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The Schwinger mechanism of electron-positron pair production in the presence of strong external
electric fields is analyzed numerically for the case of one- and two-dimensional field configurations where
the external field depends both on time and one spatial coordinate. In order to provide this analysis, a new
efficient numerical approach is developed. The number of particles created is obtained numerically and also
compared with the analytical results for several exactly solvable one-dimensional backgrounds. For the
case of two-dimensional field configurations the effects of the spatial finiteness are examined, which
confirms their importance and helps us to attest our approach further. The corresponding calculations are
also performed for several more interesting and nontrivial combinations of temporal and spatial
inhomogeneities. Finally, we discuss the case of a spatially periodic external field when the approach
is particularly productive. The method employed is described in detail.
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I. INTRODUCTION

The phenomenon of particle creation from vacuum in the
presence of space-time-varying strong external fields has
been the subject of a great amount of studies [1–33]. Such a
process arises due to the instability of the physical vacuum
and can be rigorously described within the framework of
quantum electrodynamics (QED). From relativistic quan-
tum mechanics it follows that the characteristic critical field
strength is Ec ¼ m2c3=ðjejℏÞ ≈ 1.3 × 1016 V=cm (m is the
electron mass) [2] and, therefore, it is very difficult to
achieve such strong fields experimentally (so far the pair
creation process has been observed only in the perturbative
multiphoton regime [13]). Nevertheless, from a theoretical
point of view both formulating a stringent theory of QED in
strong external backgrounds and providing numerical
estimations of the corresponding effects are of fundamental
importance. The latter task is the focus of the present
investigation.
The first theoretical analyses of the problem were related

to the Klein paradox described in Refs. [1–3] where a static
potential step was considered (see also Refs. [18,19] and
references therein). In Ref. [4] the vacuum-vacuum tran-
sition probability was determined for the case of a constant
and uniform electric field by means of the effective
Lagrangian formalism (see also Ref. [5]). For the case of
time-dependent fields a general theoretical approach based
on the quantization of charged fieldswithin the Furry picture
can be found in Ref. [7] (see also Refs. [8–12,14–17]).
Analytical expressions for the scattering probabilities and

mean numbers of particles created have been derived only
for very few one-dimensional (1D) configurations of the
external field (see, e.g., Ref. [15]) where the field depends
only on time or only on one spatial coordinate. However, in
order to study more general scenarios one has to consider
higher-dimensional cases for which the corresponding
calculation procedures should be designed. During the last
few years a number of attempts have been made to examine
the Schwinger effect in space-time-dependent configura-
tions of external fields by means of various techniques
[20–28]. In Refs. [20–22] the Dirac equation, including the
interactionwith an external field, was solved numerically on
a spatial grid. The corresponding solutions contain all the
information needed to obtain observable quantities (this will
be also discussed in Sec. II). In Ref. [23] the Dirac-
Heisenberg-Wigner formalism [24,25] was employed to
study a simple two-dimensional (2D) background. In
Refs. [26–28] the world-line method [29] was used to
investigate several other types of external electric fields.
Nevertheless, our knowledge about 2D models is still very
limited and, therefore, it is strongly desirable to develop new
independent techniques for the corresponding analysis. In
this paper we present an accurate and efficient numerical
approach that allows us to investigate space- and time-
dependent backgrounds nonperturbatively. The method is
based on solving the Dirac equation in the momentum
representation.Weprovide an analysis of several 2D types of
the external field depending on both time and one spatial
coordinate. The results are compared with those for the 1D
case and the method is attested in the corresponding limits.
Besides, our approach was applied to the field configura-
tions considered in Ref. [22] where it was shown that a*i.aleksandrov@spbu.ru
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special combination of space-time-dependent pulses may
significantly increase the pair-production rate. Our calcu-
lations reproduce the previous findings. Finally, it is dem-
onstrated that spatially periodic external fields can be treated
much more efficiently. All the examples indicate that the
method presented in this paper allows one to study a broad
class of different external backgrounds with multidimen-
sional inhomogeneities and, thus, provides a deeper under-
standing of the pair-production phenomenon beyond the 1D
case. Furthermore, it can be subsequently extended to a
variety of other problems.
We employ relativistic units (ℏ ¼ 1, c ¼ 1) and the

Heaviside charge unit (α ¼ e2=4π) throughout the paper
and assume the electron has charge e ¼ −jej and mass
m ¼ 1. Accordingly, the critical electric field strength is
given by jejEc ¼ 1 ½ru� and the unit of length is the
“reduced” electron Compton wavelength ƛ ¼ ℏ=mc ¼
1 ½ru� ≈ 3.9 × 10−11 cm. One relativistic unit of time is
ℏ=mc2 ≈ 1.3 × 10−21 s.
The outline of this paper is as follows. In Sec. II we

present a brief description of the general approach
employed throughout the paper. In Sec. III we discuss a
simple way to obtain the mean numbers of particles for
arbitrary 1D electric fields (i.e., uniform time-dependent
fields). In the main part of the paper (Sec. IV) we describe
an efficient calculation scheme for the case of space-time-
varying external fields and present the results of our
numerical calculations. In Sec. V we briefly discuss the
case of scalar particles. Finally, in Sec. VI we provide a
summary of the study.

II. GENERAL APPROACH

First, we will briefly describe how the interaction with
time-dependent external fields can be taken into account
exactly, i.e., within the Furry picture. This approach was
formulated in detail in Ref. [7] (for the case of static space-
dependent electric fields the quantization procedure is
different [18]). The Dirac equation in the presence of an
external field contains the minimal coupling terms:

ðγμ½i∂μ − eAμðt; xÞ� −mÞΨðt; xÞ ¼ 0;

∂μ ¼ ð∂t;∇Þ; Aμ ¼ ðA0;−AÞ: ð1Þ

We consider (3þ 1)-dimensional QED, where x denotes a
three-dimensional spatial vector and x0 ¼ t is the temporal
component of the four-vector x. We invoke the temporal
gauge A0ðxÞ ¼ 0, so Eq. (1) can be rewritten as

½i∂0 − ĥðxÞ�ΨðxÞ ¼ 0;

where ĥðxÞ ¼ α · ½−i∇ − eAðxÞ� þ βm: ð2Þ

The time-dependent external field is assumed to be
switched on at t ¼ tin and switched off at t ¼ tout. We
introduce in and out orthonormal and complete sets of

solutions of Eq. (1) [fζΨn
ðt; xÞg and fζΨnðt; xÞg, ζ ¼ �,

respectively] which obey

ζΨn
ðtin; xÞ ¼ ζΨ

ð0Þ
n
ðxÞ;

ζΨnðtout; xÞ ¼ ζΨð0Þ
n ðxÞ; ð3Þ

ðζΨn
; κΨmÞ ¼ ðζΨn; κΨmÞ ¼ δζκδnm for all t; ð4Þ

X
n;ζ

ζΨn
ðt; xÞζΨ†

n
ðt; x0Þ ¼

X
n;ζ

ζΨnðt; xÞζΨ†
nðt; x0Þ

¼ Iδðx − x0Þ; ð5Þ

where the inner product is given by ðΨ1;Ψ2Þ ¼
R
Ψ†

1Ψ2d3x
and I is the 4 × 4 identity matrix. The functions ζΨ

ð0Þ
n
ðxÞ

and ζΨð0Þ
n ðxÞ are the eigenfunctions of the Dirac

Hamiltonian ĥðxÞ considered at times tin and tout, respec-
tively. They also compose orthonormal and complete sets
and the sign ζ denotes the sign of the eigenvalues. The field
operator can be expanded either into the basis of the in
solutions, or into the out set. This means that there are two
sets of electron/positron creation and annihilation operators
defined with respect to the two vacua (in and out). One can
establish the following connection between the in set and
out set of the creation and annihilation operators [7]:

b̂nðoutÞ ¼
X
m

b̂mðinÞGðþjþÞnm þ
X
m

d̂†mðinÞGðþj−Þnm;

ð6Þ
d̂†nðoutÞ ¼

X
m

b̂mðinÞGð−jþÞnm þ
X
m

d̂†mðinÞGð−j−Þnm;

ð7Þ
b̂nðinÞ ¼

X
m

b̂mðoutÞGðþjþÞnm þ
X
m

d̂†mðoutÞGðþj−Þnm;

ð8Þ
d̂†nðinÞ ¼

X
m

b̂mðoutÞGð−jþÞnm þ
X
m

d̂†mðoutÞGð−j−Þnm;

ð9Þ
where the coefficients can be expressed as the inner
products of the in and out solutions,

GðζjκÞnm ¼ ðζΨn; κΨmÞ; ð10Þ
GðζjκÞnm ¼ ðζΨn

; κΨmÞ: ð11Þ
Note, that these inner products are time independent since
the operator ĥðxÞ is symmetric for all values of t. These G
matrices contain all the information about the scattering
probabilities (ζ ¼ κ) and the spectrum of particles created
(ζ ¼ −κ). For instance, the number of electrons (positrons)
produced with the given quantum numbers m can be
evaluated as follows:
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n−m ¼ h0; injb̂†mðoutÞb̂mðoutÞj0; ini
¼

X
n

Gðþj−ÞmnGð−jþÞnm ¼ fGðþj−ÞGð−jþÞgmm;

ð12Þ

nþm ¼ h0; injd̂†mðoutÞd̂mðoutÞj0; ini
¼

X
n

Gð−jþÞmnGðþj−Þnm

¼ fGð−jþÞGðþj−Þgmm: ð13Þ

The vacuum-vacuum transition probability is given by [7]

pv ¼ jh0; outj0; inij2 ¼ j detGð−j−Þj2 ¼ j detGðþjþÞj2:
ð14Þ

In order to construct the in and out sets of solutions we will
use the conventional substitution Ψ ¼ ½γμði∂μ − eAμÞ þ
m�ψ , which leads to the following equation (see, e.g.,
Refs. [7,12]):

�
½i∂ − eA�2 −m2 −

ie
2
γμγνFμν

�
ψðt; xÞ

¼
�
½i∂ − eA�2 −m2 −

e
2
σμνFμν

�
ψðt; xÞ ¼ 0; ð15Þ

where σμν ¼ i
2
½γμ; γν� and Fμν ¼ ∂μAν − ∂νAμ.

Accordingly, we can write e
2
σμνFμν ¼ ieα · E − eΣ · B. In

the present paper, in and out solutions will be obtained
numerically for certain space- and time-dependent con-
figurations of the external field.

III. ONE-DIMENSIONAL CASE

First, we consider a spatially homogeneous field directed
along the x axis: Ex ¼ EðtÞ. In the temporal gauge,

A0 ¼ 0; Ay ¼ Az ¼ 0; AxðtÞ ¼ −
Z

t
Eðt0Þdt0:

ð16Þ

This allows one to rewrite Eq. (15) in the form

ð∂2
t − Δþ 2ieAxðtÞ∂x þ e2A2

xðtÞ þm2

þ ieγ0γ1EðtÞÞψnðt; xÞ ¼ 0: ð17Þ

The function ψnðt; xÞ can be expressed as [7]

ψnðt; xÞ ¼ ψp;s;rðt; xÞ ¼ eipxvs;rφp;s;rðtÞ; ð18Þ

where vs;r (s ¼ �1, r ¼ �1) is a set of constant ortho-
normalized spinors that are the eigenvectors of the matrix
γ0γ1 ¼ α1:

γ0γ1vs;r ¼ svs;r; v†s;rvs0;r0 ¼ δs;s0δr;r0 : ð19Þ

For the scalar function φp;s;rðtÞ, Eq. (17) reads

ð∂2
t þ ðpx − eAxðtÞÞ2 þ π2⊥ þ iesEðtÞÞφp;s;rðtÞ ¼ 0;

π2⊥ ¼ p2⊥ þm2; p ¼ ðpx; p⊥Þ: ð20Þ

By solving this ordinary differential equation one can
obtain the two sets f�Ψnðt; xÞg and f�Ψnðt; xÞg and
calculate the matrix elements given by Eqs. (10) and
(11). In the case under consideration these matrices
are diagonal: GðκjζÞmn ¼ δmngðκjζÞn or GðκjζÞp;r;p0;r0 ¼
δðp − p0Þδr;r0gðκjζÞp;r. Therefore, one can evaluate, e.g.,
the number density n−p;r of particles (electrons) of momen-
tum p via

ð2πÞ3
V

dNp;r

d3p
¼ ð2πÞ3

V
n−p;r ¼ jgð−jþÞp;rj2: ð21Þ

Here the system is assumed to have a finite volume V and,
therefore, the common substitution δðp ¼ 0Þ ¼ V=ð2πÞ3
can be used. If one does not distinguish states with different
values of r, then the result should be multiplied by 2:
n−p ¼ 2n−p;r. The labels n ¼ ðp; rÞ of the functions ζφn and

ζφn
do not include s, since the solutions with different

values of s are dependent (see Ref. [12]): we use s ¼ �1
for �φn and ∓φn, respectively. One can explicitly verify
that this prescription is in agreement with Eqs. (4) and (5).
In fact, these functions do not depend on r as Eq. (20)
does not contain its value. It is also worth noting that px is
the x component of the generalized momentum which
is not gauge invariant (pgen

x ¼ px). The “physical” gauge-
invariant momentum of the electron is given by pinv

x ¼
pgen
x − eAx (in order to obtain the spectrum of positrons

produced in terms of their “physical” momenta one should
use the positron charge −e ¼ jej).
The method was applied to several different configura-

tions of the external field. For the analytically solvable
cases discussed in Refs. [14–17] our calculations reproduce
the exact values with perfect accuracy. It is possible to
consider an arbitrary function EðtÞ and, moreover, this
technique can be easily modified in order to treat arbitrary
static fields EðxÞ, which are inhomogeneous in one space
direction [18,19]. For instance, for the case of the Sauter-
like space-dependent field EðxÞ ¼ E= cosh2ðx=αÞ our
results are in excellent agreement with the analytical
expressions from Ref. [18].
Nevertheless, more realistic backgrounds contain both

temporal and spatial inhomogeneities and, thus, the corre-
sponding analysis becomes a very difficult task. An
efficient numerical approach for the 2D case is described
in the next section.
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IV. TWO-DIMENSIONAL CASE

A. Method description

In this section we present a technique that can be used in
order to obtain the quantities discussed for the case of
electric fields Ex ¼ Eðt; xÞwhich depend on both the time t
and space coordinate x. We assume that the corresponding
function Eðt; xÞ vanishes if x ∉ ½−L;L� or t ∉ ½tin; tout�. The
field configuration may be viewed as a capacitor with
infinite plates (see Fig. 1). The corresponding solution
ψðt; xÞ of Eq. (15) can be represented as

ψp;s;rðt; xÞ ¼ eip⊥x⊥vs;rφp;s;rðt; xÞ: ð22Þ

The scalar function φp;s;r now depends on both t and x. We
will omit the index p⊥, since the perpendicular component
of the momentum p is conserved for such configurations
(it can be treated as an effective mass π2⊥ ¼ m2 þ p2⊥). The
value of s will be chosen according to the rule mentioned in
the previous section (s ¼ �1 for �φ and ∓φ, respectively).
The quantum number r should be taken into account by
multiplying the result by a factor of 2: n�p ¼ 2n�p;r. The
function φðt; xÞ will carry only one index px whose
meaning will be discussed below. This function φpx

ðt; xÞ
should be a solution of the following two-dimensional
equation:

ð∂2
t − ∂2

x þ 2ieAxðt; xÞ∂x þ ie∂xAxðt; xÞ þ e2A2
xðt; xÞ

þ iesEðt; xÞ þ π2⊥Þφpx
ðt; xÞ ¼ 0: ð23Þ

Again the temporal gauge A0ðt; xÞ ¼ 0 is employed.
The asymptotic behavior of the in and out solutions can

be easily derived by solving the equation for asymptotic
times t ≤ tin and t ≥ tout, when the electromagnetic poten-
tial is a pure gauge function:

�φpx
ðt; xÞ ¼ �Cpx

e∓ðip0ðt−tinÞ−ipxxÞ for t ≤ tin; ð24Þ

�φpx
ðt; xÞ ¼ �Cpx

e∓ðip0ðt−toutÞ−ipxxÞ

× exp

�
ie
Z

x

0

Axðtout; x0Þdx0
�

for t ≥ tout;

ð25Þ

where p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ π2⊥

p
> 0. The values of px now relate

to the gauge-invariant momentum of the electron:
pinv
x ¼ px ¼ pgen

x − eAx. The normalization coefficients

�Cpx
and �Cpx

can be found from Eqs. (4) and (5):

�Cpx
¼ ∓Cpx

¼ ð2πÞ−3=2½2p0ðp0 ∓ pxÞ�−1=2: ð26Þ

The main idea of the method is to solve the problem in
time-momentum space. The Fourier transform of a given
out solution represents it as a combination of the functions
e−ikx which are essentially the in solutions (24) in the region
t ≤ tin. Therefore, in momentum space one can propagate
the G matrix itself without using Eqs. (10) and (11).
Besides, the corresponding Fourier transforms can be easily
treated inside a finite k box while the functions (24) and
(25) have an infinite support. We express the functions

�φpx
and �φpx

as

�φpx
ðt; xÞ ¼

Z
∞

−∞
dke−ikx�fpx

ðt; kÞ; ð27Þ

�φpx
ðt; xÞ ¼

Z
∞

−∞
dke−ikx�fpx

ðt; kÞ: ð28Þ

The behavior of the spatial Fourier transform �fpx
for

asymptotic times t ≤ tin reads

�fpx
ðt; kÞ ¼ �Cpx

e∓ip0ðt−tinÞδðk� pxÞ: ð29Þ
The functions �fpx

can be found explicitly for the
particular forms of Axðt; xÞ. In time-momentum space,
Eq. (23) for the function fpx

takes the form of an
integro-differential equation:

∂2
t fpx

ðt;kÞþ gðkÞfpx
ðt;kÞþ

Z
∞

−∞
dqLðt; k;qÞfpx

ðt;qÞ ¼ 0;

ð30Þ

where

gðkÞ ¼ π2⊥ þ k2; ð31Þ

Lðt; k; qÞ ¼ eðkþ qÞaðt; k − qÞ þ e2bðt; k − qÞ
þ iesεðt; k − qÞ; ð32Þ

and aðt; kÞ, bðt; kÞ, and εðt; kÞ are the Fourier transforms of
Axðt; xÞ, A2

xðt; xÞ, and Eðt; xÞ, respectively. In what
follows we assume that all the functions relate to

FIG. 1. Illustration of the two-dimensional field configuration.
The electric field is confined in the space layer (which has a width
of 2L) and is assumed to be switched on and off at the times tin
and tout, respectively. The electron created has a longitudinal
component of its momentum px and a transverse component p⊥
which is orthogonal to the x axis.
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the same value of p⊥ and use the identity GðζjκÞp;r;q;r0 ¼
δðp⊥ − q⊥Þδr;r0gðζjκÞpx;qx;r

. According to Eq. (11), the
function þΨpx;r can be represented as

þΨpx;rðt; xÞ ¼
Z

∞

−∞
dk−Ψk;rðt; xÞgð−jþÞk;px;r

þ
Z

∞

−∞
dkþΨk;rðt; xÞgðþjþÞk;px;r: ð33Þ

This yields

þφpx
ðt; xÞ ¼

Z
∞

−∞
dk−φkðt; xÞgð−jþÞk;px;r

þ
Z

∞

−∞
dkþφkðt; xÞgðþjþÞk;px;r: ð34Þ

Using the relations (24) and (28) one can obtain for t ≤ tin

þfpx
ðt; kÞ ¼ −Ckeip0ðkÞðt−tinÞgð−jþÞk;px;r

þ þC−ke
−ip0ðkÞðt−tinÞgðþjþÞ−k;px;r; ð35Þ

where p0ðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ π2⊥

p
. In order to find the matrix

gðζjþÞ we should propagate the function þfpx
backwards

in time and for each value of k decompose it into the two
terms on the right-hand side [the normalization coef-
ficients are given by Eq. (26)]. Once the solution
for a given value of px is found, it is easy to get a whole
column ðk; pxÞ of the matrix gðζjþÞ. This is an important
advantage of the method based on the Fourier transforma-
tion. The number of electrons created as a function of their
momentum px (with a given value of π⊥ and r) can be
evaluated as

ð2πÞ2
V⊥

n−px;r ¼
Z

∞

−∞
dkjgð−jþÞk;px;rj2: ð36Þ

In the following the results obtained for different field
configurations will be presented.

B. “Rectangular” static field

First, we consider the “rectangular” static field given by

Eðt; xÞ ¼ EθðT=2 − jtjÞθðL − jxjÞ; ð37Þ
Axðt; xÞ ¼ AxðtÞθðL − jxjÞ; ð38Þ

AxðtÞ ¼ −EΔTðtÞ; ð39Þ
where the function

ΔTðtÞ¼

8>><
>>:
0 if t≤−T=2¼ tin;

t− tin¼ tþT=2 if tin ¼−T=2≤ t≤T=2¼ tout;

tout− tin¼T if t≥T=2¼ tout;

ð40Þ
is introduced for convenience. In this case the following
Fourier transforms are obtained:

εðt; kÞ ¼ εðkÞθðT=2 − jtjÞ; ð41Þ
aðt; kÞ ¼ −εðkÞΔTðtÞ; ð42Þ
bðt; kÞ ¼ EεðkÞΔ2

TðtÞ; ð43Þ
where

εðkÞ ¼ E
π

sinðkLÞ
k

: ð44Þ

Accordingly, for tin ≤ t ≤ tout we have

Lðt; k; qÞ ¼ eE
π

sinðk − qÞL
k − q

½−ðkþ qÞðt − tinÞ

þ eEðt − tinÞ2 þ is�: ð45Þ
For t ∈ ½tin; tout� the field strength Eðt; xÞ ¼ EðxÞ is static.
Assuming that the function EðxÞ of x is symmetric for
jxj ≤ L and equal to zero for jxj ≥ L, the out solutions for
t ≥ tout simplify further,

�fpx
ðt; kÞ ¼ �Cpx

e∓ip0ðt−toutÞ
�
1

π

Z
L

0

dx cos

�
ðk� pxÞx − eT

Z
x

0

Eðx0Þdx0
�

þ
�
δðk� pxÞ −

1

π

sinðk� pxÞL
k� px

�
cosðeETLÞ þ 1

π
sinðeETLÞ cosðk� pxÞLP

1

k� px

�
; ð46Þ

where P 1
k stands for the principal-value integral P 1

k ðhÞ ¼ p:v:
R
R dk 1

k hðkÞ. For the “rectangular” case we finally obtain

�fpx
ðt; kÞ ¼ �Cpx

e∓ip0ðt−toutÞ
�
1

π

sinðk� px − eETÞL
k� px − eET

þ
�
δðk� pxÞ −

1

π

sinðk� pxÞL
k� px

�
cosðeETLÞ þ 1

π
sinðeETLÞ cosðk� pxÞLP

1

k� px

�
: ð47Þ
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The functions �fpx
ðt; kÞ are generalized functions (distri-

butions). If L tends to infinity, the first term in square
brackets tends to δðk� px − eETÞ while the other terms
disappear (for the last term one should employ the
Riemann-Lebesgue lemma). In order to treat these func-
tions properly for the numerical computation, one can first
approximate the delta function by a “triangular” function
with a very small support, and then choose the values of the
parameters E, T, and L so that the last term vanishes. This
will allow one to treat the functions �fpx

ðt; kÞ as ordinary
functions. However, it is more suitable to represent them as
follows:

�fpx
ðt; kÞ ¼ �Cpx

e∓ip0ðt−toutÞ
�
1

π

sinðk� px − eETÞL
k� px − eET

−
1

π

sinðk� px − eETÞL
k� px þ iε

þ eieETLδðk� pxÞ
�
;

ð48Þ

where ε → 0. This expression allows one to consider
arbitrary values of E, T, and L.
In Fig. 2 the mean number of electrons created is

displayed as a function of px for T ¼ 2.0, jejE ¼ 3.0,
π⊥ ¼ 1.0, and different values of L. It is obvious that these
values being multiplied by 2π=2L ¼ π=L tend to those
obtained for the 1D case of a homogeneous external
field and the corresponding pulse duration T, provided
L → ∞. These “renormalized” dependences are presented
in Fig. 3.
We employ the values L ¼ π=3, π, and 2π, since for the

corresponding configurations the numerical convergence of
the results with respect to the momentum grid step is
achieved much faster, which allows us to minimize com-
putational time. However, in order to demonstrate that the

method can be employed for arbitrary values of the
parameters E, T, and L, we compare the spectra for
L ¼ π=3, π, and 2π with those for L ¼ 1.0, 3.0, and
6.0, respectively (see Fig. 4). We observe that the numerical
results are stable with regard to L and, therefore, arbitrary
values of this parameter can be employed for further
analysis.
Finally, we present the spectrum of the electrons as a

function of their relativistic energy p0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
x þ π2⊥

p
for

several values of the angle θ defined by cos θ ¼ px=jpj ¼
px=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2
0 −m2

p
(see Fig. 5). As was mentioned previously,

the electrons created mostly have momenta along the
negative direction of the x axis (θ ¼ 0). As the angle θ
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FIG. 3. The mean number of electrons created by the
“rectangular” static field (T ¼ 2.0, jejE ¼ 3.0, π⊥ ¼ 1.0), multi-
plied by the factor π=L, as a function of px for different values of
L. The numerical values tend to the analytical 1D ones (solid line)
as L increases.
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FIG. 4. The mean number of electrons created by the
“rectangular” static field (T ¼ 1.0, jejE ¼ 3.0, π⊥ ¼ 1.0) as a
function of the momentum component px for different values of
L. The dashed lines relate to L ¼ π=3, π, and 2π while the crosses
represent the spectra for L ¼ 1.0, 3.0, and 6.0.
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FIG. 2. The mean number of electrons created by the
“rectangular” static field (T ¼ 2.0, jejE ¼ 3.0, π⊥ ¼ 1.0) as a
function of the momentum component px for different values
of L.
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becomes larger, the mean number of particles decreases: the
number of electrons travelling perpendicularly to the
electric field lines (θ ¼ π=2) is greater than the number
of electrons moving along the field (θ ¼ π).

C. “Rectangular” time-dependent field

We now turn to the analysis of the pair creation for time-
varying external electric field configurations being con-
fined and uniform within the space region −L ≤ x ≤ L:

Eðt; xÞ ¼ EðtÞθðT=2 − jtjÞθðL − jxjÞ; ð49Þ

Axðt; xÞ ¼ AxðtÞθðL − jxjÞ; ð50Þ

AxðtÞ ¼

8>><
>>:

0 if t ≤ tin;

−
R
t
tin
Eðt0Þdt0 if tin ≤ t ≤ tout;

−
R tout
tin Eðt0Þdt0 if t ≥ tout;

ð51Þ

where tin ¼ −tout ¼ −T=2. The Fourier transforms in
Eq. (32) take the form

aðt; kÞ ¼ AxðtÞ
1

π

sinðkLÞ
k

; ð52Þ

bðt; kÞ ¼ A2
xðtÞ

1

π

sinðkLÞ
k

; ð53Þ

εðt; kÞ ¼ EðtÞ
π

sinðkLÞ
k

θðT=2 − jtjÞ: ð54Þ

Thus, the function Lðt; k; qÞ for tin ≤ t ≤ tout appears as

Lðt; k; qÞ ¼ e
π

sinðk − qÞL
k − q

½ðkþ qÞAxðtÞ

þ eA2
xðtÞ þ isEðtÞ�: ð55Þ

The out solutions for t ≥ tout can be obtained from Eq. (47)
by substituting −ET → AxðtoutÞ.
As an example, we consider the Sauter-like potential

depending on a parameter τ and for which tin=out →∓ ∞
(and T → ∞):

EðtÞ ¼ E
cosh2ðt=τÞ ; ð56Þ

AxðtÞ ¼ −Eτð1þ tanhðt=τÞÞ: ð57Þ

The spectra of electrons created are depicted in Fig. 6 for
jejE ¼ 3.0, τ ¼ 0.5, π⊥ ¼ 1.0, and different values of L. In
Fig. 7 we present the spectra normalized by the factor π=L
and compare them with the analytical 1D result.
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FIG. 5. The mean number of electrons created by the
“rectangular” static field (T ¼ 2.0, jejE ¼ 3.0, L ¼ π) as a
function of their energy for different values of θ.
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FIG. 6. The mean number of electrons created by the
“rectangular” Sauter-like field (jejE ¼ 3.0, τ ¼ 0.5, π⊥ ¼ 1.0)
as a function of their momentum x component for different
values of L.
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FIG. 7. The mean number of electrons created by the
“rectangular” Sauter-like field (jejE ¼ 3.0, τ ¼ 0.5, π⊥ ¼ 1.0),
multiplied by the factor π=L, as a function of px for different
values of L. The solid line represents the analytical 1D result
for L ¼ ∞.
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Next, we examine a “triangular” field configuration:

EðtÞ ¼
�
Eð1þ 2t=TÞ if − T=2 ≤ t < 0;

Eð1 − 2t=TÞ if 0 ≤ t ≤ T=2:
ð58Þ

In Fig. 8 we compare the spectra for the case of the static
field with T ¼ 1.0, the Sauter-like field with τ ¼ 0.5, and
the “triangular” field configuration with T ¼ 2.0. Since the
integral

R
R EðtÞdt and parameter L have the same values for

all these configurations, this comparison allows one to
investigate what effect the temporal shape of the field
strength has on the electronic spectrum. It turns out that the
number of particles created is almost independent of the
field strength shape, provided it is a continuous function of
time, while in the case of a sharp “rectangular” pulse the
number of particles is much greater. These results confirm
that the switch-on and -off effects may play a very
important role (see also Refs. [14–16,26]). Such effects
with respect to the spatial finiteness of external fields will
be discussed below.

D. “Triangular” static field

It is also possible to examine external fields which have
different spatial dependences. As an example, we analyze
the “triangular” static field defined as

Eðt; xÞ ¼ EðxÞθðT=2 − jtjÞθðL − jxjÞ; ð59Þ

EðxÞ ¼
�
Eð1þ x=LÞ if − L ≤ x < 0;

Eð1 − x=LÞ if 0 ≤ x ≤ L:
ð60Þ

In this case

εðt; kÞ ¼ E
πL

1 − cosðkLÞ
k2

θðT=2 − jtjÞ; ð61Þ

aðt; kÞ ¼ −
E
πL

1 − cosðkLÞ
k2

ΔTðtÞ; ð62Þ

bðt; kÞ ¼

8>>><
>>>:

0 if t ≤ tin;

2E2

πL ðt− tinÞ2 1
k2

�
1− sinðkLÞ

kL

	
if tin ≤ t ≤ tout;

2E2

πL ðtout − tinÞ2 1
k2

�
1− sinðkLÞ

kL

	
if t ≥ tout;

ð63Þ

where tin ¼ −tout ¼ −T=2. Note that because the function
EðxÞ is now continuous, the Fourier transforms decrease
faster, when k → �∞. For tin ≤ t ≤ tout the function
Lðt; k; qÞ reads

Lðt; k; qÞ ¼ eE
πL

1

ðk − qÞ2
�
ð−ðkþ qÞðt − tinÞ þ isÞ

× ð1 − cosðk − qÞLÞ

þ 2eEðt − tinÞ2
�
1 −

sinðk − qÞL
ðk − qÞL

��
: ð64Þ

The “diagonal” values are given by

Lðt; k; kÞ ¼ eEL
π

�
1

2
ð−2kðt − tinÞ þ isÞ þ 1

3
eEðt − tinÞ2

�
:

ð65Þ

The out solutions have the following asymptotic
behavior:

�fpx
ðt; kÞ ¼ �Cpx

e∓ip0ðt−toutÞ
�
1

π

Z
L

0

dx cos

�
ðk� px − 2k0Þxþ

k0
L
x2
�

þ
�
δðk� pxÞ −

1

π

sinðk� pxÞL
k� px

�
cosðk0LÞ þ

1

π
sinðk0LÞ cosðk� pxÞLP

1

k� px

�
; ð66Þ
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FIG. 8. The mean number of electrons created by the Sauter-
like field with τ ¼ 0.5 (blue points), the static field with T ¼ 1.0
(green points), and the “triangular” field with T ¼ 2.0 (red
points). For all these dependences jejE ¼ 3.0, π⊥ ¼ 1.0, and
the field is assumed to be uniform inside a capacitor with L ¼ 2π.

ALEKSANDROV, PLUNIEN, and SHABAEV PHYSICAL REVIEW D 94, 065024 (2016)

065024-8



where k0 ¼ eET=2. The first (ordinary function) term in
the external square brackets can be treated numerically.
The results for the “triangular” electric field are dis-

played in Fig. 9 where the spectrum of electrons created for
T ¼ 1.0, jejE ¼ 3.0, and L ¼ 2π is compared with those
for the “rectangular” static field and Sauter-like static field
discussed below.

E. Sauter-like static field

In this subsection we investigate field configurations
with a smooth Sauter-like spatial dependence:

EðxÞ ¼ E
cosh2ðx=αÞ : ð67Þ

Although it can be treated numerically as a function with a
compact support [in this case Eq. (46) is valid], we can also
evaluate all the necessary Fourier transforms analytically.
For instance, by means of the residue theorem one can
obtain

εðt; kÞ ¼ Eα2

2

k
sinhðαπk=2Þ θðT=2 − jtjÞ; ð68Þ

aðt; kÞ ¼ −
Eα2

2

k
sinhðαπk=2ÞΔTðtÞ; ð69Þ

bðt; kÞ ¼ E2α2

12

kð4þ α2k2Þ
sinhðαπk=2ÞΔ

2
TðtÞ: ð70Þ

The function Lðt; k; qÞ for tin ≤ t ≤ tout takes the following
form:

Lðt; k; qÞ ¼ eEα2

2

k − q
sinh½απðk − qÞ=2�

�
−ðkþ qÞðt − tinÞ

þ eE
6
ð4þ α2ðk − qÞ2Þðt − tinÞ2 þ is

�
: ð71Þ

Since the function EðxÞ is smooth, all the Fourier trans-
forms as functions of k decrease faster than any power
function when k → �∞. The out solutions should be
determined for t ≥ tout using a regularization:

�fεpx
ðt; kÞ ¼ �Cpx

e∓ip0ðt−toutÞFεðk� pxÞ; ð72Þ

FεðkÞ ¼
Z

∞

−∞

dx
2π

eikxe−εjxj exp
�
−ieT

Z
x

0

Eðx0Þdx0
�
: ð73Þ

The integral can be expressed as follows:

FεðkÞ ¼
α

4π
e−iBΓ

�
ikα
2

þ εα

2

�
Γ
�
−
ikα
2

þ εα

2

�

×M
�
ikα
2

þ εα

2
; εα; 2iB

�
; ð74Þ

where B ¼ −eETα and

Mða; b; zÞ ¼
X∞
n¼0

ðaÞnzn
Γðnþ bÞn! ;

where ðaÞn ¼ aðaþ 1Þ…ðaþ n − 1Þ ð75Þ
is Kummer’s function which is entire in a, b, and z. Thus,
FεðkÞ is a regular function at any point k ∈ Rnf0g for any
sufficiently small value of ε (including ε ¼ 0). The analysis
of its asymptotic expansion for k → 0 and ε → 0 reveals the
following behavior of the function (74):

FεðkÞ ¼ SεðkÞ þ RεðkÞ; ð76Þ

SεðkÞ ¼
1

π

ε

k2 þ ε2
cosB −

1

π

k
k2 þ ε2

sinB; ð77Þ

lim
ε→0

Z
∞

−∞
RεðkÞhðkÞdk ¼

Z
∞

−∞
R0ðkÞhðkÞdk; ð78Þ

where hðkÞ is an arbitrary test function (e.g., a smooth
function with a compact support). This means that the
generalized function FðkÞ has the following form:

FðkÞ ¼ δðkÞ cosðBÞ − 1

π
P
1

k
sinðBÞ þ ordinary function:

ð79Þ
As was expected, the “generalized part” of the out function
is similar to that expressed by Eq. (46).
In Fig. 9 the spectrum of electrons created is displayed

for three different space-dependent field configurations: the
“rectangular,” “triangular,” and Sauter-like fields. For these
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FIG. 9. The mean number of electrons created by the “triangu-
lar” static field with L ¼ 2π (blue points), the “rectangular” static
field with L ¼ π (green points), and the Sauter-like static field
with α ¼ π (red points). For all the spectra jejE ¼ 3.0, T ¼ 1.0,
and π⊥ ¼ 1.0.
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configurations the “electrical work”
R
R EðxÞdx and the field

duration T are the same, so the figure allows one to analyze
the spectrum with respect to different shapes of the field
strength EðxÞ. One observes that the number of electrons
created by the “rectangular” static field is considerably
larger than that for “continuous” field configurations. This
also indicates the importance of the switch-on and -off
processes and demonstrates that the electronic spectrum
strongly depends on whether the field-strength function
Eðt; xÞ is continuous.

F. Combination of static and oscillating fields in
the (1þ 1) case

If one neglects the transverse degrees of freedom, the
total number N of electrons (pairs) created can also be
found by means of the procedure described above using
π⊥ ¼ m. In this case the quantum number r disappears and
instead of Eq. (36) one has to use

npx
¼

Z
∞

−∞
dkjgð−jþÞk;px;rj2; N ¼

Z
∞

−∞
dpxnpx

: ð80Þ

We will examine the configuration

Eðt; xÞ ¼ 1

cosh2ðx=αÞ ðE1 sinωtþ E2ÞθðT=2 − jt − T=2jÞ;

ð81Þ

which was proposed in Ref. [22], where it was found that
the total pair-creation rate can be significantly increased in
comparison to that for the case when we have only one
(either static or oscillating) pulse.
In Fig. 10 the total number of pairs created is depicted as

a function of the frequency ω for T ¼ 37.56 ¼ 0.002 ½au�,

α ¼ 5.0, jejE1 ¼ 0.147, and two different values of E2. The
results are in a perfect agreement with the previous findings
[22], so our approach provides an independent verification
for this nontrivial field configuration.

G. Pair production in spatially periodic fields

Finally, we will discuss the case of spatially periodic
backgrounds for which our technique seems to be
extremely efficient. Let EðxÞ be the spatial dependence
of the external field which obeys Eðxþ dÞ ¼ EðxÞ for all
x ∈ R and given d. For simplicity we assume that this
function is even. Therefore, it can be represented as

EðxÞ ¼ a0
2
þ
X∞
n¼1

an cos

�
2π

d
nx

�
: ð82Þ

Thus, its Fourier transform reads

εðkÞ ¼
X∞
n¼−∞

an
2
δ

�
kþ 2π

d
n

�
; ð83Þ

where an ¼ a−n for negative n. It follows that the integral
in Eq. (30) can be analytically reduced to the discrete sum
without any loss of accuracy:

Z
∞

−∞
dqLðt; k; qÞfpx

ðt; qÞ ¼
X∞
n¼−∞

cnðt; kÞfðt; kþ 2πn=dÞ;

ð84Þ

where the coefficients cnðt; kÞ can be easily obtained. The
problem naturally becomes discrete and the computations
can be carried out much faster, especially when the
corresponding Fourier series converges rapidly (this fact
was also pointed out in Ref. [32]). Note, that the coef-
ficients an should be evaluated once in the very beginning,
while solving Eq. (30) now does not take much time.
In order to provide an illustration, we will consider

[again, in the (1þ 1) case] an infinite sequence of the
oscillating Sauter pulses:

Eðt; xÞ ¼ EðxÞθðT=2 − jt − T=2jÞ sinωt;

EðxÞ ¼
X∞
n¼−∞

E
cosh2½ðxþ ndÞ=α� ; ð85Þ

where d is the distance between two nearest peaks. The
function EðxÞ for different ratios d=α is displayed in
Fig. 11(a). The overall number N of pairs created per
pulse as a function of d is presented in Fig. 11(b) for
α ¼ 4.0, T ¼ 4π, and several values of ω. As was expected,
in the limit d → ∞ the results tend to those for the case of a
single pulse since pulses (separated by a very large
distance) produce particles independently. If d=α becomes
very small the pulses merge and the growth of the electric
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FIG. 10. The total number of pairs created as a function of ω for
T ¼ 37.56 ¼ 0.002 ½au�, α ¼ 5.0, jejE1 ¼ 0.147, and two differ-
ent values of E2 [see Eq. (81)]. The solid lines represent the
corresponding results taken from Ref. [22].
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field strength is unlimited. However, even when d is
comparable to α and the maximum field strength is almost
the same as for a single pulse (e.g., for d=α ¼ 2
Emax ≈ 1.14E), there is a considerable enhancement of
the pair-creation rate for certain values of the field
parameters.
Finally, we note that the periodicity of the spatially

localized external field can always be achieved artificially
by multiplying the corresponding pulse. Using a large value
of d, one can obtain all the necessary quantities for the case
of an individual pulse.

V. PRODUCTION OF SCALAR PARTICLES

In the case of spinless particles the general formalism is
quite similar to that described in Sec. II (see Refs. [7,8]).
The in and out sets of solutions of the Klein-Fock-Gordon
equation [i.e., Eq. (15) without the last term] are orthogonal
and complete with regard to the following inner product [in
the temporal gauge A0ðxÞ ¼ 0]:

ðΦ1;Φ2Þ ¼ i
Z

Φ�
1ðt; xÞð ~∂t − ∂⃖tÞΦ2ðt; xÞd3x: ð86Þ

Namely,

ðζΦn
; κΦmÞ ¼ ðζΦn; κΦmÞ ¼ ζδζκδnm;

ζ; κ ¼ �; ð87Þ
X
n;ζ

ζΦn
ðt; xÞζΦ�

n
ðt; x0Þ ¼

X
n;ζ

ζΦnðt; xÞζΦ�
nðt; x0Þ

¼ δðx − x0Þ: ð88Þ

The propagation function can be expanded in the following
way:

Gðx; x0Þ ¼
X
ζ;n

ζζΦn
ðxÞζΦ�

n
ðx0Þ

¼
X
ζ;n

ζζΦnðxÞζΦ�
nðx0Þ: ð89Þ
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FIG. 11. (a) The electric field profile EðxÞ given by Eq. (85) for different values of d. (b) The total number of pairs created per pulse as
a function of d for α ¼ 4.0, T ¼ 4π, and different values of ω.
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FIG. 12. The mean number of negatively charged fermions (bosons) created by the space-time-dependent Sauter-like field (91) for
τ ¼ 0.5, α ¼ π, π⊥ ¼ 1.0, and two different values of E.
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Since Eqs. (10), (11), (12), and (13) remain the same, in
order to analyze processes of scalar particle production we
can immediately modify our method according to the
following prescription [12,15]: one should set s ¼ 0 and
use the normalization factors given by

ζCpx
¼ ζCpx

¼ ð2πÞ−3=2ð2p0Þ−1=2 ð90Þ

instead of those displayed in Eq. (26).
In Fig. 12 we present the spectra of particles created by

the space-time-dependent Sauter-like pulse

Eðt; xÞ ¼ E
cosh2ðt=τÞ cosh2ðx=αÞ ð91Þ

for τ ¼ 0.5, α ¼ π, π⊥ ¼ 1.0, and two different values of E
for both the fermionic and bosonic cases. The support of the
spectrum of negatively charged scalar particles coincides
with that of electrons, while the total number of spinless
particles is smaller. The latter property can be found even
when the field configuration relates to the pure time-
dependent Sauter field.

VI. DISCUSSION AND CONCLUSION

In the present paper the phenomenon of electron-positron
pair production in time- and space-inhomogeneous external
electric fields was considered. A new efficient numerical
technique, which can be used to obtain the corresponding
spectra of particles created, was described in great detail.
Our approachwas applied to a number of various 1D and 2D
backgrounds and the results were compared with exact
analytical expressions. It was shown that the method can be
used to analyze numerous 2D field configurations that do not
have any exact solutions. We also examined different
temporal and spatial shapes of the electric pulse. It was
confirmed that the switch-on and -off effects may be very
significant (see also Refs. [14–16,26]), especially if one
considers a “sharp” time- or space-dependent switching
function, which means that for 2D backgrounds both
temporal and spatial dependences should be taken into
account exactly which can be done with the aid of the
technique developed. In this context it is worth noting that,
according to Ref. [31], the onset of pair production in the
presence of a static but spatially inhomogeneous field
exhibits a scaling behavior near the critical point independ-
ently of the microscopic profile details.
Besides, in the present paper it was shown that the

approach is especially profitable when one considers
spatially periodic backgrounds. This feature may be
extremely helpful for the analysis of different laser field
configurations (see Ref. [32]). Finally, it was demonstrated
that the analogous calculations can be easily carried out for
the case of scalar QED.
As was pointed out in Ref. [30], the pair-production rate

can be dramatically increased by superimposing a strong

and slowly changing field on a weak and fast-varying pulse.
In the recent paper [28] this dynamical assistance was
investigated in the presence of a two-dimensional back-
ground. However, since the slowly varying pulse acts for a
very long time, our numerical procedure becomes much
more time consuming. The corresponding analysis of the
dynamically assisted Schwinger effect based on the
numerical approach presented here will be an important
subject for future investigations.
Another way to drastically increase the mean number of

pairs was proposed in Ref. [33], where the combination of a
plane-wave x-ray beam and a focused optical laser pulse
was considered. It may be possible to provide the corre-
sponding experimental study at the Extreme Light
Infrastructure facility [34]. In Ref. [33] it was shown that
the presence of a hard x-ray photon with frequencyω ∼ 2m
leads to an enhancement of order exp½2m2=ðjejEÞ� (in the
weak-field regime jejE ≪ m2). This result was obtained by
evaluating the imaginary part of the polarization tensor in a
constant external electric field. Going beyond this approxi-
mation, e.g., taking into account the temporal dependence
of the laser field, should be very important for planning
measurements. We expect that our numerical technique
will be able to serve this purpose. Assuming the laser field
to be classical and including the interaction between the
quantizedDirac and electromagnetic fields, one can rewrite
Eq. (12) in the case of one initial photon as

n−m ¼ h0; injĉk;λS†b̂†mðoutÞb̂mðoutÞSĉ†k;λj0; ini; ð92Þ

where S is the scattering matrix in the external field and ĉ†k;λ
is the photon creation operator. To zeroth order this leads to
the expression (12). Once we have the in and out sets of
solutions and elements of the G matrices, it is possible to
evaluate Eq. (92) to a given order in α (in fact, within the
scenario from Ref. [33] the first-order contribution domi-
nates). Furthermore, this approach requires the integrations
over spatial coordinates which can be easily reduced to
simple convolutions in the momentum representation.
Although the corresponding calculations generally appear
to be very tedious, at least in the 1D or 2D case they might
become possible.

ACKNOWLEDGMENTS

This investigation was supported by RFBR (Grant
No. 16-02-00334) and by Saint Petersburg State
University (SPbU) (Grants No. 11.42.987.2016,
11.42.939.2016, 11.38.269.2014, and 11.38.237.2015).
I. A. A. acknowledges the support from the German-
Russian Interdisciplinary Science Center (G-RISC) funded
by the German Federal Foreign Office via the German
Academic Exchange Service (DAAD), from TU Dresden
(DAAD-Programm Ostpartnerschaften), and from the
“Dynasty” foundation.

ALEKSANDROV, PLUNIEN, and SHABAEV PHYSICAL REVIEW D 94, 065024 (2016)

065024-12



[1] O. Klein, Z. Phys. 53, 157 (1929).
[2] F. Sauter, Z. Phys. 69, 742 (1931).
[3] F. Sauter, Z. Phys. 73, 547 (1932).
[4] J. Schwinger, Phys. Rev. 82, 664 (1951).
[5] W. Heisenberg and H. Euler, Z. Phys. 98, 714 (1936).
[6] W. Greiner, B. Müller, and J. Rafelski, Quantum Electro-

dynamics of Strong Fields (Springer-Verlag, Berlin, 1985).
[7] E. S. Fradkin, D. M. Gitman, and S. M. Shvartsman, Quan-

tum Electrodynamics with Unstable Vacuum (Springer-
Verlag, Berlin, 1991).

[8] A. A. Grib, S. G. Mamayev, and V. M. Mostepanenko,
Vacuum Quantum Effects in Strong Fields (Friedmann
Laboratory Publishing, St. Petersburg, 1994).

[9] A. I. Nikishov, Zh. Eksp. Teor. Fiz. 57, 1210 (1969) [Sov.
Phys. JETP 30, 660 (1970)].

[10] N. B. Narozhny and A. I. Nikishov, Yad. Fiz. 11, 1072
(1970) [Sov. J. Nucl. Phys. 11, 596 (1970)].

[11] V. G. Bagrov, D. M. Gitman, and Sh. M. Shvartsman, Zh.
Eksp. Teor. Fiz. 68, 392 (1975) [Sov. Phys. JETP 41, 191
(1975)].

[12] S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 53, 7162
(1996).

[13] D. L. Burke, R. C. Field, G. Horton-Smith, J. E. Spencer, D.
Walz, S. C. Berridge, W.M. Bugg, K. Shmakov, A. W.
Weidemann, C. Bula, K. T. McDonald, E. J. Prebys, C.
Bamber, S. J. Boege, T. Koffas, T. Kotseroglou, A. C.
Melissinos, D. D. Meyerhofer, D. A. Reis, and W. Ragg,
Phys. Rev. Lett. 79, 1626 (1997).

[14] T. C. Adorno, S. P. Gavrilov, and D.M. Gitman, Phys. Scr.
90, 074005 (2015).

[15] T. C. Adorno, S. P. Gavrilov, and D. M. Gitman, arXiv:
1512.01288.

[16] T. C. Adorno, S. P. Gavrilov, and D.M. Gitman, Eur. Phys.
J. C 76, 447 (2016).

[17] F. Gelis and N. Tanji, Prog. Part. Nucl. Phys. 87, 1 (2016).
[18] S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 93, 045002

(2016).
[19] S. P. Gavrilov and D. M. Gitman, Phys. Rev. D 93, 045033

(2016).
[20] M. Ruf, G. R. Mocken, C. Müller, K. Z. Hatsagortsyan, and

C. H. Keitel, Phys. Rev. Lett. 102, 080402 (2009).
[21] M. Jiang, W. Su, X. Lu, Z. M. Sheng, Y. T. Li, Y. J. Li, J.

Zhang, R. Grobe, and Q. Su, Phys. Rev. A 83, 053402
(2011).

[22] M. Jiang, W. Su, Z. Q. Lv, X. Lu, Y. J. Li, R. Grobe, and Q.
Su, Phys. Rev. A 85, 033408 (2012).

[23] F. Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev. Lett.
107, 180403 (2011).

[24] F. Hebenstreit, R. Alkofer, and H. Gies, Phys. Rev. D 82,
105026 (2010).

[25] F. Hebenstreit, A. Ilderton, M. Marklund, and J. Zamanian,
Phys. Rev. D 83, 065007 (2011).

[26] M. F. Linder, C. Schneider, J. Sicking, N. Szpak, and R.
Schützhold, Phys. Rev. D 92, 085009 (2015).

[27] C. K. Dumlu, Phys. Rev. D 93, 065045 (2016).
[28] C. Schneider and R. Schützhold, J. High Energy Phys. 02

(2016) 164.
[29] G. V. Dunne and C. Schubert, Phys. Rev. D 72, 105004

(2005).
[30] R. Schützhold, H. Gies, and G. Dunne, Phys. Rev. Lett. 101,

130404 (2008).
[31] H. Gies and G. Torgrimsson, Phys. Rev. Lett. 116, 090406

(2016).
[32] A. Wöllert, H. Bauke, and C. H. Keitel, Phys. Rev. D 91,

125026 (2015).
[33] G. V. Dunne, H. Gies, and R. Schützhold, Phys. Rev. D 80,

111301 (2009).
[34] https://eli‑laser.eu/.

ELECTRON-POSITRON PAIR PRODUCTION IN EXTERNAL … PHYSICAL REVIEW D 94, 065024 (2016)

065024-13

http://dx.doi.org/10.1007/BF01339716
http://dx.doi.org/10.1007/BF01339461
http://dx.doi.org/10.1007/BF01349862
http://dx.doi.org/10.1103/PhysRev.82.664
http://dx.doi.org/10.1007/BF01343663
http://dx.doi.org/10.1103/PhysRevD.53.7162
http://dx.doi.org/10.1103/PhysRevD.53.7162
http://dx.doi.org/10.1103/PhysRevLett.79.1626
http://dx.doi.org/10.1088/0031-8949/90/7/074005
http://dx.doi.org/10.1088/0031-8949/90/7/074005
http://arXiv.org/abs/1512.01288
http://arXiv.org/abs/1512.01288
http://dx.doi.org/10.1140/epjc/s10052-016-4289-0
http://dx.doi.org/10.1140/epjc/s10052-016-4289-0
http://dx.doi.org/10.1016/j.ppnp.2015.11.001
http://dx.doi.org/10.1103/PhysRevD.93.045002
http://dx.doi.org/10.1103/PhysRevD.93.045002
http://dx.doi.org/10.1103/PhysRevD.93.045033
http://dx.doi.org/10.1103/PhysRevD.93.045033
http://dx.doi.org/10.1103/PhysRevLett.102.080402
http://dx.doi.org/10.1103/PhysRevA.83.053402
http://dx.doi.org/10.1103/PhysRevA.83.053402
http://dx.doi.org/10.1103/PhysRevA.85.033408
http://dx.doi.org/10.1103/PhysRevLett.107.180403
http://dx.doi.org/10.1103/PhysRevLett.107.180403
http://dx.doi.org/10.1103/PhysRevD.82.105026
http://dx.doi.org/10.1103/PhysRevD.82.105026
http://dx.doi.org/10.1103/PhysRevD.83.065007
http://dx.doi.org/10.1103/PhysRevD.92.085009
http://dx.doi.org/10.1103/PhysRevD.93.065045
http://dx.doi.org/10.1007/JHEP02(2016)164
http://dx.doi.org/10.1007/JHEP02(2016)164
http://dx.doi.org/10.1103/PhysRevD.72.105004
http://dx.doi.org/10.1103/PhysRevD.72.105004
http://dx.doi.org/10.1103/PhysRevLett.101.130404
http://dx.doi.org/10.1103/PhysRevLett.101.130404
http://dx.doi.org/10.1103/PhysRevLett.116.090406
http://dx.doi.org/10.1103/PhysRevLett.116.090406
http://dx.doi.org/10.1103/PhysRevD.91.125026
http://dx.doi.org/10.1103/PhysRevD.91.125026
http://dx.doi.org/10.1103/PhysRevD.80.111301
http://dx.doi.org/10.1103/PhysRevD.80.111301
https://eli-laser.eu/
https://eli-laser.eu/

