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Using the non-Abelian Dirac-Born-Infeld action we find an effective matrix model that describes the
dynamics of weakly interacting giant gravitons wrapped on three-spheres in the anti–de Sitter (AdS) part of
AdS5 × S5 at high energies with two angular momenta on the S5. In parallel we consider the limit ofN ¼ 4

super Yang-Mills theory near a certain unitarity bound where it reduces to the quantum mechanical theory
called SUð2Þ spin matrix theory. We show that the exact same matrix model that describes the giant
gravitons on the string theory side also provides the effective description in the strong coupling and large
energy limit of the spin matrix theory. Thus, we are able to match nonsupersymmetric dynamics of D-
branes on AdS5 × S5 to a finite-N regime in N ¼ 4 super Yang-Mills theory near a unitarity bound.
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I. INTRODUCTION AND SUMMARY

The AdS/CFT correspondence asserts that SUðNÞ N ¼
4 super Yang-Mills theory (SYM) is dual to type IIB string
theory on AdS5 × S5 with N units of Ramond-Ramond
five-form flux [1]. As consequence of this holographic
duality one should be able to see how space, time and
gravity emerge from a quantum theory. However, this
requires that one is able to connect the two sides of the
correspondence quantitatively.
In the planar regime N ¼ ∞, where planar N ¼ 4 SYM

is dual to tree-level type IIB string theory on AdS5 × S5,
such a quantitative connection has been found in the form
of an integrable spin chain [2]. This provides a unifying
framework for the two sides of the correspondence,
enabling one to interpolate the full spectrum of the two
theories from weak ’t Hooft coupling λ ¼ g2YMN ≪ 1,
where N ¼ 4 SYM is a good description, to strong
coupling λ ≫ 1, where type IIB string theory is a good
description, and vice versa.
Can one find a unifying framework beyond the planar

regime that generalizes the spin chain theory? On the face
of it, this seems highly difficult since presumably one does
not have the integrability symmetry for finite N. The
proposal of [3] is to take a different limit that accesses a
regime that includes finite-N effects. The starting point is
to consider one of the unitarity bounds E ≥ J of N ¼ 4
SYM where E is the energy and J is a linear combitation
of charges of N ¼ 4 SYM. The limit then takes E − J →
0 keeping ðE − JÞ=λ finite. In such a limit, N ¼ 4 SYM
simplifies greatly and is effectively described by a
quantum mechanical theory called spin matrix theory
(SMT) [3]. One can equivalently take the limit in the
grand canonical ensemble by approaching a zero-
temperature critical point.

In [3] SUð2Þ SMT is studied as the simplest nontrivial
example. This is associated to the bound with J ¼ J1 þ J2
where J1 and J2 are two R-charges of N ¼ 4 SYM. We
found two tractable regimes in which one can interpolate
from weak to strong coupling. One is analogous to the
planar regime, and is described by the ferromagnetic
XXX1=2 Heisenberg spin chain. In the other regime N is
finite, but one considers J so high that SUð2Þ SMT is
described by a classical matrix model.
In this paper we find the first direct evidence that one is

able to use spin matrix theory to interpolate nonsupersym-
metric finite-N effects fromN ¼ 4 SYM to type IIB string
theory on AdS5 × S5. Namely, by studying the non-Abelian
DBI action for k giant gravitons wrapped on three-spheres
in AdS5, we find the exact same classical matrix model on
the string theory side, focussing on the leading contribution
to the giant gravitons. The matrix model we find is

E ¼ 1

2
TrðP2

1 þ P2
2 þ X2

1 þ X2
2Þ

−
gs
8π

Trð½X1; X2�2 þ ½P1; P2�2 þ ½X1; P1�2

þ ½X2; P2�2 þ ½X1; P2�2 þ ½X2; P1�2Þ ð1Þ

subject to the Gauss constraint ½X1; P1� þ ½X2; P2� ¼ 0.
This is valid for high energies J ≫ kN and to first order in
the string coupling gs. X1, X2, P1, P2 are k by k Hermitian
matrices. Using the AdS/CFT dictionary g2YM ¼ 4πgs this is
seen to be same matrix model as found from SUð2Þ SMT
[3]. J corresponds to the first line in Eq. (1).
The above described result means that we are able to

match nonsupersymmetric dynamics of D-branes on
AdS5 × S5 to a finite-N regime in N ¼ 4 SYM near a
unitarity bound. Previous results on giant gravitons have
considered supersymmetric configurations [4–6] or have
focused on matching the dispersion relation for open
strings stretched between giant gravitons [7].*harmark@nbi.ku.dk
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The matrix model (1) is derived for 1=N ≪ gs ≪ 1while
the corresponding result from SUð2Þ SMT assumes
gs ≪ 1=N. One could wonder why one should expect an
exact match for the matrix models found in these two
different regimes, i.e. whether there is a order-of-limits
issue. An analogous question can be posed in the planar
regime of SUð2Þ SMT where one finds the same Landau-
Lifshitz model action from the N ¼ 4 SYM and type IIB
string theory sides to first order in gs [8,9]. We believe this
match for strings, as well as the match found for D-branes
in this paper, are not coincidences. Indeed, in [9] it is
argued that one can take the gsN → 0 limit on the string
theory side in a reliable way without entering the quantum
string theory regime. We believe that one can make a
similar argument also in the D-brane case presented here.
Independently on the discussion of the order-of-limits

issue, one can build on the match between N ¼ 4 SYM
and string theory found here for D-branes at first order in gs
and examine the two theories at second and higher orders
in gs.
We discuss these and other perspectives further in

Secs. VI and VII.

II. SUð2Þ SPIN MATRIX THEORY

We consider N ¼ 4 SYM with gauge group UðNÞ on
R × S3. Let E be the energy, S1, S2 the angular momenta on
S3 and J1, J2, J3 the three R-charges of the SOð6Þ≃ SUð4Þ
R-symmetry, all measured in units of the inverse radius
of S3.
We consider the unitarity bound E ≥ J with J ¼ J1 þ J2

[10]. The SUð2Þ SMT limit is [3]

H ¼ J þ lim
λ→0

g
λ
ðE − JÞ ð2Þ

where g is the coupling constant and H the Hamiltonian of
SUð2Þ SMT. Any state with E − J of order one or higher
will decouple in this limit, hence the Hilbert space of SMT
is greatly reduced. At the same time the interaction is
simplified since all terms beyond one-loop go to zero. We
note that SMT at strong coupling g ≫ 1 is dominated by
states with small ðE − JÞ=λ.
Taking the limit (2) one finds [3]

H ¼ Trða†1a1 þ a†2a2Þ −
g

8π2N
Trð½a†1; a†2�½a1; a2�Þ ð3Þ

where ða†sÞij are the raising operators and ðasÞij the
lowering operators with s ¼ 1, 2 being the index of
the spin 1=2 representation of SUð2Þ and i; j ¼
1; 2;…; N the index for the adjoint representation of
UðNÞ (hence the name spin matrix theory). We have
½ðasÞji; ða†rÞkl� ¼ δs;rδ

k
i δ

j
l . The vacuum j0i of the Hilbert

space is defined by ðasÞijj0i ¼ 0. The states in the Hilbert
space are required to obey the singlet constraint

X2
s¼1

XN
k¼1

½ða†sÞikðasÞkj − ða†sÞkjðasÞik�j0i ¼ 0: ð4Þ

Thus, the Hilbert space is spanned by multitrace states.
In the limit N → ∞ with g fixed the multitrace states

become linearly independent and one can interpret the
single trace parts as spin chains. The Hamiltonian (3) then
reduces to the ferromagnetic XXX1=2 Heisenberg spin
chain. This is the analogue of the planar regime of N ¼
4 SYM.
In this paper we are interested in a different limit.

Namely, we keep N fixed and consider J sufficiently large
such that the Hamiltonian (3) becomes approximately
classical. Using coherent states one finds the classical
matrix model [3]

H ¼ 1

2
TrðP2

1 þ P2
2 þ X2

1 þ X2
2Þ

−
g

32π2N
Trð½X1; X2�2 þ ½P1; P2�2 þ ½X1; P1�2

þ ½X2; P2�2 þ ½X1; P2�2 þ ½X2; P1�2Þ ð5Þ

where Xs and Ps are N by N Hermitian matrices. The
singlet condition (4) becomes the Gauss constraint

½X1; P1� þ ½X2; P2� ¼ 0: ð6Þ

For g finite or small one needs J ≫ N2 where J is the first
line of (5). In the limit of infinite coupling g ¼ ∞ the
matrix model (5) reduces to the diagonal components of the
four matrices and one gets H ¼ J. The Hamiltonian
reduces to

H ¼
X2
s¼1

XN
i¼1

½ððPsÞiiÞ2 þ ððXsÞiiÞ2� ð7Þ

which is 2N decoupled classical one-dimensional harmonic
oscillators. This reproduces the counting of [4] for
J ≫ N3=2. The states counted by (7) correspond to E ¼
J states in N ¼ 4 SYM which are 1=4 BPS
(8 supersymmetries).

III. GIANT GRAVITONS

We introduce now the relevant parameters on the string
theory side and give a short summary of giant gravitons.
Let R be the radius of AdS5 and S5, and gs and ls the string
coupling and string length of type IIB string theory,
respectively. We have R4 ¼ 4πgsNl4s . Furthermore, E is
the energy, S1 and S2 the angular momenta on AdS5 and J1,
J2, J3 the angular momenta on S5, all measured in units
of 1=R.
According to the dictionary of the AdS/CFT correspon-

dence we have the relations g2YM ¼ 4πgs and R4 ¼ λl4s ,
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while E, S1, S2, J1, J2, J3 are identified between the
two sides.
States with E − J ≪ 1 in N ¼ 4 SYM are mapped to

strings of type IIB string theory moving on the S5 when J
does not grow with N. Instead when J is proportional to N
the states are mapped to D-branes in the form of giant
gravitons and when J is proportional toN2 they are mapped
to modifications of the geometry.
A single giant graviton has E ¼ J ¼ J1 þ J2 of order N

and is 1=2 BPS. It can either be an anti–de Sitter (AdS)
giant graviton corresponding to a D3-brane wrapped on an
S3 inside AdS5, or a sphere giant graviton corresponding to
a D3-brane wrapped on an S3 inside S5, in both cases with
angular momenta J1 and J2 on the S5 [11]. Several AdS or
sphere giant gravitons with E ¼ J are generically 1=4 BPS.
The counting of such multiple giant graviton states is
considered in [5,6] matching that of [4]. The spectrum
corresponds to N bosons in a two-dimensional harmonic
oscillator potential which at high enough energies reduces
to the spectrum of 2N decoupled harmonic oscillators,
matching the spectrum of (7).
Giant gravitons with E ¼ J are dual to restricted Schur

polynomials built using Young tableaux with the maximal
number of rows being N since they correspond to repre-
sentations ofUðNÞ [12–14]. When mapping to sphere (AdS)
giant gravitons one can interpret the columns (rows) as
individual giant gravitons [12]. AYoung tableau with many
more rows than columns is dual to sphere giant gravitons,
while a Young tableau with many more columns than rows is
dual to AdS giant gravitons [15]. The maximal number of
AdS giant gravitons is N since each AdS giant graviton
depletes the Ramond-Ramond five-form flux by one unit
inside the three-sphere. This matches the fact that the
maximal number of rows for a UðNÞ representation is N.

IV. PROPOSAL FOR MATCH

The goal of this paper is to match the classical matrix
model (5) to a corresponding matrix model found from
D-branes of type IIB string theory on AdS5 × S5. The
diagonal case Eq. (7) can be treated using the DBI action
for each D-brane. However, this does not capture the
interaction term in Eq. (5). For that we need to employ
the non-Abelian DBI action [16].
Below we consider k AdS giant gravitons with k ≪ N

corresponding to k D3-branes wrapped on three-spheres
inside AdS5. We cannot consider the maximal number N of
AdS giant gravitons since that would backreact on the
background AdS5 × S5 geometry and hence render the non-
Abelian DBI action invalid. However, for AdS giant
gravitons, taking k out of the N D3-branes corresponds
to breakingUðNÞ intoUðkÞ ×UðN − kÞ, where theUðkÞ is
the symmetry of the k D3-branes and the UðN − kÞ part
corresponds to the D3-branes generating the AdS5 × S5

background with N − k units of flux.

Moreover, breaking UðNÞ into UðkÞ × UðN − kÞ has a
clear interpretation in SUð2Þ SMT. Here it corresponds to
exciting only the UðkÞ part of the adjoint representation of
UðNÞ. In the classical matrix model (5) it means one turns
on only a k by k matrix inside the full N by N matrix. The
orthogonal N − k by N − k matrix not turned on then
corresponds to the AdS5 × S5 background with N − k units
of flux.
In conclusion we propose that the classical matrix model

(5) with Gauss constraint (6) where Xs and Ps are k by k
Hermitian matrices is dual to k AdS giant gravitons at
sufficiently high energy.
For k noninteracting AdS giant gravitons it is already

clear that this proposal is correct since at high energies
these have the spectrum of 2k harmonic oscillators, as
found using the DBI action in [6].

V. INTERACTING ADS GIANT GRAVITONS
FROM NON-ABELIAN DBI ACTION

For D3-branes the non-Abelian DBI Lagrangian is [16]

L ¼ TD3STr
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− detðgab þ FaIFbJMIJ þ 2πl2sFabÞ

q
×

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
detðδIJ þ FIKgKJÞ

q
þ C0123

�
ð8Þ

where we assumed the static gauge choice for the world-
volume coordinates xa ¼ σa and xI are the transverse
coordinates that become k by k Hermitian matrices in
the above Lagrangian. The field strength components are
Fab ¼ ∂aAb−∂bAaþ½Aa;Ab�, FaI ¼ gIJð∂axI þ i½Aa;xI�Þ,
FIJ ¼ i

2πl2s
½xI; xJ� and we have defined MIJ ¼ gIJþ

FIKgKLFLJ. The tension is TD3 ¼ 1=ðð2πÞ3gsl4sÞ. The
above assumes a background where only the metric and
the Ramond-Ramond four-form gauge potential Cð4Þ are
turned on. STrð� � �Þ means that one symmetrizes the
expression in terms of the field strengths before taking
the trace. The Lagrangian (8) is valid up to F6 terms.
The metric for AdS5 × S5 is

ds2 ¼ −ðr2 þ R2Þdt2 þ dr2

1þ r2

R2

þ r2dΩ2
3 þ dxidxi ð9Þ

where the five-sphere is defined by x2 ¼ xixi ¼ R2 with
i ¼ 1; 2;…; 6 and the three-sphere metric is dΩ2

3 ¼
dψ2 þ cos2 ψdχ2 þ sin2 ψdϕ2. The embedding of the k
D3-branes is t ¼ σ0, ψ ¼ σ1, χ ¼ σ2, ϕ ¼ σ3, r ¼ rðtÞ and
xi ¼ xiðtÞwhere the transverse coordinates are xI ¼ ðxi; rÞ.
The transverse coordinates xi and r are k by k Hermitian
matrices. The five-sphere constraint is the k by k matrix
equation x2 ¼ R2I. We set the world-volume gauge field to
zero Aa ¼ 0 which gives us the Gauss constraint
½xi; pi� þ ½r; pr� ¼ 0. Below we study the Lagrangian
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L ¼
Z

dΩ3L − Tr

�
NΛ
R2

ðx2 − R2Þ
�

ð10Þ

where we integrated (8) over the unit three-sphere and
added a Lagrange multiplier term to impose the x2 ¼ R2

constraint.
Below we explore the Lagrangian (10) in the following

regime:
(i) We take the limit of large radius r ≫ R. This will

serve both as a limit in which AdS giant gravitons
dominate over sphere giant gravitons and as a high-
energy limit.

(ii) We consider only states with E − J ≪ 1 since these
are the states dual to the SUð2Þ spin matrix
theory limit.

(iii) We consider only the leading part of the interaction
term between the D3-branes in the weakly interact-
ing limit. Thus, we keep only the leading part
involving the transverse field strength Fij.

A. Decoupling of radial modes

Consider the limit of zero interactions between the kAdS
giant gravitons. Then r and xi are diagonal matrices. For
large r=R we find

L ¼ Tr

"
−
Nr3

R3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r2

R2
−

_r2

r2 þ R2
−

_x2

R2

s
þ Nr4

R4

#

≃ Tr

�
N _r2

2R2
þ Nr2 _x2

2R4
−
Nr2

2R2

�
ð11Þ

where dot means the time derivative. The corresponding
Hamiltonian is

E ¼ Tr

�
R2p2

r

2N
þ R4p2

2Nr2
þ Nr2

2R2

�
: ð12Þ

We can ignore the Lagrange multiplier term in (10) since
we focus below on the dynamics of r. The Hamiltonian (12)
has a minimum at Nr4 ¼ R6p2. Writing Nr4min ¼ R6p2

and z ¼ ffiffiffiffi
N

p ðr − rminÞ=R we find near the minimum
H ¼ Trðp2

z þ 2z2 þ Nr2min=R
2Þ. This corresponds to k

harmonic oscillators of mass 2. Hence if any of these were
excited E − J would be of order one or higher (below we
shall see that Tr½Nr2=ð2R2Þ� is canceled by subtracting J).
Therefore, the radial modes for the D3-branes are
decoupled, also in the weakly interacting case. Thus, we
set _r ¼ 0 from now on. This means we should impose
∂L=∂r ¼ 0 as a constraint. Considering (11) we see this
gives _x2 ¼ R2 hence in the weakly interacting case _x2 ∼ R2.
Define r0 ¼ TrðrÞ=k. As stated above, we are consid-

ering the regime r0 ≫ R. In the weakly interacting case we
take the eigenvalues of r to be of order r0, i.e. that the
deviation of each eigenvalue from r0 is much smaller than
r0. This means that

1

r20R
2
jTrðFriFriÞj ≪ 1

R4
jTrðFijFijÞj: ð13Þ

B. Expansion of Lagrangian

From the metric (9) we see that the proper time
approximately is τ ¼ r0t. Hence the velocities of the k
AdS giant gravitons are approximately

�
dx
dτ

�
2

∼
_x2

r20
∼
R2

r20
≪ 1: ð14Þ

Hence we are in a regime with small velocities. Thus, we
should expand the Lagrangian (10) in powers of FaI .
Moreover, we should also expand in powers of FIJ as
well since we are in the weakly interacting limit. The
leading order Lagrangian is thus obtained by considering
the terms quadratic in the field strengths. We find

L ¼ Tr

�
Nr2

2R4
ð_x2 − R2Þ − NΛ

R2
ðx2 − R2Þ − Nr4

4R4
F2

�
: ð15Þ

In deriving this result one finds that the zeroth order term in
the field strength expansion cancels out with the C0123 term.
Notice that we omitted the symmetrized trace prescription.
This is due to the fact that we can effectively regard r and xi

as commuting variables to the order we are working. First
we notice that F2 ¼ FijFij to leading order in the inter-
actions due to (13) since FIJFIJ ¼ FijFij þ 2

1þr2=R2 FriFri.

Secondly, the difference between Trððr_xÞ2Þ and Trðr2 _x2Þ
goes like Trð½r; _xi�2Þ which is much smaller than Trðr4F2Þ.
From ∂L=∂r ¼ 0 we get the constraint

_x2 ¼ R2 þ r2F2: ð16Þ

Computing the equations of motion (EOMs) for the five-
sphere directions we find

ẍi ¼ −
2R2

r2
Λxi −

r2

4

∂F2

∂xi ð17Þ

with ð2πl2sÞ2 ∂F2

∂xi ¼ −4½xj; ½xi; xj��. Using now x2 ¼ R2 we
find _x2 ¼ −xiẍi ¼ −ẍixi (½xi; ẍi� ¼ 0 due to the Gauss
constraint) and xi ∂F2

∂xi ¼ ∂F2

∂xi x
i ¼ 4F2. Thus, contracting

(17) with −xi we get (16) provided we set

Λ ¼ r2

2R2
ð18Þ

to be the on-shell value of Λ. Hence with this the EOMs
(17) imply the constraint (16).
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We can now write the Lagrangian (15) as

Lðxi; _xiÞ ¼ Tr

�
Nr2

2R4
_x2 −

Nr2

2R4
x2 −

Nr4

4R4
F2

�
ð19Þ

with x2 ¼ R2 to be imposed on the EOMs. Making the
coordinate transformation yi ¼ ffiffiffiffi

N
p

rxi=R2 this can be
written as

Lðyi; _yiÞ ¼ Tr

�
1

2
_y2 −

1

2
y2 −

R4

4N
F̂2

�
ð20Þ

where F̂jk ¼ i½yj; yk�=ð2πl2sÞ. The constraint is
y2 ¼ Nr2=R2. Since r does not appear in the Lagrangian
this is just expressing that y2 is constant. Hence we can
write this constraint as yi _yi ¼ 0. The corresponding
Hamiltonian description is

Eðyi; p̂iÞ ¼ Tr

�
1

2
p̂2 þ 1

2
y2 þ R4

4N
F̂2

�
ð21Þ

along with the constraints yip̂i ¼ 0 and ½yi; p̂i� ¼ 0 where
we defined the momenta p̂i ¼ _yi.

C. Spin matrix theory regime

We have J1¼Trðy1p̂2−y2p̂1Þ and J2¼Trðy3p̂4−y4p̂3Þ.
Make now the canonical transformation of the Hamiltonian
Eðyi; p̂iÞ

y1 ¼
1ffiffiffi
2

p ðP1 þ X3Þ; y2 ¼
1ffiffiffi
2

p ðX1 þ P3Þ

y3 ¼
1ffiffiffi
2

p ðP2 þ X4Þ; y4 ¼
1ffiffiffi
2

p ðX2 þ P4Þ

p̂1 ¼
1ffiffiffi
2

p ð−X1 þ P3Þ; p̂2 ¼
1ffiffiffi
2

p ðP1 − X3Þ

p̂3 ¼
1ffiffiffi
2

p ð−X2 þ P4Þ; p̂4 ¼
1ffiffiffi
2

p ðP2 − X4Þ: ð22Þ

We find E − J ¼ TrðP2
3 þ P2

4 þ X2
3 þ X2

4 þ ðp̂2
5 þ p̂2

6 þ
ðy5Þ2 þ ðy6Þ2Þ þ R4F2=ð4NÞÞ. We see that any excitation
of X3, X4, y5 or y6 would give E − J of order one or higher.
Hence these modes decouple when considering the spin
matrix regime E − J ≪ 1. Thus, X3 ¼ X4 ¼ y5 ¼ y6 ¼ 0
and P3 ¼ P4 ¼ p̂5 ¼ p̂6 ¼ 0. Inserting this in (21) we find
for the surviving modes that the Hamiltonian EðXs; PsÞ,
s ¼ 1, 2, is given by

E ¼ 1

2
TrðP2

1 þ P2
2 þ X2

1 þ X2
2Þ

−
gs
8π

Trð½X1; X2�2 þ ½P1; P2�2 þ ½X1; P1�2

þ ½X2; P2�2 þ ½X1; P2�2 þ ½X2; P1�2Þ ð23Þ

subject to the Gauss constraint ½X1; P1� þ ½X2; P2� ¼ 0,
the same as anticipated in Eq. (1). We note that the
constraint yip̂i ¼ 0 is identically satisfied. We have J ¼
1
2
TrðP2

1 þ P2
2 þ X2

1 þ X2
2Þ.

The Hamiltonian (23) is valid for r ≫ R which is
equivalent to J ≫ kN. Clearly this is a high-energy regime
in which the AdS giant gravitons dominate over the sphere
giant gravitons, since the dual states of SUð2Þ SMT
correspond to Young tableaux that typically have k rows
and more thanN columns. Moreover, the result (23) is valid
for gs ≪ 1 up to Oðg2sÞ.
Comparing (23) to the SUð2Þ SMT result (5) with Xs and

Ps being Hermitian k by k matrices, we see that it is the
exact same matrix model. In detail, one translates (5) to
N ¼ 4 SYM by replacing g with λ ¼ g2YMN and H with E,
as seen from (2). The match betweenN ¼ 4 SYM and type
IIB string theory is then found using g2YM ¼ 4πgs.
The above result is stable under the following exten-

sions/modifications:
(i) We put k D3-branes in the background with N units

of flux. Inside the k spheres the flux is therefore
N − k units. Is the result still valid if one puts
another k0 ≪ N D3-branes in the background with
N − k units of flux? This is indeed the case, since the
matrix model (23) does not depend on N. Indeed,
one could even combine the kþ k0 D3-branes in the
same non-abelian DBI action by making the AdS
radius R into a kþ k0 by kþ k0 matrix and replacing
N with R4=ð4πgsl4sÞ.

(i) For simplicity we compared the matrix model (23) to
the high-energy limit of SUð2Þ SMT in the adjoint
representation of UðNÞ. The above match still
holds if one instead considers the adjoint represen-
tation of SUðNÞ where Xs and Ps are traceless N by
N matrices. In this case SUðNÞ breaks into
UðkÞ × SUðN − kÞ. Thus, one gets the same matrix
model from SUð2Þ SMT in the adjoint representa-
tion of UðkÞ to match (23).

In conclusion, we have found a match between
the classical limit of strongly coupled SUð2Þ SMT, corre-
sponding to N ¼ 4 SYM close to the unitarity bound
E ≥ J, and the dynamics of interacting AdS giant gravitons
on AdS5 × S5.

VI. CONNECTING STRING THEORY TO SMT

As summarized in the Introduction, the matrix model
Eq. (23) is found from SUð2Þ SMT with gs ≪ 1=N while
on the string side 1=N ≪ gs ≪ 1. We believe it is not a
coincidence that one gets the same matrix model, and that
one should be able to connect the two regimes.
We first remark that the one-loop correction in weakly

coupled N ¼ 4 SYM is believed to be special for super-
symmetric states. Indeed, it is conjectured [4] that if one
uses the tree-level plus one-loop dilatation operator to find
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supersymmetric states ofN ¼ 4 SYM, no further reduction
of these states will occur at higher loops. By the AdS/CFT
correspondence, this is equivalent to asserting that SMT for
g ¼ ∞ is dual to the supersymmetric states of type IIB
string theory with E ¼ J [3].
Can one extend this to a duality between SMT for g ≫ 1

and type IIB string theory in the SMT limit beyond the
supersymmetric states? With the results of this paper, we
have now two very different regimes of SUð2Þ SMTwhere
this is the case. In addition to the regime where the matrix
model (23) is valid, we have the planar regime as well. This
corresponds to taking the N → ∞ limit of SUð2Þ SMT.
SUð2Þ SMT then becomes the ferromagnetic XXX1=2

Heisenberg spin chain acting on single traces in the
Hilbert space. For g ≫ 1 the low energy dynamics of
the spin chain dominates. For J ≫ 1 one finds a spectrum
of magnons for which H − J ∼ g=J2. The classical limit
with high quantum numbers of the magnons, corresponding
to H − J ∼ g=J, is described by the Landau-Lifshitz
sigma model. In N ¼ 4 SYM this translates to the regime
E − J ∼ λ=J with λ ≪ 1 and J ≫ 1.
On the string side, the same Landau-Lifshitz model is

found in the regime E − J ≪ 1 to first order when expand-
ing λ=J2 ≪ 1 with λ ≫ 1 [8], explaining the matchings of
particular semiclassical operators to string states [17].
In [9] it is argued that this match is not a coincidence.

Indeed, starting from the string sigma model on AdS5 × S5,
it is argued that one can take the limit

H ¼ J þ lim
gs→0

g
4πgsN

ðE − JÞ ð24Þ

and obtain the above-mentioned classical Landau-Lifshitz
model, assuming that J ≫ 1. The reasons this works are
(1) The AdS5 × S5 background is exact [18]. (2) For large
J the sigma-model action remains large and one is thus not
in a quantum string regime. (3) The modes that decouple
in the limit become infinitely heavy. (4) Zero-mode
fluctuations are suppressed since E ¼ J is 1=4 BPS.
For the match found by this paper, we believe that one

can argue along the same lines that the limit (24) of the
non-Abelian DBI action is possible. It is clear that by
considering J ≫ kN the action is always large, and one
can easily check that the higher-order field strength
corrections in the action are suppressed when taking
the limit gs → 0. Moreover, we have seen in this paper
that the modes that decouple become infinitely heavy in
the limit (24). It would be interesting to examine these
arguments more closely.
In conclusion, we have found two classical regimes with

J large where one can match strongly coupled SUð2Þ SMT
to type IIB string theory on AdS5 × S5, one with J ∼ N0

and one with J ∼ N. It would be highly interesting to see if
it is also possible to find regimes of SMT for which a match
with J ∼ N2 is possible.

VII. DISCUSSION AND CONCLUSION

We have shown in this paper that we can match the
strongly coupled limit of SUð2Þ SMT at high energies to
the dynamics of k interacting AdS giant gravitons in the
regime J ≫ kN. This means we are able to match non-
supersymmetric dynamics of D-branes on AdS5 × S5 to a
finite-N regime in N ¼ 4 SYM near a unitarity bound.
Thus, we are matching N ¼ 4 SYM in a regime where J
goes like N to the dynamics of nonperturbative objects in
string theory described by the non-Abelian DBI action.
This is in contrast to previous results of [7] where one
matches the dispersion relation of open strings ending on
D-branes in the large N limit to N ¼ 4 SYM. In that case
one focuses on matching the dynamics of open strings
with nontrivial boundary conditions provided by the giant
gravitons. Hence, the giant gravitons are not themselves
dynamical.
It could be interesting to extend our computation to

second order in g2YM ¼ 4πgs. On the SUð2Þ SMT side, this
would correspond to a perturbation from the two-loop
dilatation operator of N ¼ 4 SYM. On the string theory
side, one should consider higher-order corrections from
the non-Abelian DBI action, including F4 terms for the
transverse field strength. This could possibly provide a
starting point to study the structure of higher-order
corrections away from the SMT regime considered in
this paper.
Regarding our use of the non-Abelian DBI action [16]

in this paper, we note that to our knowledge it has only
been employed in very few cases to the AdS/CFT
correspondence [19]. The results of this paper could
possibly give a new way to explore and test non-
Abelian DBI also at order F6 and beyond. Notice
furthermore that the regime r ≫ R corresponds effectively
to the matrix theory limit of the non-Abelian DBI action
[20] since we found that velocities are small in this
regime. Moreover, for r ≫ R the curvature of the embed-
ding geometry of the D3-branes is small.
It is interesting to check the much simpler SMT limit

coming from considering the unitarity bound E ≥ J1 using
the results of this paper. Taking the limit (2) in this case one
finds H ¼ Trða†aÞ with a singlet constraint on the spec-
trum [21]. Notice that there is no interaction term in this
case which is connected to the fact that it describes the 1=2
BPS sector of N ¼ 4 SYM. In the classical limit one gets
the matrix modelH ¼ 1

2
TrðP2 þ X2Þ with Gauss constraint

½X;P� ¼ 0. Considering the string theory side, using the
methods of this paper, it is not hard to see that one finds
the Hamiltonian (1) with X2 ¼ P2 ¼ 0. Imposing then the
Gauss constraint the interaction term vanishes, and hence
one finds perfect agreement.
The SUð2Þ SMT is the simplest nontrivial SMT one can

consider. Considering instead the unitarity bounds
E ≥ J1 þ J2 þ J3, E ≥ S1 þ J1, E ≥ S1 þ S2 þ J1 and
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E ≥ S1 þ S2 þ J1 þ J2 þ J3, respectively, one finds the
SUð2j3Þ SMT, SUð1; 1j2Þ SMT, SUð1; 2j2Þ SMT and
SUð1; 2j3Þ SMT [3,22]. It could be highly interesting to
extend our match for interacting giant gravitons to these
SMTs as well. SUð1; 2j3Þ SMT is particularly interesting
since it contains a semiclassical configuration dual to a
supersymmetric black hole with E ¼ S1 þ S2 þ J1 þ J2 þ
J3 [23] that so far has eluded understanding [4,24].

ACKNOWLEDGMENTS

We thank Jelle Hartong, Cindy Keeler, Niels Obers and
Marta Orselli for nice discussions and useful comments on
the draft. We acknowledge support from the Marie-Curie-
CIG grant “Quantum Mechanical Nature of Black Holes”
from the European Union. We thank the Physics
Department of Perugia University for kind hospitality
while this research was carried out.

[1] J. M. Maldacena, Adv. Theor. Math. Phys. 2, 231 (1998);
E. Witten, Adv. Theor. Math. Phys. 2, 253 (1998); S. S.
Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett. B
428, 105 (1998).

[2] N. Beisert et al., Lett. Math. Phys. 99, 3 (2012).
[3] T. Harmark and M. Orselli, J. High Energy Phys. 11 (2014)

134 (2014).
[4] J. Kinney, J. M. Maldacena, S. Minwalla, and S. Raju,

Commun. Math. Phys. 275, 209 (2007).
[5] I. Biswas, D. Gaiotto, S. Lahiri, and S. Minwalla, J. High

Energy Phys. 12 (2007) 006.
[6] G. Mandal and N. V. Suryanarayana, J. High Energy Phys.

03 (2007) 031.
[7] V. Balasubramanian, M.-x. Huang, T. S. Levi, and A. Naqvi,

J. High Energy Phys. 08 (2002) 037; D. Berenstein, D. H.
Correa, and S. E. Vazquez, J. High Energy Phys. 09 (2006)
065; R. de Mello Koch, J. Smolic, and M. Smolic, J. High
Energy Phys. 09 (2007) 049; W. Carlson, R. d. M. Koch,
and H. Lin, J. High Energy Phys. 03 (2011) 105; R. de, M.
Koch, N. H. Tahiridimbisoa, and C. Mathwin, J. High
Energy Phys. 03 (2016) 156; D. Berenstein and E. Dzien-
kowski, J. High Energy Phys. 08 (2013) 047.

[8] M. Kruczenski, Phys. Rev. Lett. 93, 161602 (2004).
[9] T. Harmark, K. R. Kristjansson, and M. Orselli, J. High

Energy Phys. 02 (2009) 027.
[10] V. K. Dobrev and V. B. Petkova, Phys. Lett. 162B, 127

(1985).
[11] J. McGreevy, L. Susskind, and N. Toumbas, J. High Energy

Phys. 06 (2000) 008; M. T. Grisaru, R. C. Myers, and O.
Tafjord, J. High Energy Phys. 08 (2000) 040; A. Hashimoto,

S. Hirano, and N. Itzhaki, J. High Energy Phys. 08 (2000)
051.

[12] S. Corley, A. Jevicki, and S. Ramgoolam, Adv. Theor. Math.
Phys. 5, 809 (2001).

[13] V. Balasubramanian, D. Berenstein, B. Feng, and M.-x.
Huang, J. High Energy Phys. 03 (2005) 006.

[14] R. de Mello Koch, J. Smolic, and M. Smolic, J. High Energy
Phys. 06 (2007) 074.

[15] I. Bena and D. J. Smith, Phys. Rev. D 71, 025005
(2005).

[16] R. C. Myers, J. High Energy Phys. 12 (1999) 022; W. Taylor
and M. Van Raamsdonk, Nucl. Phys. B573, 703 (2000).

[17] S. Frolov and A. A. Tseytlin, Nucl. Phys. B668, 77 (2003);
N. Beisert, A. A. Tseytlin, and K. Zarembo, Nucl. Phys.
B715, 190 (2005).

[18] R. Kallosh and A. Rajaraman, Phys. Rev. D 58, 125003
(1998).

[19] J. Erdmenger, K. Ghoroku, and I. Kirsch, J. High Energy
Phys. 09 (2007) 111.

[20] W. Taylor, arXiv:hep-th/9801182.
[21] D. Berenstein, J. High Energy Phys. 07 (2004) 018.
[22] T. Harmark and M. Orselli, Nucl. Phys. B757, 117 (2006);

T. Harmark andM. Orselli, Phys. Rev. D 74, 126009 (2006);
T. Harmark, K. R. Kristjansson, and M. Orselli, J. High
Energy Phys. 09 (2007) 115.

[23] J. B. Gutowski and H. S. Reall, J. High Energy Phys. 04
(2004) 048.

[24] L. Grant, P. A. Grassi, S. Kim, and S. Minwalla, J. High
Energy Phys. 05 (2008) 049; C.-M. Chang and X. Yin,
Phys. Rev. D 88, 106005 (2013).

INTERACTING GIANT GRAVITONS FROM SPIN MATRIX … PHYSICAL REVIEW D 94, 066001 (2016)

066001-7

http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a1
http://dx.doi.org/10.4310/ATMP.1998.v2.n2.a2
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1016/S0370-2693(98)00377-3
http://dx.doi.org/10.1007/s11005-011-0529-2
http://dx.doi.org/10.1007/JHEP11(2014)134
http://dx.doi.org/10.1007/JHEP11(2014)134
http://dx.doi.org/10.1007/s00220-007-0258-7
http://dx.doi.org/10.1088/1126-6708/2007/12/006
http://dx.doi.org/10.1088/1126-6708/2007/12/006
http://dx.doi.org/10.1088/1126-6708/2007/03/031
http://dx.doi.org/10.1088/1126-6708/2007/03/031
http://dx.doi.org/10.1088/1126-6708/2002/08/037
http://dx.doi.org/10.1088/1126-6708/2006/09/065
http://dx.doi.org/10.1088/1126-6708/2006/09/065
http://dx.doi.org/10.1088/1126-6708/2007/09/049
http://dx.doi.org/10.1088/1126-6708/2007/09/049
http://dx.doi.org/10.1007/JHEP03(2011)105
http://dx.doi.org/10.1007/JHEP03(2016)156
http://dx.doi.org/10.1007/JHEP03(2016)156
http://dx.doi.org/10.1007/JHEP08(2013)047
http://dx.doi.org/10.1103/PhysRevLett.93.161602
http://dx.doi.org/10.1088/1126-6708/2009/02/027
http://dx.doi.org/10.1088/1126-6708/2009/02/027
http://dx.doi.org/10.1016/0370-2693(85)91073-1
http://dx.doi.org/10.1016/0370-2693(85)91073-1
http://dx.doi.org/10.1088/1126-6708/2000/06/008
http://dx.doi.org/10.1088/1126-6708/2000/06/008
http://dx.doi.org/10.1088/1126-6708/2000/08/040
http://dx.doi.org/10.1088/1126-6708/2000/08/051
http://dx.doi.org/10.1088/1126-6708/2000/08/051
http://dx.doi.org/10.4310/ATMP.2001.v5.n4.a6
http://dx.doi.org/10.4310/ATMP.2001.v5.n4.a6
http://dx.doi.org/10.1088/1126-6708/2005/03/006
http://dx.doi.org/10.1088/1126-6708/2007/06/074
http://dx.doi.org/10.1088/1126-6708/2007/06/074
http://dx.doi.org/10.1103/PhysRevD.71.025005
http://dx.doi.org/10.1103/PhysRevD.71.025005
http://dx.doi.org/10.1088/1126-6708/1999/12/022
http://dx.doi.org/10.1016/S0550-3213(00)00006-7
http://dx.doi.org/10.1016/S0550-3213(03)00580-7
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.030
http://dx.doi.org/10.1016/j.nuclphysb.2005.03.030
http://dx.doi.org/10.1103/PhysRevD.58.125003
http://dx.doi.org/10.1103/PhysRevD.58.125003
http://dx.doi.org/10.1088/1126-6708/2007/09/111
http://dx.doi.org/10.1088/1126-6708/2007/09/111
http://arXiv.org/abs/hep-th/9801182
http://dx.doi.org/10.1088/1126-6708/2004/07/018
http://dx.doi.org/10.1016/j.nuclphysb.2006.08.022
http://dx.doi.org/10.1103/PhysRevD.74.126009
http://dx.doi.org/10.1088/1126-6708/2007/09/115
http://dx.doi.org/10.1088/1126-6708/2007/09/115
http://dx.doi.org/10.1088/1126-6708/2004/04/048
http://dx.doi.org/10.1088/1126-6708/2004/04/048
http://dx.doi.org/10.1088/1126-6708/2008/05/049
http://dx.doi.org/10.1088/1126-6708/2008/05/049
http://dx.doi.org/10.1103/PhysRevD.88.106005

