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We investigate the stability of the pion string in a thermal bath and a dense medium. We find that stability
is dependent on the order of the chiral transition. String core stability within the experimentally allowed
regime is found only if the chiral transition is second order, and even there the stable region is small; i.e., the
temperature below which the core is unstable is close to the critical temperature of the phase transition. We
also find that the presence of a dense medium, in addition to the thermal bath, enhances the experimentally
accessible region with stable strings. We also argue that once the string core decays, the “effective winding”
of the string persists at large distances from the string core. Our analysis is done both in the chiral limit,
which is mainly what has been explored in the literature up to now, and for the physical h ≠ 0 case, where a
conceptual framework is set up for addressing this regime and some simple estimates are done.
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I. INTRODUCTION

From the Grand Unified Theory epoch, where the strong
and the electroweak forces are expected to have been
unified in a single gauge group, to the later stage of the
Standard Model and going below the energy scale where
hadrons are formed, the early Universe is expected to have
undergone a series of phase transitions. During each
spontaneous breaking of symmetry, it is possible that
topological defects are produced [1]. The existence of
these defects may explain several open questions in
cosmology, such as primordial density perturbations and
structure formation [2,3], generation of the primordial
magnetic fields [4] and baryogenesis [5]. Therefore the
search for topological defects has been an active field of
research among particle physicists and cosmologists for the
last 30 years.
Embedded defects are a special class of topological

defects [6]. They are constructed by constraining a subset
of fields in the given theory to vanish, while others continue
to have solutions of the unconstrained system. If the
vacuum manifold of the remaining unconstrained part of
the system results in having a nontrivial homotopy group,
then topological defect formation can occur, with this
defect then being embedded in the larger theory.
Embedded defects are of particular interest since they
can be constructed in realistic systems in nature. Two
known examples are the chiral model with the pion
string [7], which is the focus of this work, and the

Glashow-Weinberg-Salam model with the electroweak
string [8]. The stability of embedded defects is not
straightforward and needs careful analysis, since their
existence is not strictly due to the topology of the full
theory and they are usually not stable in vacuum. The field
values can escape into the constrained directions and the
configuration can be continuously deformed to the trivial
vacuum. Each model needs to be analyzed case by case.
The pion string appears as a special nontrivial solution in

chiral models, in particular the linear sigma model (LSM)
of quantum chromodynamics (QCD). The pion string
corresponds to a classical solution of the LSM where
the charged pions are constrained. Since chiral models are
effective models commonly used to understand many
aspects of QCD, and in particular used in many inves-
tigations related to heavy-ion collision experiments, one
may wonder if pion strings might indeed be produced in
these systems, for example during the quark-gluon plasma
to hadron phase transition in heavy-ion collision experi-
ments and the early Universe.
The question of the stability of the pion string is of

crucial importance and has been the focus of some previous
works. In [9], Nagasawa and Brandenberger proposed a
realistic mechanism to stabilize the pion string by putting
the system in a thermal bath of photons, whereby inter-
actions of the electromagnetic field with the charged
plasma lead to a lifting of the effective potential in the
constrained field direction. More recent works by Karouby
and Brandenberger [10,11] confirm the stabilization effect
of this mechanism. Whether this effect is large enough to
have a stable string in the region of parameters that is
experimentally accessible has been the subject of recent
discussion [12,13].
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In this work, we will study an extension of this
stabilization mechanism by placing the system not only
in a thermal environment but also in a dense medium,
which is accounted for by including a nonvanishing
chemical potential. In addition to the charged plasma,
the interactions with fermions (quarks) will also be
included. Thus the model we will work with is the linear
sigma model with quarks (LSMq). These interactions will
then generate further corrections to the effective potential,
making explicit the chiral phase transition that can occur in
the LSMq for instance. These modifications will lead to a
physically more realistic model than has been studied up to
now [12,13]. The string solution will now be altered, as it
depends on the temperature and the chemical potential.
The analysis of the stability to follow will show that the
production of stable strings depends on the order of the
chiral phase transition.
Like topologically stable cosmic strings in local gauge

theories, the pion string is characterized by a core region
where the potential energy is confined. The topology of a
string solution can be seen far beyond this core radius. The
stability condition we use in this work is that of the stability
of the string core against dissipation of the potential energy
from the core region. Wewill, however, also argue that even
if the string core decays, a remnant of the string solution
persists.
Our analysis finds that the string core stability condition

can be satisfied for experimentally allowed values when
the chiral transition is second order. In this paper we only
consider classical decay processes. Quantum decay chan-
nels have been studied in [11,14].
The paper is organized as follows. In Sec. II we briefly

review the LSMq at finite temperature and chemical
potential. In the same section we also review the pion
string solution and how it can be stabilized in the context of
the LSMq. Section III is dedicated to the stability analysis
of the strings in the thermal and dense medium for both the
chiral limit as well as an initial examination for the physical
case of h ≠ 0. Our concluding remarks are given in Sec. IV.

II. THE PION STRING IN THE LINEAR
SIGMA MODEL

In this section we briefly review the LSMq [15–17] and
the pion string solution, which can be seen as an embedded
defect in the LSMq.

A. LSMq at zero temperature

It is well known that QCD becomes nonperturbative
at low energy due to color confinement. However, the
approximate chiral symmetry present in the QCD
Lagrangian and its spontaneous breaking allows one to
construct a low-energy effective theory with hadrons
replacing the quarks and gluons as degrees of freedom.
Chiral models, most commonly the LSMq, have long been

used in many applications aiming to understand various
aspects of QCD, among them, the description of disori-
ented chiral condensates in heavy-ion collisions or the
chiral phase transition.
The LSMq is a concrete realization of chiral effective

theory and describes interactions between nucleons, pions
and sigma fields. We consider its most simple realization,
containing two massless quarks in a fermionic isodoublet
ψT ¼ ðu; dÞ, a triplet of pseudoscalar pions (~π) and a scalar
field sigma (σ). The Lagrangian density of the model reads

L ¼ LΦ þ Lq; ð2:1Þ

LΦ ¼ Tr½ð∂μΦÞ†ð∂μΦÞ� −m2Tr½Φ†Φ�

− λðTr½Φ†Φ�Þ2 þ 1

2
hTr½Φ† þ Φ�; ð2:2Þ

Lq ¼ ψ̄ði∂ − γ0μq þ gðσ þ i~π · ~τγ5ÞÞψ ; ð2:3Þ

where Φ ¼ σ · I
2
þ i~π · ~τ

2
is the meson matrix in Dirac

space, ~τ are the Pauli matrices with the normalization
Tr½τaτb� ¼ 2δab and I is the identity matrix. Finally, μq is
the quark chemical potential. The term dependent on h in
Eq. (2.2) is an explicit symmetry breaking term. This term
mimics the breaking of the chiral symmetry in the QCD
Lagrangian due to the nonvanishing quark masses.
In the limit of vanishing h, the model has a chiral

symmetry SUð2ÞL × SUð2ÞR. The spinors ψL;R ¼
1
2
ð1� γ5Þψ belong to the fundamental representation of

the group, transforming as

ψL;R → expð−i~ωL;R · ~τÞψL;R: ð2:4Þ

The scalar fields transform in the ð1
2
; 1
2
Þ representation,

Φ → expð−i~ωL · ~τÞ†Φ expð−i~ωR · ~τÞ: ð2:5Þ

It is easy to check that under such a transformation the
Lagrangian density (2.1) is invariant.
The Φ-dependent part of the Lagrangian density is often

explicitly expressed in terms of the pion (~π ≡ ðπ0; π1; π2Þ)
and sigma (σ) fields,

LΦ ¼ 1

2
ð∂μσÞ2 þ

1

2
ð∂μ~πÞ2 − V0ðσ; ~πÞ; ð2:6Þ

V0ðσ; ~πÞ ¼
λ

4
ðσ2 þ ~π2 − v20Þ2 − hσ; ð2:7Þ

where v20 ¼ m2

λ ≡ f2π corresponds to the pion decay constant
in the vacuum.
The linear term in (2.2) breaks the chiral symmetry

explicitly by giving a nontrivial vacuum expectation value
to the σ field. To construct the classical fundamental state,
the minimum of the potential is considered,
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dV0

dσ
¼ λðσ2 þ ~π2 − v20Þσ − h ¼ 0; ð2:8Þ

dV0

dπi
¼ λðσ2 þ ~π2 − v20Þπi ¼ 0: ð2:9Þ

The unique solution of the system is

~π0 ¼ 0; λðσ20 − v20Þσ0 ¼ h; ð2:10Þ

and the vacuum expectation value v of the σ field to first
order in h reads

v ¼ fπ þ
h

2λf2π
: ð2:11Þ

Assuming that σ ¼ σ0 þ v, where hσ0i0 ¼ 0, we obtain the
shifted Lagrangian density

LΦ ¼ 1

2
ð∂μσ

0Þ2 þ 1

2
ð∂μ~πÞ2 −

1

2
ð−m2 þ 3λv2Þσ02

−
1

2
ð−m2 þ λv2Þ~π2 − λσ0vðσ02 þ ~π2Þ

−
λ

4
ðσ02 þ ~π2Þ2 − σ0ð−m2vþ λv3 − hÞ; ð2:12Þ

Lq ¼ ψ̄ ½i∂ − γ0μq þ gvþ gðσ0 þ i~π · ~τγ5Þ�ψ : ð2:13Þ

Note that the term linear in σ0 vanishes due to (2.10). In this
shifted Lagrangian, the quarks become massive and the
masses of the mesons are nondegenerate, with vacuum
values,

mq;0 ¼ gv; m2
σ;0 ¼ −m2 þ 3λv2; m2

π;0 ¼ −m2 þ λv2:

ð2:14Þ

The parameters g, λ and h (note that m2 ¼ λf2π) are chosen
to fit the observable vacuum values, in particular the
pion mass, mπ;0 ¼ 139 MeV, the pion decay constant,
fπ ¼ 93 MeV, and also the constituent quark mass mq;0

and the mass for the sigma, mσ;0, whose values will be
explicitly set below.
Often the chiral limit of the model is considered. In

the absence of the linear breaking term (h ¼ 0), the
chiral symmetry is spontaneously broken when the σ field
develops a vacuum expectation value v ¼ v0 ≡ fπ . In the
symmetry broken phase the pions become massless and
they correspond to the Goldstone bosons.

B. Chiral phase transition at finite temperature
and chemical potential

The LSMq at finite temperature and chemical potential is
expected to undergo a phase transition in the (μq–T) plane.
Following the arguments of Ref. [18], we assume that the

most important contributions to the free energy come from
the interactions with the quarks. The quantum and thermal
fluctuations of the meson fields are neglected (note that this
is also a valid assumption in the large-N approximation for
the model [19]). The (renormalized) free energy or effective
potential at one loop [16,17] reads

VeffðT; μqÞ ¼ V0 þ ΔV0 þ ΔVT;μq ; ð2:15Þ

where

V0 ¼ −
1

2
m2v2 þ λ

4
v4 − hv; ð2:16Þ

ΔV0 ¼
NcNf

ð4πÞ2 m
4
q

�
3

2
þ ln

M2

m2
q

�
; ð2:17Þ

ΔVT;μq ¼ −2NcNfT
Z

d3k
ð2πÞ3 ½ln ð1þ e−

ωk
T −

μq
T Þ

þ ln ð1þ e−
ωk
T þ

μq
T Þ�; ð2:18Þ

where ωk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þm2

q

q
, Nc ¼ 3 is the number of colors,

Nf ¼ 2 is the number of flavors andM is the regularization
scale used in dimensional regularization in the MS scheme.
The expectation value of the field σ in the medium

hσi ¼ vðT; μqÞ corresponds to the minimum of the effec-
tive potential and it is determined by

dVeff

dv

����
v¼vðT;μqÞ

¼ 0; ð2:19Þ

which leads to the gap equation,

−m2 þ λv2 þ NcNf

4π2
g4v2

�
1þ ln

M2

g2v2

�

þ NcNf

π2
g2

Z
∞

0

dk
k2

ωk
½nþF ðωkÞ þ n−FðωkÞ� ¼

h
v
;

ð2:20Þ

where

n�F ¼ 1

e
ωk
T ∓μq

T þ 1
ð2:21Þ

is the Fermi-Dirac distribution for particles and antiparticles.
Let us analyze the chiral limit h ¼ 0 and the physical

case h ≠ 0 separately.

1. Chiral limit

For large T and μq the chiral symmetry is restored.
Equation (2.19) is trivially satisfied with vðT; μqÞ ¼ 0, and
the masses of the mesons are degenerate. The fermions
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are massless. The chiral symmetry is spontaneously broken
when the effective potential develops a nontrivial mini-
mum vðT; μqÞ ≠ 0.
The masses of the mesons σ and π are given by their tree-

level contributions plus the respective self-energies, which
in our approximation are given by the one-loop corrections
due to the Yukawa interaction,

m2
σ ¼ −m2 þ 3λv2 þ ΠðrenÞ

σ ; ð2:22Þ

m2
π ¼ −m2 þ λv2 þ ΠðrenÞ

π ; ð2:23Þ

where ΠðrenÞ
σ and ΠðrenÞ

π are the renormalized one-loop self-
energies for the sigma and the pions, respectively, and
given by (see, e.g., Ref. [17])

ΠðrenÞ
σ ¼ NcNf

4π2

�
g4v2

�
1þ 3 ln

M2

g2v2

�

þ 4g2
Z

∞

0

dk
k2

ωk
½nþF ðωkÞ þ n−FðωkÞ�

�
1 −

g2v2

ω2
k

�

− 4
g4v2

T

Z
∞

0

dk
k2

ω2
k

½nþF ðωkÞð1 − nþF ðωkÞÞ

þ n−FðωkÞð1 − n−FðωkÞÞ�
	

ð2:24Þ

and

ΠðrenÞ
π ¼ NcNf

4π2

�
g4v2

�
1þ ln

M2

g2v2

�

þ 4g2
Z

∞

0

dk
k2

ωk
½nþF ðωkÞ þ n−FðωkÞ�

	
: ð2:25Þ

Using Eq. (2.25) in the gap equation (2.20) gives for
h ¼ 0,

−m2 þ λv2ðT; μqÞ þ ΠðrenÞ
π ¼ 0; ð2:26Þ

which is simply the condition that the pions become
massless in the broken phase, in agreement with the
Goldstone theorem.
We obtain the phase diagram of the model in the (T, μq)

plane numerically. The parameters are fixed by the follow-
ing conditions: The vacuum expectation value of the field is
v0 ¼ fπ ¼ 93 MeV:

dV0

dv

����
v¼v0

¼ 0; ð2:27Þ

and we require that this minimum is preserved when
quantum corrections are included,

d
dv

VeffðT ¼ 0; μq ¼ 0Þj
v¼v0

¼ 0: ð2:28Þ

The mass of the sigma field in the vacuum is in the broad
resonance interval, 400 MeV ≤ mσ ≤ 800 MeV. For our
analysis we set it as

m2
σ ¼

d2

dv2
VeffðT ¼ 0; μq ¼ 0Þ

����
v¼v0

¼ ð600 MeVÞ2; ð2:29Þ

and for the quark mass we choose

mq ¼ gvjv¼v0 ¼ 300 MeV: ð2:30Þ

Although there is some freedom in the choice of mσ within
the broad resonance interval, this barely influences the
stability of the string. Thus, we find the following set of
parameters,

m2 ¼ λv20 ≃ ð567.7 MeVÞ2;
g≃ 3.2;

λ ¼ 1

2

�
8
NcNf

ð4πÞ2 g
4 þm2

σ

v20

�
≃ 37.3;

M2 ¼ m2
q

e
≃ ð182.0 MeVÞ2: ð2:31Þ

An analysis of the effective potential (2.15) shows that
the order of the phase transition depends on T and μq
(which are related along the phase transition curve). For
low temperatures and large chemical potential, the shape of
the effective potential Veff is typical of a first-order phase
transition, as can be seen in Fig. 1. In this case, at T ¼ Tc,
there are degenerate minima with the origin and the

FIG. 1. The effective potential, in the chiral limit, for a fixed
value of chemical potential μq ¼ 322 MeV and for values of
temperature above, at and below the critical temperature Tc.
Here, Tc ¼ 11.5 MeV.
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expectation value jumps discontinuously at the transition
point. Then, there is a critical point, which is around T ¼
50 MeV and μq ¼ 306 MeV, above which (as the temper-
ature increases and the chemical potential decreases) the
phase transition becomes second order. From Fig. 2
observe that the minimum of the potential moves smoothly
away from zero. The phase diagram in the (μq–T) plane is
shown in Fig. 3.

2. Physical case

When h ≠ 0, the symmetry is never completely restored,
with vðT; μqÞ approaching zero for large values of T and μq.
This behavior corresponds to a crossover transition. The
gap equation gives

−m2 þ λv2ðT; μqÞ ¼ −ΠðrenÞ
π þ h

vðT; μqÞ
: ð2:32Þ

The pions are pseudo-Nambu-Goldstone bosons with mass
squared m2

π ¼ h
vðT;μqÞ. The parameters are fixed by the same

requirements as in the chiral limit and the extra condition
on the pion masses in vacuum being set to their physical
value mπ;0 ¼ 139 MeV. For this case, we find the follow-
ing set of parameters,

m2 ¼ λv20 −
h
v0

≃ ð541.6 MeVÞ2;

g≃ 3.2;

λ ¼ 1

2

�
8
NcNf

ð4πÞ2 g
4 þm2

σ

v20
−

h
v0

�
≃ 36.2;

M2 ¼ m2
q

e
≃ ð182.0 MeVÞ2;

h≃ 1.8 × 106 ðMeVÞ3: ð2:33Þ

In the physical case, the effective potential exhibits a
crossover transition, as shown in Fig. 4. Observe that
the minimum of the potential moves smoothly towards zero
as the temperature increases. The derivation of the cross-
over transition line on the (μq–T) plane is performed
numerically, with the result depicted in Fig. 3 together
with the case for the chiral limit for comparison. In our
computation, where we have considered both vacuum and

FIG. 3. The phase diagram in the (μq–T) plane. The solid and
dashed curves are for the chiral limit (h ¼ 0) and correspond to
the second-order and first-order transition lines, respectively. The
dotted curve is for the physical case (h ≠ 0) and represents a
crossover transition. Temperature and chemical potential are
normalized by the critical values in the chiral limit: Tc ¼
176 MeV and μq;c ¼ 323 MeV. For the crossover we have the
pseudocritical values Tpc ¼ 172 MeV and μq;pc ¼ 329 MeV.

FIG. 4. The effective potential in the physical case for a fixed
value of chemical potential μq ¼ 220 MeV. It shows a crossover
phase transition as the temperature is changed. There is a
pseudocritical temperature at Tpc ¼ 133.75 MeV determined
by the position of the inflection point of the σ field expectation
value.

FIG. 2. The effective potential, in the chiral limit, for μq¼0MeV
and for values of temperature above, at and below the critical
temperature Tc. Here, Tc ¼ 176.0 MeV.
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thermal fluctuations for the fermions in the effective
potential, we find only a crossover line. There are though
other approximations where the crossover line can end and
merge with a first-order phase transition line in a critical
end point (see, e.g., Refs. [16,18]).

C. The pion string solution and its stability

In Ref. [7], Zhang et al. derived a stringlike classical
solution in the LSM in the chiral limit and in the vacuum.
Defining the new fields ϕ and π� as

ϕ ¼ σ þ iπ0ffiffiffi
2

p ; π� ¼ π1 � iπ2ffiffiffi
2

p ; ð2:34Þ

the Φ-dependent part of the Lagrangian density is rewritten
as

LΦ ¼ ð∂μϕÞ�ð∂μϕÞ þ ð∂μπ
þÞð∂μπ−Þ

− λ

�
ϕ�ϕþ πþπ− −

v20
2

�
2

: ð2:35Þ

Considering a static configuration, the energy functional, in
the vacuum, reads

E0 ¼
Z

d3x

�
~∇ϕ� ~∇ϕþ ~∇πþ ~∇π−

þ λ

�
ϕ�ϕþ πþπ− −

v20
2

�
2
�
; ð2:36Þ

and the time-independent equations of motion are

∇2ϕ ¼ 2λ

�
ϕ�ϕþ πþπ− −

v20
2

�
ϕ; ð2:37Þ

∇2π� ¼ 2λ

�
ϕ�ϕþ πþπ− −

v20
2

�
π�: ð2:38Þ

These equations admit the following pion string solution:

ϕ ¼ v0ffiffiffi
2

p ρðrÞeinθ; π� ¼ 0; ð2:39Þ

where r and θ are the polar coordinates in the ðx; yÞ plane
and the integer n is the winding number. The string has a
linear extension in the z direction.
The radial function ρðrÞ is found by substituting

Eq. (2.39) into the equation of motion and using the
boundary condition,

ρðrÞ ¼
�
0; r → 0;

1; r → ∞;
ð2:40Þ

leading to ρðrÞ≃ ð1 − e−μrÞ, where μ2 ¼ 2λv20, and where
μ−1 corresponds to the width of the string.

The above string solution is, however, nontopological. As
it stands, once formed it will decay away. Since the vacuum
manifold of this model is M ¼ S3, there can be no
topological defects [1]. In this case, the nontrivial field
configuration can be continuously deformed to the vacuum.
In other words, under an infinitesimal excitation of the fields
π�, the string configuration will unwind. To investigate the
stability of the string, infinitesimal perturbations which
involve the π� fields are considered. The perturbations
induce a variation of the energy, and if this variation is
negative, the string configurationwill be unstable and decay.
This is the case for the above pion string solution [7].
However, if the effective potential in one of the field
directions is lifted, in particular in the direction of the
charged fields π�, then we are left with an overall Uð1Þ
symmetry of the effective potential in the ðσ; π0Þ directions.
This then allows for a stable (embedded) topological pion
string to form. This is the case studied by Nagasawa and
Brandenberger in [9], where they proposed a mechanism to
stabilize the pion string by putting the system in a finite
temperature plasma comprised of photons. The interaction
between the charged pions and the electromagnetic field
increases the effective potential in the π� directions. The
potential for the π� fields acquires a quadratic term with a
thermal mass contribution due to the coupling with the
photons [10], e2T2πþπ−=2, which tends to stabilize the
string.

III. PION STRING STABILITY IN A THERMAL
AND DENSE MEDIUM

A. Setup: Chiral limit

As shown in Ref. [9], the interactions between the
charged pions and the photons increase the effective
potential in the π� directions and act to stabilize the string.
We follow the same strategy but in addition to the thermal
bath, we also consider the effect of the dense medium due
to the interactions with the fermions. We assume that the
fermions are in equilibrium with the thermal bath of
photons, but, similar to Ref. [10], the σ and ~π fields are
in a nonequilibrium state.
Using standard techniques [20] a nonzero chemical

potential μq is set for the fermions and the thermal bath
is implemented by the electromagnetic couplings between
the charged particles of the model and the photon. In the
minimal coupling prescription, the Lagrangian density
becomes

L ¼ LΦ þ Lq −
1

4
FμνFμν; ð3:1Þ

LΦ ¼ ð∂μϕÞ�ð∂μϕÞ þ ðDþ
μ π

þÞðD−μπ−Þ

− λ

�
ϕ�ϕþ πþπ− −

v20
2

�
2

; ð3:2Þ
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Lq ¼ ψ̄

�
iγμ

�
∂μ − ie

�
qu 0

0 qd

�
Aμ

�
− γ0μq

þ gðσ þ i~π · ~τγ5Þ
	
ψ ; ð3:3Þ

whereD�
μ ¼ ∂μ � ieAμ and qu ¼ 2e=3, qd ¼ −e=3 are the

electric charges for the u quark and d quark, respectively.
The interactions with the thermal bath give a thermal

mass to the charged particles, modifying the effective
potential in the charged field directions [10],

ΔVeff jThermal Bath ¼
e2T2

4
πþπ−: ð3:4Þ

Note also that the coupling to the photons gives a thermal
mass [20]m2

fðTÞ ¼ q2fT
2=8 to the quarks as well. However,

this term can be safely neglected with respect to the gv
term in the symmetry broken phase. In addition, at finite
temperature and chemical potential, according to the gap
equation (2.19), the expectation value of the σ field is no
longer equal to v0 ¼ fπ, but depends on T and
μq, hσi ¼ v≡ vðT; μqÞ.
In the following we will work in the chiral limit, h ¼ 0.

To discuss the pion string in the thermal and dense medium,
we use a mean-field approximation, in particular the
Hartree method, by integrating out both the fermions
and the electromagnetic gauge field Aμ. The Hamiltonian
field equations for σ and πi, i ¼ 0, 1, 2 are found to be

∇2σ ¼ λðσ2 þ ~π2 − v20Þσ þ ghψ̄ψiðrenÞ; ð3:5Þ

∇2π0 ¼ λðσ2 þ ~π2 − v20Þπ0 þ ghψ̄iγ5τ0ψiðrenÞ; ð3:6Þ

∇2π1ð2Þ ¼ λðσ2 þ ~π2 − v20Þπ1ð2Þ þ ghψ̄iγ5τ1ð2ÞψiðrenÞ
þ e2hAμAμiπ1ð2Þ; ð3:7Þ

where we have, in the Hartree-like approximation,

hAμi ¼ 0; hAμAμi ¼ T2

4
; ð3:8Þ

and by taking the trace of the momentum integral of the
fermion propagator, the scalar and pseudoscalar fermions
densities are [18]

hψ̄ψi ¼ −2NcNfgσ
Z

d3k
ð2πÞ3

1

ωk
½1 − nþF ðωkÞ − n−FðωkÞ�;

ð3:9Þ

hψ̄iγ5~τψi¼−2NcNfg~π
Z

d3k
ð2πÞ3

1

ωk
½1−nþF ðωkÞ−n−FðωkÞ�:

ð3:10Þ

Note that these depend explicitly on the σ and ~π fields [21].
After subtracting the ultraviolet divergent term in the
vacuum-dependent terms of the above momentum inte-
grals, we have that the finite (renormalized) scalar and
pseudoscalar fermion densities are, respectively,

hψ̄ψiðrenÞ ¼ σΠðrenÞ
π =g; ð3:11Þ

hψ̄iγ5~τψiðrenÞ ¼ ~πΠðrenÞ
π =g; ð3:12Þ

where ΠðrenÞ
π is given by Eq. (2.25).

Combining the above Eqs. (3.5)–(3.7) and expressing
them in terms of ϕ ¼ ðσ þ iπ0Þ=

ffiffiffi
2

p
, π� ¼ ðπ1 � iπ2Þ=

ffiffiffi
2

p
and also using Eq. (3.12) together with the massless pion
condition in the chiral limit, Eq. (2.26), gives

∇2ϕ¼2λ

�
ϕ�ϕþπþπ−−

v2ðT;μqÞ
2

�
ϕ;

∇2π�¼2λ

�
ϕ�ϕþπþπ−−

v2ðT;μqÞ
2

þe2T2

8λ

�
π�: ð3:13Þ

The above equations generalize the pion string equations in
the vacuum, Eqs. (2.37) and (2.38). Hence, the pion string
solution Eq. (2.39) for ϕ is modified to

ϕ ¼ vðT; μqÞffiffiffi
2

p ~ρðrÞeinθ; ð3:14Þ

where vðT; μqÞ is the solution of the gap equation (2.19),
and ~ρ has the same functional form as ρ except that the
inverse width is now given by vðT; μqÞ. The energy (2.36) is
modified to

E0 → Eeff ¼
Z

d3x

�
~∇ϕ� ~∇ϕþ ~∇πþ ~∇π−

þ λ

�
ϕ�ϕþ πþπ− −

vðT; μqÞ2
2

�
2

þ e2T2

4
πþπ−

	
: ð3:15Þ

B. Stability of the string core

To investigate the stability of the pion string core, we first
consider a variation of the energy δE of the string in the
presence of infinitesimal perturbations of only the charged
fields π�,

δE ¼ Eeff − Eπ�¼0

¼
Z

d3x

�
~∇πþ ~∇π− þ λ

�
e2T2

4λ
þ 2ϕ�ϕ − v2ðT; μqÞ

þ πþπ−
�
πþπ−

	
: ð3:16Þ
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We use the ansatz (3.14) and expand the perturbations in
the direction of π� as

π� ¼ vðT; μqÞ
X∞
m¼0

χmðrÞe�imθ: ð3:17Þ

Using Eq. (3.17), the variation of the energy in cylindrical
coordinates becomes

δE ¼ 2πv2ðT; μqÞ
Z

dz
Z

rdr

�
χ02mðrÞ þ

m2

r2
χ2mðrÞ

þ
�
e2T2

4
þ λv2ðT; μqÞð~ρ2ðrÞ − 1Þ þ χ2mðrÞ

�
χ2mðrÞ

	
:

ð3:18Þ

To determine the stability of the string, it is sufficient to
know the overall sign of (3.18). A negative variation of
energy would imply that the string configuration is not
favored under an infinitesimal perturbation and would
likely decay. Considering the integrand of the above
equation, the first two terms χ0m2 and m2

r2 χ
2
m are exact

squares, so necessarily positive (in the next subsection
we will explicitly analyze the effect of keeping these terms
in the stability analysis). The only quantity that may give an
instability is the last term. A sufficient condition of stability
is therefore derived from the sign of

�
e2T2

4
þ λv2ðT; μqÞð~ρ2ðrÞ − 1Þ þ χ2mðrÞ

�
: ð3:19Þ

The radial function χm is unknown; however, appearing as a
square, it gives a positive contribution and so for obtaining
a minimal condition for stability it can also be neglected.
Using ~ρ2ðrÞ − 1≃ e− ~μrðe− ~μr − 2Þ [where ~μ is defined as μ
except that v0 is replaced by vðT; μqÞ], the variation of the
mass per unit length compared to the embedded string is

e2T2

4
− 2λv2ðT; μqÞe−~μr

�
1 −

1

2
e− ~μr

�
> 0; ð3:20Þ

or, using that e−~μrð1 − 1
2
e−~μrÞ ≤ 1

2
for all r, we find

e2T2

4
− λv2ðT; μqÞ > 0: ð3:21Þ

We compute numerically the region of core stability
using the parameters given in Eq. (2.31). Our results are
shown in Fig. 5. The top line corresponds to the chiral
phase transition, the string solution being nontrivial in the
symmetry broken phase where vðT; μqÞ is nonzero. The
dashed line corresponds to the limit of stability e2T2=4 ¼
λv2ðT; μqÞ. The model predicts a tiny ribbon for values
of temperature and chemical potential, in between the

two lines shown Fig. 5, for which stable string cores are
allowed.
The size of the stability region is small, but the following

argument makes plausible that such a region does indeed
exist. We know from the results discussed for the LSMq
in Sec. II B that the phase transition is of second order
above the critical point. For a second-order phase tran-
sition, the expectation value of the field is exactly zero on
the transition line and then it moves away smoothly to finite
values. There is always a region below the phase transition
line where the expectation value vðT; μqÞ is small enough to
satisfy the stability condition (3.21). We, therefore, expect
that the stability condition is always satisfied for a second-
order phase transition. This can be seen explicitly in the
high-temperature approximation.
In the high-temperature region and close to the critical

curve, such that mq=T ≪ 1, we use the approximation [20]

Z
∞

0

dk
k2

ωk
½nþF ðωkÞ þ n−FðωkÞ�≃

Z
∞

0

dkk½nþF ðkÞ þ n−FðkÞ�

¼ μ2q
2
þ π2T2

6
; ð3:22Þ

and from the gap equation (2.20), we find (in the chiral
limit h ¼ 0 and neglecting the vacuum contribution for
simplicity)

λv2ðT; μqÞ ≈ λv20 −
NcNf

π2
g2
�
μ2q
2
þ π2T2

6

�
; ð3:23Þ
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FIG. 5. Stability region of the pion string core in a thermal and
dense medium in the chiral limit. The parameters are those given
by Eq. (2.31). The upper curve (blue) corresponds to the phase
transition (second order). The dashed curve (red) corresponds to
the lower limit of stability of the string. The range between the
lines is the region of core stability.
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which using Eq. (3.21) leads to the approximate analytical
stability condition,

e2T2

4
− λv20 þ

NcNf

π2
g2
�
μ2q
2
þ π2T2

6

�
> 0: ð3:24Þ

Values for T < Tc and μq < μc can always be found, i.e.,
temperature and chemical potential below the values
corresponding to those for the critical (second-order)
transition line, such as to satisfy Eq. (3.24).
The situation changes drastically though when the

transition is first order. It is well known that defects can
form during a first-order phase transition as well (see, e.g.,
[22]). In our model however, the strings would decay
immediately. The stability condition relies on the smallness
of the temperature and chemical potential background
value vðT; μqÞ. Around the first-order transition the back-
ground value vðT; μqÞ jumps (discontinuously) from zero
in the symmetry restored phase to an usually higher value in
the broken phase and the condition (3.21) is never satisfied.
Thus, we conclude that the existence of stable pion string
cores depends strongly on the order of the phase transition.
The stability condition for the pion string is favored around
the second-order transition line of the phase diagram, but it
is disfavored around the first-order transition region.
The stability condition Eq. (3.24) should be contrasted

with the case where the Yukawa interactions are absent [9],
which leads to

e2T2

4
− λv20 > 0: ð3:25Þ

Using the values given in Eq. (2.31) and that e2 ¼ 4π=137,
we find that the temperature of the thermal bath required for
the pion string core stability is

Tstab >
2fπ

ffiffiffi
λ

p

e
≃ 2.8 TeV: ð3:26Þ

This is, however, a temperature way above the critical
temperature for chiral phase transition, Tc ∼ 176 MeV.
Thus, we conclude that it is simply not possible to have
the stability condition satisfied since it only happens for
temperatures for which the system is already in the
symmetry restored phase. The inclusion of additional
thermal and dense effects from the Yukawa interaction is
thus fundamental for having a stable pion string core.

C. Stability in the physical case h ≠ 0

In the physical case, h ≠ 0, the effective potential leads
to a crossover transition, as seen in Fig. 4. Defect formation
in a crossover region is, unfortunately, very poorly under-
stood at the moment, either from analytical studies or from
numerical (lattice) simulations. As far as we know, there is
just some limited discussion in the literature of defect

formation for this case, such as for example Ref. [23],
where it discusses how defects can be formed by perco-
lation of different regions with different phases.
For the present case, when accounting only for the

background fields, it would appear that no string solution
can be constructed for the physical case of h ≠ 0. As shown
above, e.g. in Eq. (3.14), the pion string solution is
constructed in the plane of the fields ðσ; π0Þ, which is
lifted with respect to the charged pions by the thermal
electromagnetic plasma effect. The potential in the plane of
the fields ðσ; π0Þ, in the chiral limit h ¼ 0, is then of the
form of a classical Mexican hat. The string solution
interpolates between the unstable vacuum at the top of
the potential to the infinitely degenerate minimum at the
bottom of the potential. The solution then winds around the
minima at the bottom of the potential with no cost of
energy. This winding is possible due to the infinitely
degenerate minimum of the potential (the pions are exactly
Goldstone bosons). In the physical case, h ≠ 0, the chiral
symmetry is explicitly broken, the pions acquire mass and
this winding freedom is no longer present (the potential
now becomes a tilted Mexican hat). Under these circum-
stances, the string ansatz Eq. (3.14) no longer applies and
for the background fields alone no string solution should be
possible to construct.
The above situation, however, can change significantly

when accounting for fluctuations of the fields in the thermal
medium. Field fluctuations and gradient energies, which
are negligible at zero temperature, can grow, particularly
close to the transition and at large temperatures, where large
fluctuations then start to become relevant. Under these
conditions, it is then feasible that as these fluctuations of
the fields grow around the true vacuum of the system (the
global minimum of the potential), they can be sufficiently
large to probe the false vacuum state (the local minimum of
the potential). When this happens, we can effectively say
that the winding around the potential is once again restored,
at least in localized regions of space. Much of the system
will consist of regions of space where the fluctuations
are small and the state is that of an explicitly chiral
symmetry breaking as usual. However there will some
regions with larger fluctuations where the chiral symmetry
effectively looks restored, and such regions become
increasingly more prevalent as the temperature increases.
The pion strings that we are interested in are local objects,
so all we need is some suitably large regions where
conditions are appropriate for them to form. Thus, in
regions of large fluctuations, where the chiral symmetry
is effectively restored, pion string formation can become
possible once again. This picture is similar to the mecha-
nism discussed in Ref. [23] for the formation of defects.
Typical fluctuations in the fields have a spatial extent the
size of the correlation length, with ξ−1σ ∼mσ and ξ−1π ∼mπ .
As the temperature grows, these fluctuations start to
become more and more frequent and eventually they start
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coalescing. In between these regions, string formation is
possible, similar to the Kibble-Zurek mechanism of for-
mation of defects in a second-order or even in a first-order
phase transition [22].
Though the physics of the formation of these fluctuations

in a thermal medium and their consequences go beyond the
analysis allowed within the framework of the effective
potential,1 we can still provide some reasonable estimates
for the importance of these fluctuation in the present
problem.
Fluctuations in the fields around the true vacuum and that

are large enough to probe the false vacuum of the potential
should have an energy density in gradient form comparable
to the difference in energy density between the false and
true vacua of the potential,



1

2
~∇σ: ~∇σ

�
þ


1

2
~∇π: ~∇π

�
≈ hv; ð3:27Þ

where we have used that ΔVeff ≃ hv for the energy density
difference. Assuming Gaussian-like (classical) correlation
sized fluctuations for the fields in the thermal medium, we
can then write [28]



1

2
~∇σ: ~∇σ

�
≃ T

4π2

Z
mσ

0

dk
k4

k2 þm2
σ

¼ ð3π − 8Þm
3
σT

48π2
; ð3:28Þ

and analogous for the gradient energy density for the
pion field.
In Fig. 6(a) we show the condition given by Eq. (3.27)

alongside the transition line and the pion string stability
line in the ðT; μqÞ plane in the physical case of h ≠ 0. In
Fig. 6(b) we zoom into a region similar to the one shown
previously for the chiral limit in Fig. 5. We see from
Fig. 6(a) that the gradient energy density is significantly
closer to the transition line and remains slightly below it
down to temperatures and chemical potential around
T ≃ 0.7Tc and μq ≃ 0.8μq;c, when it then goes above
the transition line. In this region of large temperatures,
the variations in the fields are sufficiently large to overcome
the difference in potential energy density between the local
and global minima of the potential. The stability condition,
similar to what we have seen in the chiral limit h ¼ 0 (see,
e.g., Fig. 5), is also very close to the transition line and
slightly below it, lying in between the gradient energy
condition and the transition line. In this small region of
parameters, in between the stability condition (solid red
line) and the transition line (dashed black line) and lying
above the gradient energy condition (dash-dot blue line), is
where pion strings can form (we locally recover the
conditions for winding of the string) and be stable at the
same time. Below the line for the gradient energy condition,
the fluctuations of the fields (in terms of gradient energy)
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µq /µq,c

T
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c
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c

(b)

FIG. 6. (a) The stability condition for the pion string (red line), the gradient energy condition (blue dot-dashed line) and the transition
line (black dashed line), in the (μq, T) plane (normalized by the corresponding critical values). (b) An amplified view around the high-
temperature, low chemical potential region. Strings are allowed to form in the shaded region below the transition line and above the
stability condition.

1We recall that the computation of the effective potential is
only able to include the effects of small fluctuations and the
proper treatment requires making use of the effective action
instead. See, e.g., Refs. [24–26] for examples of works that try to
account for the effect of fluctuations in a phase transition. Note
also that in Ref. [27] a method has been proposed to study the
effect of fluctuations in the chiral phase transition in the LSMq,
without the assumption of the fluctuations to be small.
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are not large enough to ensure the presence of strings, as
discussed above.
The above analysis is just a preliminary examination of

the physical case of h ≠ 0 and it shows that pion string
formation is plausible in this regime. More important, this
section has laid out a conceptual framework for how to
address this physical regime. An important general point
that this analysis indicates is the importance that large
fluctuations close to the transition may have on the
formation, stability and presence of defects in general.
A complete analysis would require a much more detailed
treatment of the large localized fluctuations that emerge,
such as through numerical simulations, which is beyond the
scope of the present work. Nevertheless, our analysis,
though semiquantitative, indicates the importance that
gradient energy densities for the fields can have on the
pion string formation and subsequent stabilization when in
a thermal and dense medium. These gradient energy terms
can also have important effects in the subsequent evolution
and decay of these strings when formed, as we discuss
below. Our analysis here also shows that the role of
fermions is an important ingredient to achieve stable pion
strings even in the h ≠ 0 case due to the effect they have on
the order of the phase transition (recalling that in the
absence of the fermion contributions, no stability is
possible for physically motivated QCD parameters in this
model). Thus the main focus of our paper on the role of
fermions can be seen already to be important also for any
detailed study of the h ≠ 0 case.

D. Beyond string core stability

To study the overall stability of the pion string we need to
consider the positive definite terms in δE which were
neglected in the previous subsections. They are in particular
the radial gradient energy term of χ and the contribution
of the ðπþπ−Þ2 term. The latter in fact blows up as we
integrate out to large distances r from the string core, unless
χ goes to zero sufficiently fast for large values of r. In this
case, the radial gradient energy of χ cannot be neglected.
Also, if χ goes to zero at large values of r it implies that the
string winding in the neutral scalar field plane persists.
Thus, even though the string core is unstable, the string will
not totally decay.
To study this issue in more detail we will consider

fluctuations which force the field to remain in the minimum
potential energy density submanifold. Such a fluctuation is

jϕj2ðrÞ ¼ ρ2ðrÞv2cos2ξðrÞ; ð3:29Þ

πþπ−ðrÞ ¼ ρ2ðrÞv2sin2ξðrÞ; ð3:30Þ

where v ¼ vðT; μqÞ and the angle ξ labels the magnitude
of the perturbation. We focus on fluctuations which only
depend on the radius since a nontrivial angular dependence
would increase the energy density. For small ξ and for ξ

independent of radius, this fluctuation reduces to the one
considered in the previous subsection.
For this ansatz, the potential energy density vanishes

exponentially for r > v−1. However, associated with the
nonvanishing value of πþπ− there is a contribution to the
effective potential which comes from the temperature
term. This can be minimized by having the profile of
ξðrÞ decay beyond a width which we call w. In this case, the
order of magnitude of the thermal effective potential energy
gain Eth is

Eth ∼
e2

4
T2w3v2ξ2: ð3:31Þ

There is also a radial gradient energy Egrad whose order of
magnitude is

Egrad ∼ v2wξ2 ð3:32Þ
since the gradient energy density scales as vw−1 and the
integration volume as w3. The potential energy from the core
region, on the other hand, decreases as ξ2 increases. If w >
v−1 the potential energy Epot has an order of magnitude of

Epot ∼ λvð1 − 2ξ2Þ: ð3:33Þ
If w < v−1 the change in potential energy is reduced by a
factor of ðwvÞ3. The positive contributions to the total energy
are thus minimized if we set w ∼ v−1. In this case, the
stability condition of the core region becomes

∂
∂ξ2 ðEth þ Egrad þ EpotÞ > 1; ð3:34Þ

which yields

v2ð2λ − 1Þ < e2

4
T2: ð3:35Þ

If λ ≫ 1=2 (which is the case for our pion string) then
this condition reduces to the one (3.21) obtained in the
previous subsection. However, for λ < 1=2 we find that the
string core is stable for all values of the temperature.
Let us now focus on the case λ > 1=2. The above analysis

shows that the string core will decay out to a radius of at
least w ¼ v−1 if T < Td, where Td is the temperature when
(3.35) is saturated. But will the string decay completely? To
answer this question we have to study what happens to the
total energy change when w increases beyond the value v−1.
We find that δE is negative if

w <

�
4

e2

�
1=3

T−2=3v−1=3 ≡ wd: ð3:36Þ

Hence, we conclude that the pion string winding remains for
distances from the core larger thanwd. In this sense, the pion
string in fact never completely decays, but simply undergoes
“core melting.”
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In a cosmological context, note that wd increases less fast
as T decreases compared to the Hubble radius which scales
as T−2. A pion string scaling solution with mean string
separation given by the Hubble radius (the scaling solution
which describes topologically stable cosmic strings) should
hence be stable against total annihilation triggered by the
core decay.

IV. CONCLUSIONS

In this work we have investigated the effect of a thermal
and dense medium on the stability of the pion string. We
have used the LSMq model to describe the chiral phase
transition using realistic physical parameters. We have
constructed the corresponding pion string solution for
the model, which depends explicitly now on the temper-
ature and the chemical potential. Finally, using the mecha-
nism similar to the one proposed in Ref. [9], we have
analyzed the stability for the pion strings and have derived a
condition for it to be satisfied.
We have shown that at low temperatures, the pion string

core will decay via the excitation of charged pion fields.
However, the nontrivial winding of the neutral scalar fields
persists at large distances from the core. In this sense, we
should not speak of the pion string decay, but of pion string
core melting. Whereas for the pion string configuration the
energy density is confined to the core region, after core
decay the energy will mainly be in field gradient energy
which is dispersed out to a width wd [see (3.36)] which
increases in time as the temperature decreases.
Our results have shown that the existence of a stable

string core depends crucially on the order of the phase
transition. Pion strings are produced and can become stable
when the phase transition is second order. This happens
because the expectation value of the field in the medium
changes smoothly away from zero. In this case the stability
condition is automatically satisfied in a region close to the
transition line. This argument fails when the transition is
first order since now the minimum of the potential can jump
discontinuously to a large value, such that the stability
condition no longer holds. In this respect the presence of
fermions, which is a key direction this paper has explored,
is crucial. The inclusion of the fermions indirectly provides
stability, in the sense that fermions do not change the
stability condition Eq. (3.21) but they change the order of
the phase transition and therefore bring stability. This is a
key new result of this paper and this is the first paper to find
a stability region for the pion string. Although most of the
analysis was done mainly in the chiral limit, in Sec. III C we
have done a preliminary analysis also for the physical case
of h ≠ 0, where we have pointed out how fluctuations of
the fields leading to large gradient energy densities can play
an important role in the formation and stability of pion
strings in this regime.
The existence of pion strings has direct consequences for

cosmology and nuclear physics. The region of the (μq–T)

plane in Fig. 3 with a second-order transition and stable
strings has large temperatures and a low chemical potential.
This region of the plane applies for both the early Universe
and aspects of heavy-ion collision. The applications of the
pion string in the early Universe are multiple. One concrete
example is the creation of primordial magnetic fields as
discussed in Ref. [29]. Pion strings in heavy-ion collision
experiments have been discussed recently in Refs. [12,13].
The production of strings in these kinds of experiments
may have an influence on the distribution of baryons and
one could speculate about their experimental signature.
Another interesting area to investigate would be to find a

further extension of the mechanism that stabilizes the string.
In order to affect the effective potential in the constrained
directions, one needs to act on the charged pions only. One
possibility would be to place the system in an external
magnetic field. We leave this as a possible future work.
Our work has applications beyond the LSMq of the

strong interactions. Similar considerations can be used to
study the stability of the Z string [8], the embedded string
solution made up of the uncharged complex Higgs field
with the charged complex scalar set to zero. An initial study
of the thermal stabilization of the Z string was given in [30].
Our work shows that the Z string never completely decays,
but at most undergoes core melting.
Looking beyond the Standard Model of strong, weak and

electromagnetic interactions, and to higher temperatures, it
would be interesting to study if there are embedded defects
in beyond the Standard Model (BSM) theories which could
be stabilized not only by a photon plasma, but by a plasma
of the gauge fields which are massless above the electro-
weak symmetry breaking scale, and above the confinement
scale. BSM theories with embedded domain wall solutions
stabilized by a plasma in the early Universe could face
severe cosmological problems since a single domain wall
crossing our Hubble patch would overclose the Universe.
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