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To complement recent work on tests of spacetime symmetry in gravity, cubic curvature couplings are
studied using an effective field theory description of spacetime-symmetry breaking. The associated mass-
dimension-eight coefficients for Lorentz violation studied do not result in any linearized gravity
modifications and instead are revealed in the first nonlinear terms in an expansion of spacetime around
a flat background. We consider effects on gravitational radiation through the energy loss of a binary system
and we study two-body orbital perturbations using the post-Newtonian metric. Some effects depend on
the internal structure of the source and test bodies, thereby breaking the weak equivalence principle for
self-gravitating bodies. These coefficients can be measured in Solar-System tests, while binary-pulsar
systems and short-range gravity tests are particularly sensitive.
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I. INTRODUCTION

General relativity (GR) with the Einstein-Hilbert (EH)
action can be expressed in the language of gauge field
theory with the gauge symmetries of local Lorentz
symmetry and diffeomorphism symmetry. As such it is
considered a non-Abelian gauge theory, with nonlinear
self-interaction terms in the interaction Hamiltonian. How
well these interaction terms have been tested is in part
measured by what alternatives to the EH action are
acceptable within experimental limits. While using the
EH action does not result in a renormalizable quantum field
theory, the structure of the interaction terms can be tested in
the classical limit through observation, gravitational waves,
weak-field and strong-field tests of gravity. These types
of tests are particularly of interest precisely because the
standard implementation of quantum field theory fails to
yield stable radiative corrections for the EH action, or to put
it simply, GR has not been combined with quantum theory
in a satisfactory way.
One promising avenue for experimental probes is to test

the very gauge symmetries, local Lorentz and diffeomor-
phism symmetry, upon which GR rests. A strong possibility
exists, in various theoretical scenarios in the literature, that
these symmetries might not be exact in nature, particularly
in the low-energy limit of an underlying unified theory
[1,2]. Due to this and other motivations, a broad program
has been underway recently to identify and measure
possible spacetime-symmetry violations using a general
effective field theory framework [3,4]. Though no signifi-
cant positive signal yet exists, numerous areas involving
gravity, electromagnetism, and other forces have placed
strong limits [5]. In the case of gravity, work is underway
to identify and measure signals for spacetime-symmetry
breaking in the weak-field gravity regime. Analysis has
already been performed with lunar laser ranging [6,7], atom
interferometric gravimetry [8,9], gyroscopic tests [10],

binary-pulsar tests [11], short-range gravity tests [12–14]
planetary ephemeris [15], cosmic rays [16], gravitational
waves [17,18], and others [19].
The theoretical framework used for the analysis so far

has been the linearized gravity limit of the Standard-Model
extension (SME) framework [20–26]. The flat spacetime
version of the SME framework uses a general Lagrangian
expansion with CPT and Lorentz-breaking terms formed
from background tensor fields contracted with operators
built from matter fields. Since the introduction of non-
dynamical background fields in curved spacetime is gen-
erally incompatible with Riemann geometry, an alternative
approach is used where the Lorentz breaking is considered
dynamical [4,27]. This is the spontaneous Lorentz-
symmetry breaking approach, which has been applied to
the SME in the linearized gravity limit.
The linearized gravity limit, where the metric is

expanded around a flat background, suffices for many
phenomenological applications since gravity is inherently
weak in the Solar System and it helps significantly to
simplify calculations due to the complexity of handling
spontaneous Lorentz-symmetry breaking in this context.
However, it is only in the quadratic and higher-order terms
in the field equations of GR that we see the structure of the
interaction terms dictated by the spacetime symmetries
under study. In light of this it is natural to extend existing
SME analysis in this direction to test these interaction
terms.
Analysis in the gravity sector of the SME framework

beyond the linearized limit is scarce to date [28,29]. There
are two aspects to this. First, the construction of these
higher-order terms is marred by complexity due to account-
ing for the dynamics of the fluctuations (Nambu-Goldstone
and massive modes) and ultimately finding the correct
energy-momentum tensor to higher order in metric fluctu-
ations that is consistent with the underlying conservation
laws, the known linearized results, and keeping generality
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[29]. Second, for most of the coefficients in the minimal
sector of the (gravitational) SME, and many in the non-
minimal sector, experiments can already be analyzed using
linearized gravity results. So in many cases it is not of
phenomenological advantage to establish the nature of
these terms. However, it is of theoretical interest to establish
the nature of such terms. Furthermore, it may be the case
that certain types of Lorentz violation can only be probed
by looking beyond the linearized limit.
As a first step toward pushing the analysis beyond

the linearized gravity regime, we examine terms in the
nonminimal SME that provide an example of nonlinear,
second-order terms in the metric expansion around a flat
background, and that are relatively straightforward to
calculate. Additionally, these terms are phenomenologi-
cally of interest since they do not appear in linearized
gravity and contain some interesting effects for experiments
and observation as we show. Note that alternatives to the
approach discussed here include studying specific models
of spontaneous Lorentz violation [30,31], phenomenologi-
cal parametrizations of physics beyond GR [32–34], or
even alternative geometries [35].
The paper is organized as follows. In Sec. II, we review

the SME framework in the gravity sector and discuss the
basic Lagrangian and field equations for the cubic coupling
to be studied in this work. We study the possible effects of
the modified field equations on aspects of gravitational
radiation in Sec. III. The post-Newtonian metric and the
associated two-body acceleration are the subject of Sec. IV.
In Sec. V we discuss the application of the two-body
acceleration results to gravitational experiments and obser-
vation, including an estimate of the sensitivities to the
relevant coefficients for Lorentz violation. The work is
summarized in Sec. VI. Throughout this work we adopt the
notational conventions of previous work in the gravity
sector [20,25]. In particular, we refer throughout the paper
to the linearized, quadratic, and cubic limit in an expansion
of the spacetime metric gμν around a flat background. When
needed this notion can be made precise by inserting ϵ < 1
in the expansion for the metric gμν ¼ ημν þ ϵhμν so that
linearized equations are OðϵÞ, quadratic is Oðϵ2Þ, etc.

II. THEORY

In the effective field theory description of local Lorentz
violation in the gravity sector, we write the Lagrange
density of the underlying action as the sum of terms

L ¼ LEH þ LLV þ Lk þ LM; ð1Þ

where LEH ¼ ffiffiffiffiffiffi−gp ðR − 2ΛÞ=2κ is the Einstein-Hilbert
term with cosmological constantΛ. The termLLV describes
the (Lorentz-breaking) gravitational coupling to the coef-
ficient fields, Lk contains the dynamics of the coefficient
fields, LM describes the matter sector, and κ ¼ 8πGN .

The nonstandard term LLV can itself be written as a
series involving covariant gravitational operators of
increasing mass dimension d. Each term is formed by
contracting the coefficient fields kαβ… with gravitational
quantities including covariant derivatives Dα and curvature
tensors Rαβγδ. The terms that have been studied previously
include mass dimension four through six and are given by
the Lagrange density

LLV ¼
ffiffiffiffiffiffi−gp
2κ

½ðkð4ÞÞαβγδRαβγδ þ ðkð5ÞÞαβγδκDκRαβγδ

þ ðkð6Þ1 ÞαβγδκλDðκDλÞRαβγδ

þ ðkð6Þ2 ÞαβγδκλμνRαβγδRκλμν�; ð2Þ

where the parentheses indicate symmetrization with a
factor of 1=2. The minimal SME is contained in the
d ¼ 4 ðkð4ÞÞαβγδ case. This term can be split into a total
traceu, a trace sμν, and a traceless piece tκλμν. In the linearized
gravity limit, these coefficients have already been explored
theoretically and experimentally. The mass-dimension-five
term ðkð5ÞÞαβγδκ, which breaksCPT symmetry, and themass-

dimension-six terms kð6Þ1 and kð6Þ2 have been studied in the
context of short-range gravity, graviton vacuum Čerenkov
radiation, and gravitational waves [16,17,25]. It is clear that
the terms with more than one power of curvaturewill contain
higher than second derivatives of the spacetime metric.
Lagrangian models with higher than second derivatives
are known to have stability issues [36]. However, in the
SME we consider these terms as small corrections to the
EH Lagrangian, as part of a perturbative series around low
energies, and thus we consider the dynamics as primarily
driven by second-order differential equations [37].
Our focus in this work is on the first cubic curvature term

with mass dimension d ¼ 8, which lies beyond those
considered so far in the SME expansion. The d ¼ 8 term
we shall consider is written as

Lð8Þ
LV ¼

ffiffiffiffiffiffi−gp
2κ

ðkð8ÞÞαβγδκλμνϵζηθRαβγδRκλμνRϵζηθ: ð3Þ

The coefficient fields ðkð8ÞÞαβγδκλμνϵζηθ have dimensions of
length to the power 4, or inverse mass to the power 4 in
natural units. Due to the contractions, the indices on the
coefficients inherit the symmetries of the Riemann tensor
and it is totally symmetric in the groups of indices αβγδ,
κλμν, and ϵζηθ. Using the symmetry properties of the
coefficients, we can determine that there are 1540 a priori
independent components. The coefficients ðkð8ÞÞαβγδκλμνϵζηθ
naturally contain as a subset various traced pieces that
involve contractions of indices on the three Riemann
tensors. The cubic contractions of the Riemann tensor
can be generally classified [38], but we do not attempt to
elucidate the traced pieces in Eq. (3) in this work. We note

QUENTIN G. BAILEY PHYSICAL REVIEW D 94, 065029 (2016)

065029-2



in passing that when compared to the coefficients in the
action (2), which have inverse mass and inverse mass-
squared dimension, it is natural to expect the effects
associated with the cubic action (3) to be subdominant.
However, the purpose of this work is to explore such
higher-order terms for the reasons outlined in the
Introduction, and we neglect the other coefficients in the
pure-gravity sector for the analysis that follows.
Toy models of spontaneous Lorentz violation that

match the form of the Lagrangian (3) are straightforward
to construct. For example, for a model with a vector
field Bμ one can consider a coupling of the form

L ∼ BμBνRμνBαBβRαγRβ
γ . Such couplings will be con-

strained experimentally by analysis of the general kð8Þ
term. We also note that there are indeed other mass-
dimension-eight terms we shall not consider here. For
example, one can form an operator with mass-dimension
eight by combining two covariant derivatives with
two powers of the Riemann curvature tensor,
L ∼DðμDνÞRαβγδRϵζηθ. However, such terms contribute to
the linearized field equations, and have partly been studied
previously in recent works [16,17].
At this stage, we introduce a compact notation for

the kð8Þ coefficients and the curvature tensors. We use
the calligraphic capital letters A, B, etc. to denote the
groups of Riemann-like indices: A ¼ αβγδ, B ¼ κλμν,
and C ¼ ϵζηθ. Thus for the curvature tensor we write
Rαβγδ ¼ RA and for the kð8Þ coefficients we write
ðkð8ÞÞαβγδκλμνϵζηθ ¼ ðkð8ÞÞABC. Repeated indices indicate
contraction across all four spacetime indices, so for
example, RARA ¼ RαβγδRαβγδ. When needed, some indices
will be shown explicitly.
The first step for phenomenology is to extract the field

equations resulting from the Lagrangian (3). This can be
achieved by variation with respect to the metric gμν and the
result is

Gμν ¼ κðTMÞμν þ 6DðαDβÞððkð8ÞÞαμνβABR
ARBÞ

þ 1

2
gμνðkð8ÞÞABCR

ARBRC

þ 9Rαβγðμðkð8ÞÞνÞγαβABR
ARB þ κðTkÞμν; ð4Þ

where the energy-momentum tensor for matter is ðTMÞμν
and ðTkÞμν is the energy-momentum tensor contribution

from the dynamics of the coefficient fields ðkð8ÞÞABC in the
Lagrangian term Lk. We then assume an asymptotically flat
background metric ηαβ as usual and impose the conditions
of spontaneous breaking of Lorentz symmetry. In particu-
lar, it is assumed that the coefficient fields ðkð8ÞÞABC have a
vacuum expectation value of ðk̄ð8ÞÞABC. So for the metric
and the coefficients fields we use the following expansions
around the vacuum values:

gμν ¼ ημν þ hμν;

ðkð8ÞÞABC ¼ ðk̄ð8ÞÞABC þ ð~kð8ÞÞABC: ð5Þ

Here ð~kð8ÞÞABC represents the fluctuations around the
vacuum value [39]. In the chosen asymptotically flat
Cartesian coordinates, we assume the partial derivatives
of the vacuum values vanish [∂μðk̄ð8ÞÞABC ¼ 0].
Since the kð8Þ Lagrangian term is already of at least cubic

order in the metric fluctuations hμν, the leading ðkð8ÞÞABC

terms in the field equations will be at quadratic order, as can
be verified by insertion of the expansions (5) into Eq. (4).
If we confine attention to quadratic-order field equations
Oðh2Þ, the procedure for the elimination of coefficient
fluctuations ð~kð8ÞÞABC described in Refs. [20,23,25]
involves no fluctuations for ðkð8ÞÞABC in the kð8Þ terms in
Eq. (4) because these contribute only at order Oðh3Þ. We
therefore obtain the modified Einstein equations valid to
quadratic order as

Gμν ¼ κðTMÞμν þ 6ðk̄ð8ÞÞαμνβAB∂α∂βðRARBÞ þ κðTkÞμν:
ð6Þ

In Eq. (6), we can take the curvature tensors in the second
k̄ð8Þ term to be linearized in hμν, since the term is already at
quadratic order.
As we are considering spontaneous symmetry breaking,

the underlying action remains invariant under diffeomor-
phisms and local Lorentz transformations, and so the field
equations will satisfy the conservation laws associated with
these symmetries [40]. In particular, the conservation laws
associated with diffeomorphism invariance hold, which can
be checked as follows. First note that the covariant
divergence of the field equations (6) vanishes on the left
side by the geometric identities DμGμν ¼ 0. On the right-
hand side, it can be verified that the divergence of the
second k̄ term vanishes to quadratic order automatically.
This is in contrast to some of the other coefficients in the
SME expansion [20,25], where additional compensating
terms (coming from an Lk-type term in the action) are
necessary in the construction of the effective field equa-
tions. If we then assume that the matter tensor ðTMÞμν has
independently vanishing divergence, then it follows that the
remaining piece ðTkÞμν must be independently covariantly
conserved. In addition to diffeomorphism symmetry, the
conservation law for local Lorentz symmetry is also
satisfied by virtue of the symmetry of the free indices of
the terms on the right-hand side of Eq. (6).
The second term in Eq. (6) is already in a form

suitable for the calculation of the effects on the spacetime
metric since it only depends on the vacuum values of the
coefficients k̄ð8Þ, and the metric fluctuations hμν. Therefore
the final task in establishing the effective quadratic-order
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field equations is to consider the unknown, independently
conserved term ðTkÞμν. Considering the discussion above,
this term is not necessary to ensure that the conservation
laws hold at quadratic order. Without knowing the explicit
form for the terms in Lk, which would come from some
underlying theory producing the coupling (3), we cannot
directly calculate ðTkÞμν. One possibility is to study a large
class of specific models of spontaneous Lorentz breaking
where the exact form of Lk is known. This task lies beyond
the scope of the present paper but would be of interest for
future study. Note that investigations along these lines
already exist for the coefficients ðkð4ÞÞαβγδ. For example, in
a study of which vector models of spontaneous Lorentz
breaking match the field equations presented in Ref. [20], it
was shown that various assumptions, including assuming a
vanishing independently conserved piece ðTkÞμν, restrict
attention to a subset of all possible vector models [31]. We
remark here that some preliminary analysis with vector
models, with couplings of the form mentioned above,
shows that the contribution of ðTkÞμν vanishes to quadratic
order.
For the remainder of this work we shall adopt the

assumption that ðTkÞμν ¼ 0 to quadratic order, which is
similar to an assumption adopted for extracting the field
equations for the minimal SME coefficients ðkð4ÞÞαβγδ. Note
that this assumption does not preclude the case when ðTkÞμν
happens to be proportional to a term of the form of the
ðk̄ð8ÞÞ term in Eq. (6); in this case there is a rescaling of the
field equations but the phenomenology remains the same.

III. RADIATION EFFECTS

If one considers the linearized limit of the field
equations (6), the k̄ð8Þ term on the right-hand side vanishes.
It is clear then that there are no effects on the propagator for
the metric fluctuations hμν. This implies, for example, that
the propagation of gravitational waves is the same as in GR.
One consequence of this result is that the coefficients kð8Þ
lie beyond the reach of the previous analysis with quadratic
actions [17] and analysis with modified dispersion relations
[34]. We note, however, that we are assuming an expansion
of spacetime around a flat background. If we were to
generalize this to an expansion around a curved back-
ground, the possibility would then exist for linearized
effects of the coefficients k̄ð8Þ to appear. This could occur
since the curvature terms in the Lagrangian (3) could take
their background values plus fluctuations, leaving some
terms quadratic in hμν in the Lagrangian. This possibility
has been considered by some authors studying Lorentz-
invariant cubic curvature couplings [41]. In the context of
the Lagrangian (3), this remains an open area of study
beyond the scope of this work.
Although there are no effects on the propagation of

gravitational waves from the cubic curvature coupling

terms k̄ð8Þ, the appearance of these Lorentz-breaking terms
at quadratic order in the field equations implies the
possibility of an effect on the energy-momentum loss of
a system due to radiation from gravitational waves. Indeed,
the standard calculation in GR for the energy loss of a
gravitational system involves using the quadratic-order
terms in the usual Einstein equations [42]. To examine
this possibility, we compute the total four-momentum and
rate of four-momentum loss for a binary system using the
field equations. First we display the field equations in an
alternative form:

ðGLÞμν ¼ κ½ðTMÞμν þ τμν�
þ 6ðk̄ð8ÞÞαμνβAB∂α∂βðRARBÞ; ð7Þ

where ðGLÞμν is the linearized Einstein tensor, τμν is defined
by

τμν ¼ 1

κ
½ðGLÞμν − Gμν�; ð8Þ

and the expression (7) is valid to quadratic order in hμν.
Note also that to quadratic order, we raise and lower indices
in the k̄ð8Þ term with the Minkowski metric ημν and its
inverse.
The ordinary divergence ∂μ of the right-hand side of

Eq. (7) vanishes and it can be interpreted using an energy-
momentum pseudotensor,

Θμν ¼ ðTMÞμν þ τμν þ 6

κ
ðk̄ð8ÞÞαμνβAB∂α∂βðRARBÞ; ð9Þ

for the total system of gravity plus matter. One can define
the total four-momentum Pμ of the system as the spatial
integral of Θ0μ over all space in a fixed coordinate system.
For a generic spacetime, this integral does not converge.
However, we consider spacetimes that are asymptotically
flat except for possible gravitational wave pieces in the
metric fluctuations hμν. Ordinarily in GR, the total four-
momentum consists of two pieces: one due to the localized,
or near-zone solutions for the spacetime metric, and the
other due to possible gravitational radiation. While the
former can be shown to be constant in time, the latter can
result in a time-varying total four-momentum on account of
gravitational radiation carrying energy and momentum
away from the system.
To see if there is a modification to the energy and

momentum carried away from an isolated gravitational
system, we examine the rate of change of the spatial
integral of Θ0μ with respect to coordinate time t, or
dPμ=dt. After some manipulation using the conservation
law ∂μΘμν ¼ 0, the expression can be turned into a surface
integral over a sphere of radius R centered on the
gravitational system. In this region, the matter energy-
momentum tensor vanishes and the only terms in Θμν that
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will survive in the limit R → ∞ are quadratic in hμν,
coming from wave solutions that fall off as 1=R.
We shall restrict attention to results at leading order in the

coefficients k̄ð8Þ, which has the advantage that for the third
Lorentz-violating term in Eq. (9), we can substitute GR
results. In particular, we use the result that the wave
solutions for hμν have a dependence on the retarded time
tR ¼ t − R with the wave vector kμ ¼ ð1; njÞ. Here nj is an
outward-pointing normal from the origin taken as the
gravitational system’s center of mass-energy. We then find
that to leading order in the coefficients k̄ð8Þ,

dPμ

dt
¼ −

Z
S
d2x nj

�
τjμ þ 24

κ
ðk̄ð8ÞÞαjμβlγδmnϵζp

× kαkβkγkδkϵkζ
d2

dt2R
ðḧlmḧnpÞ

�
; ð10Þ

where a dot indicates a derivative with respect to tR.
We next examine the contributions of the two terms in

Eq. (10) in turn. Contributions to hμν itself in the wave zone
include the standard quadrupole terms in GR, higher-order
terms in a post-Newtonian series, and possible contribu-
tions from the k̄ð8Þ terms in Eq. (6). These latter terms,
however, can be expected to contribute only at second order
in ϵ when considering an expansion around a flat back-
ground gμν ¼ ημν þ ϵhμν. It would be of interest to calculate
such terms to determine their possible effects on gravita-
tional waves but this lies beyond the scope of the present
work. It suffices here to note that when inserted into
Eq. (10) in the first term involving τjμ, these Oðϵ2Þ
corrections to hμν will yield modifications only at third
order in ϵ in the first term of Eq. (10) since τjμ is already at
Oðϵ2Þ. Thus if one neglects any contributions to hμν in the
wave zone from the k̄ð8Þ coefficients, the first term in
Eq. (10) yields the standard result for energy and momen-
tum loss from gravitational waves in GR. For example, for
the energy loss one obtains the well-known quadrupole

result dP0=dt ¼ ðGN=5Þ I
…jk I

…jk where Ijk is the (traceless)
mass quadrupole tensor.
The second term in Eq. (10) is the leading Lorentz-

violating correction to the energy-momentum loss for an
isolated gravitational system. At leading order in Lorentz
violation we insert the standard quadrupole formula for
the metric fluctuations hjk ¼ 2GN

̈Ijk=R into this term.
Focusing on a binary system, and using the leading
expression for Ijk for a slow-motion system, we obtain
an explicit function of tR for this term that is periodic.
Furthermore, in this limit the tR-derivative term does not
depend on angles so the angular integral only applies to
the projection of the k̄ð8Þ coefficients along kμ and yields a
linear combination of these coefficients. Upon time
averaging the second term in Eq. (10) over one orbit,
however, we obtain zero for this extra contribution to the

energy-momentum flow. We can trace this result to the fact
that a total tR derivative appears in the expression; when
averaged over tR we end up evaluating a periodic function at
the beginning and end of one cycle, thereby obtaining zero.
Therefore, to quadratic order in hμν, we can say that the k̄ð8Þ

coefficients do not produce any leading-order effects for the
energy-momentum loss for gravitational waves.

IV. POST-NEWTONIAN LIMIT

An alternative to exploring gravitational waves is to
consider the “near-zone” post-Newtonian effects on a
gravitational system. As usual, this involves an expansion
in powers of the average speed v̄ of the typical body in the
system with the Newtonian potential U ∼ v2 dominating
over small relativistic corrections. We employ a perfect
fluid model to describe the bodies in the system, assuming
the usual perfect fluid energy-momentum tensor for
ðTMÞμν. Using this model, we solve the modified field
equations to obtain the post-Newtonian metric and ulti-
mately the dynamical equations for a two-body system.

A. Metric

In terms of mass density ρ, internal energy Π, pressure p,
and four-velocity field uμ, the matter energy-momentum
tensor is

ðTMÞμν ¼ ðρþ ρΠþ pÞuμuν þ pgμν: ð11Þ

The Newtonian potential U, contained in h00=2 satisfies
Poisson’s equation

− ~∇2
U ¼ 4πGNρ: ð12Þ

Assuming the matter is localized, the standard solution is

Uðr; tÞ ¼ GN

Z
d3r0

ρðr0; tÞ
jr − r0j : ð13Þ

The full post-Newtonian metric from Eq. (6) turns out to
be that of general relativity except for one additional term in
the Oðv4Þ piece of the metric components h00, which we
denote δh00. The equation for this extra term can be
obtained from the post-Newtonian expansion of the field
equations (6). Focusing on solving for this piece, the
relevant equation is that involving the R00 component of
the Ricci tensor, which is given to Oðv4Þ by

R00 ¼ κðSMÞ00 þ 3ðk̄ð8ÞÞj00kAB∂j∂kðRARBÞ
þ 3ðk̄ð8ÞÞjllkAB∂j∂kðRARBÞ; ð14Þ

where the curvature components in the k̄ð8Þ term surviving
at this post-Newtonian order include R0j0k and Rjklm. The
term ðSMÞμν is the trace-reversed energy-momentum tensor
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for matter. The matter terms in ðSMÞ00 along with other
terms in R00 contribute to the conventional GR post-
Newtonian metric.
To solve for the desired term δh00 we shall adopt a

standard perturbative assumption and work to leading order
in the coefficients for Lorentz violation. We make the
following coordinate choice on some of the components of
the metric:

∂jgjk ¼
1

2
∂kðgjj − g00Þ;

∂jg0j ¼
1

2
∂0gjj; ð15Þ

which matches earlier conventions [20]. It will be
useful here to introduce a common shorthand for partial
derivatives where ∂jkl… ¼ ∂j∂k∂l…. The relevant equation
becomes

−
1

2
~∇2
δh00 ¼ 48ðk̄ð8Þeff Þjklmnp∂jkð∂lmU∂npUÞ: ð16Þ

In this equation, ðk̄ð8Þeff Þjklmnp are effective coefficients for
Lorentz violation, given in terms of the underlying coef-
ficients in the Lagrangian by the expression

ðk̄ð8Þeff Þjklmnp ¼ ðk̄ð8ÞÞ0jk00lm00np0 þ ðk̄ð8ÞÞ0jk0qlmq0np0

þ ðk̄ð8ÞÞ0jk00np0qlmq þ ðk̄ð8ÞÞqjkq0lm00np0

þ ðk̄ð8ÞÞ0jk0qlmqrnpr þ ðk̄ð8ÞÞqjkq0lm0rnpr

þ ðk̄ð8ÞÞqjkqrlmr0np0 þ ðk̄ð8ÞÞqjkqrlmrsnps:

ð17Þ

These effective coefficients ðk̄effÞjklmnp have symmetry in
each of the pairs of indices jk, lm, and np. Also, there is
pairwise symmetry under the interchanges jk ↔ lm,
jk ↔ np, and lm ↔ np, bringing the number of indepen-
dent coefficient combinations in k̄ð8Þ to 56.
We assume that the right-hand side of Eq. (16) represents

a small correction to GR. Using dimensional analysis this
implies roughly that k̄ < L4, where L is the typical length
scale of the gravitational system, to be consistent with the
perturbative assumption. Proceeding, the Poisson-like
equation (16) has the standard integral solution

Ψ ¼ 48ðk̄ð8Þeff Þjklmnp

Z
d3r0

∂ 0
jk½∂ 0

lmUðr0Þ∂ 0
npUðr0Þ�

4πjr − r0j ; ð18Þ

where Ψ ¼ δh00=2. From dimensional analysis, the result
of this integral could contain terms that vary with the
inverse sixth power of the distance. However, we shall
show there are scenarios where the nonlinear nature of this
potential yields terms that actually vary as the inverse cubic
power of the distance, among other terms.

The integral in Eq. (18) is taken over all space. For a
localized gravitational system, one can show convergence
of the integral for large values of r0 using the asymptotic
behavior of the Newtonian potential. For small values of r0,
careful consideration is needed. The standard use of delta
functions to describe the distribution of matter for point
masses fails to give a convergent result for Eq. (18) and is
therefore avoided in this treatment. Such subtleties arise
even in the treatment of general-relativistic terms at first
post-Newtonian order, due to the nonlinear nature of
gravity [43,44]. We will assume a sufficiently well-behaved
mass density function ρðr0Þ. For example, to be integrable
in the Newtonian potential U [Eq. (13)], ρ must be at
least a piecewise continuous function.
For calculations to follow, we develop the integral in

Eq. (18) further. One convenient way to solve the integral in
Eq. (18) is first to express the Newtonian potentials in the
integrand in terms of the mass density using Eq. (13).
Equation (18) then involves three volume integrals. To
proceed further we make use of a “triangle function” which
is a three-point function Gðr; y1; y2Þ defined by

Gðr; y1; y2Þ ¼
1

4π

Z
d3r0

1

jr − r0jjr0 − y1jjr0 − y2j
: ð19Þ

The solution to this integral with the appropriate boundary
conditions is known and we use the result

Gðr; y1; y2Þ ¼ 1 − lnðr1 þ r2 þ r12Þ; ð20Þ

where r1 ¼ jr − y1j, r2 ¼ jr − y2j, and r12 ¼ jy1 − y2j
[44,45]. Using this function, the integral (18) can be
written as

Ψ ¼ 48ðk̄ð8Þeff Þjklmnp

Z
d3y1

Z
d3y2ρðy1; tÞρðy2; tÞ

× ∂jkl1m1n2p2
Gðr; y1; y2Þ: ð21Þ

The calculation of the remaining GR terms in the
post-Newtonian metric proceeds as usual from the field
equation (6) using the coordinate choice (15). The complete
metric to first post-Newtonian order includes terms up to
Oðv4Þ in g00, Oðv3Þ in g0j and Oðv2Þ in gjk. It is given by

g00 ¼ −1þ 2U þ 2ϕ − 2U2 þ 2Ψ;

g0j ¼ −
1

2
ð7Vj þWjÞ;

gjk ¼ δjkð1þ 2UÞ; ð22Þ

where Vj, Wj, and ϕ are given by
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Vj ¼ GN

Z
d3r0

ρ0

jr − r0j ;

Wj ¼ GN

Z
d3r0

ρ0ðr − r0Þjv0kðr − r0Þk
jr − r0j3 ;

ϕ ¼ GN

Z
d3r0

½ρ0ð2v02 þ 2U0 þ Π0Þ þ 3p0�
jr − r0j ; ð23Þ

and a prime denotes a dependence on the integration
variables r0j. We see that for this subset of the SME in
the Lagrangian (3), the only contribution to the post-
Newtonian metric is to g00 at Oðv4Þ comprised of the Ψ
potential.

B. Binary system dynamics

Our goal is to find the equations of motion for a
two-body system comprised of gravitationally bound, or
otherwise, distinct bodies. To do this we shall employ a
standard method of modeling the bodies using the perfect
fluid description, and ultimately integrating the accelera-
tion density over a given body to find the equation of
motion for its, suitably defined, center of mass. We use a
special fluid density ρ� ¼ ρ

ffiffiffiffiffiffi−gp
u0 that satisfies the con-

tinuity equation ∂0ρ
� þ ∂jðρ�vjÞ ¼ 0 and define the mass

of a body a and its center of mass as

ma ¼
Z
a
d3rρ�ðt; rÞ;

ra ¼
1

ma

Z
a
d3rρ�ðt; rÞr: ð24Þ

Subsequent time derivatives of ra yield the velocity va and
acceleration aa of the center of mass.
The starting point for the integration of the fluid

equations over the body a is the acceleration given by

aa ¼
1

ma

Z
a
d3rρ�ðt; rÞ dv

dt
: ð25Þ

Into this equation, we insert an expression for ρ�dv=dt from
the perfect fluid equations of motion DμðTMÞμν ¼ 0. In
particular, the spatial components ν ¼ j of these equations
yield the acceleration density

ρ�
dv
dt

¼ ρ�∇U − ∇p − AGR þ ρ�∇Ψ: ð26Þ

On the right-hand side, the first two terms are the
Newtonian contributions to the acceleration density, while
the third term contains the contributions from the GR post-
Newtonian terms. The latter expression can be found in
equation 44 of Ref. [20] or in standard references [42,46].
Of primary interest is the last term involving the gradient

of Ψ, which contains the contributions from the k̄ð8Þeff
coefficients to the fluid motion.
Equation (26) is inserted into Eq. (25) to find the

acceleration of the body a. The details of this calculation
for the Newtonian and GR terms can be found elsewhere
[44]. The correction to the acceleration of a body a coming
from the Ψ term is given by the integral

δaa ¼
Z
a
d3rρ∇Ψ; ð27Þ

whereΨ is inserted from Eq. (21). To evaluate this we insert
the mass density functions for each body a, b, c, etc. into
the integrals, as ρ ¼ ρa þ ρb þ ρc…. Note that these
densities are localized in the neighborhood of each body
and hence affect the domains for the volume integrals. This
procedure breaks up the three integrals over the variables r,
y1, y2 into regions over different bodies (abb, aab, abc,
etc.). In particular, there will be an integral in which the
three volume integrals are all over body a. This we identify
as the “self-acceleration” term; it vanishes by the sym-
metries of the integral, which offers a consistency check
with the energy-momentum conservation law discussion in
Sec. II. For the remaining terms, due to the seven partial
derivatives appearing, a complete solution even for the
case of widely separated bodies with negligible multipole
moments, and neglecting tidal forces, is lengthy, although
straightforward to compute using known methods. We can
classify the terms that appear for a two-body system by
their dependence on the inverse power of the relative
distance between the two bodies a and b, r ¼ ra − rb,
where ra and rb are the center of mass positions.
We focus on a two-body system and seek terms in

Eq. (27) with the least inverse powers of r. It turns out that a
tractable expression for the two-body acceleration with r−4

and r−6 dependences appears and contains a novel depend-
ence on the structure of the bodies. To obtain results along
these lines, an efficient way to deal with the three-point
functionG that is appropriate for widely separated bodies is
needed. For example, when the variables r and y1 lie in one
body, and y2 lies in a different body, we can expand the
logarithm in powers of r1=r2, to obtain

Gðr; y1; y2Þ ¼ 1 − ln 2 − ln r2 −
r1
2

�
1

r2
þ r2n̂

j
1∂j

1

r2

�

þ r21
4

�
n̂j1∂j

1

r2
þ r2

2
n̂j1n̂

k
1∂jk

1

r2

�
þ � � � ;

ð28Þ
where the unit vector n1 points in the direction of r1. More
details about this type of expansion can be found in
Ref. [45], where it was used for some terms in higher
post-Newtonian GR.
For this calculation, we assume perfectly spherical

bodies and ignore multipole moments and tidal terms over
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each body. However, we do not ignore the finite size of
each body, as this plays a critical role in the result. After
some calculation, the expression for the two-body accel-
eration of body a is

aa ¼ −
GNmbn

r2
þ ðaGRÞa þ δaa; ð29Þ

where the first term is the Newtonian acceleration and
n ¼ r=r. The second term contains the contributions from
GR to Oðv4Þ:

ðaGRÞa ¼ −
GNmb

r2

�
n

�
v2a − 4va · vb þ 2v2b

−
3

2
ðn · vbÞ2 − 5

GNma

r
− 4

GNmb

r

�

− n · ð4va − 3vbÞðva − vbÞ
�
: ð30Þ

The Lorentz-breaking piece of the acceleration is given by

δaja ¼ −576πG2
NmbðPa þ PbÞðk̄ð8Þeff ÞklðmmnnÞ

nhjkli

r4

− 15120G2
Nmb½ð ~Pa þ ~PbÞðk̄ð8Þeff Þklmnpp

þ ð ~P0
a þ ~P0

bÞðk̄ð8Þeff Þklmpnp

�
nhjklmni

r6
; ð31Þ

which is valid up to terms of order 1=r7.
The directional dependence in Eq. (31) is encoded in

each of the totally symmetric and trace-free combinations
of unit vectors nhjkli and nhjklmni that depend on the unit
vector n and the Kronecker delta δjk. Such terms are readily
constructed and formulas can be found in the literature
[44,47]. Explicitly they are given by

nhjkli ¼ njnknl −
1

5
ðnjδkl þ nlδjk þ nkδljÞ;

nhjklmni ¼ njnknlnmnn −
1

9
ðnjnknlδmn þ permsÞ;

þ 1

63
ðnjδklδmn þ permsÞ; ð32Þ

where “perms” indicates all independent permutations of
indices; 10 total permutations for the second term in
nhjklmni and 15 for the third term. The internal terms in
Eq. (31) are integrals for each (spherical) body given by

Pa ¼
1

ma

Z
a
d3rρ2a;

~Pa ¼
1

35ma

�
8π

Z
a
d3rρ2ar2 þ 46

Ωa

GN

�
;

~P0
a ¼

1

35ma

�
16π

Z
a
d3rρ2ar2 − 48

Ωa

GN

�
; ð33Þ

where the same expressions hold for body b. Here Ωa is the
Newtonian self-energy of the body:

Ωa ¼ −
GN

2

Z
a
d3r

Z
a
d3r0

ρρ0

jr − r0j : ð34Þ

Certain features of this acceleration are striking. First,
there is a dependence on the structure of the two bodies via
the integrals (33). In particular, body a’s acceleration due to
body b depends on integrals of the density over each body.
This implies that the way in which the matter in each body
is distributed affects the way it falls in the presence of
another body, even in the limit of vanishing multipole
moments and tidal forces, thereby violating the weak
equivalence principle for gravitationally bound systems
(GWEP) [46,48]. Note that in deriving the two-body
acceleration for the GR terms (30) it is necessary to impose
internal equilibrium conditions on each body to eliminate
the dependence of the acceleration on internal structure
integrals over each body. These virial conditions involve
the pressure, internal velocity, and internal gravitational
potential energy of each body. Additionally, the mass of
each body is renormalized to include the total internal
energy. Virial conditions were necessary, for example, to
derive the many-body equations for the mass-dimension-
four coefficients s̄μν to show that they satisfied GWEP to
post-Newtonian orderOðv3Þ [20]. In the present case of the
k̄ð8Þeff coefficients, we find that such virial conditions or mass
renormalization cannot be used to eliminate or simplify the
Lorentz-violating piece of the acceleration (31), despite
the appearance of internal structure integrals (33).
The particular nature of the GWEP violation is novel as

well. To illustrate this we will focus on just the dominant
inverse quartic term in the modified acceleration (31).
Suppose the two bodies have uniform densities and radii a
and b. Let the masses of each body bema andmb with total
mass M ¼ ma þmb. We define a weighted inverse radius
for the bodies via

1

R̄3
¼ 1

M

�
ma

a3
þmb

b3

�
: ð35Þ

With these definitions, the modification to the relative
acceleration becomes

δaj ≈ −432
ðGMÞ2
R̄3

Kklnknlnj − 2
5
Kjknk

r4
: ð36Þ
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The coefficients Kjk are the traceless combinations

Kjk ¼
1

3
½2ðk̄effÞjklmlm þ ðk̄effÞjkllmm�

− δjk
1

9
½2ðk̄effÞllmnmn þ ðk̄effÞllmmnn�: ð37Þ

We can now see directly the dependence on the size of the
bodies in the system. The more compact the bodies, the
stronger the amplitude of the symmetry-breaking signal.
Among the strongest sources will be binary pulsar systems
and binary white dwarf systems.
The second aspect of the result, evident in either Eq. (31)

or Eq. (36), is the anisotropy of the acceleration. This
is a ubiquitous feature of Lorentz-symmetry breaking. It
implies the acceleration generally points in a different
direction from the line between the two bodies. Note that
the directional and inverse quartic behavior of the dominant
Lorentz-breaking acceleration term does resemble an
effective quadrupole contribution (Qjk ∼ Kjk). However,
Kjk is taken as a fixed background field in the gravitational
system while Qjk is dependent on the orientation of each
body and the distribution of matter. Note also that while the
components of Qjk decrease when mass is concentrated
toward the center of the body, the internal terms Pa and Pb
increase. Nonetheless, there can be a significant correlation
with the quadrupole acceleration term from Newtonian
physics which should be taken into account for
phenomenology.
As a caution, we note that we cannot apply the results

(31) or (36) to the case of black-hole orbits. Since we are
working within the post-Newtonian limit, and using the
approximate quadratic-order field equations, the results do
not apply for black hole solutions. Furthermore, even if we
attempted to approximate the full solution for the spacetime
metric for large distances, we assumed for the derivation
above that the mass density ρ is bounded, which is
inconsistent with the black hole case. A separate inves-
tigation for the case of black holes, with the complete field
equations without any weak field assumptions, remains an
open problem. Even for neutron stars, our results will only
be approximate as we use the first post-Newtonian approxi-
mation in our fluid model. In some vector models of
spontaneous Lorentz violation, it has been shown that a
relativistic computation of the structure of a neutron star
can play a strong role in determining accurate limits on
Lorentz violation parameters from binary pulsar systems
[32]. This issue remains an open question in the SME for
future work.

V. OBSERVATION AND EXPERIMENT

The result for a two-body system in Eq. (31) can be used
to calculate observable deviations from conventional orbits
in GR. If we focus on secular changes in orbital elements,

which can be measured in binary pulsar system orbits and
Solar-System tests, we can calculate directly from Eq. (31)
using standard methods. For simplicity of presentation
here, we omit the Oð1=r6Þ and higher terms in the
acceleration expression (31) and use the truncated version
(36). After some calculation we find no change in the
semi-major axis a and eccentricity e of a Keplerian ellipse
when averaged over one orbit. The inclination i, angle of
nodes Ω, and periastron angle ω change according to

�
di
dt

�
¼ 432an3ðcosωKPk − sinωKQkÞ

5ð1 − e2Þ2R̄3
;

�
dΩ
dt

�
¼ 432an3 csc iðsinωKPk þ cosωKQkÞ

5ð1 − e2Þ2R̄3
;

�
dω
dt

�
¼ 216an3

5ð1 − e2Þ2R̄3
½KPP þ KQQ − 2Kkk

− 2 cot iðsinωKPk þ cosωKQkÞ�; ð38Þ

where P, Q, and k are three unit vectors describing the
orientation of the orbit (P is along the periastron, k is
normal to the orbital plane, and P × Q ¼ k), and n is the
angular frequency of the orbit. In this expression we have
projected the coefficients Kjk along these unit vectors [20].
The last orbital element is the mean anomaly l0. It is
straightforward to calculate but omitted here since it
typically does not impact phenomenology.
The results in Eq. (38) bear a close resemblance to the

precessions in the minimal SME from the coefficients s̄μν
and aμ [20,23]. In fact, for small eccentricity, the combi-
nation of coefficients sinωKPk þ cosωKQk matches the
combination of s̄μν coefficients sinωs̄Pk þ cosωs̄Qk in the
expressions for the secular change in the angles Ω and ω
but with a different amplitude. To estimate the sensitivity of
orbital analysis to the five measurable coefficients Kjk, we
can use the limits placed on the spatial s̄jk coefficients from
planetary ephemeris and binary pulsar analysis [11,15].
We use the order of magnitude expression s̄jk ∼
Kjk × 170n2a=R̄3 and assume s̄jk is limited at the 10−10

level, to obtain the crude estimates in Table I. For Solar
System ephemeris tests, the factor in front of Kjk differs by

TABLE I. Estimated sensitivity level for different test scenar-
ios. In the case of Solar System and binary pulsar tests, the

sensitivity is to the Kjk subset of the ðk̄ð8Þeff Þjklmnp coefficients. For
gravimeter and short-range tests, the sensitivity refers to the

relevant components of ðk̄ð8Þeff Þjklmnp.

Test Sensitivity to kð8Þ (in km4)

Solar System 1021

Gravimeter 1013

Binary pulsar 105

Short range 10−1
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about 4 orders of magnitude between Mercury’s orbit and
Saturn’s orbit, with Mercury having the largest factor due to
its compactness. We adopt the value for Earth, for which
s̄jk ∼ Kjk × 10−31 km−4. For binary-pulsar tests, the sit-
uation is much more favorable due to the compactness of
pulsars, and we find s̄jk ∼ Kjk × 10−15 km−4 for typical
systems. Using multiple orbits or binary pulsar systems
oriented differently, one can disentangle the different
components of Kjk (referring them to a standard coordinate
system: the Sun-centered Celestial equatorial system),
as was done for the minimal coefficients s̄μν and aμ.

Additional components of ðk̄ð8Þeff Þjklmnp are also of interest,
and the secular precessions can readily be calculated using
Eq. (31), with sensitivity suppressed by a factor of roughly
ðR̄=rÞ2 relative to Kjk.
Also appearing in Table I are estimated sensitivities for

short-range tests of gravity and Earth laboratory gravimeter
tests. Rather than the specific result in Eq. (31), we use
dimensional analysis based on the general integral expres-
sion for acceleration (27) to estimate these sensitivities.
This is because the terms in Eq. (31) varying with higher
powers of the inverse distance between the two masses will
play a crucial role once the radius of the bodies and the
interbody distances are comparable (R̄ ∼ r). The ratio of the
modified acceleration δa to the Newtonian acceleration is

approximately GNm48k̄ð8Þeff =ðc2L5Þ where L is the length
scale of the experiment, and c is the speed of light inserted

for the proper units of k̄ð8Þeff . Using this crude estimate, we
find that short-range gravity tests are likely to be the most
sensitive to the coefficients in the modified acceleration
(27). Compared to orbital tests, the masses involved are
minuscule in short-range gravity tests (about 1g), but the
distances are vastly smaller and the force can vary as the
inverse seventh power of distance by dimensional analysis,
thus strengthening the amplitude of the signal. For gra-
vimeter tests, the source is the Earth and distances are much
larger so we do not expect these tests to be as sensitive.
Note that for short-range gravity tests and free-fall experi-
ments near the Earth, the full expression for the acceleration
is needed and the approximate result (31) does not suffice.
It is useful to consider how the signal from general

relativity compares in these scenarios. Roughly speaking,
the ratio of the first post-Newtonian acceleration in GR to
the Newtonian acceleration is given by the dimensionless
factor GNm=ðc2rÞ, as can be seem from Eq. (30). This
factor is minuscule for laboratory masses (∼10−28) and
still small but in principle observable for gravimeter
tests (∼10−10) [49]. However, the modified (point-mass)
acceleration in GR is either proportional to velocity terms
which are negligible, or scales the usual Newtonian
acceleration and is therefore unlikely to interfere with
Earth-laboratory tests seeking the Lorentz-breaking
acceleration in Eq. (27).

For orbital tests, analysis can proceed using Eq. (31) or
Eq. (36) so long as the interbody distance is sufficiently
large compared to the size of the bodies in the system.
When considering short-range gravity tests [50], it is
necessary to work out the full integral in Eq. (27), along
with the Newtonian force to obtain the needed total force
between two laboratory test bodies. However, analysis
usually proceeds by using the point-mass force expression
in a numerical integration code, along with modeling of the
experiment. In the present case, the point-mass expression
cannot be defined properly. The starting point instead
would be the integral expression for the acceleration of
body a due to body b, displayed in Eq. (27), which can
be evaluated numerically for a given distribution of mass.
The seven partial derivatives inside the integral can be
calculated in a straightforward manner but result in a
lengthy expression inside the integrand; this could also
be implemented numerically.
In principle then, short-range gravity tests can measure a

subset of the coefficients ðk̄ð8Þeff Þjklmnp in the laboratory
frame. As with other SME coefficients, they are considered
constant in the canonical, approximately inertial, Sun-
centered frame (SCF) [5,51]. Neglecting boost effects from
the Earth’s velocity, a rotation RjJ dependent on the Earth’s
sidereal frequency ω⊕ is needed to relate the lab frame to
the SCF. Specifically, the coefficients are transformed
according to

ðk̄ð8Þeff Þjklmnp ¼ RjJRkKRlLRmMRnNRpPðk̄ð8Þeff ÞJKLMNP;

ð39Þ

where the components in the SCF are denoted with capital
letters. The laboratory-frame coefficients are thus time
dependent and can potentially modulate the measured force
with up to sixth-order harmonics in the frequency ω⊕.
As with the mass-dimension-six coefficients explored in
Ref. [25], the relevant short-range tests are those that
satisfy the perturbative criteria, which implies that sensi-
tivity at the level of the Newtonian force between the
masses is needed.
What can be said about the possible sizes of the

coefficients ðk̄ð8ÞÞABC? The SME effective field theory
framework describes a broad class of possible effects,
and does not make specific predictions concerning the
sizes of these coefficients. However, the inherent weakness
of gravity compared to the other forces in nature evidently
leaves room for violations of spacetime symmetry that are
large compared to other sectors. Consider the current limits
on coefficients in the gravity sector. For the coefficients s̄μν,
the best laboratory limits are at the 10−10 level, with
improvements of up to 4 orders of magnitude in astro-
physical tests on these dimensionless coefficients [16].
However, for the mass-dimension-six coefficients

ðk̄ð6Þ1 Þκλμναβ and ðk̄ð6Þ2 Þκλμναβγδ, the limits are at the
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10−8 m2 level. When compared to the Planck length
10−35 m, it is evident that symmetry-breaking effects that
are not Planck suppressed could still have escaped detec-
tion. This kind of “countershading” occurs for matter-
gravity couplings such as the aμ coefficients and in other
sectors [22,52]. This theme continues for the mass-
dimension-eight coefficients k̄ð8Þ in the cubic couplings
considered in this work, where coefficients as large as 1 km4

could have escaped detection. Note also that any particular
model that matches the form of the Lagrangian (3) will be
subject to any limits garnered from the analysis herein.

VI. SUMMARY

In this work we studied a cubic curvature coupling
describing general Lorentz and diffeomorphism symmetry
breaking for gravity, as part of the general effective field
theory expansion of the SME. The basic Lagrangian for this
coupling is given in Eq. (3) and the degree of symmetry
breaking is described by the set of coefficient fields
ðkð8ÞÞαβγδκλμνϵζηθ with inverse quartic mass dimension. We
studied the field equations for the spacetime metric up to
quadratic order in an expansion around a flat background
(6) and assuming spontaneous Lorentz-symmetry breaking.
The cubic coupling term provides a readily calculable
example of the effects of Lorentz and diffeomorphism
symmetry breaking at second order in the metric fluctua-
tions hμν in the SME framework. The field equations also
satisfy the conservation laws expected of spontaneous
symmetry breaking to quadratic order in the metric fluc-
tuations hμν.
The remainder of the paper explored the phenomeno-

logical consequences of the field equations for gravitational
waves and post-Newtonian physics. In Sec. III, we showed
some key null results. First, the propagation and dispersion
of gravitational waves is unaffected by the cubic coupling

form of Lorentz breaking that we consider. Second, the
energy and momentum loss for a binary system radiating
gravitational waves to spatial infinity remains standard
upon averaging over an orbital time scale.
In Sec. IV, we focused on the weak-field, slow-motion

limit and derived the post-Newtonian metric in Eq. (22).
The cubic curvature coupling term in the SME results in an
Oðv4Þ correction to the metric components g00 comprised
of the potentialΨ given in Eq. (18). We modeled matter as a
perfect fluid and used this to derive the acceleration of a
massive self-gravitating body in a two-body system. The
modification to the GR acceleration is given in Eq. (31) and
contains GWEP-violating dependence on internal structure.
The Lorentz-breaking effects in the post-Newtonian limit

are controlled by a subset ðk̄ð8Þeff Þjklmnp of 56 combinations

of the full ðkð8ÞÞαβγδκλμνϵζηθ set of coefficients from the
Lagrangian, thus making analysis in this limit more
tractable.
In Sec. V, we focused on the two-body acceleration and

considered observations with binary pulsars and Solar
System tests. We found the strongest sensitivity is likely
to be with short-range gravity tests involving controlled
laboratory masses, since the strength of the signal grows
dramatically with the decreasing separation of masses.
A crude estimate of the sensitivity for different categories
of tests is provided in Table I. Similar to other SME
coefficients, the cubic coupling coefficients exhibit a kind
of countershading, where the weakness of gravity can hide
comparatively large Lorentz violation.
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