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We show that certain three-dimensional Hořava-Lifshitz gravity theories can be written as Chern-Simons
gauge theories on various nonrelativistic algebras. The algebras are specific extensions of the Bargmann,
Newton-Hooke and Schrödinger algebras each of which has the Galilean algebra as a subalgebra. To show
this we employ the fact that Hořava-Lifshitz gravity corresponds to dynamical Newton-Cartan geometry. In
particular, the extended Bargmann (Newton-Hooke) Chern-Simons theory corresponds to projectable
Hořava-Lifshitz gravity with a local Uð1Þ gauge symmetry without (with) a cosmological constant.
Moreover we identify an extended Schrödinger algebra containing three extra generators that are central
with respect to the subalgebra of Galilean boosts, momenta and rotations, for which the Chern-Simons
theory gives rise to a novel version of nonprojectable conformal Hořava-Lifshitz gravity that we refer to as
Chern-Simons Schrödinger gravity. This theory has a z ¼ 2 Lifshitz geometry as a vacuum solution and
thus provides a new framework to study Lifshitz holography.
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I. INTRODUCTION

The local equivalence of three-dimensional (3D)
Einstein gravity (with or without a cosmological constant)
in terms of a Chern-Simons gauge theory [1,2] has been
of crucial importance in order to gain insights into the
classical and quantum properties of the theory, along with
holographic dualities to two-dimensional conformal field
theories (CFTs). Three-dimensional (relativistic) gravity
thus plays a special role due to its simplicity, having no
propagating degrees of freedom, yet being nontrivial
enough to allow for black holes and numerous other
interesting features.
Recently nonrelativistic geometries have gained consid-

erable interest, in part due to their appearance in non-
anti–de Sitter (AdS) holography [3–6], their relevance in
condensed matter setups such as the fractional quantum
Hall effect [7,8] and other fluid/field-theoretic applications
[6,9–12]. Moreover these geometries lead to interesting
theories of nonrelativistic gravity, beyond Newtonian
gravity as embodied in the original formulation of
Cartan. In particular, a novel generalization of Newton-
Cartan geometry with torsion was first observed in Ref. [3]
and it was subsequently shown in Ref. [13] that making
this geometry dynamical leads to the known versions of
Hořava-Lifshitz gravity constructed in Refs. [14–16].

Interesting supersymmetric extensions of Newton-Cartan
gravity have been considered as well [17–19]. All this begs
the question whether in three dimensions such nonrelativ-
istic gravity theories are related to Chern-Simons (CS)
theories, in parallel to the relativistic case.
The generalization of theCS formulation to nonrelativistic

Galilean gravity was initiated in the pioneering work [20],
inwhich theCSgauge field takes values in aGalilean algebra
with two central extensions (the extended Bargmann alge-
bra), replacing the Poincaré algebra of the relativistic setting.
We will show in this paper that this vielbein formulation is
equivalent to three-dimensional torsionless Newton-Cartan
(NC) gravity [13], which in turn is the three-dimensional
Uð1Þ-invariant projectable Hořava-Lifshitz gravity of
Ref. [16].1 By going to an extended Newton-Hooke algebra,
we furthermore show that a cosmological constant can be
added to the theory. Moreover, by constructing a z ¼ 2
Schrödinger algebra with three extra generators, that are
central with respect to the subalgebra of Galilean boosts,
momenta and rotations, we obtain a novel action
for conformal nonprojectable Hořava-Lifshitz gravity. The
latter theory corresponds to a new version of dynamical
twistless torsional Newton-Cartan geometry which we call
Chern-Simons Schrödinger gravity.
The CS formulation based on the extended Bargmann

algebra can be viewed as the nonrelativistic counterpart of
three-dimensional Einstein gravity without a cosmological
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1The topological nature of this theory was also discussed in
Ref. [16].
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constant. Adding a cosmological constant via the Newton-
Hooke algebra does not have the same effect as in the
relativistic case. In particular the theory is still described by
projectable Hořava-Lifshitz (HL) gravity. It will be shown
that the cosmological constant leads to time-dependent
geometries.
In order to find the counterpart of AdS3 gravity we need

to find a CS theory that is equivalent to nonprojectable
HL gravity. This is provided by considering the extended
Schrödinger algebra in 2þ 1 dimensions that allows for a
CS theory corresponding to twistless torsional Newton-
Cartan (TTNC) gravity, or what is the same nonprojectable
HL gravity, with z ¼ 2 scaling symmetry. We show that this
theory of Chern-Simons Schrödinger gravity admits z ¼ 2
Lifshitz geometries and thus provides a new framework to
study Lifshitz holography.
This paper is organized as follows. In Sec. II we discuss

the basic properties of the three Lie algebras on which
the CS actions are based, namely the extensions of the
Bargmann, Newton-Hooke and Schrödinger algebras that
admit a nondegenerate metric. In Sec. III we construct the
most general CS actions compatible with these symmetries.
This includes terms that are the nonrelativistic counterpart
of the Lorentz CS term that can be added to the Einstein-
Hilbert action in three dimensions. We continue in Sec. IV
to rewrite the CS actions based on the Bargmann and
Newton-Hooke algebras in the metric formulation of
dynamical Newton-Cartan geometry showing that the
resulting theory is a known version of projectable HL
gravity. In this section we also discuss the local properties
of the solutions to the flatness conditions. Finally in Sec. V
we show that the CS theory based on the extended
Schrödinger algebra is equivalent to a novel version of
TTNC/nonprojectable HL gravity. In that section we also
show that the theory admits z ¼ 2 Lifshitz solutions. We
conclude with a discussion and outlook in Sec. VI.

II. NONRELATIVISTIC LIE ALGEBRAS WITH
NONDEGENERATE METRICS

Nonrelativistic symmetry algebras are typically non-
semisimple Lie algebras, containing the Galilean algebra
as a subalgebra, which consists (in 2þ 1 dimensions)
of the generators J (rotation), Pa (translations, a ¼ 1, 2),
Ga (Galilean boosts) andH (Hamiltonian). In order to write
down a Chern-Simons theory one needs a nondegenerate
symmetric bilinear form (metric) on the Lie algebra that
serves to define the trace in the Chern-Simons action2

LCS ¼ Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�
: ð1Þ

For a nonsemisimple Lie algebra the existence of such a
bilinear form is a nontrivial requirement, and in the case of
the Galilean algebra with nonzero commutators

½J; Pa� ¼ ϵabPb; ½J;Ga� ¼ ϵabGb; ½H;Ga� ¼ Pa; ð2Þ
it necessitates the addition of central elements. It is well
known that the Galilean algebra can be centrally extended
to the Bargmann algebra

½Pa;Gb� ¼ Nδab: ð3Þ
The mass generator N remains central even in larger
algebras such as the Schrödinger and Newton-Hooke
algebras.
In 2þ 1 space-time dimensions these algebras can be

further extended as follows3:

½Ga;Gb� ¼ Sϵab; ½Pa; Pb� ¼ Zϵab;

½Pa;Gb� ¼ Nδab − Yϵab ð4Þ
where the generators S, Y and Z may have nontrivial
commutators with the rest of the algebra, determined by
Jacobi identities. In the case of the Schrödinger algebra
these three extra generators are linearly independent, while
for the Newton-Hooke algebra Y ¼ 0 and Z is proportional
to S. These extensions play an important role in obtaining
nondegenerate metrics on various nonrelativistic symmetry
algebras such as the Bargmann, Newton-Hooke and
Schrödinger algebras. In the following, we denote by
Bðx; yÞ the bilinear form where x and y are elements of
the Lie algebra. Symmetry requires that Bðx; yÞ ¼ Bðy; xÞ
and invariance under the action of the algebra corresponds
to Bð½z; x�; yÞ þ Bðx; ½z; y�Þ ¼ 0 for all z, x, y.

A. Extended Bargmann algebra

If we add the central element S in Eq. (4) (but not Y and
Z) to the Bargmann algebra (2)–(3) the resulting non-
semisimple Lie algebra is a semidirect sum of the normal
subalgebra H;Pa; N with the Nappi-Witten algebra [23]
consisting of J, Ga, S (which is a central extension of the
two-dimensional Euclidean algebra). This algebra was used
in the CS theory of Ref. [20] and corresponds, as shown
below, to a 3D projectable Hořava-Lifshitz gravity theory.
The possible nontrivial values of Bðx; yÞ for the centrally
extended Bargmann algebra are given by

2For brevity, the overall multiplicative constant k=ð4πÞ involv-
ing the Chern-Simons level k, appearing in this action will be
omitted, as it plays no role in our discussions below.

3Note that this is an extension of the Galilean algebra by N, S,
Y, Z where in general only N and Z are central. For S to also be
central one needs to remove Y from the algebra. Indeed, in the
case of the Galilean algebra one cannot add Y as a central
extension because there is no nontrivial cohomology associated
with it [21,22] (we thank Joaquim Gomis for pointing this out
to us). In the present paper we will never use Y in the context
of the Galilei algebra but only in the larger Schrödinger
algebra. If one wants to have Y central, one needs to remove
Z from the algebra, in which case S is not central.

JELLE HARTONG, YANG LEI, and NIELS A. OBERS PHYSICAL REVIEW D 94, 065027 (2016)

065027-2



BðH; SÞ ¼ −BðJ; NÞ ¼ c1; BðPa;GbÞ ¼ c1ϵab;

BðGa;GbÞ ¼ c2δab; BðJ; SÞ ¼ c2;

BðJ; JÞ ¼ c3; BðH; JÞ ¼ c4; BðH;HÞ ¼ c5; ð5Þ

where ci are arbitrary constants and with c1 ≠ 0 for the
matrix to be nondegenerate. If we remove the central
element S from the algebra the bilinear form becomes
degenerate.

B. Extended Newton-Hooke algebra

There exists a deformation of the Bargmann algebra
called the Newton-Hooke algebra. Its nonzero commutators
are those of Eqs. (2)–(3) plus ½H;Pa� ¼ −ΛcGa. There
exists an extension of this algebra involving the S generator
where the central element appears in

½Ga;Gb� ¼ Sϵab; ½H;Pa� ¼ −ΛcGa; ½Pa;Pb� ¼ ΛcSϵab:

ð6Þ

This extended Newton-Hooke algebra, which reduces to
the extended Bargmann algebra for Λc ¼ 0, was studied in
the context of CS theories in Ref. [24]. For Λc ≠ 0, the
parameter Λc can be set to one by rescaling ðH;Pa; NÞ →
Λ1=2
c ðH;Pa; NÞ. The most general symmetric bilinear form

that one can define on the algebra is given by Eq. (5)
together with

BðH;NÞ ¼ −Λcc2; BðPa; PbÞ ¼ Λcc2δab; ð7Þ

and requiring Λc ≠ c21=c
2
2 ensures that the matrix is

nondegenerate.

C. Extended Schrödinger algebra

The conformal extension of the Bargmann algebra is the
Schrödinger algebra (with dynamical exponent z ¼ 2). The
Hamiltonian is extended to an SLð2;RÞ algebra consisting
of dilatations D with z ¼ 2 and a special conformal
generator K that form the subalgebra

½D;H� ¼ −2H; ½H;K� ¼ D; ½D;K� ¼ 2K: ð8Þ

The Schrödinger algebra is obtained by taking this
SLð2;RÞ algebra and specifying how it acts on the
Bargmann subalgebra (2)–(3). This action is given by

½H;Ga� ¼ Pa; ½D;Pa� ¼ −Pa;

½D;Ga� ¼ Ga; ½K;Pa� ¼ −Ga: ð9Þ

The mass generator N remains central with respect to the
full Schrödinger algebra.
It is possible to add dilatations to the extended Bargmann

algebra of Sec. II A by taking ½D; S� ¼ 2S. However this

algebra has no nondegenerate metric. If we consider the full
central extension (4), i.e. we add S, Y and Z to the
Bargmann algebra we can add the full SLð2;RÞ algebra
(8) such that Eq. (9) continues to hold. The action of the
SLð2;RÞ subalgebra on S, Y and Z is nontrivial and fully
determined by the Jacobi identities given all the other
commutators.4 The result is that the nonzero commutators
are

½H; Y� ¼ −Z; ½H; S� ¼ −2Y; ½K; Y� ¼ S;

½K; Z� ¼ 2Y; ½D; S� ¼ 2S; ½D;Z� ¼ −2Z: ð10Þ
The extended Schrödinger algebra is thus given by
Eqs. (2)–(4), (8), (9) and (10). The corresponding sym-
metric bilinear form invariant under the extended
Schrödinger algebra is

BðH; SÞ ¼ BðD; YÞ ¼ BðK; ZÞ ¼ −BðJ; NÞ ¼ c1;

BðPa;GbÞ ¼ c1 ϵabBðH;KÞ ¼ −c2;

BðD;DÞ ¼ 2c2; BðJ; JÞ ¼ c3; ð11Þ
which is nondegenerate if c1 ≠ 0.

III. NONRELATIVISTIC CHERN-SIMONS
ACTIONS

We now turn to study the form of the CS action (1) for
each of these three algebras which have the Bargmann
algebra as a subalgebra and allow for a nondegenerate
metric.

A. Bargmann and Newton-Hooke invariant
Chern-Simons actions

The extended Bargmann algebra can be obtained by
setting Λc ¼ 0 in the extended Newton-Hooke algebra so
we will construct the CS action using the metric (5) and (7).
Expanding the gauge connection as A ¼ Hτ þ Paeaþ
GaΩa þ JΩþ Nmþ Sζ, the CS action becomes

Tr

�
A ∧ dAþ 2

3
A ∧ A ∧ A

�

¼ 2c1

�
−ϵabRaðGÞ ∧ eb þ 1

2
ϵabτ ∧ Ωa ∧ Ωb −Ω ∧ dm

þ ζ ∧ dτþΛcτ ∧ e1 ∧ e2
�

þ c2½Ωa ∧ RaðGÞ þ 2ζ ∧ dΩþΛcea ∧ RaðPÞ
− 2Λcτ ∧ RðNÞ þΛcea ∧ Ωa ∧ τ�
þ c3Ω ∧ dΩþ 2c4τ ∧ dΩþ c5τ ∧ dτ; ð12Þ

4This is an explicit example of a more general theorem on
double extensions of Lie algebras, elaborated on in Ref. [25]. We
thank Jan Rosseel for useful discussions on this point.
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(see also Refs. [20,24]) where the curvatures RaðPÞ, RaðGÞ
and RðNÞ are given by

RaðPÞ ¼ dea −Ωa ∧ τ − ϵabΩ ∧ eb;

RaðGÞ ¼ dΩa − ϵabΩ ∧ Ωb; RðNÞ ¼ dm −Ωa ∧ ea:

ð13Þ
These curvatures are defined by the expansion of the field
strength

F ¼ dAþ A ∧ A

¼ HRðHÞ þ PaRaðPÞ þGaRaðGÞ þ JRðJÞ
þ NRðNÞ þ SRðSÞ: ð14Þ

We see that Λc plays the role of a cosmological constant
term (in the c1 term). The terms proportional to c2Λc are
by themselves invariant under the gauge transformations
δA ¼ dΛþ ½A;Λ�.
The terms with coefficients c4 and c5 in Eq. (12) are not

interesting as they can be removed by a field redefinition of
ζ. This leads to a new value for the parameter in front of the
Ω ∧ dΩ term. Hence we can always restrict ourselves to c1,
c2 and c3 and set to zero c4 ¼ c5 ¼ 0. When Λc ¼ 0 the
terms proportional to c2 and c3 are

c2ðΩa ∧ RaðGÞ þ 2ζ ∧ dΩÞ þ c3Ω ∧ dΩ: ð15Þ
These can be thought of as the analogue of the Lorentz CS
term. The term with coefficient c2 is a novel Galilean boost
invariant combination that starts as Ωa ∧ dΩa plus extra
terms to make it invariant. To see the invariance explicitly
we give the transformations of the connections for Λc ¼ 0
appearing in Eq. (15) that read

δΩa ¼ dλa þ ϵabðλΩb − λbΩÞ; δΩ ¼ dλ;

δζ ¼ −ϵabλaΩb: ð16Þ
If we consider the CS theory on a manifold with a boundary
they are expected to lead to Galilean boost and rotation
anomalies on the boundary theory. In the simplest setting
with c2 ¼ c3 ¼ 0 the ζ equation of motion is dτ ¼ 0. In
Sec. IVA we will see that this corresponds to having no
torsion in the Newton-Cartan description, or what is the
same, projectable HL gravity [13].

B. Schrödinger invariant Chern-Simons action

The extended Schrödinger algebra is Eqs. (2)–(4), (8),
(9) and (10). We expand the gauge field as

A ¼ Hτ þ Paea þ Gaω
a þ Jωþ NmþDbþ Kf

þ Sζ þ Yαþ Zβ: ð17Þ

Using the metric on the Lie algebra (11) the Chern-Simons
action can be written as

L ¼ 2c1½ ~R2ðGÞ ∧ e1 − ~R1ðGÞ ∧ e2 þ τ ∧ ω1 ∧ ω2

−m ∧ dω − f ∧ e1 ∧ e2 þ ζ ∧ ðdτ − 2b ∧ τÞ
þ α ∧ ðdb − f ∧ τÞ þ β ∧ ðdf þ 2b ∧ fÞ�
þ 2c2½b ∧ db − τ ∧ df þ 2b ∧ τ ∧ f� þ c3ω ∧ dω;

ð18Þ
where the curvature ~RaðGÞ is given by

~RaðGÞ ¼ dωa þ ϵabωb ∧ ω − ωa ∧ b − f ∧ ea: ð19Þ
There is no redefinition of the connections ζ, α and β that

allows one to remove the term with the coefficient c2
entirely. It transforms under the SLð2;RÞ transformations
inside the extended Schrödinger algebra. It would be
interesting to see if it corresponds to some anomaly for
a boundary theory like a Weyl-type anomaly.
The equation of motion of ζ now imposes the

on-shell condition that dτ ¼ 2b ∧ τ which is equivalent
to τ ∧ dτ ¼ 0. In the language of Newton-Cartan geometry
this corresponds to TTNC geometry [3,26] or what is the
same nonprojectable HL gravity [13]. The details will be
given in Sec. VA.

IV. CHERN-SIMONS ACTION FOR 3D
PROJECTABLE HOŘAVA-LIFSHITZ GRAVITY

We know from Ref. [27] that gauging the Bargmann
algebra leads to NC geometry. In Ref. [13] it was shown that
dynamical Newton-Cartan geometry is field-redefinition
equivalent to projectable Hořava-Lifshitz gravity as pre-
sented in Ref. [16]. Hencewe should be able to show that the
CS action given in Sec. III A is equivalent to a 3D projectable
HL gravity theory.

A. Bargmann invariant projectable
Hořava-Lifshitz gravity

Wewill now rewrite Eq. (12) with only the c1 coefficient
nonzero in a metric form using the language of NC
geometry. The connections τμ and eaμ are the vielbeins of
NC geometry. We define inverse vielbeins vμ and eμa via
δμν ¼ −vμτν þ eμaeaν so vμτμ ¼ −1, eμaτμ ¼ 0, vμeaμ ¼ 0 and
eμaebμ ¼ δba. It can be shown that the first term in the CS
action (12) can be written as

R2ðGÞ ∧ e1 − R1ðGÞ ∧ e2 ¼ vμeνaRμν
aðGÞτ ∧ e1 ∧ e2:

ð20Þ
With m ¼ −vμmμτ þ eμamμea it follows that the third term
in Eq. (12) becomes

m ∧ RðJÞ ¼
�
−
1

2
vμmμR − eρ2mρvμeν1RμνðJÞ

þ eρ1mρvμeν2RμνðJÞ
�
τ ∧ e1 ∧ e2; ð21Þ
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where we used that

RabðJÞ ¼ eμaeνbRμνðJÞ≡ 1

2
ϵabR: ð22Þ

The action (12) is written in a first-order formalism
where all the connections in Aμ are treated as independent
variables. The form we are looking for treats the NC
variables τμ, eaμ andmμ as the independent variables. Hence
we will integrate out the variables Ωa, Ω and ζ. Their
equations of motion are the NC curvature constraints [27]
RaðPÞ ¼ 0, RðNÞ ¼ 0 and RðHÞ ¼ dτ ¼ 0 where the
curvatures are given in Eq. (13). These are solved by
expressing Ωa

μ and Ωμ in terms of τμ, eaμ (their inverse) and
mμ where dτ ¼ 0. The off-shell implementation of the
curvature constraints makes the theory diffeomorphism
invariant because the NC curvature constraints imply that
the transformations of τμ, eaμ and mμ constitute diffeo-
morphisms and local Ga, J, N transformations [27].
In order to rewrite the CS action it will be useful to

employ the following Bianchi identity:

dRaðPÞ − ϵabΩ ∧ RbðPÞ −Ωa ∧ dτ

¼ −RaðGÞ ∧ τ − ϵabRðJÞ ∧ eb: ð23Þ

Using the curvature constraints RaðPÞ ¼ 0 and dτ ¼ 0
which will be implemented off shell we find
RaðGÞ ∧ τ þ ϵabRðJÞ ∧ eb ¼ 0. From this we conclude
that

vμeν1RμνðJÞ ¼ −eμ2eνaRμν
aðGÞ;

vμeν2RμνðJÞ ¼ eμ1e
ν
aRμν

aðGÞ: ð24Þ

Using that Ω1 ¼ −vμΩ1
μτ þ eμaΩ1

μea we conclude that
Eq. (12), with c1 ¼ 1 and all other constants zero, can
be written as

L ¼ eð2v̂μeνaRμν
aðGÞ þ ðeμaeνb − eνae

μ
bÞΩa

μΩb
νþvμmμRÞ;

ð25Þ

where e ¼ τ ∧ e1 ∧ e2.
To massage this expression further we need a notion of a

covariant derivative. This can be introduced via the vielbein
postulates

Dμτν ¼ ∂μτν − Γρ
μντρ ¼ 0;

Dμeaν ¼ ∂μeaν − Γρ
μνeaρ −Ωa

μτν − ϵabΩμebν ¼ 0; ð26Þ

where we take for Γρ
μν

Γρ
μν ¼ −v̂ρ∂μτν þ

1

2
hρσð∂μh̄νσ þ ∂νh̄μσ − ∂σh̄μνÞ; ð27Þ

in which

v̂μ ¼ vμ − hμνmν; h̄μν ¼ hμν − τμmν − τνmμ;

hμν ¼ δabeaμebν ; hμν ¼ δabeμaeνb: ð28Þ

The connection (27) is a symmetric connection for dτ ¼ 0
that is invariant under Ga, J, and N transformations. The
vielbein postulates relate Γρ

μν to Ωa
μ and Ωμ. These relations

are the same as the expressions obtained by solving the
curvature constraints Ra

μνðPÞ ¼ 0, RμνðNÞ ¼ 0 for Ωa
μ and

Ωμ. We denote by ∇μ the covariant derivative containing
the connection Γρ

μν. For dτ ¼ 0 we have [13,27]

½∇μ;∇ν�Xσ ¼ Rμνσ
ρXρ;

Rμνσ
ρ ¼ eρaτσRμν

aðGÞ − eσae
ρ
bRμνðJÞϵab: ð29Þ

We now switch to employing a Lagrangian density rather
then a 3-form. Using Eq. (29) and the fact that from the
vielbein postulates it follows that Ωa

μeνa ¼ ∇μvν we find
after performing a few partial integrations and writing
vμ ¼ v̂μ þ hμνmν that

L ¼ eð−∇μv̂μ∇νv̂ν þ∇νv̂μ∇μv̂ν þ vμmμR

þ ðhμρhνσ − hμσhνρÞ∇μmρ∇νmσÞ: ð30Þ
Finally, using partial integrations which give rise to a
commutator on one of the mμ vectors as well as properties
of the Riemann tensor, it can be shown that

L ¼ eðhμρhνσKμνKρσ − ðhμνKμνÞ2 − ~ΦRÞ; ð31Þ

where

~Φ ¼ −vμmμ þ
1

2
hμνmμmν: ð32Þ

This is the same action as the action5 (10.10) given in
Ref. [13] which in turn is based on the NC version of the
results of Ref. [16]. Note that the extrinsic curvature is
given by hνρKμρ ¼ −∇μv̂ν. One observes that the HL λ
parameter which can appear between the two extrinsic
curvature terms is equal to unity in Eq. (31).
If we include Λc appearing in the extended Newton-

Hooke algebra we simply end up with the same Lagrangian
to which we add eΛc. We note that the sign of the
cosmological constant term is not fixed.
The Lagrangian (31) should be thought of as depending

on the variables τμ ¼ ∂μτ, ~Φ and h̄μν and their derivatives.
In projectable HL gravity τ is identified with the

5In the analysis of Ref. [13] a different choice was made for the
connection Γρ

μν that was denoted by Γ̂ρ
μν. This other choice is

related to Eq. (39) via equations (5.7) and (5.3) of Ref. [13]. It can
be shown that the form of the Lagrangian is not affected by these
choices.
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Arnowitt-Deser-Misner (ADM) time coordinate leading to
foliation preserving diffeomorphism invariance.

B. Solutions

Wewill solve the equations of motion of Eq. (12), F ¼ 0
with F expanded as in Eq. (14), locally for the case with
c2 ¼ c3 ¼ c4 ¼ c5 ¼ 0 but with Λc arbitrary. Under a
gauge transformation the connection transforms as
δA ¼ dΛþ ½A;Λ�. We will write Λ as Λ ¼ ξμAμ þ Σ,
where Σ ¼ Gaλ

a þ Jλþ Nσ þ Sκ. In components these
are the following transformations:

δτμ ¼ Lξτμ; δeaμ ¼ Lξeaμ þ λaτμ þ ϵabλebμ;

δΩa
μ ¼ LξΩa

μ þ ∂μλ
a þ ϵabðλΩb

μ − λbΩμÞ;
δmμ ¼ Lξmμ þ λaeaμ þ ∂μσ; δΩμ ¼ LξΩμ þ ∂μλ;

δζμ ¼ Lξζμ − ϵabλaΩb
μ þ ∂μκ: ð33Þ

Without loss of generality we can fix the gauge redun-
dancy by setting τμ ¼ δtμ, eaμ ¼ δiμδ

a
i , Ωμ ¼ 0, Ωa ¼

−Λcδ
a
i x

i and m ¼ 1
2
Λcxixidtþ dσ. The relation between

NC geometry and the ADM form of the HL metric

ds2 ¼ −N2dt2 þ γijðdxi þ NidtÞðdxj þ NjdtÞ; ð34Þ
uses the following identifications (see Sec. VIII of
Ref. [13]):

τt ¼ N; τi ¼ 0; hij ¼ γij; hit ¼ htt ¼ 0;

mt ¼ 0; mi ¼ −N−1γijNj: ð35Þ
This identification only works in special gauges of the CS
theory. When written in the form (31) the HL theory is not a
Lorentzian metric theory. In order to make contact with
the ADM parametrization we take σ ¼ − 1

2
Λctxixi, so that

mt ¼ 0 and mi ¼ ∂iσ ¼ −Λctxi.
Hence the full solution for τ, ea andm is given by τ ¼ dt,

ea ¼ δai dx
i,m ¼ −Λctxidxi. This corresponds to the ADM

variables N ¼ 1, Ni ¼ Λctxi, hij ¼ δij. By making the

coordinate transformation xi ¼ e−Λct2=2Xi this becomes

ds2 ¼ −dt2 þ e−Λct2dXidXi: ð36Þ

We thus find cosmological solutions for Λc ≠ 0. Of course
this is only true sufficiently locally, as there can be
nontrivial identifications on a global level.

V. CHERN-SIMONS ACTIONS FOR 3D
NONPROJECTABLE HOŘAVA-LIFSHITZ

GRAVITY

In Ref. [26] it was shown that gauging the Schrödinger
algebra leads to torsional Newton-Cartan geometry with
twistless torsion τ ∧ dτ ¼ 0. In Ref. [13] it has been shown
that TTNC geometry corresponds to nonprojectable HL

gravity. We refer to Ref. [28] for an alternative derivation of
the same connection between dynamical TTNC geometry
and HL gravity. We now show that the CS action given in
Sec. III B is equivalent to a 3D nonprojectable HL gravity
theory.

A. Chern-Simons Schrödinger gravity

Our goal will be to rewrite the CS Lagrangian (18) with
c2 ¼ c3 ¼ 0 into the metric formulation of TTNC geom-
etry. As in the case discussed in Sec. IVAwe will go from a
first-order formalism to a second-order one by integrating
out the connections ωa, ω, ζ and α. The equations of
motion corresponding to varying these connections are the
curvature constraints ~RaðPÞ ¼ 0, ~RðNÞ ¼ 0, ~RðHÞ ¼ 0,
and ~RðDÞ ¼ 0. These curvatures can be computed by
expanding the curvature of Eq. (17) as

F ¼ H ~RðHÞ þ Pa
~RaðPÞ þGa

~RaðGÞ þ J ~RðJÞ
þ N ~RðNÞ þD ~RðDÞ þ K ~RðKÞ þ S ~RðSÞ
þ Y ~RðYÞ þ Z ~RðZÞ: ð37Þ

Solving the constraints ~RaðPÞ ¼ 0, ~RðNÞ ¼ 0, ~RðHÞ ¼ 0

and ~RðDÞ ¼ 0 was done in Ref. [26] and the solution can
be expressed as giving ωa, ω, b and f in terms of the
vielbeins τ (obeying τ ∧ dτ ¼ 0), ea, m and the compo-
nents v̂μbμ and v̂μfμ. The curvature constraints also allow
us to rewrite the algebra of gauge transformations acting on
these fields as the algebra of diffeomorphisms and internal
transformations consisting of local Ga, J, N, D and K
transformations.
The expressions for ωa and ω can also be obtained from

a vielbein postulate for a specific realization of an affine
connection ~Γρ

μν that is invariant under all the transforma-
tions except those that are diffeomorphisms. These vielbein
postulates are

Dμτν ¼ ∂μτν − ~Γρ
μντρ − 2bμτν ¼ 0;

Dμeaν ¼ ∂μeaν − ~Γρ
μνeaρ − ωa

μτν − ϵabωμebν − bμeaν ¼ 0;

ð38Þ

where we take for ~Γρ
μν

~Γρ
μν ¼ −v̂ρð∂μ − 2bμÞτν þ

1

2
hρσðð∂μ − 2bμÞh̄νσ

þ ð∂ν − 2bνÞh̄μσ − ð∂σ − 2bσÞh̄μνÞ: ð39Þ

The connection ~Γρ
μν is symmetric. The associated curvature

is ½ ~∇μ; ~∇ν�Xσ ¼ ~Rμνσ
ρXρ for any vector Xρ where [13]

~Rμνσ
ρ ¼ −eρdecσϵcd ~RμνðJÞ þ eρcτσ ~R

c
μνðGÞ

− δρμτσfν þ δρντσfμ þ δρσðfμτν − fντμÞ: ð40Þ
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The equations of motion for ζ and α are solved by

bν ¼
1

2
v̂μð∂μτν − ∂ντμÞ − v̂μbμτν;

fν ¼ v̂μð∂μbν − ∂νbμÞ − v̂μfμτν; ð41Þ
which is why we are left with v̂μbμ and v̂μfμ as independent
variables on top of the usual TTNC variables τ, ea and m.
These expressions satisfy eμaeνbRμνðKÞ ¼ 0.
Using the curvature constraints the Lagrangian (18) for

c2 ¼ c3 ¼ 0 and c1 ¼ 1 can be written as

L ¼ 2ðea ∧ ωa ∧ ω − τ ∧ ω1 ∧ ω2 þ f ∧ e1 ∧ e2

þ β ∧ ðdf þ 2b ∧ fÞÞ: ð42Þ

With the help of the vielbein postulates this can be further
rewritten as

L ¼ −ð2ϵμνρmρ∂μων þ ϵμνρϵσλκτρvκ ~∇μvσ ~∇νvλ

þ 2v̂μfμÞτ ∧ e1 ∧ e2 þ 2β ∧ ðdf þ 2b ∧ fÞ: ð43Þ

Using the above-mentioned results multiple times as well
as Eq. (28) and after performing various partial integrations
a lengthy calculation gives

L ¼ e½ðhανhβμ − hαμhβνÞh̄ασ ~∇μv̂σh̄βλ ~∇νv̂λ − ~Φ ~R

− 2v̂μfμ þ 2ϵμνρτρv̂σβνRμσðKÞ�; ð44Þ

where we defined ~RabðJÞ ¼ eμaeνb ~RμνðJÞ≡ 1
2
ϵab ~R.

The next step is to go from the connection ~Γρ
μν to the

torsionful connection (27). The torsion comes from the fact
that for TTNC we have τ ∧ dτ ¼ 0 so that the first term in
Eq. (27) is no longer symmetric. The difference between
these two connections is a tensor depending on bμ. We find

L ¼ e½ðhανhβμ − hαμhβνÞKαμKβν þ 2v̂μbμhνρKνρ

−2ðv̂μbμÞ2 − ~Φ ~R−2v̂μfμ þ 2ϵμνρτρv̂σβνRμσðKÞ�:
ð45Þ

If we express the spatial curvature ~R in terms of the
spatial curvature R defined with respect to the Ω con-
nection in Eq. (22) we find6 ~R ¼ R −∇μðhμνaνÞ. The
vector aμ is called the acceleration vector in HL gravity.
In TTNC geometry it is known as the torsion vector
aμ ¼ Lv̂τμ, since all information about the torsion of
Eq. (27) is contained in aμ. The extrinsic curvatures Kμρ

obey hνρKμρ ¼ −∇μv̂ν. We see that the DeWitt metric has

λ ¼ 1 where λ is the parameter in HL gravity that measures
the relative coefficient of the two extrinsic curvature
terms. The difference with Eq. (31) is that now there are
couplings to v̂μbμ. We note that bμ and fμ transform as
δbμ ¼ ∂μΛD þ ΛKτμ; δfμ ¼ ∂μΛK þ 2ΛKbμ − 2ΛDfμ,
where ΛD and ΛK are the local parameters of the D and K
transformations. We can thus gauge fix the K transforma-
tions by setting v̂μbμ to any desired value.
Finally we rewrite the last term in Eq. (45). Using that for

TTNC we can always write τμ ¼ N∂μτ, it can be shown
that

ϵμνρτρv̂σβνRμσðKÞ ¼ −
1

4
ϵμνρβντρð∂μ þ 2aμÞI; ð46Þ

where I is defined as I ¼ B2 − 4ðv̂μbμÞ2þ
2v̂ν∂νðB − 2v̂μbμÞ − 4v̂μfμ, in which B denotes the quan-
tity B ¼ v̂μN−1∂μN. Our final result is thus Eq. (45) with
Eq. (46). The action depends on the variables τμ ¼ N∂μτ,

h̄μν, ~Φ, v̂μbμ, v̂μfμ and βμ. The equation of motion for βμ
allows us to solve for v̂μfμ on shell.
The Lagrangian (45) provides a new way of constructing

conformal actions for nonprojectable HL gravity that we
refer to as Chern-Simons Schrödinger gravity. The main
difference with the z ¼ 2 Weyl invariant construction of
Refs. [13,26] is that we do not need to introduce a
Stückelberg scalar, called χ in Refs. [13,26]. This
Stückelberg scalar was needed in order to construct a
z ¼ 2 Weyl invariant combination of extrinsic curvature
terms based on a DeWitt metric with λ parameter 1=2,
i.e. ðhανhβμ − 1

2
hαμhβνÞKχ

αμK
χ
βν where Kχ

μν is the extrinsic
curvature scalar with mμ replaced by mμ − ∂μχ (see
Ref. [13] for details).

B. Lifshitz solutions

The Schrödinger invariant CS theory (18) with c2 ¼
c3 ¼ 0 admits z ¼ 2 Lifshitz solutions. It can be readily
verified that the following expressions solve the flatness
conditions F ¼ dAþ A ∧ A ¼ 0:

τ ¼ dt
r2

; e1 ¼ dr
r
; e2 ¼ dx

r
; b ¼ −

dr
r
; β ¼ −

dx
r
;

ð47Þ

with all other connections equal to zero. If we use the
relation to the ADM description of HL gravity expressed in
Eqs. (34) and (35) we find the z ¼ 2 Lifshitz metric

ds2 ¼ −
dt2

r4
þ dr2

r2
þ dx2

r2
: ð48Þ

The solution has a simpler form. If we denote b ¼ eðD−P1Þρ,
where r ¼ e−ρ, then the Lifshitz solution can be written as
A ¼ b−1abþ b−1db, where a ¼ Hdtþ ðP2 − ZÞdx.

6Formula (12.49) of Ref. [13] contains a typo. The vector aμ
should have been bμ. Since hμνbν ¼ 1

2
hμνaν this explains the

factor of 2 difference between the expression here and formula
(12.49) of Ref. [13].
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The 3D Lifshitz solution with z ¼ 2 was also found in
the context of CS theories for higher-spin theories [29,30].
However, it was pointed out in Ref. [31] that this inter-
pretation is problematic due to a degeneracy problem: the
spin connection cannot be determined from the torsion-free
equation. Put another way the nonrelativistic solutions of
SLðN;RÞ × SLðN;RÞ CS theory are not equivalent to
metric solutions. Here we show that the solution (47)
naturally emerges from a Newton-Cartan Chern-Simons
theory which is not a Lorentzian metric theory.

VI. DISCUSSION

The results obtained in this paper open up a number of
interesting applications and extensions. First of all, it will
be interesting to examine CS actions for other nonrelativ-
istic algebras, such as the Galilean conformal algebra, and
likewise for algebras that play a role in ultrarelativistic
limits, such as the Carroll algebra. In the latter case, one
expects a connection to the 3D Carrollian gravity
of Ref. [32].
Another worthwhile direction to pursue is to consider the

CS actions of this paper in the presence of nontrivial
boundaries, and consider aspects of edge physics as
performed e.g. in Ref. [33] for quantum Hall states. In
particular it would be interesting to study the role of the
Galilean boost CS term [with the coefficient c2 in Eq. (15)]
in relation to anomalies in this context. Further one could
try to find a microscopic description of the extended
Bargmann CS theory, e.g. using nonrelativistic fermions
with a mass gap such that the effective theory below
the mass gap is described by the extended Bargmann CS
theory.7 Moreover it is tempting to consider the CS theory
with the Galilean boost and rotation CS terms (with
coefficients c2 and c3) in Eq. (12) as the nonrelativistic
analogue of topologically massive gravity [34,35]. To
explore this idea further one would for example like to
understand the solutions of the theory.
An important application of our findings is to use the

Schrödinger invariant CS theory as a bulk holographic
action for z ¼ 2 Lifshitz space-times. The resulting Chern-
Simons Schrödinger gravity may be regarded as a very
minimal setup to do Lifshitz holography (see Ref. [36] for a
review). Using HL gravity in this context was proposed in
Refs. [37,38] and the CS reformulation of this paper is
expected to provide new insights. In particular the CS
formulation can give a proper definition of black objects
(provided they exist) in these nonrelativistic gravity

theories, and therewith also give information on boundary
hydrodynamics and other dynamical properties. We also
stress that our results point towards Lifshitz vacua appear-
ing naturally in nonrelativistic gravity, rather than in
Lorentzian metric theories. It would thus be interesting
to revisit some of the pathologies [39] and other properties
(see e.g. Ref. [40]) that have been examined within the
framework of Riemannian geometry.
Another relevant aspect to pursue, in close parallel with

higher-spin gravity, is to employ the techniques of
Refs. [41,42] to find the corresponding generalization of
holographic entanglement [43] for nonrelativistic CS grav-
ity. Moreover, a further extension of our ideas to non-
relativistic higher-spin gravity could be an interesting
direction. Similar in spirit, an SLð2;RÞ ×Uð1Þ CS theory
(called lower-spin gravity) was argued to be the minimal
setup to holographically describe warped CFTs [44]. In this
light one could try to find a relation between the present CS
theories or some close cousin thereof and two-dimensional
warped CFTs [45].
All the HL gravity actions obtained via our CS formu-

lation have the property that the HL λ parameter, which
appears in the DeWitt metric contracting the extrinsic
curvatures, is equal to unity. It would thus be interesting
to see whether by adding appropriate scalar matter fields,
i.e. considering CS matter theories, we can construct more
general HL actions for which λ ≠ 1.
Upon the completion of this work we were informed by

Eric Bergshoeff and Jan Rosseel of Ref. [46] in which it is
shown that the Bargmann invariant CS action can be
obtained by a nonrelativistic limit from three-dimensional
general relativity, augmented with two vector fields. This
work also obtains a supersymmetric generalization, which
is thus a supersymmetric extension of 3D projectable HL
gravity.
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