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Triple point in the O(2) ghost model with higher-order gradient term
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The phase structure and the infrared behavior of the Euclidean three-dimensional O(2) symmetric ghost
scalar field ¢ has been investigated in Wegner and Houghton’s renormalization group framework, including
higher derivatives in the kinetic term. It is pointed out that higher-derivative coupling provides three phases
and leads to a triple point in that RG scheme. The types of the phase transitions have also been identified.
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I. INTRODUCTION

It is well known that the existence of the triple point, the
point of coexistence of three phases, is very common in
condensed matter physics, generally realized as the coex-
istence of the gaseous, liquid, and solid phases of the same
material, but also occurring in magnetic materials with
more than one solid phase in equilibrium [1,2], as well as in
“He as the equilibrium of two solid phases and a liquid, or
that of the superfluid, normal fluid, and solid phases [3].
Now we shall show that in a particular approximation of the
functional renormalization group approach, one finds that
the three-dimensional Euclidean O(2) symmetric ghost
scalar model with wave function renormalization Z = —1
and the higher-derivative term Y¢[1?¢ exhibits a triple
point where the symmetric phase, the symmetry-broken
phase, and the phase with restored symmetry coexist in
equilibrium. In general, field theory models with higher-
derivative terms of alternating signs have rather rich
phase structure corresponding to various periodic structures
[4-7]. The existence of the triple point in ordinary O(2)
symmetric models with appropriate higher-derivative terms
has also been shown in Ref. [8].

The phase structure of the ghost O(2) model has been
analyzed by us in the framework of Wegner and
Houghton’s (WH) renormalization group (RG) method
[9] with the sharp gliding momentum cutoff k. Using
WH RG framework, one is restricted to the local potential
approximation (LPA), the lowest order of the gradient
expansion. In the LPA, the wave function renormalization
Z and couplings of the higher-derivative terms do not
acquire any RG flow. Since the wave function renormal-
ization Z is dimensionless, it can be kept constant unam-
biguously like Z = +1 for ordinary models and Z = —1 for
ghost models. There occurs, however, an ambiguity when
the couplings of higher-derivative terms are accounted for
which have nonvanishing momentum dimensions. It cor-
responds to different approximations or RG schemes to
keep either the dimensionful or the dimensionless higher-
derivative couplings constant. In our previous paper [10],
we argued for keeping the dimensionful coupling Y
constant and showed that the model exhibits two phases:
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besides the trivial symmetric phase, there occurs a phase
with restored symmetry characterized by a quasi-universal
dimensionful effective potential. The existence of the latter
is related with the occurrence of the ghost condensate at
intermediate scales k. Now we shall take another point of
view and keep the dimensionless coupling Y = Yk=2
constant during the WH RG flow. In this approximation,
it shall be shown that the model has three phases and
exhibits the possibility of the coexistence of all three phases
in equilibrium.

One may wonder where the increased number of the
phases comes from. We believe that it is related to Gibbs’s
phase rule f=n,—N,, for one-component thermody-
namical systems, where n, is the number of parameters
characterizing the thermodynamical state, and f is the
number of degrees of freedom when the number N,
phases are present in the system. In order to apply Gibbs’s
phase rule, one has to consider our model in the deep IR
region. In both RG schemes, the RG flow turns out to be
qualitatively independent of the internal degrees of freedom
N = 2 in our case. This happens because the WH RG flow
equations for the couplings have the same form for, say,
N =1 and N = 2, except that a few numerical constants
are modified and because the tree-level RG flow (if it
occurs) is independent of N. This indicates that our model
can be considered as describing a one-component thermo-
dynamical system. The number of independent dimension-
less parameters included in the model is M + 1: that is the
number M of couplings included in the potential when it is
truncated at the power ¢** and the higher-derivative
coupling Y. In the RG scheme used in Ref. [10], the
dimensionful coupling Y has been kept constant during the
RG flow, so that in the IR limit, the dimensionless
parameter ¥ = Yk? vanishes in a manner prescribed by
the natural dimension of Y, leaving essentially the number
n, = M parameters free for the determination of the IR
flow. As opposed to this, we have one more dimensionless
parameter characterizing the IR system, ie., n, =M + 1,

when Y is kept constant like in the RG scheme used in
the present paper. Moreover, numerics shows that only the
couplings of the first two lowest-order terms of the
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potential influence the phase diagram qualitatively, while
the inclusion of the higher-order terms causes only quanti-
tative changes. This means that only M ; = 2 parameters
of the potential are effective for the thermodynamic
behavior of the model investigated by us, so that the
number of thermodynamically interesting parameters is
Negf = Moy =2 and ngp = Mo+ 1 =3 for the RG
schemes with ¥ = const. and Y = const., respectively.
Now Gibbs’s phase rule tells us that the possible number
of degrees of freedom can be f = ny— N,,. For a
nonvariant system with vanishing degrees of freedom
(f = 0), we get that the number of coexistent phases can
be N,, =2 and N,, =3 for the RG schemes with ¥ =

const. and ¥ = const., respectively. The arguments given
above are also an indication that the RG scheme used in the
present paper may yield a more reliable description of the
phase structure, because the higher-derivative coupling Y is
not turned off in the IR regime automatically.

II. WEGNER-HOUGHTON RENORMALIZATION
GROUP FOR THE GHOST 0(2) MODEL

In this paper, we study the three-dimensional, Euclidean,
O(2) symmetric model for the real two-component ghost
scalar field ¢ = (g ) using the ansatz

Sl =5 [ o0+ [ @) (1)

for the blocked action in LPA, where U (¢”¢) stands for
the blocked potential assumed to be of the polynomial form
(a Taylor expansion truncated at the order ¢*)

U =328 @)

with r = %QTQ and
Q(=00) = —z00 + YTP, (3)

with the wave function renormalization Z = —1 and the
higher-derivative coupling Y > 0. The phase structure of
the model has been analyzed in the framework of the WH
RG method with the sharp gliding momentum cutoff k. In
the LPA, the wave function renormalization Z and the
higher-derivative coupling Y do not acquire RG flow. The
WH RG equation for the local potential is given as [10]

kO U (r) = —ak®[In s, (k) + Ins_(k)], (4)

where
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s;(k) = Q(k?) + U} (r) + 2rUi(r),
s_(k) = Q(K*) + Uy (r), (5)

with U, (r) = 0,U(r), U" = 0*U,(r), and a = 1/(4x?).
Here r corresponds now to a constant background field ®
with ® = v/2r > 0 pointing in an arbitrary direction e in
the internal space. That background field is the tool to find
out the form of the potential.

In general, the WH RG equation may lose its validity.
This happens when at least one of the arguments of the
logarithms on the right-hand side of Eq. (4) ceases to be
positive at some nonvanishing scale k.. For scales k < k..,
the resummation of the loop expansion by means of the
WH equation is no longer possible. The IR behavior
can then be revealed by means of the tree-level renorm-
alization (TLR) procedure [11] [see also its application to
the O(2) model in our previous paper [10]]. While in the
case of the one-component (N = 1) real scalar field, the
vanishing of s, (k) governs the singularity; in cases with
N > 2, the vanishing of s_(k) does it. The critical scale .
is given by s_(k.)|g_o = O, implying Z + ¥ + 7, (k.) = 0,
just like in the case N = 1. (Throughout this paper, the
dimensionless quantities shall be denoted by tilde, so that
¢ =k"¢p, v,=k"%, U,=kU, and Y =k?2Y)
The spinodal instability at the singularity scale k. reveals
itself in building up an inhomogeneous field configuration
w on the homogeneous background. The essence of

TLR is to decrease the scale k by a step Ak < k and
to find out the inhomogeneous configuration y that
minimizes the FEuclidean action at the given scale
k < k., that determines the blocked action at the lower

scale k — Ak via
Sk-arle®] = min,, S;[e® + y]. (6)

We shall restrict the function space of spinodal instabilities
to those of stationary waves y pointing in the direction e of
the homogeneous background field in the internal space
and describing sinusoidal periodicity in a given direction n
of the external space—i.e., to the form

(]

v = e2psin(kn,x, + 6) (7)

with the phase shift 8. Making use of the ansatz (7),
the TLR blocking relation (6) reduces to the recursion
relation

Ur-sa(®) = min(U(8) + (2 + D)7
p

2n

Y Laou)) ®)

n=1
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The ansatz (7) reduces the TLR of the O(2) model to
that of the O(1) model with the same wave function
renormalization Z and higher-derivative coupling Y.
Let p;(®) be the amplitude minimizing the expression
on the right-hand side of the recursion relation (7).
Clearly, a nonvanishing value of p;(®) breaks O(2)
symmetry in internal space, as well as O(3) and transla-
tional symmetries in the three-dimensional external space.
For local potentials of the form (2) and for scales k < k.,
the interval 0 < ® < @, (k) [with B (k) = Vk®.(k)], in
which the instability occurs, is determined via the relation
s_(k) =0 as

B (k) = \/ Az s 1(K)] 9)

Our numerical procedure for the determination of the RG
trajectories is just the same as in our paper [10]. The WH
RG equations are rewritten as a coupled set of ordinary
differential equations for the dimensionless couplings v, of

the local potential U,(®) and those solved with the
truncation M = 10 with the fourth-order Runge-Kutta
method for scales k. < k < A. It may happen that it holds
the inequality s_(A) < 0 at the ultraviolet (UV) cutoff scale
A already. Therefore, we define the singularity scale as
ky = k. for the cases with s_(A) > 0, and as k, = A for
cases with s_(A) < 0. If there is a singularity, then TLR is
applied for scales k < k, in order to determine the RG flow
in the IR regime by means of the recursion relation (8)
rewritten in terms of the dimensionless quantities. The scale
k has then been decreased from the scale k, by at least 2
orders of magnitude with the step size Ak/k = 0.005 and
the truncation M = 10. The numerical precision was set to
80 digits. Generally, ~1000 iteration steps have been
numerically performed at each value of the constant
background @ for the minimization of the blocked potential
Ui(p, @) with respect to the amplitude p of the spinodal
instability. The minimization with respect to p on the right-
hand side of Eq. (8) and the determination of the couplings
at the lower scale k — Ak with least-square fit are performed
in the interval 0 < ® < ® of the background fields, which
has been chosen in a similar manner as described in
Ref. [10]. Namely, for “Mexican hat’—like potential
U, (®), the choice ® ~1.5®,, has been made, where
+®,, are the positions of the local minima of the potential
with ®, = \/=2v,(k,)/3v,(k,). For convex potentials
U, (®) the choice ® > 30 has been made. It has been
observed numerically that the blocked potential does not
acquire tree-level corrections outside of the interval
0<® <P, with &, given by Eq. (9), but the choice of
the larger interval makes the minimization and fitting
numerically stable.
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I11. PHASE STRUCTURE AND IR SCALING LAWS
A. Phase diagram

The phase structure has been investigated for RG
trajectories started in the hypercube [—1,+1] ® [0, 10] ®

[0,2] in the three-dimensional parameter space (71, 05, Y).
Various slices of the phase diagram are shown in Fig. 1. The
identification of the phases is based on the concept of the
so-called sensitivity matrix [12,13]. The matrix S, ,, is built
up by the derivatives of the running coupling constants with
respect to the bare ones:

_ 0g,(k)
9gn(A)”

We can find different phases when a singularity takes place
in the IR (k - 0) and the UV (A — oo) limits of the
elements of the sensitivity matrix. According to this type of
identification, we can find different phases in the model for
which the effective potential depends on different sets of
bare couplings. Using this technique, we find that there
exist three phases and a triple point in all slices at constant
¥,. It shall be shown that there is a symmetric phase
(phase 1), a phase with restored symmetry (phase II), and a
phase with spontaneously broken symmetry (phase III).
Some remarks should be made with respect to the phase

Sn,m

(10)

FIG. 1. Various planar slices of the phase diagram of the ghost
O(2) model with a few typical RG trajectories in the parameter
space (7, 7, ¥): the slice (7, 7,) for ¥ = 0.7 (at the top to the
left), the slice (7, 7,) for ¥ = 1.5 (at the top to the right) with the
fixed points (dots), the slice (7, Y) for 7, > 0 (at the bottom to
the left), and the slice (7;,Y) for 7, = 0 (at the bottom to the
right). The phase boundaries II-1, III-I, and III-II are depicted by
thick dash-dotted, thick full, and dashed lines, respectively. The
dotted line represents a section of the straight line #; = 1 — Y,
which is the IR fixed line in the slice with v, = 0; the full square
stands for the triple point. The dotted circles represent RG
trajectories running perpendicularly to the 7, = const planes.
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diagram. In our WH RG approach, all RG trajectories lie in
one of the ¥ = const. planes. The RG trajectories belong-
ing to phase II arrive perpendicularly to the plane v, = 0,
where they make a turn with 90° and run away to
positive infinity parallel to the v, axis. This happens
because the dimensionful coupling v, takes a nonvanishing
constant value in the IR limit kX — 0. Therefore, the phase
boundary II-I is the two-dimensional surface (v, = 1 — Y,
172>0,0<f/< 1)U(1—)?<171 51,172:0,0<f/< 1).
The Gaussian and Wilson-Fisher fixed points shown in the
top-right subfigure in Fig. 1 belong to phase I and stand for
fixed lines with any values of ¥ € [0,2], but the IR fixed
point (line) belongs to phase III and occurs only for
Y € [1,2]. The positions of the fixed points are given in
Table I. One can see in the top-right subfigure in Fig. 1 that
both the Gaussian and Wilson-Fisher fixed points lie on the
phase boundary III-I and act for the RG trajectories as
crossover points. The flow of the RG trajectories in phase I
is qualitatively the same, independently of the value of Y in
the interval 0 < Y < 2. In the slice (01, 0,) for 1 < Y <2,
the trajectories in phase III run into the IR fixed point (line),
but their evaluation becomes numerically unstable in the
close neighborhood of the fixed point. The phase boundary
II-II lies in the plane ¥ = 1. Finally, in slices (7;,Y) for
any constant 7, (subfigures at the bottom in Fig. 1), one can
see all three phases and the triple point. In the three-
dimensional parameter space there is a triple line, the line of
intersection of the phase boundaries III-II and III-I. The
detailed study of the IR scaling laws enables one to identify
the symmetry properties of the various phases. This is given
in the following subsections.

B. Phase I

Phase I is the symmetric phase of the model. Trajectories
belonging to phase I are those along which the WH RG
equation (4) does not acquire any singularity. The RG flows
of the individual dimensionful couplings are qualitatively
the same in phase I, regardless of the value of Y. They
increase strictly monotonically with decreasing scale & in a
rather short UV scaling region ~0.3 < k < A = 1, and then
tend asymptotically to certain constant values v, (0) in the
IR regime. Therefore, the dimensionful effective potential
is convex, but very much sensitive to the bare potential. The
IR limiting values of the dimensionful couplings v;(0) and
v,(0) have been compared on RG trajectories started at

TABLE L. The positions of the fixed points for given values of
the higher-derivative coupling Y.

Fixed point 7 Uy
Gaussian 0 0
Wilson-Fisher % (1 —~Y) % (1- Y)Z
IR 1-Y 0
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various given “distances” t = ¥;(A) — ¥, from the phase
boundary 7, (I-ll for 0 < ¥ < 1 and -1l for I < ¥ < 2) for

given values of v,(A) = 0.01, 0.1 and several values of Y.
The linear relation

v1(0) = at + b(Y) (11)

has been established where the slope a =14 .001 is

independent of ¥, whereas the mass squared at the phase
boundary (¢ — 0),

b(Y) = (1-Y)b(0)O(1 - 7), (12)

decreases approximately linearly to zero at ¥ = 1 with the
increasing higher-derivative coupling Y (see Fig. 2) and
vanishes for ¥ > 1.

For k — 0, the coupling v,(k) increases by a great
amount with respect to its bare value v, (A) near the phase
boundary I-II for t — 0 and 0 < Y < 1, but it accommo-
dates very little loop corrections near the boundary I-1II for
t—-0and1 <Y < 2. In the latter case, the behavior of the
coupling v, (k) is similar to its behavior in the symmetric
phase of the ordinary O(2) model near the boundary with
the symmetry-broken phase. Far enough from the phase
boundary v,—i.e., at larger values of +—the loop correc-
tions are suppressed by the large mass squared v;(0),
and the coupling v,(k), as well as all higher-order cou-
plings v,.,(k), keep essentially their bare values. For
t — 0, the IR value v,(0) shows a significant dependence
on the higher-derivative coupling ¥; it has a minimum at
Y =1 with v,(0) = 0 (Fig. 2).

C. Phase 11

Phase II occurs for 0 < ¥ < 1. As we shall argue below,
phase II is a phase with restored symmetry in the IR limit;
i.e., a periodic structure occurs below the singularity scale
k, which breaks O(2) symmetry, but it is washed out in the
limit k — 0. In this phase k; = A, so that the RG flow has
to be followed up by the TLR procedure started at the UV
scale A. It was found that the couplings of the dimensionful
blocked potential tend to constant values in the IR limit.

b v,(0)
T 01 I
4 005 * .
a o (] it
0 ; Y 0 | Y

FIG. 2. The parameters b in Eq. (11) (to the left) and »,(0) (to

the right) vs the higher-derivative coupling Y at the “distance”
t=179,(A) -7, =0.001 from the boundary of phase I.
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000 8
< -0.05 Ok
{y ~0.10 & ‘2‘
~0.15 . b
K A kK’ A
k k

FIG. 3. The flow of the inverse propagator G~'(k) and that
of the amplitude of the spinodal instability p, at vanishing
homogeneous background field ® = 0 along the RG trajectory
with ¥ = 0.7, 7;(A) = =0.1, #,(A) = 0.01, and the step size
Ak/k=5x107.

The typical behavior of the inverse propagator G~! =

(=1 +Y)k* + v, (k) and that of the amplitude of the
spinodal instability p,(0) for a vanishing homogeneous
background field ® = 0 are shown in Fig. 3. It can be seen
that just below the scale k, = A, the inverse propagator is
negative; its magnitude as well as the amplitude p;(0)
decrease till the gliding cutoff k reaches some nonvanishing
scale k' < k,. It was found that p;(0) decreases linearly
with the scale k in the interval ¥ < k < A. At the scale £/,
the propagator vanishes and the amplitude of the spinodal
instability jumps to zero suddenly. This means that below
the scale &/, no tree-level renormalization occurs anymore.
The flow of the amplitude p; of the spinodal instability is
qualitatively just the same as we have found it previously in
our paper [10] in phase II. Namely, the periodic configu-
ration is developed below the scale kg, but it is washed out
at some nonvanishing scale k'.

Moreover, it has been observed that for any given value
of the higher-derivative coupling Y, the effective potential
is quasi-universal in the sense that it does not depend on at
which point [v;(A), v,(A)] the RG trajectories have been
started. Therefore, we have determined the mean values

v,(0) and v,(0) of the couplings v, (0) and v,(0) with their
variances via averaging them over all evaluated RG
trajectories belonging to a given value of the coupling Y.
Table II shows that the dimensionful mass squared

decreases with increasing values of Y linearly as

TABLEIL. Mean IR values of the dimensionful couplings of the
quadratic and quartic terms of the effective potential with their
errors in phase II for various values of the higher-derivative
coupling Y.

Y (1 (O) + Avl(O) 1}2(0) + sz(O)
.0 92 £.03 —.016 £ .036
3 .69 + .01 —-.010+£.016
5 .50+ .01 —.007 £ .016
i .25+ .05 .002 £ .050
1.0 .025 £+ .007 —-.016 £.018
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11(0)(Y) = [v1(0)]5_(1 - ¥) (13)

(cf. Fig. 4), while the coupling of the quartic term vanishes.
Similarly, all the higher-order couplings #,-,(0) vanish.
One should recall that the theory in the limit ¥ — 0 is not
bounded energetically from below.

It might happen that the loop corrections would become
significant for scales k < k' again. Therefore, we use the
values of the couplings 7,,(k") (1 < n < 10) obtained by the
TLR procedure as initial conditions for solving the WH RG
equation for k < k’. It has been established that the loop
corrections cause less than a 0.1% change in the value of
vy (k") and ~30% change in v,(k’) on any particular RG
trajectory. Since we have argued above that the nonvanish-
ing values of v,(k') for n>2 are due to numerical
inaccuracies, we have to conclude that our TLR result
obtained at the scale k' is stable against further loop
corrections in the region 0 < k < k',

D. Phase 111

Phase III occurs for ¥ > 1 and consists of two regions in
the parameter plane (7, 7,) specified by the singularity
scale k, = A in the region with —1 <7, < —1+Y and
k, = k. < A for =1 +Y < ¥, < b, where 7, is the phase
boundary III-I. It has been established numerically that
phase III is characterized by spontaneous breaking of O(2)
symmetry and a quasi-universal dimensionless effective
potential

Upo(®) = —%(—1 +7)9%, (14)
providing the Maxwell cut-like universal dimensionful
effective potential [see Fig. 5 and the numerical value of
71(0) in Table III, which should be compared with its
theoretical value 1—Y ]. The dimensionless effective
potential (14) of the form of a down-sided parabola with
curvature 1 —Y <0 is the generalization of that with
curvature —1 obtained in the symmetry-breaking phase
of the ordinary O(2) model without higher-derivative
terms. The latter case is recovered as a limiting one for

Y =2. The presence of the higher-derivative coupling
V1

1

Y

3 7 1
FIG. 4. The dimensionful mass squared 2;(0) vs the higher-
derivative coupling Y in phase IL
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FIG. 5. The dimensionless blocked potential U, (®) (to the left)
and the amplitude p,(®P) of the spinodal instability (to the right)

vs the homogeneous background field ® for ¥ = 1.5 in phase II1.

Y > 1 results in decreasing the magnitude of the curvature.
Like in the case of the ordinary O(2) model, it has been
found that the amplitude of the spinodal instability survives
the IR limit and depends linearly on the homogeneous
background field :

Pr=o(®) = f(=P + ©.(0)). (15)

The values of the coefficient f obtained numerically for

various values of ¥ are compared in Table III. These values
do not show any dependence on the higher-derivative
coupling Y and yield the mean value = —.53 4 .01.
Based on this result and the assumption that the limits
Y — 2 were continuous, one is inclined to suggest that the
exact value is # = 1/2, but our TLR procedure has some
systematic error.

We also determined numerically the scaling of the
dimensionless couplings in the deep IR region (see
Fig. 6). There occurs a clear-cut IR scaling region in which
the couplings 7, (k) with n>2 scale down to zero accord-
ing to the power law 2,5, ~ k%, while 7 (k) — 9¢(0) ~ k%
remains essentially zero in the same region. The numerical
values of the scaling exponents a,, turn out to be universal,
as shown in Table III. This means that all the dimensionful
couplings reach their constant IR values with the power
law v, (k) — v,(0) ~ k%

E. On the phase transitions

In thermodynamics, phase transitions accompanied by a
finite jump of the free energy—i.e., the presence of a latent

TABLE III.  The IR limiting values of the first two couplings of
the dimensionless potential, the coefficient f of the amplitude in
Eq. (15), and the first few scaling exponents a,, obtained by TLR
for phase III.
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= 10712
5107 5107 5x107°
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FIG. 6. Scaling of the dimensionless couplings #; (k) (full line),
7, (k) (dashed line), and 75(k) (dotted line) for ¥ = 1.5 in the
symmetry-broken phase III.

heat—are called transitions of the first order, while those
with continuous free energy and singularities in the
derivatives of the free energy are called continuous. As
for the transition from phase III to phase I in our case, there
is a rather straightforward way to decide that the transition
III-1 is continuous. Namely, one determines the behavior of
the correlation length & ~ 1/k, approaching the boundary
of phases I and III from the side of phase III. This approach
is applicable only at the phase boundary III-I, because the
singularity scale k. can be detected by solving the WH RG
equation (4), while this scale lies above the UV cutoff A for
phase II; therefore we cannot make such calculations at the
phase boundaries II-I or II-III. The reduced temperature is
identified as t = v, — ¥;(A)—i.e., the “distance” of the
starting point of the RG trajectories from the phase
boundary v,. In order to determine the dependence of
the correlation length £ on the reduced temperature 7, we
have solved the WH RG equation (4) for various initial
conditions 7y;(A) =%, —i x 10™* (i =1,2,...,500) for
each value of #,(A) =0.01, 0.1 and ¥ = 1.2, 1.5, 2.0. It
has been established that the correlation length has a power-
law behavior

E~ 1)k, ~ 17" (16)

near the phase boundary for any fixed values of the
coupling ¥ (see Fig. 7). This signals that the phase
transition III — I is continuous, just like the transition in
the ordinary O(2) model. The critical exponent v seems to
be insensitive to the bare parameters ¥ and #,(A); its mean
value is o = .46 £ .03. The ¢* model can be considered as

15} V=15
o
& .
SET) .
— L[]
7

2% 1073 5% 1073

1.5% 1072

Y v1(0) 7,(0) a aw a0y p

13 -0281 <105 O 1 2 3 534

15 —0469 <105 0 | 23 s

18 -075 <10 0 1 2 3 521 G. 7.
2 —-0.94 <107 0 1 2 3 531

t

Scaling of the correlation length &~ 1/k. with the
reduced temperature t = v, — 1(A) (on a log-log plot) at the

boundary of phases I and III for ¥ = 1.5 and #,(A) = 0.1.
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the textbook example of the RG technique. Therefore, it is
widely investigated in various dimensions and in various
levels of truncation [14-22]. Our result is close to the
best value v = 0.63 obtained in the three-dimensional
case.

There is, however, another way to study the continuity of
the phase transition. Namely, we can determine directly the
jump of the free-energy density or latent heat per unit
volume—more precisely, the jump of the minimum of the
effective potential going from one phase to another across
the phase boundary. For that purpose, we have to determine
the IR limit of the constant term v{(0) of the effective
potential in the various phases A = I, II, III at both sides of
the phase boundary and compare them. For the comparison,
we have to consider RG trajectories on which the bare
potential has the same minimum value. Otherwise, this can
be put as the correction of the IR values vj(0) by the
minimum value of the bare potential (U4}),; i.e., by
the replacement v} (0) — (V) o = ¥4 (0) = (UL) in-
The transition from phase B to phase A is then accompanied
by the jump of the potential (Euclidean action per volume)
Ava~E = (08)core — (V3)eon- The nonvanishing or vanish-
ing value of Av{~2 signals that the transition is of the first
order or continuous, respectively. In our settings, (U4} ) i, i
nonvanishing only for RG trajectories belonging to bare
potential of double-well form (those starting close to the
phase boundaries III-I and III-II in phase III, and close to
the phase boundary II-III in phase II). For the numerical
determination of Avl~!, we have chosen RG trajectories
which start at the “distance” ¢t = 0.001 from the phase
boundary. In the case of the evaluation of Av{~!, we
considered RG trajectories with the values of w(A)
increased in steps ¢ = 0.001 crossing the phase boundary.
Finally, Av{'"" has been determined from the comparison
of RG trajectories for ¥ = 1.1 and 0.9 and various values of
71 (A). All calculations were made for ,(A) = 0.01. The
results are shown in Fig. 8. In the plot on the left, we see
that there is a jump of the free-energy density of 2 orders of
magnitude larger for 0 < Y <1 than for 1 <Y <2.
Together with our previous finding on the base of the
study of the correlation length, this enables one to conclude

A-T 5
Av 1 0(0) o 0
TS
0.1 = -10
>

-15
0.01 a7y

0.001 ) 2075 -25 1

| . . : .y 5
5 1 15 2 P1(A)

FIG. 8. The jump of the “free-energy density” Avj~% for
B=LA=1(0<Y<1),andA=1I( <Y < 2) to the left);
and for A =1III, B = II (to the right).
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that the phase transitions III — I and IT — I are continuous
and of the first order, respectively. Similarly, the plot to the
right in Fig. 8 shows that the phase transition III — II is of
the first order with a latent heat per unit volume decreasing
to zero when the triple point is approached.

IV. CONCLUSIONS

The phase structure of the three-dimensional Euclidean
O(2) symmetric ghost scalar field model has been inves-
tigated in the framework of Wegner and Houghton’s (WH)
renormalization group (RG), including the higher-
derivative term —% J.Y¢O¢ in the action and keeping

the dimensionless coupling Y constant. The RG flow with
decreasing gliding cutoff k has been determined numeri-
cally by solving the WH RG equation. When the right-hand
side of the WH equation develops a singularity at some
scale k. # 0, the flow has been followed further by means
of the tree-level renormalization (TLR) procedure. It has
been shown that the model exhibits three phases and a triple
line. The symmetric phase (phase I) is present for any
values ¥ > 0 and shows similar features to the symmetric
phase of the ordinary O(2) model. Phase Il is present, when
0 <Y < 1. The RG flow of the trajectories belonging to
phase II can only be determined by the TLR procedure on
all scales below the UV cutoff A. The dimensionful
effective potential in phase II is quasi-universal; it depends
on the value of the higher-derivative coupling Y, but it is
independent of the other bare couplings. Just below the
scale A, there occurs a periodic spinodal instability that
breaks O(2) symmetry as well as rotational and transla-
tional symmetries in the external space; however, that
intermediate symmetry breaking is washed out in the IR
limit. Phase II has no analogue in the ordinary O(2) model.
It is of the same properties found in Ref. [10], and its
existence is based upon the ghost-condensation mechanism
available in the model with Z < 0 and Y > 0. Phase III
occurs for 1 < ¥ < 2. It separates into two regions, IIIA
and IIIB, where TLR has to be used below the UV cutoff A
and the singularity scale k., respectively; however, both
regions IITA and IIIB have the same deep IR behavior. In
phase III, the dimensionful effective potential is universal;
it exhibits the Maxwell cut which is accompanied with the
nonvanishing amplitude of the periodic spinodal instability
for scales k — 0. Therefore, phase III is the one in which
spontaneous symmetry breaking occurs, just like in the
symmetry-breaking phase of the ordinary O(2) model.
The phase boundaries III-I and III-II intersect in a triple
line.

The continuity of the various phase transitions has been
studied by means of the differences of the minimum values
of the effective potentials in the various phases, and it has
been found that the phase transitions II — I and IlII — Il are
of the first order accompanied with a nonvanishing latent
heat per unit volume, whereas the transition Il — 1 is
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continuous. The latter has been also supported by the
scaling behavior of the correlation length in phase III close
to the phase boundary III-1.

In the framework of the WH RG restricted to the local
potential approximation (LPA), the phase structure of the
model turns out to be more rich when the dimensionless
higher-derivative coupling Y is kept constant during the RG
flow than in the case in which the dimensionful coupling Y
is kept constant, as we did in our previous work [10].
Therefore, it remains an open question whether the model
exhibits two or three phases. The ambiguity of keeping
constant either the dimensionful or the dimensionless
higher-derivative coupling is an essential feature of the
local potential approximation (LPA) and is unavoidable in

PHYSICAL REVIEW D 94, 065037 (2016)

the WH RG approach [12]. Our work demonstrates that
such an ambiguity may affect the physical results signifi-
cantly when higher-derivative terms are included in the
model. No similar ambiguity should occur if one goes
beyond the LPA in the gradient expansion using any RG
framework that is appropriate for it—e.g., the effective
average action approach [23].
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