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Exact expressions have been proposed for correlation functions of the large-N (planar) limit of the
(1þ 1)-dimensional SUðNÞ × SUðNÞ principal chiral sigma model. These were obtained with the form-
factor bootstrap. The short-distance form of the two-point function of the scaling fieldΦðxÞwas found to be
N−1hTrΦð0Þ†ΦðxÞi ¼ C2ln2mx, where m is the mass gap, in agreement with the perturbative renorm-
alization group. Here we point out that the universal coefficient C2 is proportional to the mean first-passage
time of a Lévy flight in one dimension. This observation enables us to calculate C2 ¼ 1=16π.
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I. INTRODUCTION

The main problem of quantum chromodynamics is to
understand quark confinement and the mass gap. An
analogous problem with similar features, e.g., asymptotic
freedom and nontrivial anomalous dimensions, is the
principal chiral sigma model (PCSM) of a matrix field
UðxÞ ∈ SUðNÞ, N ≥ 2, where x0 and x1 are the time and
space coordinates, respectively. The action is

S ¼ N
2g20

Z
d2xημνTr∂μUðxÞ†∂νUðxÞ; ð1:1Þ

where μ, ν ¼ 0, 1, η00 ¼ 1, η11 ¼ −1, η01 ¼ η10 ¼ 0, and
g0 is the coupling. This action does not change under the
global transformation UðxÞ → VLUðxÞVR, for two matri-
ces VL; VR ∈ SUðNÞ. The scaling or renormalized field
operator ΦðxÞ is an average of UðxÞ over a region of size b,
where Λ−1 < b ≪ m−1, where Λ is the ultraviolet cutoff
and m is the mass of the fundamental excitation. The
normalization of Φ is determined by

h0jΦð0Þb0a0 jP; θ; a1; b1i ¼ N−1=2δa0a1δb0b1 ; ð1:2Þ

where the ket on the right is a one-particle (hence the symbol
P) statewith rapidity θ (that is, withmomentum components
p0 ¼ m cosh θ, p1 ¼ m sinh θ), and we implicitly sum over
left and right colors a1 and b1, respectively.
In the bootstrap approach for some two-dimensional

field theories, the exact S matrix [1] and form factors [2]
can be found heuristically, using the powerful property of
integrability. On the other hand, the bootstrap begins from

one’s expectations about the mass spectrum, rather than
proving these expectations. In particular, one must assume
the existence of a mass gap m. In our opinion, the ultimate
goal of the bootstrap should be to reconstruct the
Lagrangian or Hamiltonian formulation of the quantum
field theory (we will say more about this towards the end of
the paper). This would provide a proof of the existence of
the mass gap in the latter formulations. A more modest step
forward [3] was to show that if N → ∞ [4], mjxj ≪ 1, the
bootstrap expression of the two-point function of the
scaling field ΦðxÞ, in Euclidean space, has the behavior

N−1h0jTrT Φð0Þ†ΦðxÞj0i≃ C2ln2ðmjxjÞ; ð1:3Þ

where T denotes time ordering. This result was obtained
from the exact expression for the Wightman (non–time-
ordered) two-point function in Minkowski space [5,6]:

WðxÞ ¼ N−1h0jTrΦð0Þ†ΦðxÞj0i

¼
Z

∞

−∞

dθ1
4π

eip1·x þ 1

4π

X∞
l¼1

Z
∞

−∞
dθ1 � � �

×
Z

∞

−∞
dθ2lþ1e

i
P

2lþ1

j¼1
pj·x

Y2l
j¼1

1

ðθj − θjþ1Þ2 þ π2
;

ð1:4Þ

where θj are rapidities and pj ¼ mðcosh θj; sinh θjÞ are the
corresponding momentum vectors, for j ¼ 1;…2lþ 1.
In this paper, we will show how to evaluate the

coefficient C2 in (1.3). For pedagogical completeness,
we will briefly review the derivation of (1.4) in Sec. II,
and how this series was used to find (1.3) in Sec. III.
Standard saddle-point large-N methods fail for the

PCSM. This is related to the fact that the Feynman
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diagrams in the large-N limit are planar [4], instead of
linear. We emphasize that (1.3) is a significant departure
from n → ∞ results for simpler isovector quantum field
theories, e.g., OðnÞ nonlinear sigma models or CPðn − 1Þ
models. In particular, Eq. (1.3) is not the correlation
function of a free field, although a free master field does
exist [5].
The result (1.3) is in perfect agreement with the pertur-

bative renormalization group applied to the action (1.1). We
give a brief summary here (for a more complete discussion,
see Ref. [7]). Consider the regularized Euclidean correlation
function (obtained after a Wick rotation, x0 → ix0) is
Gðjxj;ΛÞ ¼ N−1h0jT TrΦðxÞΦð0Þ†j0i, defined with an
ultraviolet cutoff Λ. The ultraviolet behavior of the corre-
lation function may be found from the renormalization
group equations:

∂ lnGðR;ΛÞ
∂ lnΛ ¼ γðg20Þ ¼ γ1g20 þ…;

∂g20ðΛÞ
∂ lnΛ ¼ βðg20Þ ¼ −β1g40 þ…: ð1:5Þ

The coefficients of the anomalous dimension γðg20Þ and
the beta function βðg20Þ are γ1 ¼ ðN2 − 1Þ=ð2πN2Þ and
β1 ¼ 1=ð4πÞ. For large Λ, the dimensionless quantity
GðR;ΛÞ becomes a function of the product of the
two variables GðRΛÞ. Integrating (1.5) yields the leading
behavior

GðR;ΛÞ ∼ C½lnðRΛÞ�γ1=β1 : ð1:6Þ
The power of the logarithm is γ1=β1 ¼ 2 − 2=N2, which
becomes 2 in the limit of infinite N.
Note that C2 in Eq. (1.3) is a universal quantity, because

the normalization of ΦðxÞ is set by (1.2). We will show
that C2 ¼ 1=16π. In fact, this quantity has already been
evaluated in the context of Lévy flights [8]; it is propor-
tional to the mean first-passage time in one dimension.
In the next section, we briefly review the form factors

and correlation functions of the scaling field. Then we
explain how this expression leads to (1.3) and present an
expression for C2 in terms of the spectrum of the square
root of the one-dimensional Laplacian Δ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d2=du2

p
,

with u ∈ ½−1; 1�, in Sec. III. In Sec. IV, we determine the
value of C2. We conclude with a few remarks in Sec. V.

II. FORM FACTORS AND CORRELATION
FUNCTIONS OF THE PRINCIPAL CHIRAL

SIGMA MODEL

The expression (1.4) was found from the form factors
of the scaling field in the large-N limit [5,6]. These form
factors satisfy a set of axioms proposed by Smirnov [2]
(motivated by the Lehman-Symanzik-Zimmerman formu-
lation of field theory [9]), formulated with the S matrix of
the PCSM (for finite N) discussed in Ref. [10]. Form

factors and correlation functions of other local operators in
the PCSM may be found in Ref. [11]. Some of these results
have been extended to a finite volume in Ref. [12].
The S matrix of the elementary excitations of the

principal chiral model [10] depends upon the incoming
rapidities θ1 and θ2 [as discussed in the Introduction,
the momentum vectors are ðpjÞ0 ¼ m cosh θj, ðpjÞ1 ¼
m sinh θj], the outgoing rapidities θ01 and θ02, and the
rapidity difference θ ¼ jθ12j ¼ jθ1 − θ2j. In the limit of
large N we assume that m is fixed, as N → ∞ (all available
evidence indicates that this is the standard ’t Hooft limit).
The excitations which survive in the large-N limit are
elementary particles and elementary antiparticles. The 1=N
expansion of the two-particle S matrix is

SPPðθÞc2d2;c1d1a1b1;a2b2

¼ ½1þOð1=N2Þ�
�
δc2a2δ

d2
b2
δc1a1δ

d1
b1
−
2πi
Nθ

ðδc2a1δd2b2δ
c1
a2δ

d1
b1

þ δc2a2δ
d2
b1
δc1a1δ

d1
b2
Þ − 4π2

N2θ2
δc2a1δ

d2
b1
δc1a2δ

d1
b2

�
: ð2:1Þ

The generalized S matrix is defined by replacing θ ¼ jθ12j
with θ ¼ θ12 in (2.1). The generalization is necessary to
analytically continue rapidities into the complex plane. The
S matrix of one particle and one antiparticle SPAðθÞ is
obtained by crossing (2.1) from the s channel to the t
channel:

SPAðθÞd2c2;c1d1a1b1;b2a2

¼ ½1þOð1=N2Þ�
�
δd2b2δ

c2
a2δ

c1
a1δ

d1
b1
−
2πi

Nθ̂
ðδa1a2δc1c2δd2b2δ

d1
b1

þ δc2a2δ
c1
a1δb1b2δ

d1d2Þ − 4π2

N2θ̂2
δa1a2δ

c1c2δb1b2δ
d1d2

�
;

ð2:2Þ
where θ̂ ¼ πi − θ is the crossed rapidity difference.
For a set of particles with labels 1, 2, etc., we denote a

particle’s rapidity θj, left color aj and right color bj by
Pj ¼ fP; θj; aj; bjg. For a set of antiparticles with labels 1,
2, etc., we denote an antiparticle’s rapidity θj, right color bj
and left color aj by Aj ¼ fP; θj; bj; ajg (the reversal of
color indices is a convention). A multiparticle in-state may
be written as

jP;θ1;a1;b1;P;θ2;a2;b2; � � � ;P;θk;ak;bk;A;θkþ1;

bkþ1;akþ1;A;θkþ2;bkþ2;akþ2; � � �;A;θkþj;bkþj;ajþ1iin
¼jP1;P2; � � �Pk;Akþ1;Akþ2; � � �Akþjiin:

By “form factors,” we mean matrix elements of local
operators. Using Smirnov’s axioms [2], form factors of
ΦðxÞ consistent with the S matrix [Eqs. (2.1) and (2.2)] can
be found:
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h0jΦð0Þb0a0 jP1;P2; � � �PM;AMþ1;AMþ2; � � �A2M−1iin

¼
ffiffiffiffi
N

p

NM

X
σ;τ∈SM

Fστðθ1; θ2;…; θ2M−1Þ
YM−1

j¼0

δajaσðjÞþM
δbjbτðjÞþM

;

ð2:3Þ

where the leading part in the 1=N expansion of the function
Fστ ¼ F0

στ þOð1=NÞ is
F0
στðθ1; θ2;…; θ2M−1Þ

¼ ð−4πÞM−1KστQ
M−1
j¼1 ½θj − θσðjÞþM þ πi�½θj − θτðjÞþM þ πi� ; ð2:4Þ

where

Kστ ¼
�
1; σðjÞ ≠ τðjÞ; for all j
0; otherwise

: ð2:5Þ

We note that (1.2) agrees with (2.3), (2.4) and (2.5) for
M ¼ 1. The case of M ¼ 2 was solved in Ref. [5], while
the general case was solved in Ref. [6].
The Wightman function is found from the completeness

relation:

WðxÞ ¼ 1

N

X
a0;b0

X
X

h0jΦð0Þb0a0 jXiin inhXjΦð0Þ�b0a0 j0ieipX ·x

¼ 1

N

X
a0;b0

X
X

jh0jΦð0Þb0a0 jXiinj2eipX ·x; ð2:6Þ

where X denotes an arbitrary choice of particles, momenta
and colors, and where pX is the momentum eigenvalue of
the state jXi. Substitution of (2.3), (2.4) and (2.5) into the
completeness relation yields Eq. (1.4).
For increasingly large separation x, states jXiin with

many excitations in (2.6) contribute minimally to WðxÞ.
Therefore, the leading large-distance behavior is exponen-
tial decay, as expected for a massive theory. Evaluating
correlation functions for small x requires keeping all the
terms of (2.6), which is considerably more subtle [3].

III. SHORT-DISTANCE BEHAVIOR AND THE
FRACTIONAL LAPLACIAN

The expression for the Wightman function (1.4) can be
studied at short distances, by a method similar to that
of Ref. [13] for the Ising model, using that model’s exact
form factors [14]. We Wick-rotate the time variable to
Euclidean space, setting x1 ¼ 0 and replacing x0 by iR,
R > 0. The phases in (1.4) change via expðipj · xÞ →
expð−mR cosh θjÞ. We define L ¼ ln 1

mR. As mR becomes
small, expð−mR cosh θjÞ becomes approximately the
characteristic function of ð−L;LÞ, equal to unity for −L <
θ < L and zero everywhere else. The characteristic func-
tion appears the sameway in the Feynman-Wilson gas [15].
The short-distance Euclidean two-point function is now

GðmRÞ ¼ L
2π

þ L
4π

X∞
l¼1

Z
1

−1
du1 � � �

Z
1

−1
du2lþ1

×
Y2l
j¼1

1

L½ðuj − ujþ1Þ2 þ ðπ=LÞ2� ; ð3:1Þ

where θj ¼ Luj.
The terms of (3.1) are related to the fractional-power

Laplace operator Δ1=2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−d2=du2

p
[16]. This operator

acts on a function fðuÞ, vanishing for u∉ðb; cÞ, by [16]

Δ1=2fðuÞ ¼ 1

π
P
Z

c

b
du0

fðu0Þ − fðuÞ
ðu0 − uÞ2 ; ð3:2Þ

where P denotes the principal value. We set b ¼ −1, c ¼ 1.
The operator Δ1=2 has an infinite set of discrete eigenvalues
λn, of the eigenfunctions φnðuÞ, Δ1=2φn ¼ λnφn,
n ¼ 1; 2;…, with 0 < λ1 < λ2 < � � �, with φnð�1Þ ¼ 0.
Here is the relation: for u; u0 ∈ ð−1; 1Þ, we define the
operator HðLÞ by

1

L½ðu − u0Þ2 þ ðπ=LÞ2� ¼ hu0je−π
LHðLÞjui: ð3:3Þ

By (3.2), (3.3) and a straightforward calculation, we find
that HðLÞ is an approximation to Δ1=2, i.e., HðLÞ ¼
Δ1=2 þOð1=LÞ, with spectrum

HðLÞφnðu; LÞ ¼ λnðLÞφnðu; LÞ;Z
1

−1
dujϕnðu; LÞj2 ¼ 1; λnðLÞ ¼ λn þOð1=LÞ;

φnðu; LÞ ¼ φnðuÞ þOð1=LÞ: ð3:4Þ

Summing over l in Eq. (3.1) yields, from (3.4),

GðmRÞ ¼ L
4π

Z
1

−1
du0

Z
1

−1
du

�
u0
���� 1

1 − e−2πHðLÞ=L

����u
�

¼ L
4π

X∞
n¼1

����
Z

1

−1
duφnðu; LÞ

����2 1

1 − e−2πλn=LþOð1=L2Þ :

ð3:5Þ

Expanding (3.5) in powers of 1=L (we are expanding
within the sum, which requires justification; see Ref. [3] for
a more careful discussion), we find

GðmRÞ ¼ L2

8π2
X∞
n¼1

����
Z

1

−1
duφnðuÞ

����2λ−1n þOðLÞ:

This is (1.3), with the universal coefficient identified as

C2 ¼
1

8π2
X∞
n¼1

����
Z

1

−1
duφnðuÞ

����2λ−1n : ð3:6Þ
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IV. EVALUATION OF C2

This section is the heart of this paper. An expression
which is proportional to the right-hand side of (3.6) was
evaluated in Ref. [8]. The result is

X∞
n¼1

����
Z

1

−1
duφnðuÞ

����2λ−1n ¼
Z

1

−1
du

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − u2

p
¼ π

2
; ð4:1Þ

which is the mean first-passage time of a Lévy flight in one
dimension, calculated via the corresponding continuum
theory, namely the anomalous Laplace equation. Since the
discussion in Ref. [8] may not be easily accessible to
readers working in quantum field theory, we present a short
derivation of (4.1) below.
We write the square root of the one-dimensional

Laplacian (3.2) as (with b ¼ −1, c ¼ 1)

Δ1=2fðuÞ

¼ 1

2π

Z
1

−1
du0

�
1

ðu − u0 − iϵÞ2 þ
1

ðu − u0 þ iϵÞ2
�
fðu0Þ:

For a function fðuÞ satisfying the Dirichlet boundary
conditions fðbÞ ¼ fðcÞ ¼ 0, this may be integrated by
parts to

Δ1=2fðuÞ ¼ −
1

π

Z
1

−1
du0

dfðu0Þ
du0

P
1

u0 − u
; ð4:2Þ

where P denotes the principal value. Detailed properties of
the eigenfunctions ϕnðuÞ and eigenvalues λn can be found
in Ref. [17].
Let us define the function CðuÞ by

CðuÞ ¼
X∞
n¼1

λ−1n

Z
1

−1
du0ϕnðu0ÞϕnðuÞ ð4:3Þ

and note that

C2 ¼
1

8π2

Z
1

−1
duCðuÞ: ð4:4Þ

This function satisfies

Δ1=2CðuÞ ¼ 1 ð4:5Þ

by completeness. Now the spectrum of Δ1=2 in a finite
interval is strictly positive. If there were two square-
normalizable solutions to (4.5), their difference would be
a square-normalizable function annihilated by this positive
operator; but this is impossible unless the difference
vanishes. Therefore, the square-normalizable solution
CðuÞ to (4.5) is unique, and must be equal to (4.3).
After presenting the solution to Eqs. (4.2) and (4.5) for
CðuÞ, we will integrate to find C2 [8].

A solution of the integral equation

Z
1

−1
du0

dCðu0Þ
du0

P
1

ðu0 − uÞα ¼ −1; α > 0; ð4:6Þ

which is square normalizable, is

CðuÞ ¼ 1

πα
ð1 − u2Þα=2: ð4:7Þ

This is easily checked: the derivative has two branch
points at �1. Taking the branch cut on the real axis from
−1 to 1, straightforward complex integration yields (4.6).
Specializing to α ¼ 1, as in Eq. (4.2), we obtain the
solution to Eq. (4.5). Upon integrating CðuÞ, we obtain
(4.1) and

C2 ¼
1

8π2
π

2
¼ 1

16π
; ð4:8Þ

which is the result we claimed for the universal coefficient.

V. REMARKS

Let us summarize the result of Ref. [3] and this paper. We
have found that the correlation function of the scalar field
has the Euclidean asymptotic behavior

N−1h0jTrT Φð0Þ†ΦðxÞj0i≃
(R d2p

ð2πÞ2
expðip·xÞ
p2þm2 ; jxj ≫ m−1

1
16π ln

2ðmjxjÞ; jxj ≪ m−1
:

ð5:1Þ
The normalization of the expressions on the right-hand
side is completely determined by (1.2). The form for large
separation x is the Wick rotation of the first term of (1.4).
Perhaps the normalization of the short-distance form can be
checked with a lattice Monte Carlo simulation at relatively
large N, as has been done for the Oð3Þ nonlinear sigma
model [18].
The agreement with the perturbative renormalization

group is encouraging, but it is desirable to have a
convincing demonstration that the canonical and bootstrap
definitions of the PCSM are the same. We next discuss how
it may be possible to determine the regularized Lagrangian
directly from the bootstrap, using the trace anomaly.
Although the stress-energy-momentum tensor Tμν of

the classical field theory has a vanishing trace, Tμ
μ ¼ 0,

this property is broken in the quantum theory. The
trace anomaly for PCSM, with a point-splitting cutoff
R ¼ ðR0; R1Þ, is

Tμ
μ ¼ N

2

dgðRÞ−2
d lnR

½Tr∂αU†∂βUjR − h0jTr∂αU†∂βUjRj0i�

¼ −
N

2gðRÞ4 βðgÞ½Trj
μðxþ R=2Þjμðx − R=2Þ

− h0jTrjμðxþ R=2Þjμðx − R=2Þj0i�; ð5:2Þ
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where βðgÞ is the beta function as before, and jμ ¼
ið∂μUÞU† is a current. Notice that the right-hand side is
proportional to the original Lagrangian; this is a general
feature of the trace anomaly.
Now form factors of both the stress-energy-momentum

tensor and current are known [11]. Matrix elements of the
right-hand side of (5.2) can be calculated. These can be
comparedwithmatrix elements of the left-hand side. This can
be done by working out the operator product expansion of
currents, which should have the form (in Minkowski space)

1

N
TrjμðR=2Þjμð−R=2Þ

≃ 1

128π2
1

RαRα
− 2gðRÞ4βðgÞ−1Tμ

μð0Þ þ…: ð5:3Þ

The first term on the right-hand side of (5.3) is the vacuum
expectationvalue in (5.2). One of us (P.O.) has calculated this

term (not yet published) with methods similar to those of
Ref. [3] and of this paper. The global symmetry implies that
no logarithms can appear in this term, but in the context of our
bootstrap method, it seems miraculous that they do not. By
considering matrix elements of (5.2) between one-particle
states, the second term of (5.3) may be determined.
We hope that the surprising connection between inte-

grable quantum field theory and anomalous diffusion will
yield further insights.
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