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We rederive relativistic hydrodynamics as a Lagrangian effective theory using the doubled coordinates
technique, allowing us to include dissipative terms. We include Navier-Stokes shear and bulk terms, as well
as Israel-Stewart relaxation time terms, within this formalism. We show how the inclusion of shear
dissipation forces the inclusion of the Israel-Stewart term into the theory, thereby providing an additional
justification for the form of this term.
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I. INTRODUCTION

Hydrodynamics, and its relativistic incarnation, is a topic
of very active theoretical and phenomenological develop-
ment [1]. Phenomenologically, it seems to provide a good
description of physics in heavy ion collisions, making
numerical hydrodynamic solvers an indispensable tool in
this field. These phenomenological applications are, how-
ever, hampered by the fact that a rigorous link between
hydrodynamics and “microscopic theory” (in this case,
quantum chromodynamics close to deconfinement temper-
ature) is still missing. In fact, a general link between
hydrodynamics and any microscopic theory, including
models where hydrodynamic behavior appears most nat-
urally as an infrared limit [2], is a surprisingly nontrivial
problem.
There are several aspects to this: ExtendingNavier-Stokes

hydrodynamics to the relativistic limit will give problems
with causality [3–5], due to the presence of arbitrarily high
speed dissipative modes. These can be removed by promot-
ing all elements of the energy-momentum tensor to degrees
of freedom, and giving them a Maxwell-Cattaneo type
equation of motion [3,4] characterized by a “relaxation
time” transport coefficient.
Phenomenologically this works, and also avoids unphys-

ical instabilities in the linearized expansion [6–8] (such
instabilities would affect the hydrostatic limit, making
local entropy nondecrease problematic), but, if one regards
the microscopic origin of hydrodynamics as a “gradient
expansion” in terms of bulk quantities, it is not immediately
clear why additional degrees of freedom need to arise at
second order, nor what the relationship between relaxation
time τπ and the usual microscopic “dimensionless small
parameter” (the Knudsen number) of the theory is. One
expects τπ to scale as the sound wave attenuation length,
but this is not universally true; in any case the extra degrees
of freedom are determined by initial conditions, and there is
no limitation to their size [9,10]. The existence of this extra
small parameter can also be understood from the form of
the microscopic spectral function [11], but this turns out to
be highly dependent on the exact microscopic theory we are

dealing with. Some works [12] consider it a second
independent small parameter (“inverse Reynolds number”)
to the gradient “Knudsen number” expansion.
In general, extending these approaches into a consistent

general systematic small parameter expansion, with pos-
sibly additional higher-order tensor degrees of freedom,
hundreds of higher order gradient terms, and the require-
ment of overall hydrostatic stability entropy nondecrease
seems only feasible for a select number of highly sym-
metric theories and boundary conditions [13–15].
Microscopic fluctuation terms, most likely highly rel-

evant in the low viscosity limit [16–19] are even more
mysterious. So far, they have been studied systematically
only at linear order [20,21], but evidence exists [22,23] they
cannot at all be captured in a perturbative expansion.
A recent attempt to investigate this problem is to rewrite

hydrodynamics as a field theory [24–30], with the fields
representing the Lagrangian coordinates of the fluid’s
volume elements. This picture allows the use of effective
field theory techniques [31] to investigate links between
microscopic and macroscopic theories without explicitly
writing down the microscopic dynamics. In this approach,
hydrodynamics can be thought of as an example of an
effective field theory with a cutoff, since we do track
macroscopic degrees of freedom, but only conserved
currents (energy-momentum, conserved charges) averaged
over each fluid cell. Thus, long wavelength and micro-
scopic variables can be reformulated in the sense of
effective field theory (EFT) as, respectively, infrared and
ultraviolet degrees of freedom [18,31], the latter relevant at
a microscopic scale lUV (either a small distance or a high
wave number/momentum). In the case of hydrodynamics
the Knudsen number provides a natural expansion param-
eter, combining the mean free path lmfp and the gradients
into a dimensionless parameter. Effective Lagrangian terms
are calculated or corrected with systematic expansion of

higher order derivatives ðlUV: ~∇Þn and the fundamental
symmetries of the system.
The big apparent limitation of such an approach is that

leading corrections in hydrodynamics are dissipative, and

PHYSICAL REVIEW D 94, 065042 (2016)

2470-0010=2016=94(6)=065042(12) 065042-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.065042
http://dx.doi.org/10.1103/PhysRevD.94.065042
http://dx.doi.org/10.1103/PhysRevD.94.065042
http://dx.doi.org/10.1103/PhysRevD.94.065042


standard Lagrangian theory cannot deal with them.
However, methods have been developed to overcome this
problem [32–35]. Provided these can be developed con-
sistently for all orders in the EFT, the problems highlighted
in the preceding paragraph are all solvable systematically.
EFT techniques will automatically separate physical from
nonphysical terms, and fluctuations can be included with-
out any approximations by promoting the least action
trajectory into a functional integral [19,22,23]. This works
in this direction using the “doubled coordinate approach”
outlined in Appendix A [27,28] (in this work, a variable
with a subscript � is doubled; without the subscript it is
standard nondissipative). As this work will show, the
appearance of extra degrees of freedom at second order,
and the relationship between the relaxation time and the
microscopic scale, also looks natural within the Lagrangian
formalism once the existence of semiclassical Lagrangian
and “vacuum stability” (the existence of an action
extremum) are taken into account. We show that, as
hypothesized in [27], the extra degrees of freedom appear
already in the Navier-Stokes limit, but in a way that cannot
give a stable hydrostatic vacuum. The extra degrees of
freedom in Israel-Stewart hydrodynamics [3,4] are then
required to stabilize the theory.
More specifically, we shall show that the form of the

Lagrangian for viscous hydrodynamics has to be

L ¼ LidealðBÞ þ LbulkðB�; u
μ
�Þ þ LshearðB�; u

μ
�; BIJ�Þ:

ð1Þ

The term LidealðBÞ is the one studied in [22,24,25],
corresponds to a conserved local quantity (the microscopic
entropy; an infinite number of nonlocal conserved vortices
are also present [24]), and generates Euler’s equations.
Lbulk does not require extra degrees of freedom but needs to
generate dissipative terms, something done here using the
doubling of degrees of freedom (DoFs) described in the
Appendix. Shear viscosity requires, as well as doubling,
new terms (BIJ) which do not correspond to a conserved
quantity and break volume-preserving diffeomorphisms,
and yet are necessary to define the shear viscosity.
Mathematically, they represent the dissipation of macro-
scopic energy by microscopic degrees of freedom, above
the cutoff.
Aswewill show, extra degrees of freedom appear inLshear

“implicitly,” without touching the equations of motion. As
long known [32], actions based on such Lagrangians are
unstable, without global minimum (Fig. 1 top panel). This
can be understood as the fundamental reason for the
instability of the Navier-Stokes equations. Furthermore,
as we shall show, the only way to stabilize this system
(have a Lagrangian of the form Fig. 1 bottom panel) is to
modifyLshear;bulk into a term of the formLIS, with additional
degrees of freedom XIJ (corresponding to shear stress terms
Πμν in the comoving frame, now promoted to independent

degrees of freedom), which gives rise to Israel-Stewart type
dynamics. The Lagrangian of this new dynamics is therefore
of the form

L ¼ LidealðB�Þ þ LISðB�; u
μ
�; XIJ�; BIJ�Þ: ð2Þ

II. A REVIEW OF IDEAL HYDRODYNAMICS

In this section, we give a review of the understanding of
Lagrangian hydrodynamics as a field theory, developed in
[19,22–24].
Let us consider an uncharged fluid element. In the

Lagrangian formulation of hydrodynamics it can be char-
acterized by three scalar fieldsϕIð~x; tÞ as degrees of freedom
(d.o.f.), where ϕI is simply the Lagrangian coordinate of the
comoving volume, and ~x the Eulerian (lab) spacetime
coordinate. At thermostatic equilibrium these coordinates
coincide so hϕIi ¼ xI , with I ¼ f1; 2; 3g, and it identifies
the physical coordinate in flat 3þ 1 dimensions with metric
gμν ¼ diagð−1; 1; 1; 1Þ1 [22].

FIG. 1. The qualitative form of the action S in terms of the b B
and BIJ degrees of freedom for Navier-Stokes (top panel) and
Israel-Stewart hydrodynamics (bottom panel) close to the hydro-
static (ϕI ≃ xI) limit. The first exhibits a saddle point, and the
other is positive definite.

1Greek letters are used here to specify spacetime coordinates,
while latin letters specify comoving coordinates. The Einstein
summation convention, with, respectively, four-dimensional (4D)
Minkowski and three-dimensional (3D) Euclidean metrics, is
used unless specified.
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In this formalism the dynamics of fluids, as opposed to
other continuous media, can be built up by imposing
symmetries on the Lagrangian. Translation symmetry
(ϕI → ϕI þ aI with aI ¼ const) forces the Lagrangian
to depend on derivatives of ϕI . Rotation symmetry (isot-
ropy, ϕI → RI

Jϕ
J), RI

J ∈ SOð3Þ, is straightforwardly imple-
mented by requiring the Lagrangian to be a function of BIJ.
Volume preserving deformation symmetry [ϕI → ξIðϕJÞ,
where ξI is a different set of coordinates with the same
volume element, i.e., detð∂ξI=∂ϕJÞ ¼ 1] implies the
Lagrangian depends solely on B. (In the hydrostatic limit
each such symmetry gives the “Goldstone bosons” of the
sound waves [25].)
In summary, an ideal fluid is described as

L ¼ T4
0FðBÞ; B≡ det jBIJj ¼ det j∂μϕ

I∂μϕJj; ð3Þ

where T0 is a microscopic scale whose necessity is clear
since ∂ϕI is dimensionless. The role of this microscopic
scale (which also absorbs a microscopic degeneracy, such
as N2

c in gauge theories) is extensively discussed in [19,23]
and will be discussed later in this work.
It is straightforward to derive the stress energy tensor

from Eq. (3) via the usual Noether current

Tμν ¼
X
I

∂L
∂ð∂μϕIÞ ð∂νϕ

IÞ − gμνL; ð4Þ

and we get

Tμν ¼ T4
0

�
2B

dF
dB

B−1
IJ A

IJ
μν − Fgμν

�
; ð5Þ

where B−1
IJ is the inverse of the matrix defined as

BIJ ≡ ∂μϕ
I∂μϕJ; AIJ

μν ≡ ∂μϕ
I∂νϕ

J; ð6Þ

and the average value is Δμν ≡ hB−1
IJ A

IJi ¼ uμuν þ gμν

[23]. The tensor can be written in the usual hydrodynamic
form

Tμν ¼ euμuν þ pΔμν; ð7Þ

provided the fluid energy density and pressure are,
respectively,

eT−4
0 ¼ −FðBÞ; pT−4

0 ¼ FðBÞ − 2B
dF
dB

; ð8Þ

and the velocity is defined, via uμ∂μϕ
I ¼ 0∀I, uμuμ ¼ −1,

as

uμ ¼ 1

6
ffiffiffiffi
B

p ϵμαβγϵIJK∂αϕ
I∂βϕ

J∂γϕ
K: ð9Þ

Using the Gibbs-Duhem relation, relating entropy s to
pressure P, energy density ρ [Eq. (8)], and temperature T

s ¼ dP
dT

����
V
¼ Pþ e

T
; ð10Þ

we obtain the thermodynamic parameters

s ¼ T3
o

ffiffiffiffi
B

p
; T ¼ −To

ffiffiffiffi
B

p
dF=dB
g

; ð11Þ

where to define temperature one needs to separate the
microscopic degeneracy g from T0 [23] because of the heat
capacity’s explicit dependence on g.
This entropy is the only locally conserved quantity

(there are infinite numbers of nonlocal conserved vorticity
charges [36] corresponding to the Noether charges of
diffeomorphisms [24]), giving rise to the conserved current
used in [27]

Kμ ¼
ffiffiffiffi
B

p
uμ: ð12Þ

One can understand the above by defining uμ to be parallel
to entropy flow (the so-called Landau frame [36]), since the
Euler-Lagrange equations applied to the Lagrangian in
Eq. (3) will just yield ∂μKμ ¼ 0. The symmetry of this
Lagrangian against deformation and rotation will then yield
the fact that uμ is always perpendicular to the gradients
of ϕI .
This way one can always construct Kμ and uμ out of ϕI

via a projector

Pμν
K ¼ 1

3!
ϵμαβνϵIJK∂αϕ

I∂βϕ
J: ð13Þ

This definition is in accordance with Eq. (12) since clearly

Kμ ≡ Pμν
K ∂νϕ

K: ð14Þ

III. NAVIER-STOKES HYDRODYNAMICS

The natural first order term within the Lagrangian is first
order, i.e., contains exactly one gradient. Such terms,
however, are, as shown in [25], nondynamical since they
can always be reabsorbed into field redefinitions.
Physically, this should not surprise us since we know that
first order terms in the Navier-Stokes equations are dis-
sipative, and hence cannot be represented by “normal”
Lagrangian terms. Such terms are, however, amenable to be
included via the doubled degrees of freedom formalism
[28,32–34] described in Appendix A. In this approach, the
two degrees of freedom (represented here by ϕ� according
to the formalism introduced within [27]) can be taken as
representing the “system” and “unobserved environment,”
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with the two distinguished by advanced and retarded
boundary conditions [28].
Coarse graining usually implies that the dynamics of the

theory is a function of currents of conserved quantities,
since these are the slowest to equilibrate. These are related
to symmetries by Noether’s theorem, as well as their
derivatives. Since in the last section, we found that the
only conserved local charge is the entropy. We construct
two independent vectors by doubling the DoFs of Eq. (12),
and we get two currents degenerated and independent,

Kiμ ¼ 1

3!
ϵμα1α2α3ϵIJK∂α1ϕ

σ1I∂α2ϕ
σ2J∂α3ϕ

σ3K; ð15Þ

where ðσ1σ2σ3Þ ¼ fð− − −Þ; ðþ þ þÞg, for i ¼ f0; 3g.
The current vectors are still conserved by ∂μKiμ ¼ 0, where
further combinations are, in fact, forbidden by conservation
laws [27]. Kμ can be understood as a generalization of the
entropy current with doubled fields (i ¼ f0; 3g) with the
two new projectors constructed using the proprieties of
Eqs. (13) and (14),

Piμν
K ∂λϕK ¼ 1

3
ðKiμΔνλ − KiνΔμλÞ; ð16Þ

Piμν
K ∂λ∂νϕ

K ¼ 1

3
∂λKiμ: ð17Þ

We use the closed time path (CTP) formalism to obtain the
Lagrangian and extend the hydrodynamics formulation to
first order terms. Following the correction to Noether’s
theorem described in [34] and the procedure of [27]
[Eq. (A3) in Appendix A], we see that the stress-energy
tensor in CTP can be obtained by varying just one field by
the Noether current

ϕþðxÞ → ϕþðxþ aðxÞÞ; ϕ−ðxÞ → ϕ−ðxÞ: ð18Þ

Note that in the physical limit (p.l.), the ϕþK ¼ ϕ−K involve
Kiμ ¼ Kμ which also defines K3μ ≡ P3μα

K ∂αϕ
þK and

P0μα
K ≡ 0. As we deal with only variations in δþϕK

iμ ¼
iPiμα

K ∂αδϕ
þK , the other one, δ−ϕK

iμ ¼ 0, after a shift of the
metric x → xþ aðxÞ, we get δþx ϕþK ¼ aμ∂μϕ

þK . By
inspection it gives

δþx Kiμ ¼ iPiμα
K ð∂αaλ∂λϕþK þ aλ∂λ∂αϕ

þKÞ: ð19Þ

For the displacement aðxÞ, one can identify a equation of
motion for Tμν with a nonvanishing divergence which,
however, depends on second-order gradients [27].
Without dissipative terms, þ and − Lagrangians are

symmetric; hence the results of the previous section merely
get doubled [27]. The Lagrangian of Eq. (3), written in
terms of Kiμ, is then promoted to

Lð0Þ
CTP ¼ T4

oFðK3
γK3γÞ − T4

oFðK0
γK0γÞ; ð20Þ

where clearly the first term can be regarded, in the notation
of the previous section, as the equation of state defined by
Bþ and the second term as the equation of state defined by
B−. In this form, the Lagrangian is just two doubled
Lagrangians for two fluids, not talking to each other.
Additional terms are, however, possible. In [27] the bulk

viscosity term was constructed to be

Lð1Þ
CTP ¼ T4

o

X
i;j;k

zijkðKlγKm
γ ÞKiμKjν∂μKk

ν; ð21Þ

which contains the same symmetries of ideal hydrody-
namics. Small Latin indices (symbolizing where we are in
the doubled Lagrangian) are always summed over f0; 3g.
The l, m is also a summation term, but, unlike non-
dissipative terms, it mixes 0 and 3, because l ≠ m and i,
j, k is summed over (for additional details on this notation
see [27] Sec. IV).
The eight coefficients zijk reduce to four z̄ijk ≡

zijkjjϕþK¼ϕ−K due to CTP symmetry as well as positivity

(ensuring the system is dissipative rather than antidissipa-
tive, where gradients grow); see Eq. (A1). These terms
specify the dependence of the shear and bulk viscosity on
entropy B1=2 by contractions of ðKl

γKmγ ¼ BÞ in the
argument of coefficient zijk.
As correctly noted in [27], the construction of the shear

viscosity term is complicated by the fact that it breaks the
volume preserving diffeomorphism symmetry, and hence
cannot be just a function ofK. Noting that BIJ is the leading
term allowed by all but the volume preserving symmetries,
and any thermodynamic quantity can be represented as a
function of B only, and using

uγ∂μðΔγνÞ ¼ ∂μuν ¼ −uγB−1
IJ ∂μ∂γϕ

I∂νϕ
J ð22Þ

[easily proven by taking the hydrodynamic derivative of
Eq. (28) of [24]], we arrive at

Lð1Þ
CTP ¼ T4

o

X
i;j;k

z0ijkðKlγKm
γ ÞBB−1

IJ ∂μϕiI∂νϕjJ∂μKk
ν; ð23Þ

which will, when converted to ΔTμν via Eq. (4), produce
the usual first order Navier-Stokes equation shear viscosity
term η and bulk viscosity ζ that represent most general
possible corrections in first order with the symmetry,

σμν ≡ ηΔμαΔνβ

�
∂αuβ þ ∂βuα −

2

3
ηαβ∂λuλ

�
þ ζΔμν∂αuα:

ð24Þ

A Lagrangian similar to Eq. (23) was recently derived in
[30] (Sec. VII) using laboratory coordinates.
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Summarizing the shear viscosity appears when we intro-
duce “transverse stress” d.o.f.s to break rotational diffeo-
morphism symmetry of the Lagrangian, B−1

IJ ∂μϕI∂νϕJ,
where it does not volume preserve diffeomorphisms by a
transformation detð∂ξþI=∂ϕþIÞ ¼ 1. The bulk viscosity, on
the other hand, can be formulated by a projection parallel to
Kμ. As a result, the Noether current for diffeomorphism
invariance, vorticity [24], is explicitly broken by Eq. (23),
something we know well since the presence of shear
viscosity dissipates vorticity. Bulk viscosity also violates
vorticity conservation, but it does so via the “source term” of
Noether’s theorem for dissipative theories [28].
The relation between the viscosity as usually defined and

the matrix coefficients as well as the instantaneous entropy
B is2 (note the mixing between shear and bulk viscosity
terms and z)

ζ ¼ −B3=2ðz̄0003 þ z̄0303 þ 2z̄0333 þ 2z̄0033 þ z̄333 þ z̄300

− z̄303 þ 3z̄330Þ þ B5=2ðz̄0003;03 þ z̄0303;03 þ z̄0333;03

þ z̄0033;03 − 2z̄333;03 − 2z̄303;03 þ 2z̄330;03 þ 2z̄300;03Þ
− 4B5=2ðz̄333;00 þ ¯z303;00Þ þ 4B5=2ðz̄0003;33 þ z̄0303;33

þ z̄0333;33 þ z̄0033;33 þ z̄330;33 þ z̄300;33Þ; ð25Þ

η ¼ B3=2ðz̄003 þ z̄033 þ z̄303 þ z̄333Þ; ð26Þ

where zijk;lm ≡ ∂z=∂ðKl
γKmγÞ. Equation (23) is very

strange since a term BIJ, independent from Kμ and B, is
present at linear order. This term represents the dynamics of
energy-momentum components perpendicular to flow and
cannot be put in terms of DoFs invariant under volume-
preserving diffeomorphisms. The shear viscosity term also
breaks volume-preserving invariance, something under-
standable since this kind of dissipation necessarily requires
degrees of freedom moving from from IR to UV “macro-
scopic” to “microscopic” across a cutoff ∼ 1

To
, and the

microscopic scale is expected to be immune to deforma-
tion. The doubled degrees of freedom make it possible that
these first order terms are physical rather than redundancy
terms (as first order terms usually are [25,32]).
This means, however, that the doubled Lagrangian does

not have a minimum but at most a saddle point (Fig. 1 top
panel). This means that while equations of motion can be
constructed independent of BIJ, these will be unstable
against perturbations in the BIJ direction. This, in fact,
explains, in terms of the Lagrangian, the linear-order results
of [6–8] about the instability of Navier-Stokes

hydrodynamics and makes it apparent nonlinearities cannot
cure the instabilities encountered in these works, at least at
the classical level.
In reality, this condition exists implicitly for bulk

viscosity as well, for while KμKμ is positive definite,
KμKν∂νKμ is unbounded above or below (it actually
generically follows shear viscosity in the sense that both
BIJ and KμKν∂νKμ can become large and arbitrarily
positive/negative when gradients do not follow the direc-
tion of entropy flow). Hence, Eq. (21) is also unbounded
below, as expected from the fact that bulk and shear
viscosity instabilities arise in a very similar way [7]. The
way to stabilize the Lagrangian is clearly to add higher
order well behaved (even-power) terms, something
that requires a few subtleties, as explained in the next
section.

IV. ISRAEL-STEWART HYDRODYNAMICS

The Navier-Stokes (NS) shows unphysical behavior for a
short wavelength, where a causality problem is most clearly
seen by considering linearized perturbations. The equations
of motion for a Lagrangian perturbed from the hydrostatic
limit

ϕI ¼ xI þ δπIðxμÞ; B → B0 þ δBðxμÞ

will, when linearized in δB and Fourier transformed, yield a
dispersion relation for sound waves of frequency w and
wave number k

w −
�∂P
∂ρ

�
1=2

kþ i

�
4η

3sT

�
k2 ¼ 0: ð27Þ

It is clear that, for the high wave number diffusive mode,
the speed of diffusion

v ¼ w
k
∼ k:

Therefore, for k 4η
3sT ≫ 1 we go to the limit where modes of

propagation can travel faster than light, and then the
principle of causality will be violated. As has long been
known [6], such a lack of causality implies a lack of
stability. The Lagrangian treatment in the previous section,
with a demonstration that the Lagrangian is unbound,
confirms the lack of stability is not an artifact of lead-
ing-order approximations but a fundamental feature of the
theory.
That higher-order NS appears neither stable nor causal is

not surprising, since the two concepts correlated in rela-
tivistic systems, as noncausality generally implies the
absence of a “vacuum” (either quantum or thermal), which
in turn generically leads to instabilities in the effective
theory. The most widely accepted way to solve this issue
[3] is to promote Πμν to independent degrees of freedom at

2During a time dt, entropy should increase from B to Bþ dB,
where dB=dt is a function of the gradient. Viscosity in this
context should be a function of B only, and this can generate
ambiguity in the definition of viscosity. See the discussion in [27]
around Eqs. (85), (98), and (99). This issue is also discussed in
the conclusion section of this work.

LAGRANGIAN FORMULATION OF RELATIVISTIC … PHYSICAL REVIEW D 94, 065042 (2016)

065042-5



second order. This means to consider the energy-
momentum tensor to be

Tμν ¼ Tμν
0 þ Πμν; ð28Þ

where Tμν
0 is given by Eq. (7) and Πμν is arbitrary beyond

the constraints of symmetry and transversality

Πμν ¼ Πνμ; uμΠμν ¼ 0:

The equation of motion is engineered to keep Πμν

symmetric and to have the Navier-Stokes as the asymptotic
value,

τηπΔκμΔζνuα∂απκζ þ πμν ¼ σμνη þOðð∂uÞ2Þ; ð29Þ

τζπuα∂αΠþ Π ¼ σζ þOðð∂uÞ2Þ; ð30Þ

where σμνη;ζ are, respectively, the Navier-Stokes terms for
shear and bulk viscosity [Eq. (24)]. Πμν ¼ πμν þ ΔμνΠ
where πμν is symmetric and transverse and has 5 DoFs
[4,17] (the two Δ… projects make sure πμν remains
orthogonal to velocity provided initial conditions are so),
while Π≡ Πμ

μ=3 Π ¼ Πμ
μ is one number representing

the trace.
To understand Eq. (29) from the EFT Lagrangian

approach, we have to remember that πμν gets promoted
to independent degrees of freedom, subject to the constraint
of symmetry and transversality with velocity. This degree
of freedom is not a Noether current [and hence cannot be
obtained from an equation such as Eq. (4)] or a conserved
quantity. Hence, the way to write this down in our
formalism is to use

πμν ¼ XIJĀIJ
μν; Π ¼ XIJ

1

3
BIJ; ð31Þ

where XIJ is a new symmetric matrix of degrees of
freedom, one which is not necessarily isotropic but still
homogeneous, and ĀIJ

μν are traceless and traced parts of the
most general rank 2 tensor transversal to flow projected
onto the comoving frame, the scalar-tensor decomposition
of Eq. (6),

AIJ
μν ¼

1

3
δμν∂λϕ

I∂λϕJ þ 1

2
ð∂μϕ

I∂νϕ
J

þ ∂νϕ
I∂μϕ

J −
2

3
δμν∂λϕ

I∂λϕJÞ: ð32Þ

The shear part therefore is

πμν ¼ XIJ
1

2

�
∂μϕ

I∂νϕ
J þ ∂νϕ

I∂μϕ
J −

2

3
δμν∂λϕ

I∂λϕJ

�
;

ð33Þ

and the bulk part is

Π ¼ XIJ
1

3
∂λϕ

I∂λϕJ: ð34Þ

Each of these new degrees of freedom can be doubled, as
were equilibrium degrees of freedom in the previous
section, to model dissipative dynamics. The doubled
degrees of freedom are denoted by X�, Π�. We can see
the need for AIJ

μν by applying Eq. (22). It has the same role
as Eq. (23), but its coefficient is an independent degree of
freedom and not fixed by shear viscosity.
The necessity of new degrees of freedom at second order,

somewhat arbitrary in other approaches, becomes clear here
from symmetry and causality arguments. Since ϕI are
already fixed by the initial conditions [up to the volume-
preserving and SOð3Þ diffeomorphism invariance of hydro-
dynamics], second-order terms in the Lagrangian in terms
of just ϕI would be either nondissipative or noncausal, or
lead to violations of conservation laws: Ostrogradski’s
theorem [37,38] (see Appendix A) prevents us from
employing second order derivatives of ϕ as degrees of
freedom3 (as would have been the natural continuation in a
gradient expansion). A πμν dependent on the first deriva-
tives of ϕI , translated into Eq. (24) can only become of the
form

πμν ¼ fð∂αuβÞ:

As shown in Eq. (22), such a term projected perpendicular
to uμ will generally contain a pathologically linear B−1

IJ
term. At the Lagrangian level, this is the realization that,
after linearization, it will give a dispersion relation as a
complex polynomial

wðkÞ ¼ Ankn;

and without extreme fine-tuning, such a dispersion relation
will inevitably be noncausal.
We note that, provided the Lagrangian contains square

terms of πμν, Eq. (31) will contain terms ∼B2
IJ and hence,

provided Πμν’s normalization is positive definite, should
be stable even if XIJ are arbitrary. Thus, a bounded
Lagrangian stable with respect to Ostrogradski’s conditions
should contain terms at least up to ∼ΠμνΠμν where Πμν

depends on XIJ. The leading-order dependence compatible
with Lorentz symmetries is Eqs. (33) and (34).

3Note that the Ostrogradski instability is very different [37]
from the instability due to the Lagrangian having saddle points
which plagues the Navier-Stokes theory (Fig. 1 top panel). In the
Ostrogradski case dynamics is still well-defined, but energy is not
positive definite. For an isolated system this does not necessarily
produce instabilities, but coupled to another system such a system
cannot reach equilibrium. For an unbounded Lagrangian the
instability happens in an isolated system too.
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The introduction of these new degrees of freedom in
Eq. (31) and the absence of additional conserved currents
means Eq. (29) cannot be obtained from a Noether current
equation of the form of ∂μJμ ¼ R, and Jμ; R are derivable
from the symmetrized coordinates [Eqs. (4) and (12) are of
this form] but must be obtained from the full Lagrangian
equation of motion

∂μ
∂L

∂ð∂μZÞ
¼ ∂L

∂Z ; ð35Þ

where Z ¼ ΠμνðXIJ;ϕIÞ. The right-hand side of this equa-
tion is fixed by the necessity of the asymptotic theory to relax
to Navier-Stokes by symmetry; since Πμν is perpendicular
to uμ, the new DoFs have to have the same number of
elements asAIJ

μν,BIJ, hence the necessity for the newmatrix.
Using Πμν as variables for the Lagrangian allows us to

more readily make contact with standard Israel-Stewart (IS)
equations, but obscures the role of symmetries of the X and
A terms. In particular, note that the projected traceless part
of ∂L

∂ð∂αAIJ
μνÞ ∂βAIJ

μν ∼ Παβ∂γuγ is the residual violation of

conformal symmetry within volume preserving diffeomor-
phism invariance for Πμν [the third term of Eq. (3.12) of
[5]]. A conformal transformation on the Lagrangian would
generate such a term in the energy momentum tensor, and
hence this term must appear with the opposite sign if
conformal invariance was enforced at the IS level. A
consistent development of conformally invariant hydro-
dynamics is, however, left for a different work, since, as can
be seen from these equations, the relationship between XIJ,
Πμν and A are complex enough to require some work for
conformal symmetry to be fully implemented (there is
much more to a conformal fluid than the absence of bulk
viscosity).
The second law of thermodynamics prevents XIJ from

having nondissipative terms and requires, for long dis-
tances, that Πμν relaxes to its Navier-Stokes value. The
simplest Lagrangian of this form is (note that the projection
of Πμν perpendicular to uμ is taken when Πμν is defined)

L ¼ LidealðB�Þ þ LIS−shear þ LIS−bulk þ L2ðð∂ϕ�Þ2Þ;
ð36Þ

LIS−shear ¼
1

2
τηπðπμν− uαþ∂απμνþ − πμνþ uα−∂απμν−Þ

þ 1

2
πμν� πμν� þ ½ðA∘ÞIJμν∂μKν��|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

∼σημν

;

LIS−bulk ¼
1

2
τζπðΠ−uαþ∂αΠþ − Πþuα−∂αΠ−Þ

þ 1

2
Π2

� þ ½Kμ∂μB��|fflfflfflfflfflffl{zfflfflfflfflfflffl}
∼σζ

;

where ðA∘ÞIJμν ≡ AIJ
μν=BIJ and the first term is the ideal one

[Eq. (3)], the next two terms give the dissipative dynamics
of Πμν, and the last one gives the Navier-Stokes source
Eq. (24) (note the explicit Lagrangian dependence of
Sec. III disappears, as its presence would give rise to
unstable modes). L2 contains nondissipative “hydrody-
namic” terms to second order in gradient enumerated in
works such as [39]. It will contain shear and bulk-mixing
terms, as well as further restrictions due to, for example,
conformal symmetry. Its construction, as in all EFTs, is
based on enumerating all second order terms compatible
with Lorentz and homogeneity symmetries.
It is easy to see that Eq. (29) arises as an equation of

motion with respect to X and a

Tμν ¼ Tμν
0 ðB; uμÞ þ ΠμνðXIJ; AμνÞ;

where Tμν
0 is given by the ideal tensor Eq. (4) and Πμν is

perpendicular to uμ. It is also clear that this Lagrangian is
stable [the action is bounded, with one minimum, in the
near-hydrostatic (ϕI ≃ ~x) limit, as shown in Fig. 1 bottom
panel] against both the “old”DoFs ϕI , and the new one XIJ:
ΠμνΠμν is positive definite. As long as τπ is large enough to
guarantee slower than light diffusion propagation, the
kinetic term will not contain ghost modes. Beyond this
restriction, τη;ζπ can have an arbitrary dependence on the
equilibrium DoF B.

V. DISCUSSION

Our results provide a general method to extend the EFT
which completes the insights of [7,8,11]. For stability the
theory in its Lagrangian description has to contain strictly
positive powers of BIJ and its derivatives, which means
even powers with positive combinations of gradients and
traces at the Lagrangian level. An odd power will generally
mean an unstable equation of motion, of the type found
in [7,8].
Beyond these constraints, all the allowed combinations

of B, BIJ, XIJ and their gradients can go into the
Lagrangian, with terms suppressed in powers of the
gradient by the Knudsen number. Naively, terms with
XIJ are “one higher order in gradient” with respect to
BIJ, B. This is what one expects when the theory is close to
equilibrium and the viscosity η, relaxation time τπ , temper-
ature T, and entropy s are related by τπT ∼ η=s. This
relation, however, is not universal. In situations of critical
slowing down it manifestly fails [40], since shear viscosity
is at a minimum while XIJ never equilibrate.
More generally, since XIJ are independent degrees of

freedom, their equilibration time in a classical theory
depends on initial conditions, a dependence that, at least
in examples with reduced dimension, has been shown to be
highly nontrivial [9,10]. This is why the proposal of [12] to
treat such terms as independent of the gradient expansion
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appears justified. That said, the fact that the leading order
dynamics of such terms is only dissipative does provide an
explanation for the applicability of the EFT expansion in a
regime where there is scope for it failing [41]. After all,
hydrodynamic behavior appears universal in nature.
These extra degrees of freedom provide a conceptual

framework for unifying Israel-Stewart hydrodynamics with
anisotropic hydrodynamics, recently developed as a suc-
cessful phenomenological theory [42,43]. There is, in fact,
no distinction between usual Israel-Stewart and anisotropic
hydrodynamics in principle, since the appearance of DoFs
corresponding to anisotropies is inevitable in the former.
The phenomenological success of [42,43] might be due to
the fact that the latter keeps track, within the gradient
expansion, the fact that anisotropies in the gradient are very
different in the transverse and longitudinal directions.
Hence, the number of terms considered should vary
between these directions.
It should be remembered that the dissipative terms

generally violate conservation laws [28], but, for an EFT
expansion of a highly symmetric theory, this violation
typically goes as a higher order than the Lagrangian [27].
The Lagrangians examined here are no exception, since the
violation of energy conservation examined in Sec. III is
∼ðlmfp∇Þ2 [27] while that in Sec. IV should be, from [28]
Eq. (2.63),

ΔT0i ∼ _X
∂Ldiss

∂X þ Ẍ
∂Ldiss

∂ _X
þ ðlmfp∇Þ2ð∇XÞ

∼ ðlmfp∇Þð∇XÞ2 þ ðlmfp∇Þ2ð∇XÞ:

However, as the convergence of the IS expansion is unclear
in the general case, this issue will need to be examined on a
case-by-case basis.
The introduction of XIJ at second order raises the

question of whether additional degrees of freedom of this
sort are required at higher order. To answer this question,
one must remember that Ostrogradski’s theorem can be
applied sequentially. Once second order derivatives of XIJ
are taken into account, new degrees of freedom are required
to ensure thermodynamic stability of the theory. These
terms cannot be rank two tensors, since by the Coleman-
Mandula [44] theorem the only conserved quantity is Tμν,
and hence a hypothetical XIJ

2 can be always absorbed into a
redefinition of the nonconserved XIJ. Hence, new terms
will come as contractions of higher rank tensors, for
example, XIJKL

2 XIJXKL, with new higher rank terms again
being nonconserved. Within the Boltzmann equation [12]
one can consider these extra terms as related to moments of
the Boltzmann equation, but our theory is “bottom-up” so,
beyond these terms encoding microscopic correlations of
some sort [45], we can say nothing about them except their
symmetry properties.
A topic which we did not elaborate is the role of the

entropy in this dynamics. The conservation of the entropy

current arises as an equation of motion if the nondissipative
Lagrangian in Sec. II is analyzed in terms of its equations of
motion rather than the energy-momentum tensor. To
investigate the entropy current systematically in terms of
the Lagrangian, we would need a quantitative relation
between action and entropy. In the adiabatic limit (micro-
scopic DoFs are parametrically faster than macroscopic
ones) we can use Matsubara’s prescription [46]

t →
i
T
; Squantum →

F
T

ð37Þ

(where Squantum is the action of the quantum theory, F is the
free energy, and T is the temperature) together with the
semiclassical limit (T0 → ∞). [Note that expansion beyond
this limit is uncorrelated from the gradient expansion
[19,23]. It generally goes as T0 ∼ g−1, so ∼N−2

c in SUðNcÞ
Gauge theories.]

F ¼ T lnZ; Z≃ exp ðT4
0SminimumÞ: ð38Þ

From the definition of the CTP formalism [27] of Eq. (A3)
it is clear that the macroscopic entropy of a fluid at
temperature T will be

s ¼ 1

T

Z
T

0

dT 0
Z

2π

0

Lðϕ�ðx; t ¼ eiθ=T
0 Þdθddx: ð39Þ

These relations ensure that there is a one-to-one corre-
spondence between the Lagrangian terms in the effective
theory and the entropy current, which needs to be inves-
tigated term by term.
In the ideal limit, where the mixing term in Eq. (A1)

vanishes, this entropy is simply equal to T3
0B

1=2 and is
conserved, but, as elucidated in [28], dissipative terms
generally introduce “violations” of Noether’s theorem via
sources in the unobserved part of the system. Entropy
conservation is, of course, the most well known of such
violations. For T ≪ T0 we should recover the entropy
formulas in [27]. Hence, the formulas argued for in [4],

∂μðsuμÞ ¼ ∂μð
ffiffiffiffi
B

p
uμÞ ∼ 0ji¼0 þ ΠμνΠμνji≥1; ð40Þ

where i corresponds to gradient order, can be justified from
the Lagrangian description. Higher order terms in the
effective Lagrangian with couplings between XIJ and
gradients of B will therefore also enter in the entropy
current. In a sense, the nondecrease of entropy in this
formulation is equivalent to the Lagrangian being bound
from below, which reinforces the connection between our
work and [7,8].
This “semiclassical” limit, though, is likely to severely

underestimate entropy formation at low viscosity, for the
first of the terms in the inequality required for hydro-
dynamics to hold [18,19,23],
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1

T0

≪
η

Ts
≪

1

∂u ; ð41Þ

will inevitably break down as η → 0. In this case Eq. (38)
will also break down, and one will have to do the full
functional integral, with T0 as the coupling constant, i.e.,
replace in Eq. (38)

eSminimumðB;XÞ →
Z

D½B;X�eT4
0

R
LðB;XÞd4x:

Relatively elementary considerations, such as the fact that
vortices, which require no energy to form, do not propa-
gate, suggest the expansion around T0 is highly non-
perturbative, possibly necessitating numerical methods to
be properly taken into account. Physically, this means that
excitations of macroscopic degrees of freedom ϕI and X,
and the coupling of these to microscopic degrees of
freedom, give a non-negligible description of the entropy.
The most likely appearance of such degrees of freedom is
within the variables Aμν

IJ of Eq. (32), classically forbidden
within the ideal hydrodynamic limit, as shown by the first
efforts to simulate this system numerically [23].
Such effects might be crucial in the low viscosity high

flow limit, where the phenomenon of turbulence [36]
occurs in the classical limit. In our picture, turbulence
can be understood as the occurrence of multiple irregularly
distributed minima and saddle points in the action as a
function of field configurations (Fig. 2). In this limit
deviations from the semiclassical approximations are likely
to dominate even for “small gradients,” precisely because
T0 ∼ h∂ui, and the EFT expansion likely breaks
down [41,45].
Such dynamics might have a role in clarifying the

mysteries the phenomenon of turbulence still yields.
Since T0 in Eq. (41) is proportional to the distance scale
of microscopic DoFs, Oð1000ð100 fm3Þ−1Þ in a heavy ion
collision (or 104=m3 in a cold atom system), such correc-
tions, as yet completely unexplored, could become crucial
to connect our EFT to phenomenology. Naively, the
fluctuation-driven mixing of turbulent and microscopic

degrees of freedom will shorten microscopic thermaliza-
tion, invalidating “hydrodinamicization” scenarios such as
[47], at least beyond the planar limit. Effective field
theories emerge from renormalization group flow of micro-
scopic theories. Hydrodynamics is ultimately not different,
except for the fact that the effective Lagrangian must be
nonunitary to take into account entropy exchanges between
the microscopic and macroscopic scales [45]. Furthermore,
this exchange assumes the existence of a microscopic scale
which is not invariant under macroscopic transformations,
requiring terms noninvariant under rescaling even in a
theory which macroscopically is invariant under such
transformations. This is manifest at first order already,
since viscosity, ultimately due to a “physical” microscopic
scale, is represented by terms that violate rescaling diffeo-
morphisms. Given these considerations, any strongly
coupled relativistic microscopic field theory should in
principle coarse grain to something like Eq. (2) provided
coarse graining is done within the CTP formalism, as
suggested in [48].
In conclusion, we have shown that the Lagrangian

formalism incorporates naturally both the Navier-Stokes
and the Israel-Stewart terms of hydrodynamics, and it
naturally explains the appearance and scaling of these
terms in a way that is somewhat model dependent and
ad hoc in other approaches. We await to see to what extent
this proof can be generalized to arbitrary order.
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APPENDIX A: A LAGRANGIAN DESCRIPTION
OF CONSERVATIVE SYSTEMS

1. Introduction

In this short review we use the notation of [27]. The
Lagrangian formulation is a very powerful technique for
formulating both classical and quantum problems. There
is a demand for a systematic procedure to incorporate
general dissipative features in a variational principle. The
best way to establish this change is by theoretically
modifying the formulation of the principle of least action
[32–34]. The main point is that the variational principle
needs boundary conditions and temporal invariance.
As a result, Liouville’s theorem implies time symmetry,
something easy to derive by considering Green’s func-
tions [28].
To go beyond this limitation wewill use closed-time path

(CTP) [27] in the description of a closed system. For each
field ψðxÞ, we double to a set of variables ψ → ðψþ;ψ−Þ

FIG. 2. The profile of the action in a “turbulent” system (small
viscosity and well away from the hydrostatic limit) and a
qualitative sketch of the role of corrections of gradient and
T0 terms.
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with the same initial conditions. Physically, the context of
Lagrangian mechanics shows each variable represents an
equation of motion where one “absorbs” and another
“loses” energy,

SCTP½ψ̂ � ¼
Z

ti

tf

ddþ1xfLs½ψþ� − L�
s ½ψ−�g: ðA1Þ

In the context of this work, the two systems can be
considered to be the infrared (macroscopic) and ultraviolet
(microscopic) degrees of freedom.
To reproduce dissipative dynamics via a Lagrangian,

each DoF has to ensure the equality conditions (sometimes
called “physical limit”). In other words, ψþðtf;xÞ ¼
ψ−ðtf;xÞ and ∂n

t ψ
þðti;xÞ ¼ ∂n

t ψ
−ðti;xÞ, with ψ� an

function of class n. Initial conditions maintain a causality
in a nonconservative system while generating a difference
between advanced and retarded Green’s functions.
The CTP has a degeneracy associated with ψþ ↔ ψ−;

that is, both axes obey the same equation of motion, due to
the double DoFs that imply in the action (A1),

SCTP½ψþ;ψ−� ¼ −S�CTP½ψ−;ψþ�: ðA2Þ

The degeneracy introduced in ψ disappears in p.l.,
ψþðxÞ ¼ ψ−ðxÞ, only the variable ψþ has a physical
meaning and another vanishes [27]. The effective
Lagrangian is therefore of the form (in our case ψ ¼ ϕ,
introduced in Sec. II and X in Sec. IV)

Seff ½ψ̂ � ¼ Ss½ψ̂þ� − S�s ½ψ̂−� þ Si½ ˆψþ;ψ−�; ðA3Þ

where the nonaccessible DoFs Siðψ̂Þ are microscopic or
“high energy,” called internal energy and assumed to be a
perturbation close to the ideal limit. The subtraction is
equivalent [27,34] to integrating out unseen degrees of
freedom.
The variational principle of Ss is defined by the Hessian

matrix δ2Si=δϕþδϕ−. The first and second terms are
responsible to conserved current of energy momentum.
The Si is a small perturbation, which contains all terms due
to integration out more dissipative forces. To ensure
Liouville’s theorem (unitarity in the quantum theory), we
would need to compute all terms of action including the
ones we do not keep track of. Care needs to be taken to
translate standard Lagrangian mechanics results into the
doubled coordinate formalism. For instance, as discussed in
[28] dissipative terms Siðψþ;ψ−Þ generally “break” con-
servation laws inferred from Noether’s theorem (friction is
an everyday example). Nevertheless, it is possible to extend
such theorems into the dissipative domain and gauge their
applicability on a case-by-case basis. In the next section we
will consider the case of Ostrogradski’s theorem, necessary
for the derivation in Sec. IV.

Note that the approach described here is not unique. For
instance, one can integrate out the unseen degrees of
freedom explicitly, as was done in [35]. We think the
method used here has more potential for a systematic
gradient expansion, since, as shown in [27], violations of
nonentropy conservation laws (energy, charge, etc.) can be
systematically organized as “higher order gradient” terms,
by ensuring the correct gradient power counting for Si with
respect to Ss. In a direct integrating out procedure, all
conservation law violations are parametrically similar
(essentially the “violation” is contained in the DoFs one
integrates out), and because of this the approximate
invariance under conservation laws in [35] depends on
linearization as well as the EFT expansion.

2. Ostrogradski’s theorem

Ostrogradski’s theorem [37,38] limits “well-behaved”
theories to Lagrangians with two derivatives. Higher
derivative terms, even with a well-defined Lagrangian
minimum, will have an unstable mode in the
Hamiltonian (essentially, negative energy “states”). This
makes local thermalization for such systems and any
systems coupled to them obviously problematic. In par-
ticular, the EFT expansion generally breaks down because
the system has a vacuum instability.
To check that Ostrogradski’s theorem applies to dis-

sipative Lagrangians consider a doubled field Lagrangian
density with field coordinate ϕðxμÞ,

Λðϕ�;ϕ�
μ ;…;ϕ�

μ1���μnÞ ¼ Loðϕþ;ϕþ
μ ;…;ϕþ

μ1���μnÞ
þKðϕ�;ϕ�

μ ;…;ϕ�
μ1���μnÞ; ðA4Þ

where ϕ�
μ1���μn ≡ ∂μ1 � � � ∂μnϕ

�. We will use ðϕ�;ϕ�
μ ;…;

ϕ�
μ1���μnÞ≡ ðϕ�

αnÞ, α is a set formed by fμ;…; μ1 � � � μng,
with 0 ≤ n ≤ m, and m is a degree of Lagrangian.
Assuming nondegeneracy we can invert the highest deriva-
tive function as ϕ�

αm ¼ ðϕ�
αl ; π

�αmÞ with 0 ≤ l ≤ m − 1.
The canonical momentum is defined as π�αn ≡ L

∂ϕ∓αn

when applying p.l., just as πþαn ≡ L
∂ϕ−αn generalizing

momentum is straightforward. The Hamiltonian is

Hðϕ�
αnÞ ¼ ϕi1

μ πj1α1 þ � � � þ ϕin−1
αn−1π

j1αn−1

þ ϕ̄in
αnπ

j1αn − Λðϕ�
αnÞ: ðA5Þ

The set ðin; jnÞ ¼ fðþ;−Þ; ð−;þÞg, 0 ≤ n ≤ m. CTP is
carried over a new poison bracket where f and g are
functions of coordinate and momentum,

fff; ggg ¼
� ∂f
∂ϕþ

αn−1

∂g
∂π−αn

−
∂f

∂ϕþ
αn−1

∂g
∂π−αn

�

þ
� ∂f
∂ϕ−

αn−1

∂g
∂πþαn

−
∂f

∂ϕ−
αn−1

∂g
∂πþαn

�
: ðA6Þ
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It is straightforward to show the new equation of motion to
this Hamiltonian is

∂νϕαn−1 ¼
∂H

∂πναn−1 −
	 ∂K
∂πναn−1−



P:l:

¼ fϕαn−1 ;Hg − ffϕ−
αn−1 ;KP:l:ggP:l:; ðA7Þ

∂νπ
ναn−1 ¼ −

∂H
∂ϕαn−1

þ
	 ∂K
∂ϕ−

αn−1



P:l:

¼ fπαn ;Hg − ffπαn− ;KggP:l:: ðA8Þ

One can see that the first term on the left-hand side is A5
and the second represents the coupling between the two

doubled degrees of freedom (ϕþ, ϕ−) which corresponds to
a holonomic force, between system and environment.
Provided the new Hessian matrix is invertible

δL
δϕþδϕ− ≠ 0; ðA9Þ

the instability described in [37,38], and all the problems
inherent to coupling this system to other systems, will also
appear in the dissipative Lagrangian,

	
d
dt

∂Λ
∂ _q− −

∂Λ
∂q−



f:l:

¼ 0: ðA10Þ
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