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We present an integral formalism for constructing scheme transformations in a quantum field theory.
We apply this to generate several new useful scheme transformations. A comparative analysis is given of
these scheme transformations in terms of their series expansion coefficients and their resultant effect on the
interaction coupling, in particular at a zero of the beta function away from the origin in coupling-constant

space.
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I. INTRODUCTION

The dependence of the interaction coupling in a quantum
field theory on the Euclidean momentum scale, y, where it
is probed, is of basic importance. This is determined by the
beta function of the theory [1]. For simplicity, we focus
here on a theory (in four spacetime dimensions at zero
temperature) with only one dimensionless interaction
coupling. There has long been interest in a possible zero
of the beta function away from the origin in coupling-
constant space. For an infrared-free theory such as quantum
electrodynamics or A¢* this would be an ultraviolet fixed
point (UVFP) of the renormalization group (RG), while for
an asymptotically free non-Abelian gauge theory, this
would be an infrared fixed point (IRFP) of the renormal-
ization group, calculated to a given order in perturbation
theory, in both cases. Let us consider the latter case, of a
non-Abelian gauge theory with a simple gauge group and
hence a single gauge coupling. We shall denote the running
gauge coupling as g = g(u) and define a(u) = g(u)?/(4x).
For technical simplicity, we take the fermions to be
massless and avoid inclusion of any scalar fields, so that
the theory involves only one dimensionless interaction
coupling. With a given fermion content, the theory pos-
sesses an IRFP at the two-loop level if the two-loop
coefficient in the beta function, b,, has a sign opposite
to that of the one-loop coefficient, b, [see Eq. (2.3) below].
At the two-loop (27) level, this IRFP occurs at the value
a = aroy = —4nb;/b,. It is clearly desirable to calculate
the value of this IR zero of the beta function to higher-loop
order to achieve greater accuracy in its determination.
However, while the one-loop and two-loop coefficients
in the beta function are independent of the scheme used for
regularization and renormalization, the coefficients at the
level of three loops and higher depend on this scheme [2].
Indeed, this scheme dependence of higher-loop calcula-
tions is a general property of quantum field theories.

It is therefore incumbent upon one to assess how
sensitive a given quantity is to the scheme used for the
higher-loop calculation of this quantity. Here we
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concentrate on the calculation of the location of a zero
of a beta function away from zero coupling but still at
sufficiently small coupling that one can use perturbative
methods. A procedure to assess the scheme dependence of
the location of this zero in the beta function is to carry out
the calculation first in a given scheme, obtain a result for the
value of the IR zero at n-loop (n?) order, arg ¢, then apply
a scheme transformation, calculate the zero to this order in
the transformed scheme, denoted a{RM, and determine the
fractional shift in the value. In a series of papers this
program has been implemented [3-7]. References [3,4]
pointed out that it is significantly more difficult to construct
scheme transformations that can be applied away from the
origin in coupling-constant space than it is to construct such
transformations that are applicable in the vicinity of the
origin, such as those used in quantum chromodynamics
(QCD) calculations in the perturbative region, i.e., for small
a,. For example, consider the scheme transformation

(1.1)

1
a= Etanh(Za’).

This is perfectly well-behaved near zero coupling,
a =« =0, where it approaches the identity transforma-
tion, but is unacceptable at a generic zero of the beta
function. This is clear from the inverse transformation,

which is
a’*lln 1+ 2a
4 \1-2a)

As a approaches the value 1/2 from below, & — oo, and
for « > 1/2, & is complex.

Since, as was noted, coefficients in the beta function at
the level of three loops and higher are scheme-dependent, it
was anticipated that, in the vicinity of zero coupling, as in
QCD, one could transform to a scheme where these
coefficients vanish [8,9]. Another important result from
[3-6] was an explicit construction of a scheme trans-
formation that removes terms of loop level n > 3 in the

(1.2)
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beta function in the vicinity of a =« =0 and the
demonstration that it is much more difficult to try to carry
out this removal of higher-loop terms at a larger but still
perturbative value of the coupling away from the origin. In
[6] a generalized scheme transformation denoted Sg,, ,
with m > 2 was presented with the property that it
eliminates the n-loop terms in the beta function of a gauge
theory from loop order n = 3 to order n = m + 1, inclusive
and can be optimized to perform this removal in a
substantial range of couplings away from the origin.
There is thus a need to construct and apply scheme
transformations that are applicable not only near the origin
in coupling-constant space (where they automatically
reduce to the identity), but also at a zero of the beta
function located away from the origin. The previous works
[3-7] addressed this task and studied applications at an IR
zero of the beta function in an asymptotically free non-
Abelian gauge theory. Early interest in such a zero had
made use of the scheme-independent one-loop and two-
loop coefficients and had noted the associated behavior of
scaling with anomalous dimensions [10,11]. Later, it was
observed that in the region where the number of fermions
approaches the maximum value allowed by asymptotic
freedom (the value where the one-loop coefficient b,
vanishes), this IR zero occurs at small coupling [12].
Moving away from this region toward larger values of
arR 2¢ requires higher-order calculations [13—17] to achieve
reasonable accuracy, whence the necessity of dealing with
the issue of scheme dependence. These calculations made
use of expressions for the three-loop and four-loop beta
function coefficients, by [17] and b, [18] that had been
calculated in the MS scheme [19]. References [14—-16]
carried out this analysis for a general gauge group and for
fermions in both the fundamental representation and in the
adjoint and rank-2 tensor representations. A particularly
powerful approach uses scheme transformations that are
dependent on an auxiliary parameter, r, with the property
that as r — 0, they approach the identity; by varying r
continuously away from r =0, one can thus study the
scheme dependence as a function of this continuous
variable [3-7]. A valuable result from this program of
higher-order perturbative computations of the values of IR
fixed points of asymptotically free non-Abelian gauge
theories is improvement in the accuracy of calculations
of anomalous dimensions, such as the anomalous dimen-
sion of the fermion bilinear operator, evaluated at the IR
fixed point, yir .z = Vne(@Rr). The result can then be
compared with lattice calculations that are fully nonper-
turbative in the gauge coupling, although involving other
approximations, such as finite lattice spacing, finite lattice
volume, removal of fermion doubler modes, etc. [20]. For
example for a (vectorial) SU(3) gauge theory with Ny = 12
massless Dirac fermions, the values of yr ,, at the two-
loop, three-loop, and four-loop level were found to be
0.773, 0.312, and 0.253, respectively. The four-loop value
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is in good agreement with the lattice calculations yr =
0.27 +£0.03 [21], yir =0.25 [22], and yr = 0.235 %
0.046 [23]. This shows the value of calculating apg ,,» to
higher-loop order, since one evaluates y,, at @ = ag ¢ to
obtain yg ,». Another approach to ascertaining the degree
of scheme dependence is to use different schemes, such as
the modified minimal subtraction MS [19], momentum
subtraction (MOM) [24], and RT' [25], for the calculation of
ar e and then compare the results [26,27] (see also [28]).

The program in [3-7] is complementary to work on
optimized schemes to be applied in the neighborhood of the
origin, as in perturbative QCD calculations [24,29,30].
Scheme transformations have also been used in recent
studies of possible UV zeros in a beta function for several
types of nonasymptotically free theories, including a U(1)

gauge theory [31] and a globally invariant O(N) /1|g;5|4
theory [32]. We do not explicitly consider supersymmetric
field theories here but note that scheme transformations
have also been studied in such theories (e.g., [33-35]).

In this paper we report important further progress in this
program of constructing scheme transformations that are
acceptable for applications away from, as well as near, the
origin in coupling-constant space. We present a method for
generating scheme transformations based on an integral
formalism. We demonstrate the usefulness of this integral
formalism by utilizing it to construct several new scheme
transformations that can be applied to determine the degree
of scheme dependence of a higher-loop calculation of a
zero of the beta function away from the origin in coupling-
constant space. We also present a comparative analysis of
scheme transformations in terms of the coefficients that
enter in their Taylor series expansions in the relevant
coupling and use this to infer how they shift a coupling
that is in the perturbative region.

This paper is organized as follows. In Sec. II we discuss
some relevant background on the beta function. In Sec. III
we give a general discussion of scheme transformations,
including the set of acceptable conditions that they must
satisfy. In this section we derive a basic property concern-
ing how a scheme transformation shifts the value of the
coupling. In Sec. IV we present our new integral formalism
for the construction of acceptable scheme transformation.
In the subsequent sections we apply this formalism to
generate a number of new useful scheme transformations
for which explicit inverses can be calculated. Some
comparative comments are included in Sec. IX, and our
conclusions are given in Sec. X.

II. BETA FUNCTION

Here we briefly mention some necessary background for
our later discussion. As noted before, although our results
are more general, we shall focus in this paper on a non-
Abelian gauge theory with a simple gauge group G and
running gauge coupling g(u), with a fermion content
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chosen such that the theory is asymptotically free. Such
theories have the appeal that there is at least one regime,
namely large Euclidean energy/momentum p in the
deep UV, where one can carry out reliable perturbative
calculations. We define

_gu)?
alu) = 167>

a(p)
4~

(2.1)

The argument p will often be suppressed in the notation.
The beta function is f, = dg/dt or equivalently,

(2.2)
where dt = dInu. This function has the series expansion

Po = —2052 bya’, (2.3)
/=1

where an overall minus sign has been extracted in the
prefactor. The n-loop (n?) beta function, denoted f, ., is
given by (2.3) with the upper limit on the £ summation
taken to be n rather than oco. If the theory has an IR
zero of the n-loop beta function f,,,, we denote it
by aiR np = 47arR -

As the reference scale y decreases from large values in
the deep UV to smaller scales toward the IR and a(u)
increases, it approaches the value at the IR zero of the beta
function, which we denote generically as ap in this
paragraph. If the gauge group and fermion content are
such that ayy, is sufficiently small, then the theory evolves to
a chirally symmetric phase in the IR and @ — ag as ¢ — 0,
so that apg is an exact IRFP of the renormalization group. If,
on the other hand, oy is sufficiently large, then the gauge
interaction produces bilinear fermion condensate(s) and
associated spontaneous chiral symmetry breaking. In this
case, the fermions pick up dynamical masses and are
integrated out of the low-energy effective field theory that
is operative at scales below the scale of the condensate
formation. Hence, in this low-energy theory, the beta
function changes form, and a(u) evolves away from ap
toward stronger coupling. In this case, ar is only an
approximate IRFP of the renormalization group.

III. SCHEME TRANSFORMATIONS

A scheme transformation is a mapping between « and o
or equivalently, between a and d’, namely

(3.1)

Here it is convenient to introduce the notation F(a’) to
emphasize the functional dependence of a on a’. In the limit
where a and o' vanish, the theory becomes free, so a
scheme transformation has no effect, i.e., it should
approach the identity. This implies that
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£(0) =1. (3.2)

The functions f(a’) that we consider have Taylor series
expansions about @ = ¢’ = 0 of the form

fla) =1+ k(d), (3.3)

where the coefficients k, are constants. Here, s,,,, may be
finite or infinite. Thus, these functions f(a’) automatically
satisfy the condition (3.2). Equivalently,

(3.4)

By using the method of reversion of series [36], one can
calculate a Taylor series expansion for the inverse scheme
transformation, @’ = F~!(a), from the series (3.4). This
series for the inverse may be written as

Smax

a=F"'a)=a+ Zpsa”l. (3.5)
s=1
In terms of the k, coefficients, we have
p1 = ki, (3.6)
pr =20~ Iy, (3.7)
p3 = Skiky — k3 — 5k3, (3.8)
py = 6k ky + 3k3 + 14k} — ky — 21k3k,,  (3.9)

and so forth for higher s.

Since a and a’ are small in the perturbative region where
these scheme transformations are applicable, it is of interest
to consider truncations of the series (3.4) and (3.5). At the
lowest order beyond the identity, Eq. (3.4) reduces to the
equation a = d'(1 + k;d’). Although this is a quadratic
equation for @', which has two formal solutions, only one is
physical, as uniquely determined by the requirement that it
must reduce to the identity as k; — 0. This solution is

1
a’ = 2_](1 [—1 + 1/ 1 + 4k1(l].

(3.10)

Similarly, to the same order, the series for the inverse
transformation, Eq. (3.5), reduces to a’ = a(l — k,a), and
in the same way, although this is a quadratic equation in a
with two formal solutions, one uniquely determines the
physical solution by the requirement that as k; — 0, it
reduces to the identity. This solution is
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1
a [1—+/1-4kd).

=, (3.11)
As is evident from either Eq. (3.10) or (3.11), for small a, if
k; > 0, then a > ', while if k; < 0, then a < d'.

We next give a general inequality that determines
whether a scheme transformation increases or decreases
the value of the coupling for small a, as a function of the
sign of the lowest nonzero coefficient k; in Eq. (3.4). This
inequality applies even if this lowest nonzero coefficient is
not k. It is useful, since some scheme transformations and
their inverses have respective Taylor series (3.4) and (3.5)
in which k; = 0. This is the case, for example, with the
transformations (3.19) and (3.22) below. Let us denote the
lowest-order nonzero coefficient k, in Egs. (3.3) and (3.4)
as k, . Then we find the following general inequality for
small a (and hence also small a'),

k
k

>0=a>d,

Smin

<0=a<d. (3.12)

Smin

A number of the scheme transformations studied in [3—7]
depend on a parameter (denoted r in these works) and
hence are actually one-parameter families of scheme trans-
formations. Here and below, we shall often refer to a one-
parameter family of scheme transformations as a single
scheme transformation, with the dependence on the param-
eter r taken to be implicit. In accordance with the series
expansion (3.4), F(a') has the property

dF(d)
P ="
a'=0

(3.13)

(No confusion should result from the prime used here for

differentiation and the prime on «’, which does not indicate

any differentiation but just distinguishes a’ from a.)
From (3.3), it follows that the Jacobian

B da da

= — = — .14
7 dd (3.14)
can be expanded as
J=1+) (s+ k() (3.15)
s=1
and therefore satisfies the condition
J=1 ata=d =0. (3.16)

Since J is the derivative da/dd’, it is naturally expressed as
a function of either ' or a.
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The beta function in the transformed scheme is

da  dd da
,E—:——:J_l s 3.17
Po == P (3.17)
with the series expansion
Bou = =22 by(a')’. (3.18)
/=1

Owing to the fact that Eqs. (3.17) and (3.18) refer to the
same function, one can solve for the 4/, in terms of the b,
and k. This yields the known results b = b, and b}, = b,
for the one-loop and two-loop coefficients. In Refs. [3,4],
explicit expressions were calculated and presented for
higher-loop coefficients b, with # > 3 in terms of the b,
and k.

To be physically acceptable, a scheme transformation
must satisfy several conditions, as was discussed in [4]. We
state these for an asymptotically free gauge theory: (i) con-
dition C;: the scheme transformation must map a real
positive a to a real positive «; (i) C,: the scheme
transformation should not map a moderate value of a,
for which perturbation theory may be reliable, to a value of
« that is so large that perturbation theory is unreliable, or
vice versa; (iii) Cs: the Jacobian J should not vanish (or
diverge) or else the transformation would be singular; and
(iv) Cy4: since the existence of an IR zero of f is a scheme-
independent property of an theory, a scheme transformation
must satisfy the condition that /3, has an IR zero if and only
if f, has an IR zero. Since J =1 for a = d' =0, the
condition C3 implies that J must be positive. Clearly, these
apply both to a scheme transformation from « to a’ and to
the inverse from a’ to a.

These four conditions C; — C,4 can always be satisfied by
scheme transformations used to study the UV fixed point in
an asymptotically free theory. This is clear from the fact
that f(a’) approaches 1 as @’ — 0 in (3.3), so the trans-
formation approaches the identity in this limit. However, as
was pointed out in [3] and shown with a number of
examples in [3-6], they are not automatically satisfied,
and indeed, are quite restrictive conditions when one
applies the scheme transformation at a zero of the beta
function away from the origin, @ = 0, i.e., at an IR zero of
the beta function for an asymptotically free theory or a
possible UV zero of the beta function for an infrared-free
theory.

Some further remarks on the applicability of a scheme
transformation are appropriate here. Since a major appli-
cation of scheme transformations is to determine how
sensitive the value of a zero of the beta function, calculated
to loop order n = 3 or higher, is to the scheme used for the
calculation, and since such a calculation is only reliable if
the coupling « is not too large, it follows that one need only
impose the conditions C;-C, in this range of values of a
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that are not so large as to render perturbative calculations
inapplicable. Nevertheless, it is valuable to have a scheme
transformation that satisfies all of the conditions C;-C, for
arbitrary (physical, i.e., real, positive) values of a, so that
one does not have to be concerned about trying to choose
some nominal value of @ beyond which it cannot be
applied. To expand upon this point, we may compare
and contrast two illustrative scheme transformations [4].
One of these satisfies the conditions C;-C, for arbitrary
values of a. This is the transformation

a=F(d)= %sinh(ra’) (3.19)

with inverse

1
a =-1In [ra +4/1+ (ra)z} (3.20)
r
and Jacobian, expressed equivalently as a function of o’
and a,

J = cosh(ra’) = /1 + (ra)*. (3.21)
This is an example of a class of one-parameter families of
scheme transformations whose members are invariant
under reversal in sign of the auxiliary parameter r.
Hence, for such transformations, we can, without loss of
generality, take this parameter r to be nonnegative, and, as
in [4], we shall do so. The application of this transformation
in [4] to the IR zero in the beta function in an SU(N) theory
with N, fermions in the fundamental representation
showed that for moderate r and for values of o, for
n = 3 and n = 4 loops that were not too large, these values
were not sensitively dependent on the scheme used for their
calculation.
In contrast, consider the scheme transformation

a=F(d)= %tanh(ra’) (3.22)

with the inverse

1 1+ ra
=1 3.23
T n<1 - ra> (323)
and Jacobian, expressed as a function of &' and,

equivalently, of a:

1

= m = (1 =ra)(l + ra).

(3.24)

Again, we may, without loss of generality, take r to be
nonnegative. Evidently, the inverse transformation (3.23)
and the Jacobian are singular at a = 1/r, i.e., a = 4x/r.
The transformation (3.23) thus does not satisfy the
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conditions C;-C, for arbitrary values of a. Indeed, a special
case of this transformation with r = 8z was given above in
Eq. (1.1) and the singularity at « = 1/2 in the inverse,
Eq. (1.2) was noted. Hence, the scheme transformation
(3.22) is not as well-behaved as (3.19) is. However, if one
restricts the parameter r to sufficiently small values that the
singularity at « = 4x/r occurs at a value of « substantially
greater than unity, where one would not try to use
perturbative methods, then this singularity would not
prevent one from utilizing this transformation.

IV. INTEGRAL FORMALISM FOR
CONSTRUCTION OF SCHEME
TRANSFORMATIONS

Here we introduce and apply a general integral formal-
ism for the construction of one-parameter families of
scheme transformations. In this formalism, the starting
point is a choice of a Jacobian J(y) that will be used as the
integrand of an integral representation of the function F(a’)
defined in Eq. (3.1):

(4.1)

We choose J(y) to be an analytic function of y satisfying
the condition

J(0) =1. (4.2)
This guarantees that J(a’) and f(a’) have the respective
Taylor series expansions (3.15) and (3.3) and hence that
f(d') satisfies the condition (3.2). As discussed above, the
condition C; for an acceptable scheme transformation is
that the Jacobian must not vanish, since otherwise the
transformation is singular. The property J(0) = 1 together
with analyticity of J imply that J must be positive for the
ranges of couplings a and d' that are relevant for
perturbative calculations for which these scheme trans-
formations are applicable. Thus, we require that J(y) > 0
throughout the range of the integration variable y in
Eq. (4.1). We can also include dependence of the scheme
transformation on a (real) auxiliary parameter, denoted r.
Differentiating Eq. (4.1) and using a basic theorem
from calculus [Eq. (A2) in the Appendix] yields the
relation dF(d')/da’ = da/da’ = J(d'), in agreement with
Eq. (3.14). Using an appropriate choice for the Jacobian
J(z), we can also satisfy conditions C;-Cj.

In addition to these general conditions for the accept-
ability of a scheme transformation, another important
aspect of the analysis is the ease of inverting the trans-
formation to solve for a’ from a. As was evident in
Refs. [4-6], for algebraic scheme transformations with
finite values of s, in Eq. (3.3), the inversion required the
solution of an algebraic equation and a choice of which root
to take for this solution. In contrast, for cases of algebraic or
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transcendental scheme transformations with s,,,, = oo, the
inverse transformations were often simpler, in the sense that
one did not have to make such a choice of which root of an
algebraic equation to take.

To show the usefulness of this integral formalism for the
construction of acceptable scheme transformations, we
will employ it to generate a number of new scheme
transformations which also have the advantage that their
inverses can be calculated explicitly in closed form.
Before doing this, we first illustrate how the method
works with some scheme transformations that have
already been studied in [3-7], which we showed to be
acceptable for the analysis of a zero in a beta function
located away from the origin in coupling constant space,
in particular, an IR zero of the beta function of an
asymptotically free non-Abelian gauge theory. Let us
consider, for example, the scheme transformation (3.19)
studied in [4]. To show how one could use our present
integral formalism to construct this scheme transforma-
tion, we start with J and replace the variable &’ by the
integration variable y to get J(y) = cosh(ry). Substituting
this function into Eq. (4.1), we obtain

a 1
a=F(d)= / cosh(ry)dy = —sinh(ra’),  (4.3)
0 r

thereby rederiving the transformation (3.19).
Other examples are provided by the scheme transforma-
tions that we studied in [7]. One of these is

1
a=F(d)=-In(l+rd) (4.4)
r
with inverse
, era — 1
= . 4.5
= (45)

The Jacobian, expressed equivalently as a function of o’
and a, 1s

1
J: p—
1+ rd

e, (4.6)

Again replacing the variable @' by y to get J(y) =
1/(1 4 ry) and then substituting this into Eq. (4.1), we
reproduce the original transformation:

dy

a 1
=F(d)= =—In(1 + rd’). 4.7
a= ) = [" ). @)

Here, as we discussed in [7], the parameter r is restricted to
lie in the range r > —1/d’ to avoid a singularity in the
transformation and is further restricted by the condition that
the scheme transformation satisfies conditions C;-C,.
Similarly, if one uses J(y) = 1/(1—ry)? in Eq. (4.1),
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one obtains another scheme transformation considered
in [7], namely

al

a=F(d) (4.8)

1—rd’

V. TRANSFORMATION WITH AN
ALGEBRAIC J(y)

We next proceed to present new scheme transformations
that we have constructed using our integral formalism.
Recall that the starting point for the procedure is a choice of
the Jacobian function J(y) that serves as the integrand in
Eq. (4.1) and that satisfies the requisite conditions that it is
analytic and that J(0) = 1. For our first new transforma-
tion, we choose a J(y) of algebraic form, namely

J(y) = (1+ry)?, (5.1)
where the power p is a positive real number. Then,
calculating the integral in Eq. (4.1), we obtain the scheme
transformation

(1+ra")Ptt -1

a=Fa) ==

(5.2)

The resultant series expansion for f(a’) = F(a’)/a’ has the
form of Eq. (3.3) with

r& p s

ke = (s+1) (s) - (s + 1)!;;[0(1) =7), (53)

where (4) = a!/[b!(a —b)!] is the binomial coefficient.
This is a finite series if p is an integer, and an infinite series
otherwise. We list the coefficients k; explicitly for the first
few values of s for this scheme transformation and for
others discussed in this paper in Table I. The series (5.3) has
Smin = 1 and

pr
k., =k =—. 5.4
Smin 1 2 ( )
The inverse transformation is
/ 1 L
a {(p+ Dra+ 1}m1 =1]. (5.5)

r

Using this inverse transformation, one can express the
Jacobian equivalently as a function of '

P

J=0+rd) =[p+ra+ 1. (56)

There are two immediate restrictions on the parameter r
arising from the requirement that J > 0 and that there not
be any singularity in the scheme transformation (5.2),
namely
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TABLE 1. Values of the coefficients k; in Eq. (3.3) for scheme transformations discussed in the text. The transformation F(a') is
defined by Eq. (3.1): a = d'f(a’) = F(a’). The equation numbers indicate where the given F(a') is presented in the text.
F(a') Eq. ky ky k3 ky
(1/r)sinh(ra’) (3.19) 0 r?/6 0 r*/120
(1/r) tanh(ra’) (3.22) 0 -r/3 0 2r*/15
(1/r)In(1 + ra") (4.4) -r/2 /3 -r3/4 /5
d/(1-rd) (4.8) r r? r rt
s 62) p 2@ 50 50
d + (1/r)In[cosh(ra’)] (6.2) r/2 0 -r3/12 0
In[14 (1/r)In(1 + ra’)] (7.10) —(r+1)/2 (2rr +3r+2)/6 —(6r° + 1172 (12r* + 257 + 3512
+12r 4 6)/24 +30r + 12)/60
In[1 4 (1/r) sinh(ra’)] (7.17) -1/2 (r* +2)/6 —(2r* +3)/12 (r* 4 20r% 4 24)/120
In[1 + (1/r) tanh(ra’)] (7.21) -1/2 (1-1r2)/3 (42 =3)/12 (P =1)(2 =3)/15
exp[(1/r)(e = 1)] =1 (8.8) (r+1)/2 (rP+3r+1)/6 (PP +7r2 4+ 6r+1)/24 (r* +15r° + 2512
+10r +1)/120
exp[(1/r) sinh(ra’)] — 1 (8.14) 1/2 (rr+1)/6 (4r* +1)/24 (r* +10r2 +1)/120
3 5 7
r>—$ and r>—m. (5.7) kl:; k3_—%, kS:i_S’ k7:—21;—;0,
(6.3)

These restrictions are easily met, for example, by requiring
that r be nonnegative. Moreover, the interval in the
couplings @ where one could use perturbative calculations
reliably only extends up to values a~ O(1), and since
a = a/(4r), this interval only extends up to a ~ 0(0.1), so
for moderate p, the lower bounds (5.7) evaluate to
r 2 —0(10). This lower bound can easily be satisfied even
with moderate negative values of r. With the restrictions
(5.7) satisfied, the scheme transformation (5.2) satisfies the
conditions C,-Cy4. If r >0, then since k, > 0 (where
Smin = 1 here) it follows from our general result (3.12)
above that a > a' for small a, d'. If r is negative (in the
range allowed by above restrictions) then k; < 0, so a < d’
for small a, .

VI. TRANSFORMATION WITH
A TRANSCENDENTAL J(y)

For an application of our integral formalism using a
Jacobian that is a transcendental function, we choose

J(y) = 1 + tanh(ry). (6.1)
Then, doing the integral in Eq. (4.1), we obtain
1
a = F(d') = d + —In[cosh(ra’)]. (6.2)
r

The resultant series expansion for f(a') = F(a')/a’ has the
form of Eq. (3.3) with k;, = 0 for s even and

etc. for higher values of s. For comparative purposes, we
list these k, for s up to 4 in Table L.

The Jacobian of this transformation, expressed as a
function of «', is given by Eq. (6.1) with y = a’. The
inverse of the scheme transformation has a simple form for
certain values of r. For example, for r = 1, the inverse is

a = %ln(Ze“ -1). (6.4)
Using Eq. (6.4), one can also express J as a function of a
for this r = 1 case, obtaining J =2 — e™“.

The allowed range of the parameter r is determined
by the requirement that the scheme transformation
must satisfy the conditions C;-Cy4. If r > 0, then, since
ky >0 (where sy, = 1 here), it follows that a > a’ for
small a, &, while if r <0, then k; <0, so a <d' for
small a, a'.

VII. SCHEME TRANSFORMATIONS FOR
WHICH J(y) = (d/dy) In h(y)

A. General

In order for the general integral formalism that we
have presented above to be optimally useful, it is
necessary that one should be able to do the integral
(4.1) in closed form. It is therefore helpful to consider a
class of Jacobian functions for which one is guaranteed to
be able to calculate the integral (4.1). Clearly, if J(y) is
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the derivative of another function, then one can always
perform this integral. In this section we present one such
class of Jacobian functions. These are functions that can
be expressed as logarithmic derivatives (LDs) of smooth
functions denoted h(y):

n(y)
h(y)’

where /'(y) = dh(y)/dy. To obtain acceptable scheme
transformation functions, we require that i(y) is positive
for physical (nonnegative) values of the argument y and
that

J(y) —diylnh(y) =

(7.1)

h(0) = ' (0). (7.2)
The equality (7.2) guarantees that the present construc-
tion satisfies the condition (4.2) that J(0) =1 and, as
will be shown below, that it also satisfies the condition
(3.2) that £(0) = 1. With J(y) as specified in Eq. (7.1),
we can perform the integral (4.1) immediately, obtaining
the transformation function

a=F(d)= Aa’ }llz/((;)) dy =1In [}}ll((c(l)/))} (7.3)

This shows why we required that h(y) be positive for
physical values of y, since otherwise /(0) and/or h(a’)
might vanish, rendering the logarithm singular. Since
only the ratio h(a’)/h(0) enters in F(a'), it follows that
F(a') is invariant under a rescaling of A(y).
Consequently, we can, without loss of generality, rescale
h(y) so that h(0) = 1, and we shall do this. Combining
this with Eq. (7.2), we have

(7.4)
and combining Eq. (7.4) with Eq. (7.3), we obtain

F(a") = 1In[h(d")]. (7.5)
Of course, for the J functions that we present in this
section and the next, one could simply start with the
resultant F(a’), but these examples are useful as addi-
tional illustrations of the integral formalism for which,
furthermore, one can calculate the inverse transformations
(7.8) as explicit closed-form expressions.

To prove that this construction satisfies the condition
f(0) =1, we use the definition (3.1) together with the
analyticity of h(a’) at @’ = 0. We write out the Taylor series
expansion for i(a’) at the origin and use the property (7.2)
that we have imposed:

h(d)=1+d +%h”(0)(a’)2 + - (7.6)
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where here and below, the dots - -
of a'. Therefore,

- denote higher powers

£(0) = tim £

d—0 d

.1 1
= lim |1 WO

~ 1. (7.7)

Secondly, as noted above, this construction satisfies the
condition J(0) = 1. Since a = F(a’) by Eq. (3.1), Eq. (7.5)
is equivalent to e? = h(a’), so the inverse transformation is
given formally as

a =h7'(e), (7.8)
where A~! denotes the inverse of the function 4. We have

found several cases where this inverse can be calculated
explicitly. We present some of these next.

B. LD function 1

Here we present our first function 4 to be used in
Eq. (7.1) and (7.3) to generate a new scheme transforma-
tion. This is

1
h(y)=1 —&-;ln(l + ry). (7.9)
Hence, /'(y) = 1/(1 4 ry). By construction, this satisfies
the condition that both A(y) and /’(y) are positive functions

for physical (i.e., nonnegative) y and the condition that
h(0) = #'(0) = 1. From (7.3), we have

a:F(a’)zln{1+;ln(1+ra’)} (7.10)

We remark that for the families of scheme transforma-
tions studied so far in [3-6] that are dependent on an
auxiliary parameter r, such as a = (1/r) sinh(ra’) and the
transformations studied in [7] such as a=(1/r)In(1+ ra’)
and a =d' /(1 —rd'), setting r =0 yields the identity
transformation a = F(a') = a’. However, this is not the
case for the transformation of Eq. (7.10). Instead, setting
r =0 in (7.10) yields the scheme transformation [37]

r=0=a=F(d)=In(l+d). (7.11)
This property also holds for the transformations (7.17) and
(7.21) discussed below. As is necessary, Eq. (7.11) obeys
the requirement (3.2) that f(0) =1, i.e., that the trans-
formation becomes an identity a = @’ in the free-field
limit a — 0.

The resultant series expansion for f(a') = F(a')/a’ has
the form of Eq. (3.3) with the k coefficients displayed in
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Table I. In the special case r = 0, the coefficients k, are
given by the Taylor series expansion of (1/a’)In(1 + a’)
around ¢ = 0, namely

(="

r=0=k, = .
s+ 1

(7.12)

This is also true of the coefficients k, for the functions
discussed in the next two subsections, VII C and VIID.
The inverse transformation is

o = % lexp[r(e® — 1)] — 1]. (7.13)

For the Jacobian, expressed in terms of @’ and a, we
calculate

1
(14 rd)[1 +1In(1 + rd)]
= exp[—a — r(e? = 1)]. (7.14)
The parameter r is restricted to the range
1

in order to avoid singularities in A(y) and F(a') and is
further restricted by the requirement that this scheme
transformation must satisfy the conditions C;-C4. These
conditions can be satisfied for small positive r. With r
positive (indeed with r > —1), k; <0 (where sy, = 1
here), so our general result (3.12) implies that a < a’ for
small a, d'.

C. LD function 2

As an input for the construction of our next new scheme
transformation, we use

1
h(y) = 1+ —sinh(ry). (7.16)
r
Thus, A'(y) = cosh(ry). Without loss of generality, the
parameter r can be taken to be nonnegative, and we shall do
this. Evidently, this function h(y) satisfies the condition
(7.4). From the general result (7.3), we obtain

a=F(d) = [1 + %sinh(ra/)} . (117

The resultant series expansion for f(a’) = F(a')/a’ has
the form of Eq. (3.3), and we list the first few coefficients k;
in Table I. The invariance of the transformation F(a’) in
Eq. (7.17) under the reversal in sign of the auxiliary
parameter r is reflected in the property that the &, involve
only even powers of r. Here sy, =1 and k; <0, so
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by our general result (3.12), it follows that a < a’ for
small a, a’.
The inverse transformation is

1

a’:—ln[r(e“—l)—f— 1—|—[r(e“—1)]2] (7.18)
r
For the Jacobian we calculate
h /
5 cosh(ra’) (7.19)

I+ Lsinh(ra’)’
This transformation satisfies all of the conditions C;-Cj.

D. LD function 3

Here we discuss a third function 4 for use in Eq. (7.1)
and (7.3), namely

h(y) = 1+ %tanh(ry). (7.20)

Thus, #'(y) = 1/ cosh?(ry). This satisfies the condition
(7.4). As with the previous %(y) function in Eq. (7.16), we
can, without loss of generality, take the parameter r to be

nonnegative, and we shall do this. From the general result
(7.3), we obtain

a=F(d)=In {1 —l—;tanh(ra’)} (7.21)

The resultant series expansion for f(a’) = F(a’)/a’ has the
form of Eq. (3.3) with the first few k, coefficients listed in
Table L. Since s,,;, = | and k; < 0, we infer that a < a’ for
small a, a'.

The inverse transformation is

1, {l—l—r(e“—l)}

=—In|l—= 7.22
“ 2rn1—r(e"—1) ( )

The Jacobian, expressed as a function of @’ and of a, is

1
" cosh®(ra’)[1 + Ltanh(rd’)]
=e [l +r(e? =11 =r(e?=1)].

J(d)
(7.23)

Although the transformation in Eq. (7.21) and the Jacobian
in Eq. (7.23) are nonsingular for any r, the inverse trans-
formation (7.22) does contain a singularity which restricts
the range of r. Recalling that, without loss of generality, r
has been taken to be nonnegative, this singularity occurs at
r = 1/(e” — 1). Hence, we restrict r to be substantially less
than 1/(e” — 1) to avoid this singularity in the inverse
transformation.
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VIII. SCHEME TRANSFORMATIONS FOR
WHICH J(y) = (d/dy)e?")

A. General

Here we present another class of J(y) functions that can
be used in conjunction with our integral formalism to
construct scheme transformations. As was true of the
functions in Sec. VII, these function have the form of
total derivatives, which guarantees that one can do the
integral (4.1). We begin with an analytic function ¢(y) that
satisfies the conditions

$O)=0,  H0)=1. (8.1)
We then set J(y) equal to the derivative of the exponential
of this function:

d
J(y) = =€) = ¢/ (y)e?t). (8.2)
dy
Substituting this into the integral (4.1), we obtain
a=F(a) = et — ¢h0) = #ld) _ 1, (8.3)

This yields J(a') = dF(a')/da’ = ¢'(a’)e?“) so that,
taking into account the property (8.1), it follows that
J(0) = 1. Furthermore, this construction guarantees
that the condition f(0) =1 in Eq. (3.2) is satisfied. To
prove this, we use the defining relation a = d'f(d') =
F(d') in Eq. (3.1) to obtain

(8.4)

Expanding the numerator in a Taylor series around a’ = 0,
we get

Fla) = al 90 1 1 ¢(0)d’ + O((d')?)]
— 1+ 0(d), (8.5)

from which it follows that f(0) = 1. The inverse is,
formally,

a = ¢ n(a+1)], (8.6)

where here ¢p~! denotes the function that is the inverse of ¢.

B. ¢ function 1

In order to show how Egs. (8.2) and (8.3) can be used to
construct new scheme transformations, we first take

b)) = (e - 1),

; (8.7)
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For convenience, we may restrict  to be nonnegative.
This function satisfies the condition (8.1). Substituting the
resultant J(y) = e"™ exp[(1/r)(e”™ — 1)] into Eq. (4.1), we
obtain the scheme transformation

; (8.8)

1 ,
a=F(d)=exp [—(e’“ - 1)} - 1.
The resultant series expansion for f(a’) = F(a’)/a’ has the
form of Eq. (3.3) with the first few k, coefficients listed in
Table 1. Note that in the limit as r — 0, the scheme
transformation (8.8) becomes

r=0=a=F(d)=e" -1, (89)
Hence, in this limit the coefficients are given by
1
r:O:kS:—'. (8.10)
s!

These results also hold for the transformation (8.14) to be
discussed below.
The inverse transformation is

a’z%ln[l—%rln(a—l—l)]. (8.11)

Using this, we may express the Jacobian in terms of a:

! 1 !
J =e"" exp [ (e"" — 1)}
r

=(a+ 1)1 +rin(a+1)]. (8.12)

This transformation satisfies conditions C;-C,.

C. ¢ function 2
As a second application of Egs. (8.2) and (8.3), we use

1.
P(y) = ;smh(ry). (8.13)
Without loss of generality, we take the auxiliary parameter
r to be nonnegative. This function satisfies the condition
(8.1). Substituting the resultant J(y) = (d/dy)e(1/7)sinh(ry)
into Eq. (4.1), we obtain the scheme transformation

a = F(d) = exp E sinh(ra’)] S (8.14)

The resultant series expansion for f(a’) = F(a')/d’ has the
form of Eq. (3.3) with the k, coefficients listed in Table I.
Because k, > 0 (with s.,;, = 1 here), our general result
(3.12) implies that a > o’ for small a, d'.
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The inverse transformation is

a = %ln[rln(a +1)+ \/1 + [rin(a + 1)]2] (8.15)

The Jacobian is

J = cosh(ra’) exp E sinh(ra’)} . (8.16)

This transformation satisfies conditions C;-C,.

IX. COMPARATIVE ANALYSIS

In earlier work [3—7], a number of scheme transforma-
tions have been applied to ascertain the degree of scheme
dependence of the value ayg ,,» of the IR zero, calculated up
to four-loop order, of the beta function in an SU(N) gauge
theory with various fermion contents. Comparisons have
been made between results calculated in different schemes
such as MS, MOM, and RI' [26-28]. Scheme transforma-
tions have also been applied to study the possibility of a UV
zero in the beta function of a U(1) gauge theory with N

(charged) fermions and in a globally invariant O(N) A|c?7|4
theory up to the five-loop level [31,32].

With the new scheme transformations generated by our
integral formalism, we now have a reasonably large set of
such transformations to use to study scheme dependence of
the zero of a beta function away from the origin in coupling-
constant space. In this section we include some remarks
concerning the analytic structure of these transformations
that are relevant to this application. First, in the perturbative
regime of small to moderate values of « and hence also o
[which correspond to even smaller values of a = a/(4x) and
a = d /(4r)], the effect of the scheme transformation is
largely determined by the values of the first few coefficients
k, in the Taylor series expansion of the transformation
function f(a’) in Eq. (3.3) or equivalently, F(a’) in
Eq. (3.4) for the first few values of s. Clearly, the same is
true of the inverse scheme transformation, as is evident from
the Taylor series (3.5) for this inverse, together with the
coefficients p, determined via series reversion from the
coefficients k. Therefore, in this regime of moderately small
couplings a and o/, one can get a reasonably good determi-
nation of the shift in the value of ayg ,,» by examining the first
few k, coefficients. We have listed these for comparative
purposes in Table I. The first four lines of this table describe
scheme transformations from [3-7], while the next seven
lines describe new scheme transformations presented and
analyzed in the present paper.

Indeed, for small a and hence also small d’, the question
of whether a given scheme transformation increases or
decreases the coupling is determined, using our general
result (3.12), by the sign of the lowest nonzero coefficient,
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k., in the Taylor series expansion (3.3) or equivalently,
(3.4), using our general result. One can conveniently read
this from our Table I for the new scheme transformations
that we have presented in this paper.

Hence, by combining the numerical analyses in [3-7]
with the analytic results for the first few k; coefficients in
Table I, we can infer the effects of our new scheme
transformations. In particular, we may again infer that in
an asymptotically free non-Abelian gauge theory with a
two-loop IR zero at a value ayg », that is not too large, and
for moderate values of the auxiliary parameter r, the
scheme dependence inherent in the calculation of ag ,,
at n = 3 and n = 4 loops is moderately small.

X. CONCLUSIONS

In this paper we have presented an integral formalism for
constructing scheme transformations. We have used this
formalism to generate several new scheme transformations
that are acceptable for the analysis of a zero of the beta
function away from the origin in coupling-constant space.
By performing Taylor-series expansions of these scheme
transformations, we have formulated an analytic approach to
their effect on the coupling. These results bolster previous
numerical studies to show that in an asymptotically free
gauge theory with a two-loop value of the IR zero of the beta
function, apg,., that is not too large, the scheme trans-
formations presented here (with moderate values of the
auxiliary parameter r) produce only relatively mild shifts in
higher-loop values g ,,¢.
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APPENDIX: A RESULT FROM CALCULUS

We use the following result from multivariable calculus.
Consider the integral

Fx) = / ’(x()) O (x, y)dy. (A1)
Then,
A~ D0 gy (0)) - P ()
»2(6) OP(x, y)
+/y1(x) “ox dy. (A2)

In particular, if ®(x,y) does not depend on x, which we
indicate by setting ®(x,y) = J(y) (which may depend on
auxiliary parameters such as r), and if y,(x) =x and
y1(x) = const., then Eq. (A2) reduces to dF/dx = J(x).
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