introduce Poincaré coordinates ðXμ; yÞ on the
coset space, we define the combinations

Pμ ¼ Mμ6 −Mμ5; Kμ ¼ Mμ6 þMμ5; D ¼ M56

and write the coset representatives as g ¼ eX·PyD.
A variation δg is then linked to the variations of the
coordinates δXμ and δy by

g−1δg − h ¼ δXμ

y
Pμ þ

δy
y
D; ð31Þ

where hðzÞ is an element of h accounting for possible gauge
transformations. In the case of AdS-isometries δag ¼ Tag,
where Ta denotes the basis elements of g, the variation
of the boundary curve coordinates xμðσÞ is given by
δaxμðσÞ ¼ ξμaðxðσÞÞ. Here, the ξμa form a basis of conformal
Killing vectors of the flat boundary space; see e.g.
Ref. [28]. For the master symmetry, we employ the known
form of the minimal surface solution close to the boundary
[29] to obtain the variations δ̂y ¼ OðyÞ and

TABLE I. Overview of basic (level-0) symmetries and their
integrable completions using the master symmetry.

Level-0 symmetry Integrable completion

Lie algebra δϵ ¼ δð0Þϵ Higher Yangian δ̂ðnÞϵ

Master δ̂ ¼ δ̂ð0Þ Higher master δ̂ðnÞ

Spacetime Spacetime þ gauge
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δ̂xμðσÞ ¼ −Gab

Z
σ

0

dσ1
δArenðγÞ
δxν1

ξνaðx1ÞξμbðxðσÞÞ; ð32Þ

where we introduced Gab ¼ trðTaTbÞ to denote the metric
on g and set xμk ¼ xμðσkÞ. The invariance of the minimal
surface under the variation δ̂ is then encoded in the fact that
the generator

JWL ¼ Gab

Z
σ1<σ2

dσ1dσ2ξνaðx1Þ
δArenðγÞ
δxν1

ξμbðx2Þ
δ

δxμ2
ð33Þ

annihilates the renormalized area ArenðγÞ of the minimal
surface. Similarly, one may evaluate the higher master

generators JðnÞWL on Wilson loops yielding conditions which
are tightly entangled with the higher levels of Yangian
symmetry.
An immediate point of interest is the geometric meaning

of the spectral-parameter transformation (33) evaluated on
Wilson loops. In fact, our analysis shows that studying
explicit transformations requires the knowledge of full
nontrivial minimal surface solutions, since the information
contained in the universal orders of the near-boundary
expansion [29] is insufficient to determine the functional
derivative term featuring in the variation (33). This suggests
employing a numerical approach from which we obtain the
concrete examples in FIG. 1. The details of this numerical
evaluation are provided in Ref. [16].
Let us emphasize some consequences on the Yangian

symmetry of strongly coupled Maldacena-Wilson loops. In
Ref. [5], the corresponding generators were set up to yield
the respective conserved charges when evaluated on min-
imal surfaces. For this, it was not necessary to know the
underlying classical symmetry generator on the field g. The
relations established in the present paper show that it is

given by δð1Þc . Finding the level-1 variation of the boundary
curve is analogous to the above discussion for the master

symmetry. The variation δð1Þc xμ is obtained from (32) by

replacing Gab by fcba, and the level-1 generator Jð1ÞWL
follows from (33) analogously. Applying this generator
to the minimal area gives the Yangian Ward identity for the
Maldacena-Wilson loop at strong coupling. The local term

entering this identity can now be interpreted as a boundary

term arising from the application of δð1Þc to the area
functional.

VIII. BEYOND STRONG COUPLING

It is natural to ask whether the above master trans-
formation furnishes a symmetry beyond strong coupling.
At weak coupling, Dekel observed that the expectation
value of the Maldacena-Wilson loop is not invariant for
contours obtained as boundaries of spectral parameter
deformed minimal surfaces in AdS3 [10]. Hence, beyond
strong coupling, we generically have JWLWðγÞ ≠ 0, if
we naively apply the strong-coupling generator (33).
However, above we have shown that the Wilson-loop
deformation corresponds to a symmetry of the underlying
model. There is in fact no indication that the representation
of the symmetry generator should be independent of the
’t Hooft coupling λ. As a generalization of (33), it is thus
natural to consider the following operator for any value of
the coupling λ:

JðλÞWL ¼
Z

σ1<σ2

dσ1dσ2ξνaðx1Þ
δ logWðγÞ

δxν1
ξμaðx2Þ

δ

δxμ2
: ð34Þ

This generator reproduces the transformation (33) at
strong coupling, and it is easy to see that it annihilates
the expectation value WðγÞ of the Maldacena-Wilson loop
for any λ. Moreover, one can show that it commutes with
the generators of conformal transformations, and thus it
appears to be an appropriate generalization of the master
symmetry on Wilson loops. Similarly, the higher variations
in the tower of master symmetries (14) should be applied to
Wilson loops yielding nontrivial constraints as conse-
quences of integrability.

IX. OUTLOOK

Let us highlight some particularly attractive directions
for further investigation. An important goal is to better
understand the geometric meaning of the above master
symmetry using explicit examples of minimal surfaces
[16], cf. FIG. 1. Moreover, the string theory underlying the
AdS5=CFT4 correspondence is based on a supersymmetric
coset model with Z4-grading. It would be desirable to
explicitly work out the above nonlocal symmetries for this
case; see Ref. [15] for the corresponding construction
starting from the Maurer-Cartan form. This would allow
us to make contact with the Wilson loops in superspace
introduced in Ref. [30], for which the observed Yangian
symmetry at strong coupling [28] has a counterpart at weak
coupling [6]. Finally, it would be highly interesting to
identify an analog of the above master symmetry on the
level of the action or the equations of motion of N ¼ 4
super–Yang-Mills theory.

FIG. 1. Sequence of master transformations for parameter
values θ ¼ 0; 3π

16
; 3π
4
; π applied to discrete minimal surfaces

bounded by an ellipse and a triangle at y ¼ 1
10
.

MASTER SYMMETRY FOR HOLOGRAPHIC WILSON LOOPS PHYSICAL REVIEW D 94, 066006 (2016)

066006-5



ACKNOWLEDGMENTS

We thank A. Dekel, H. Dorn, B. Hoare, T. McLoughlin, J. Plefka, A. Tseytlin, and G. Yang for useful discussions.
This research is supported in part by the SFB 647 “Space-Time-Matter. Analytic and Geometric Structures” and the
Research Training Group Graduiertenkolleg 1504 “Mass, Spectrum, Symmetry”.

[1] I. Bena, J. Polchinski, and R. Roiban, Phys. Rev. D 69,
046002 (2004).

[2] M. Hatsuda and K. Yoshida, Adv. Theor. Math. Phys. 9, 703
(2005).

[3] L. Dolan, C. R. Nappi, and E. Witten, J. High Energy Phys.
10 (2003) 017.

[4] J. M. Drummond, J. M. Henn, and J. Plefka, J. High Energy
Phys. 05 (2009) 046.

[5] D. Müller, H. Münkler, J. Plefka, J. Pollok, and K. Zarembo,
J. High Energy Phys. 11 (2013) 081.

[6] N. Beisert, D. Müller, J. Plefka, and C. Vergu, J. High
Energy Phys. 12 (2015) 141.

[7] R. Ishizeki, M. Kruczenski, and S. Ziama, Phys. Rev. D 85,
106004 (2012).

[8] M. Kruczenski and S. Ziama, J. High Energy Phys. 05
(2014) 037.

[9] M. Kruczenski, J. High Energy Phys. 11 (2014) 065.
[10] A. Dekel, J. High Energy Phys. 03 (2015) 085.
[11] C. Huang, Y. He, and M. Kruczenski, arXiv:1604.00078.
[12] H. Eichenherr and M. Forger, Nucl. Phys. B155, 381 (1979).
[13] E. Brezin, C. Itzykson, J. Zinn-Justin, and J. B. Zuber, Phys.

Lett. 82B, 442 (1979).
[14] J. H. Schwarz, Nucl. Phys. B447, 137 (1995).
[15] N. Beisert and F. Luecker, J. Math. Phys. (N.Y.) 53, 122304

(2012).

[16] T. Klose, F. Loebbert, and H. Münkler (unpublished).
[17] N. J. MacKay, Phys. Lett. B 281, 90 (1992); 308, 444(E)

(1993).
[18] V. G. Drinfeld, Dokl. Akad. Nauk Ser. Fiz. 283, 1060 (1985)

[Sov. Math. Dokl. 32, 254 (1985)].
[19] D. Bernard, Commun. Math. Phys. 137, 191 (1991).
[20] L. Dolan and A. Roos, Phys. Rev. D 22, 2018 (1980).
[21] B.-y. Hou, M.-l. Ge, and Y.-s. Wu, Phys. Rev. D 24, 2238

(1981).
[22] O. Babelon and D. Bernard, Commun. Math. Phys. 149, 279

(1992).
[23] M. Adler and P. van Moerbeke, Commun. Pure Appl. Math.

47, 5 (1994).
[24] J. P. Zubelli and D. S. Valerio Silva, Commun. Math. Phys.

211, 85 (2000).
[25] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999); Adv.

Theor. Math. Phys. 2, 231 (1998).
[26] J. M. Maldacena, Phys. Rev. Lett. 80, 4859 (1998).
[27] S.-J. Rey and J.-T. Yee, Eur. Phys. J. C 22, 379 (2001).
[28] H. Münkler and J. Pollok, J. Phys. A 48, 365402

(2015).
[29] A. M. Polyakov and V. S. Rychkov, Nucl. Phys. B594, 272

(2001).
[30] N. Beisert, D. Müller, J. Plefka, and C. Vergu, J. High

Energy Phys. 12 (2015) 140.

KLOSE, LOEBBERT, and MÜNKLER PHYSICAL REVIEW D 94, 066006 (2016)

066006-6

http://dx.doi.org/10.1103/PhysRevD.69.046002
http://dx.doi.org/10.1103/PhysRevD.69.046002
http://dx.doi.org/10.4310/ATMP.2005.v9.n5.a2
http://dx.doi.org/10.4310/ATMP.2005.v9.n5.a2
http://dx.doi.org/10.1088/1126-6708/2003/10/017
http://dx.doi.org/10.1088/1126-6708/2003/10/017
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://dx.doi.org/10.1088/1126-6708/2009/05/046
http://dx.doi.org/10.1007/JHEP11(2013)081
http://dx.doi.org/10.1007/JHEP12(2015)141
http://dx.doi.org/10.1007/JHEP12(2015)141
http://dx.doi.org/10.1103/PhysRevD.85.106004
http://dx.doi.org/10.1103/PhysRevD.85.106004
http://dx.doi.org/10.1007/JHEP05(2014)037
http://dx.doi.org/10.1007/JHEP05(2014)037
http://dx.doi.org/10.1007/JHEP11(2014)065
http://dx.doi.org/10.1007/JHEP03(2015)085
http://arXiv.org/abs/1604.00078
http://dx.doi.org/10.1016/0550-3213(79)90276-1
http://dx.doi.org/10.1016/0370-2693(79)90263-6
http://dx.doi.org/10.1016/0370-2693(79)90263-6
http://dx.doi.org/10.1016/0550-3213(95)00276-X
http://dx.doi.org/10.1063/1.4769824
http://dx.doi.org/10.1063/1.4769824
http://dx.doi.org/10.1016/0370-2693(92)90280-H
http://dx.doi.org/10.1016/0370-2693(93)91310-J
http://dx.doi.org/10.1016/0370-2693(93)91310-J
http://dx.doi.org/10.1007/BF02099123
http://dx.doi.org/10.1103/PhysRevD.22.2018
http://dx.doi.org/10.1103/PhysRevD.24.2238
http://dx.doi.org/10.1103/PhysRevD.24.2238
http://dx.doi.org/10.1007/BF02097626
http://dx.doi.org/10.1007/BF02097626
http://dx.doi.org/10.1002/cpa.3160470103
http://dx.doi.org/10.1002/cpa.3160470103
http://dx.doi.org/10.1007/s002200050803
http://dx.doi.org/10.1007/s002200050803
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.1103/PhysRevLett.80.4859
http://dx.doi.org/10.1088/1751-8113/48/36/365402
http://dx.doi.org/10.1088/1751-8113/48/36/365402
http://dx.doi.org/10.1016/S0550-3213(00)00642-8
http://dx.doi.org/10.1016/S0550-3213(00)00642-8
http://dx.doi.org/10.1007/JHEP12(2015)140
http://dx.doi.org/10.1007/JHEP12(2015)140

