
Critical scaling in the large-N OðNÞ model in higher dimensions
and its possible connection to quantum gravity

P. Mati*

ELI-ALPS, ELI-Hu NKft, Dugonics tér 13, Szeged 6720, Hungary
and MTA-DE Particle Physics Research Group,

P.O.Box 51, H-4001 Debrecen, Hungary
(Received 1 February 2016; revised manuscript received 3 May 2016; published 20 September 2016)

The critical scaling of the large-N OðNÞ model in higher dimensions using the exact renormalization
group equations has been studied, motivated by the recently found nontrivial fixed point in 4 < d < 6

dimensions with metastable critical potential. Particular attention is paid to the case of d ¼ 5 where the
scaling exponent ν has the value 1=3, which coincides with the scaling exponent of quantum gravity in one
fewer dimensions. Convincing results show that this relation could be generalized to arbitrary number of
dimensions above five. Some aspects of AdS/CFT correspondence are also discussed.
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I. INTRODUCTION

The nontrivial critical behavior in OðNÞ theories are
well-known for dimensions d < 4 [1]. Thus, a statement on
the existence of interacting critical theories beyond four
space-time dimensions is rather unusual since one would
expect the triviality of the OðNÞ vector model in general
[2]. However, in recent works [3–5], exhaustive one, three,
and four loop analyses of the OðNÞ theory with cubic
interactions and N þ 1 scalars show that the large-N OðNÞ
theory could follow the asymptotically safe scenario under
the renormalization group in the UV. More precisely, it was
argued that the IR fixed point found in the aforementioned
OðNÞ theory with the cubic interaction is equivalent to a
perturbatively unitary UV fixed point in the large-N OðNÞ
model for dimensions 4 < d < 6. The presence of such UV
fixed point could be particularly interesting due to the
conjectured AdSdþ1=CFTd duality between a higher-spin
dþ 1-dimensional massless gauge theory in AdS space
(with an appropriate boundary condition) and the large-N
critical OðNÞ model in d dimensions [6]. The former is
called the Vasiliev theory, which describes a minimal
interacting theory with gravity and higher-spin fields in
its spectrum. It can be obtained as the tensionless limit of
string theory, where the infinite tower of higher-spin string
modes are massless, and since there is no energy scale it can
be considered as a toy model describing physics beyond the
Planck scale [7]. Studies related to the existence of the UV
fixed point in the large-N OðNÞ model, using conformal
bootstrap approach and exact (or functional) renormaliza-
tion group (ERG or FRG) methods, can be found in [8–10]
and [11,12], respectively.
The structure of the paper is the following. In Sec. II a

discussion of the previous results on the UV fixed point are
given. It is shown that the solution by polynomial

expansion coincides with one of the infinite many solutions
(the physically most sensible one) of the exact treatment. In
Sec. III the nontrivial critical scaling for higher dimensional
theories is derived. In Sec. IV a speculation on the possible
connection to quantum gravity is presented.

II. IDENTIFYING THE UV FIXED POINT

First, a brief review of the analytical results from [11] is
given. Let us consider the effective average action of the
OðNÞ symmetric theory in d dimensions within the local
potential approximation (LPA):

Γk ¼
Z

ddx

�
1

2
ð∂ϕÞ2 þUkðϕ2Þ

�
: ð1Þ

Uk is the dimensionful potential depending on ϕ2, where ϕ
is the dimensionful vacuum expectation value (VEV) of
the field. The subscript k stands for the RG scale i.e., the
Wilsonian cutoff, which defines the effective theory. In the
large-N limit the anomalous dimension of the Goldstone
modes disappears, therefore, setting the wave function
renormalization constant to unity in (1) gives a well-
justified approximation. In fact, the LPA is considered to
be exact in the large-N limit of the OðNÞ model [13–15].
The flow of the effective action is given by the exact
functional differential equation [16]

∂tΓk ¼
1

2
TrðΓð2Þ

k þ RkÞ−1∂tRk: ð2Þ

Here, the logarithmic flow parameter t ¼ lnðk=ΛÞ (where Λ
is the initial UV scale) is introduced with a momentum
dependent regulating function Rkðq2Þ which ensures that
the fluctuations above the Wilsonian cutoff scale are

integrated out. Γð2Þ
k ½ϕ� is used as a shorthand notation for

the second derivative with respect to the field and the trace*Peter.Mati@eli‑alps.hu, matipeti@gmail.com

PHYSICAL REVIEW D 94, 065025 (2016)

2470-0010=2016=94(6)=065025(7) 065025-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.065025
http://dx.doi.org/10.1103/PhysRevD.94.065025
http://dx.doi.org/10.1103/PhysRevD.94.065025
http://dx.doi.org/10.1103/PhysRevD.94.065025


denotes the integration over all momenta as well as the
summation over internal indices. This integral is evaluated
by choosing Rkðq2Þ so that Γk approaches the bare
action in the limit k → Λ and the full quantum effective
action when k → 0 [16]. A detailed study of an extensive
class of regulator functions is reported in [17]. In the
current case, the optimized regulator is chosen Rkðq2Þ ¼
ðk2 − q2Þθðk2 − q2Þ which provides an analytic result for
the momentum integral [18]. It is convenient to introduce
ρ≡ 1

2
ϕ2, which will be used throughout this paper.

Inserting (1) into (2) and applying the limit N → ∞ yields
the flow for the effective potential in the large-N [15]:

∂tu ¼ −duþ ðd − 2Þρu0 þ 1

1þ u0
; ð3Þ

where the dimensionless quantities u ¼ Uk−d with ρ ¼
ρk−dþ2 are introduced and u0 ¼ ∂ρu. An exact solution for
the ρ derivative of (3) can be obtained by using the method
of characteristics [15,19] and the fixed point solutions
associated to (3) can be given as an implicit function
ρ ¼ ρðu0�Þ. u� is introduced as the dimensionless effective
potential at the fixed point. The most compact form of these
exact solutions for d ¼ 2nþ 1 and d ¼ 2n (n ∈ Z) are
respectively

ρ¼ cu
0d
2
−1

� þ 1

ðd−2Þ2F1

�
2;1−

d
2
;2−

d
2
;−u0�

�
ð4Þ

and

ρ ¼ cu
0d
2
−1

� þ 1

ðdþ 2Þð1þ u0�Þ2 2F1

�
1; 2; 2þ d

2
;

1

1þ u0�

�
;

ð5Þ

where c is an arbitrary constant obtained from the inte-
gration, c ¼ c − dπ

4
sinðdπ=2Þ and 2F1 is the hypergeomet-

ric function. Figure 1 shows the solutions for the case in
d ¼ 5. Each curve corresponds to a solution with a
particular value of the parameter c. u0� ≥ 0 (4) holds for
every c ∈ R but in order to obtain a continuation of the
solutions to u0� ≤ 0 the constant c needs to take imaginary
values. There is one exception: the solution corresponding
to c ¼ 0. This is shown in Fig. 1 as the thick black curve
that passes smoothly through u� ¼ 0 and intersects the
horizontal and vertical axes at ρ ¼ 1=3 and u0�ð0Þ ≈ 0.1392
on the upper plane, respectively. It is tempting to consider
this fixed point potential as the physical one since it is
analytic at its extremum. On the other hand, this curve still
has the problem like the other solutions (including their
continuation): u0� can be only considered as a multivalued
function of ρ ∈ ½0; 0.6214� [11].
Focus now shifts to the author’s previous results [12]

where a different technique, based upon polynomial
expansion, was used to find the fixed point solutions of
the flow equation. The potential is assumed to be analytic in
this case:

uðρÞ ¼ lim
n→∞

Xn
i¼1

uðiÞð0Þ
i!

ρi: ð6Þ

The derivatives of the potential are the couplings of the
theory: u0ð0Þ ¼ g1 ¼ m2 (squared mass), u00ð0Þ ¼ g2 ¼ λ
(quartic coupling), etc… An efficient algorithm was
worked out for finding the fixed points of the theory for
expansions up to order 50, if required. This method is based
on the observation that all the couplings can be expressed
through the squared mass of the system at the fixed points,
g�i ¼ g�i ðm2�Þ. In the case of the five-dimensional large-N
OðNÞ model, the fixed point structure shows a non-trivial
fixed point as well as the noninteracting Gaussian fixed
point (GFP). The fixed point position drifts as the order of
the Taylor-expansion increases and converges to m2� ≈
0.1392 as shown in Fig. 2. As m2 ¼ u0ð0Þ, it can be
confidently stated that this is the same fixed point solution
as found by the analytic study of the flow when c ¼ 0 in
(4). In fact, this technique naturally singles out a fixed point
solution from all the other solutions that are present only in
the analytical case. In Fig. 1 this corresponds to the red line
segment on the thick black curve and will be considered as
the physical solution.
Figure 3 shows the comparison between the exact

critical potential, computed from (4), and the polynomial
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FIG. 1. Each curve corresponds to a critical potential derivative
with a particular choice of c in d ¼ 5. The thick black line is for
the c ¼ 0 solution. The red line segment is considered as the
physical branch. The axes are rescaled for clarity.
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expansion results, u�ðρÞ ¼
P

n
i¼1

g�i ðm2�Þ
i! ρi, with n ¼ 26. The

nonanalytic nature of the exact potential is very apparent as
it is restricted to the finite interval unlike to the polynomial
potential which was assumed to be analytical. The most
important features of this potential are the metastable
ground state and the lack of a true vacuum. This may
initially discourage further investigations, but metastable
and unstable vacua are not unknown. There is the question
on the electroweak vacuum stability for instance: it is still a
topical question if the Higgs potential exhibits a ground
state or if there is an unstable universe existing in a false
vacuum (with a very long lifetime) [20]. Alternatively,
the theory with the metastable potential could be saved
from the AdS side, too. As mentioned above, the critical
large-N OðNÞ theory in d ¼ 5 is possibly dual to a Vasiliev

higher-spin theory in AdS6 space, thus they must have the
same energy spectrum. In AdS space, the Breitenlohner-
Freedman (BF) bound gives a negative, dimension depen-
dent lower bound for the squared mass of the field, above
which the theory can be considered as stable [21]. The BF
bound can also be generalized for massless higher-spin
fields that also depends on the spin value [22]. In turn,
the same argument could hold for the other branch of
u0�ðρÞ < 0 for ρ ∈ ½0; 0.6214� with u0�ð0Þ ¼ m2� ≈ −0.5776,
Fig. 1. In this case the potential is completely unstable in
the restricted interval as u0ðρÞ < 0. However, this fixed
point potential is completely ignored by the polynomial
approach.

III. CRITICAL SCALING

Despite the unconventional properties of the potential, it
is still possible to extract the critical exponent ν. This is the
scaling exponent of the correlation length (or inverse mass)
and characterizes the system at criticality. For the exact
determination of the exponent in d dimensions the method
of eigenperturbation is used, which is based on the
linearized flow around the fixed point, i.e. uðρ; tÞ ¼
u�ðρÞ þ δuðρ; tÞ [19,23]. Using (3) the fluctuation equation
for the derivative of the potential reads:

∂tδu0 ¼ 2
u0�
u00�

�
∂ρ −

ðu0�u00�Þ0
u0�u00�

−
d − 4

2

u00�
u0�

�
δu0: ð7Þ

This can be thought of as an eigenvalue problem:
∂tδu0 ¼ θδu0, where the smallest eigenvalue θ equals the
negative inverse of the scaling exponent ν. Solving this
PDE via the method of separation of variables yields

δu0 ∝ etθu0�
1
2
ðθþd−2Þu00�: ð8Þ

The details of this computation are provided in the
Appendix. Perturbations at the node (u0�ðρ0Þ ¼ 0) are
required to have a high regularity so restrictions on the
values of θ are necessary in order to keep δu0 analytic. Both
formulas in (4) and (5) at u0� ¼ 0 take the value
ρð0Þ≡ ρ0 ¼ 1=ðd − 2Þ. Using Taylor expansion around
ρ0, and setting c ¼ 0 and c ¼ 0, a linear behavior of u0�
can be found, u0� ∝ ðρ − 1

d−2Þ. This makes u00� a constant and
substituting back this expression into (8) gives

δu0 ∝ etθ
�
ρ −

1

d − 2

�1
2
ðθþd−2Þ

: ð9Þ

The allowed values are then θ ¼ 2ðlþ 1 − d=2Þ, where l is
a non-negative integer, and the scaling exponent is obtained
by the lowest value of θ, i.e. for l ¼ 0. Thus, the scaling
exponent for arbitrary dimensions in the large-N OðNÞ
model is

ν ¼ ðd − 2Þ−1: ð10Þ
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FIG. 2. The RG flow in the fm2; λg hyperplane of theory space.
The drifting of the nontrivial UV fixed point is shown towards
fm2�; λ�g ≈ f0.1392;−0.3613g with increasing expansion order
(blue dots). The red dot at the origin represents the GFP. Arrows
point from UV to IR scales.
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FIG. 3. The metastable critical potential in d ¼ 5. On the
horizontal axis the field VEV (ϕ ¼ ffiffiffiffiffi

2ρ
p

) was used hence the
exact potential is only valid between ϕ ∈ ½0; 1.1148�.
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By using the polynomial expansion, the critical exponent ν
can be calculated as the negative inverse of the lowest
eigenvalue of the stability matrix at the fixed point Bij ¼
∂βi=∂gjjg¼g�

[16], where the beta functions are defined as
the RG scale derivative of the couplings: βi ¼ ∂giðtÞ=∂t.
As the LPA became exact in the large-N limit, the correct
value for the critical exponent can be obtained at every
order of the expansion, i.e. (10) for arbitrary dimensions.
This relation, on the other hand, is well-known for the
large-N OðNÞ theories in d ≤ 4 [13,14,24,25]. However, it
was not extended to higher dimensions as the upper critical
dimension was considered to be d ¼ 4. Yet, with an
accurate analysis of the fixed point structure for d > 4,
it seems that a nontrivial fixed point can be found in the UV,
where, instead of the mean-field scaling, the relation (10)
still holds. However, the effective potentials defined at
criticality are nonanalytic and/or metastable for these
values of d and care must be taken with interpreting these
results. In particular, in five dimensions ν ¼ 1=3 and the
ground state seems to be metastable. In the papers [3,4] also
an unbounded critical potential is expected, and in that
respect, the results presented here are consistent with those.
Although in the large-N limit the dimensionality is
restricted to 4 < d < 6 due to the unitarity bound
[3,4,26], higher dimensional cases can be also studied.
Figure 4 displays the solutions (4) and (5) for d > 5 with
c ¼ 0 and c ¼ 0, respectively. The following observations
can be made. In d ¼ 6, 8 dimensions u0� is singular at ρ ¼ 0
and multivalued for ρ < ρ0, in addition, the function (5)
also gets complex for u0� ∈ ½0;−1� making the theory
nonunitary. In d ¼ 7 the potential seems to be stable
but, because of the turning points, it becomes multivalued,
although at ρ ¼ 0 it is unique. In d ¼ 9 the situation is very
similar to Fig. 1 for the c ¼ 0 case. These three categories

seem to be preserved to all even, d ¼ 4nþ 3 and d ¼
4nþ 1 (n ≥ 1) dimensions, respectively. In the even-
dimensional case, it is very hard to give a physical
interpretation due to its singular structure and complex
nature. For the d ¼ 4nþ 3 cases, three branches can be
defined due to the “S” shape of the curve around u0� ¼ 0,
making it challenging to understand its physical content.
Perhaps certain parts of the “S” shape could be removed in
the spirit of Maxwell’s construction [27], which would
allow us to define a bounded but nonanalytic function.
When d ¼ 4nþ 1, the same arguments as in d ¼ 5 case
can be used to define a metastable potential.
It is also worth mentioning that a similar convergence to

Fig. 2 can be observed clearly only for 4 < d < 6 (d ∈ R)
by using the polynomial approximation. From the analyti-
cal side, using (4), these solutions have the same structure
as in Fig. 1. This might suggest that physically sensible
fixed points exist in 4 < d < 6, provided that metastability
is accepted. However, although the relation for the scaling
exponent ν holds naively for all d, further investigations are
required for the d ≥ 6 cases both for integer and fractal
dimensions. A recent study related to higher dimensional
OðNÞ theories can be found in [28].

IV. ON THE POSSIBLE CONNECTION
TO QUANTUM GRAVITY

Attention now switches to an interesting observation
which might link the large-N OðNÞ model to quantum
Einstein gravity (QEG). Much of the current evidence
suggests that QEG admits a continuous phase transition
between physically two distinct phases described by a
strong and weak Newton’s coupling [29]. This phenome-
non is naturally associated to a UV fixed point which is
characterized by a nontrivial scaling of the correlation
length: ξ ∝ jGb −G�j−ν, where the dimensionless quan-
tities Gb and G� are the bare and the fixed point Newton’s
coupling, respectively. Within the framework of FRG in
[30], using the optimized regulator and a special repar-
ametrization of the metric fluctuation that ensures the gauge
independence, ν−1 ¼ −6þ 4=dþ 2d can be obtained.
Substitution of d ¼ 4 results ν ¼ 1=3. The scaling expo-
nent ν≃ 1=3 has been found by using the Regge lattice
action in Hamber’s extensive numerical studies [31–33]. A
simple geometrical argument is given in support of the
exact value of 1=3 [32]. It is based on the observation that
the quantum correction to the static gravitational potential,
due to the vacuum-polarization induced scale dependence
of Newton’s coupling, can be interpreted as a uniform mass
distribution surrounding the original source only if ν−1 ¼
d − 1 for d ≥ 4. In particular, for d ¼ 4 this gives ν ¼ 1=3.
This conjecture can be compared to the results obtained in
[30] by inserting different values for d greater than four:
νðd ¼ 5Þ ≈ 0.2083, νðd ¼ 6Þ ¼ 0.15. Moreover, these ν
values might improve by taking into account higher order
curvature invariants in the effective action. These results
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FIG. 4. The fixed point solutions given by (4) and (5) in d ≥ 6
for c ¼ 0 and c̄ ¼ 0, respectively. The axes are rescaled for
clarity.
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suggest that an interesting relationship can be revealed
between the critical exponents of the large-N OðNÞ model
(νO) and QEG (νG) as a function of dimension:

νOðdÞ≃ νGðd − 1Þ; for d ≥ 5: ð11Þ
A similar phenomenon in critical systems, called Parisi-
Sourlas dimensional reduction, shows that particular
classical field theories and a corresponding quantum field
theory in two fewer dimensions could fall into the same
universality class [34–38]. It is highly nontrivial whether
the underlying mechanism is the same in the present case,
however, two dimensional difference can be found between
the classical Vasiliev theory and quantum gravity. Another
observation could further support the interesting relation
which is conjectured by (11): both QEG and the large-N
OðNÞ model can be related to branched polymer systems.
Being more precise, it is widely believed that QEG is
described by a branched polymer-like system in its weakly
coupled phase [31–33,39]. Similarly, OðNÞ models re-
present discretized branched polymers at the double scaling
limit (i.e. when N → ∞ and g → gi� in a correlated manner)
[14,40]. In particular, for d ¼ 5 Eq. (11) can be considered
to be exact (provided that the QEG exponent is exactly
1=3), and as it is pointed out in [31], the critical exponent
ν ¼ 1=3 possibly corresponds to a branched polymer
system: in d ¼ 4 the exponent νp ¼ 1=2 and at the upper
critical dimension d ¼ 8, νp ¼ 1=4 (where the lower index
p stands for “polymer”). One would expect a branched
polymer system with νp ¼ 1=3 for d ∈ ð4; 8Þ. Another
interesting remark can be made by considering the results
of [28] where also some interdimensional universality is
shown between different field theories. Considering all
these results, it might be possible that a more fundamental
connection is emerging in the d-dimensional view of these
various theories. Despite the relation found in (11) the two
theory does not necessarily fall into the same universality
class, unless there is a way to relate all the critical
exponents. There is already a conflict between the most
conventional value of the anomalous dimension of the
graviton in QEG (ηG ¼ −2) and ηO ¼ 0. However, if the
usual scaling laws [24] are assumed to be valid in QEG,
ηG ¼ −2 in d ¼ 4 gives δG → ∞, which is rather ques-
tionable for a critical exponent. It would be of interest to
find out if the relationship described in (11) is a mere
coincidence or if there is a deeper explanation that implies a
correspondence between QEGd−1 and the large-N OðNÞ
theory in d dimensions which is in turn dual to the higher-
spin Vasiliev theory in AdSdþ1 space (where d ≥ 5).

ACKNOWLEDGMENTS

The author would like to thank G. Sárosi, A. Jakovác and
Zs. Szép for the very useful discussions and their comments
on the manuscript. The author also would like to thank
K. Falls the discussions on quantum gravity. The ELI-

ALPS project (GOP-1.1.1-12/B-2012-0001) is supported
by the European Union and co-financed by the European
Regional Development Fund. This research has been also
supported by the Hungarian Science Fund under the
Contract No. OTKA-K104292.

APPENDIX: EIGENPERTURBATION

In the following the derivation of the eigenperturbation is
presented in details. Differentiating (3) with respect to ρ
yields:

∂tu0 ¼ −2u0 þ ðd − 2Þρu00 − u00

ð1þ u0Þ2 : ðA1Þ

The u0ðρ; tÞ solution of this equation is assumed to be
accurately described by a small perturbation around the
fixed point solution u0ðρ; tÞ ¼ u0�ðρÞ þ δu0ðρ; tÞ, hence

∂tδu0 ¼ −2ðu0� þ δu0Þ þ ðd − 2Þρðu0� þ δu0Þ0
− ðu0� þ δu0Þ0Fðu0� þ δu0Þ; ðA2Þ

where Fðu0Þ ¼ 1=ð1þ u0Þ2 is introduced, and ∂tu0� van-
ishes by definition. Expanding it around the fixed point
solution up to linear order gives

Fðu0� þ δu0Þ ≈ Fðu0�Þ þ
∂F
∂u0 ðu

0�Þδu0: ðA3Þ

Thus, considering the last term in (A2)

ðu0� þ δu0Þ0F ≈ ðu0� þ δu0Þ0
�
Fðu0�Þ þ

∂F
∂u0 ðu

0�Þδu0
�

¼ u00�Fðu0�Þ þ δu00Fðu0�Þ þ u00�
∂F
∂u0 ðu

0�Þδu0;
ðA4Þ

where the last term coming from the product in the right-
hand side is neglected since the perturbation assumed to be
small. The solution of the fixed point equation satisfies

−2u0� þ ðd − 2Þρu00� − u00�Fðu0�Þ ¼ 0; ðA5Þ

hence

∂tδu0 ¼−2δu0 þ ðd− 2Þρδu00 − δu00Fðu0�Þ−u00�
∂F
∂u0 ðu

0�Þδu0;
ðA6Þ

which can be recast into the following form
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∂tδu0 ¼ −2δu0 þ ðd − 2Þρδu00 − δu00
�
ρðd − 2Þ − 2

u0�
u00�

�

− δu0
�
ðd − 2Þ − 2

∂
∂ρ

u0�
u00�

�
; ðA7Þ

where the relation ∂F=∂u0 ¼ 1=u00∂F=∂ρ is used and
Fðu0�Þ is expressed from (A5). Further manipulating the
right-hand side gives

∂tδu0 ¼ −dδu0 þ 2
u�″2 − u�0u�‴

u�″2
δu0 þ 2

u�0

u�″
δu″; ðA8Þ

which after some algebra provides the final result for the
fluctuation equation

∂tδu0 ¼ 2
u0�
u00�

�
∂ρ −

ðu0�u00�Þ0
u0�u00�

−
d − 4

2

u00�
u0�

�
δu0: ðA9Þ

The solution of the PDE in (A9) is found by using the
method of separation of variables, that is δu0 ¼ fðtÞgðρÞ.
A straightforward computation gives

fðtÞ ∝ exp θt and gðρÞ ∝ u�0
1
2
ðθþd−2Þu00�: ðA10Þ

Thus, the complete solution up to a constant factor

δu0ðt; ρÞ ∝ eθtu0�
1
2
ðθþd−2Þu00�; ðA11Þ

where θ ∈ R is given by the regularity condition described
in the text.
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