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We study the loop corrections to the scalar propagator and the fermionic self-energy for the mass
dimension one fermionic dark matter with the Yukawa interaction. We find, in the former case, there is a
nonvanishing Lorentz-violating term while the latter is Lorentz-invariant. Our study of the fermionic loop
correction shows that unitarity demands the fermionic mass must be at least half of the bosonic mass and
that the Lorentz-violating term makes a nontrivial correction to the bosonic propagator. We discuss what
these results mean in the context of the standard model and the possibility of bypassing the unitarity
constraint. In the simplest scenario, within the framework of standard quantum field theory, by identifying
the scalar boson to be the Higgs boson with a mass of 125 GeV, the mass of the fermion must be at least
62.5 GeV.
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I. INTRODUCTION

The mass dimension one fermionic field has many
intriguing features [1–4]. Among them, the important
features that characterize the theory are that the field
satisfies the Klein-Gordon but not the Dirac equation
and is of mass dimension one instead of three-half.
Therefore, whatever these particles are, they must be
physically distinct from the Dirac fermion and provide a
promising direction of research for physics beyond the
standard model (SM). Since its conception, the theory has
been studied in various disciplines ranging from black hole
[5,6], cosmology [7–22], mathematical physics [23–33]
and quantum field theory [34–43]. For a comprehensive
review on the subject, please see [44].
Initial investigation revealed that the mass dimension one

fermions have an intrinsic darkness with respect to the SM
thus making them natural dark matter candidates [1,2].
What made the construction possible, bypassing the
uniqueness of the Dirac field is that the theory does not
satisfy Lorentz symmetry. Instead, it satisfies the symmetry
of boost and rotation along a preferred direction. One may
argue that Lorentz violation invalidates the theory but this is
not necessarily true. While there are stringent constraints on
Lorentz-violating theories [45,46], they are all confined to
the SM sector. Currently, there is no direct evidence
suggesting that dark matter satisfies Lorentz symmetry.
Additionally, the fermionic field has a positive-definite free

Hamiltonian, local interactions and furnishes fermionic
statistics [39]. These properties are highly nontrivial and
require careful choices of expansion coefficients and a field
adjoint.
In this paper, we study the effects of Lorentz violation by

computing the fermionic loop correction to the scalar
propagator and the fermionic self-energy associated with
the Yukawa interaction. The effects of loop-induced
Lorentz-violation to the scalar propagator is nonzero
whereas the fermionic self-energy is Lorentz-invariant.
At one-loop, we find that unitarity, namely the optical
theorem is violated unless the fermionic mass is at least half
of the bosonic mass thus forbidding the decay of the scalar
boson into a fermion antifermion pair. The Lorentz-
violating term also makes a nontrivial correction to the
bosonic propagator. We discuss what these results mean in
the context of the SM and the possibility of bypassing the
unitarity constraint.

II. LOOP CORRECTIONS

The theory under consideration here is the theory of mass
dimension one fermion and a real scalar boson with the
Yukawa interaction whose Lagrangian is

L ¼ ∂μ ¬Λ∂μΛ −m2
Λ
¬
ΛΛ − gϕ

¬
ΛΛϕ: ð1Þ

In principle, one could also introduce interactions of the
form g0ϕ

¬
ΛΛϕ2 and gΦ

¬
ΛΛΦ†Φ where ΦðxÞ is a complex

scalar field and g0ϕ and gΦ are dimensionless couplings. The
reason why they are not considered here is that in this
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paper, our focus is on the loop corrections to the scalar
propagator. Additionally, the fermionic loop for these
interactions take the same form. The only differences are
that gϕ has the dimension of mass and that for the Yukawa
interaction, the loop correction modifies the scalar propa-
gator whereas the four-point interactions modify the
vertices.
The fermionic loop of Fig. 1 can be formally expressed

as SϕðpÞ½−ið2πÞ4Π�
1-loopðp2Þ�SϕðpÞ where SϕðpÞ is the free

scalar propagator. We adopt the normalization where the
free fermionic and scalar propagators are given by

SΛðpÞ ¼
i

ð2πÞ4
I þ Gp

p2 −m2
Λ þ iϵ

; ð2Þ

SϕðpÞ ¼
i

ð2πÞ4
1

p2 −m2
ϕ þ iϵ

: ð3Þ

The matrix Gp is defined as

Gp ¼ i

0
BBB@

0 0 0 −e−iϕ

0 0 eiϕ 0

0 −e−iϕ 0 0

eiϕ 0 0 0

1
CCCA ð4Þ

with ϕ being the azimuthal angle defined by the momentum
in the spherical coordinate

p ¼ jpjðcosϕ sin θ; sinϕ sin θ; cos θÞ: ð5Þ

The noncovariant fermionic propagator which contains
information about the preferred direction is obtained
by computing the time-ordered product hjT½ΛðxÞ ¬ΛðyÞ�ji.
The definition for ΛðxÞ and ¬

ΛðyÞ are given in the Appendix
and a detailed derivation of the propagator can be found
in [4].
Comparing the mass dimension one fermion to complex

scalar bosons, apart from the spin-statistics, another impor-
tant difference is that the fermionic propagator contains a
noncovariant Gp matrix which is absent for its scalar
counterpart. Unless one modifies the field adjoint

¬
ΛðxÞ

as in Ref. [47], it is not possible to obtain a Klein-Gordon
propagator. Therefore, the fermionic fields cannot be
replaced by complex scalar fields.
Evaluating Fig. 1 using the propagators, Π�

1-loopðp2Þ is
given by

Π�
1-loopðp2Þ

¼−2g2ϕ

�
i

ð2πÞ4
�Z

d4k
1

ðk2−m2
Λþ iϵÞ½ðkþpÞ2−m2

Λþ iϵ�
þFðpÞ ð6Þ

where FðpÞ is defined as

FðpÞ

≡−2g2ϕ

�
i

ð2πÞ4
�Z

d4k
cosðϕk−ϕkþpÞ

ðk2−m2
Λþ iϵÞ½ðkþpÞ2−m2

Λþ iϵ� :

ð7Þ
Equation (6) is a sum of a Lorentz-invariant and Lorentz-
violating integral. The former can be evaluated by the
standard formalism of renormalization

Π�
1-loopðp2Þ

¼−2g2ϕ

�
i

ð2πÞ4
�Z

1

0

dxðiπd=2Þ½m2
Λ−p2xð1−xÞ�d=2−2

×Γ
�
2−

2

d

�
þFðpÞ: ð8Þ

In the limit d → 4, we obtain

Π�
1-loopðp2Þ

¼−
g2ϕ
8π2

Z
1

0

dx

�
ln½m2

Λ−p2ð1−xÞx�þ 2

d−4
þ γ

�
þFðpÞ;

ð9Þ

where γ is the Euler constant. The trigonometric function in
Eq. (7) can be expanded in terms of momenta to give us

cosðϕk − ϕkþpÞ ¼ cosϕk cosϕkþp þ sinϕk sinϕkþp

¼ kxðkx þ pxÞ þ kyðky þ pyÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2x þ k2yÞ½ðkx þ pxÞ2 þ ðky þ pyÞ2�

q :

ð10Þ

From Eq. (10), we see that Π�
1-loopðp2Þ is a function of px

and py so it is not Lorentz-invariant. But when
px ¼ py ¼ 0, the function FðpÞ becomes identical to the
first term so it can contribute as much as 50% to
Π�

1-loopðp2Þ. However, aligning the momentum along the
z-axis does not necessarily define a preferred frame or
direction. For example, in the ϕ1ϕ2 → ϕ3ϕ4 scattering of
the ϕ3 theory, there are nonzero contributions from the s, t
and u-channels. At one-loop (Fig. 1), the momenta asso-
ciated with these channels are respectively given by
p1 þ p2, p1 − p3 and p1 − p4 and it is impossible to
choose a frame where all three momenta are vanishing.

FIG. 1. Loop correction to the scalar propagator.
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It follows that there exists no preferred frame or direction
such that cosðϕp − ϕpþkÞ ¼ 1 for all three channels.

A. The optical theorem and correction
to the bosonic propagator

In standard quantum field theory, two of the most
important concepts are Lorentz symmetry and unitarity.
Since the theory under consideration only satisfies the
symmetry of boost and rotation along a preferred direction
instead of the full Lorentz group, it is instructive to check
the unitarity of the theory. Toward this end, we make use of
the optical theorem:

Im½Πααðm2
αÞ� ¼ −

1

2

X
X

Γðα → XÞ ð11Þ

where α is a one-particle state, Πααðm2
αÞ is the two-point

function, and Γðα → XÞ being the total decay rate to some
final multi-particle state X. In our case, Πααðm2

αÞ is the
fermionic-loop correction to the scalar propagator given by
Eq. (6) evaluated at p2 ¼ m2

ϕ and the decay rate is ϕ →
¬
ΛΛ

is evaluated at tree-level. The latter evaluates to (see the
Appendix)

Γðϕ →
¬
ΛΛÞ ¼ g2ϕ

2πmϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Λ

m2
ϕ

s �
m2

ϕ

2m2
Λ

− 1

�
: ð12Þ

For the decay to occur, one requires mϕ > 2mΛ. When this
condition is satisfied, the Lorentz-invariant integral of
Π�

1-loopðm2
ϕÞ has an imaginary part. Here, to simplify the

problem, we can avoid in having to evaluate FðpÞ by taking
the external momentum to be px ¼ py ¼ 0. The argument
of the natural logarithm in Eq. (9) is negative in the range
x ∈ ½x−; xþ� where

x� ¼ 1

2

�
1�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Λ

m2
ϕ

s �
ð13Þ

so the imaginary part of Π�
1-loopðm2

ϕÞ is given by

Im½Π�
1-loopðm2

ϕÞ� ¼ −
g2ϕ

4πmϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
Λ

m2
ϕ

s
: ð14Þ

Comparing Eqs. (12) and (14), we find that for
mϕ > 2mΛ the optical theorem and hence unitarity is
violated. If we wish to preserve unitarity, we must have
mΛ ≥ 1

2
mϕ so that the decay channel ϕ →

¬
ΛΛ is forbidden.

However, this seems unnatural since we should expect the
optical theorem to hold for all ranges of masses. But in our
opinion, within the standard framework of quantum field
theory, this is an inevitable consequence the theory has to
confront. Lorentz violation does not provide an exception
to the optical theorem as its derivation only assume
unitarity of the S-matrix and not the underlying space-
time symmetry. A proposal to bypass this problem has
recently been proposed in [47], the details will be discussed
in the conclusion.
In this paper, we work within the standard framework of

quantum field theory so we must impose the inequality
mϕ > 2mΛ. Apart from this, another important issue that
deserves our attention is the corrections to the scalar
propagator which we now consider. For this purpose, it
is instructive to introduce an effective cutoff μeff . After
performing the Feynman parametrization, Wick rotation,
we get

Π�
1-loopðp2Þ¼ g2ϕ

8π2

Z
1

0

dxln

�
μ2eff

m2
Λ−m

2
ϕð1−xÞx

�
þFðpÞþOðg4ϕÞ

ð15Þ

where the same cutoff is also applied to FðpÞ. To evaluate
FðpÞ, the Feynman parametrization and Wick rotation
become inconvenient. Instead, we perform the k0 integral
analytically, and then evaluate the rest using Monte Carlo
integration. The integral for FðpÞ can be expressed as

FðpÞ ¼ g2ϕ
8π3

Z
d3k cosðϕk − ϕkþpÞ

�
1

Ek½ðEk − EpÞ2 − E2
pþk�

þ 1

Epþk½ðEpþk þ EpÞ2 − E2
k�
�

ð16Þ

where

Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jkj2 þm2

Λ

q
; ð17Þ

Ep ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpj2 þm2

Λ

q
; ð18Þ

Epþk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jpþ kj2 þm2

Λ

q
: ð19Þ

The integration is performed with p ¼ ðpx; py; pzÞ and mΛ

being the free parameters. Figure 2 provides a graphical
representation of FðpÞ=g2ϕ with mΛ ¼ 62.5 GeV, mΛ ¼
500 GeV and an effective cutoff at the Planck scale.
There are two important consequences that need to be

noted. First, the magnitude of FðpÞ within the considered
domain is finite and smooth, showing no divergent behav-
ior even when the effective cutoff is taken to be the Planck
scale. This suggests that both FðpÞ and Fðp;mϕÞwhere the
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latter is defined to be on-shell, are finite. Therefore, we can
be confident that at one-loop, the function Π�ðp2Þ, which is
a sum of Π�

1-loopðp2Þ and the counterterms is also finite.
Specifically, the renormalization condition Π�ðm2

ϕÞ ¼ 0
cancels the momentum-independent divergent terms so
that Π�ðp2Þ is a sum of Lorentz-invariant functions and
FðpÞ − Fðm2

ϕ; pÞ [48]. Second, from the form of the
integral of FðpÞ, it is clear that this function does not
provide a dominant contribution to Π1-loopðpÞ.
Nevertheless, the plot shows that the contribution has
certain angular dependence. In the context of the SM,
where the scalar boson is identified to be the Higgs boson,
this means that the Higgs propagator is not Lorentz-
invariant but it instead has nonzero fluctuations when
measured in different directions. Therefore, any such
fluctuation detected in physical processes involving the
Higgs propagator could be an indirect evidence of the mass
dimension one fermions.
The finiteness of FðpÞ with an effective cutoff taken at

the Planck scale suggests that although the theory violates
Lorentz symmetry, it is power-counting renormalizable. In
particular, the matrix elements of Gp which is responsible
for the violation, do not increase with momentum. The
theory does however, exhibit a nonlocal behavior. A direct
computation shows that the equal-time field-conjugate
momentum anticommutator is [3,4]

fΛðt;xÞ;Πðt; yÞg ¼ i
Z

d3p
ð2πÞ3 e

−ip·ðx−yÞ½I þ Gp� ð20Þ

where it reduces to iδ3ðx − yÞ only when x − y is aligned to
the z-axis. The nonlocality of the anticommutator may be
undesirable, but it captures the peculiar features of the
theory. Although it prevents us from formulating the theory
in the path-integral formalism, it does not stop us from
constructing local interactions in the operator formalism
since a direct evaluation shows that fΛðt;xÞ; ¬Λðt; yÞg ¼ O.
Therefore, as long as the interactions are functions of g

¬
ΛOΛ

where O is some local operator, causality will be preserved.

B. Fermionic self-energy

Now we consider Fig. 3 whose expression in terms of the
free fermionic propagator can be formally written as
SΛðpÞ½−ið2πÞ4Σ�

1-loopðp2Þ�SΛðpÞ. Evaluating the diagram,
we obtain

Σ�
1-loopðp2Þ ¼ ig2ϕ

ð2πÞ4
Z

d4k

�
1

k2 −m2
ϕ þ iϵ

�

×

�
I þ Gp−k

ðp − kÞ2 −m2
Λ þ iϵ

�
: ð21Þ

Shift the variable by k → kþ p and take d4k ¼ dk0d3k
with d3k defined in the spherical coordinate, the integration
over Gk identically vanishes leaving us with a Lorentz-
invariant integral

Σ�
1-loopðp2Þ ¼ ig2ϕ

ð2πÞ4
Z

d4k

�
1

ðkþ pÞ2 −m2
ϕ þ iϵ

�

×
�

I
k2 −m2

Λ þ iϵ

�
: ð22Þ

In the on-shell subtraction scheme where m2
Λ ≡m2

bare;Λ −
δm2

Λ and ΛbareðxÞ≡ Z1=2ΛðxÞ, the complete self-energy
function Σ�ðp2Þ is

Σ�ðp2Þ¼−ðZ−1Þðp2−m2
ΛÞþZδm2

ΛþΣ�
1-loopðp2Þ: ð23Þ

Applying the renormalization condition Σ�ðm2
ΛÞ ¼ 0 and

introducing an effective cutoff, to the order Z ¼ 1þOðg4ϕÞ,
we get

δm2
Λ¼

g2ϕ
16π2

Z
1

0

dxln

�
μ2eff

m2
Λ−ð2m2

Λ−m2
ϕÞxþm2

Λx
2

�
þOðg4ϕÞ:

ð24Þ

For δm2
Λ to be a real number, the denominator of the natural

logarithm must be positive so we require the following
inequality to hold

m2
Λ − ð2m2

Λ −m2
ϕÞxþm2

Λx
2 ≥ 0 ð25Þ

for x ∈ ½0; 1�. Let m2
Λ ¼ αm2

ϕ, the inequality becomes
fðxÞ ≥ 0 where

fðxÞ ¼ α − ð2α − 1Þxþ αx2: ð26Þ

Since α > 0, the function has a minimum at
x0 ¼ 1

2α ð2α − 1Þ. Therefore, the inequality is satisfied if

FIG. 3. Fermionic self-energy.

FIG. 2. The plot of FðpÞ=g2ϕ obtained by Monte Carlo
integration with 5.8 × 107 sample points that represents the
angular distribution in the θ − ϕ plane. We considered
mΛ ¼ 62.5 GeV, mΛ ¼ 500 GeV with an effective cutoff
μeff ¼ 1.2209 × 1019 GeV at the Planck scale.
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fðx0Þ ≥ 0. This gives us the condition α ≥ 1
4
which is in

agreement with our earlier result.

III. CONCLUSIONS

In this paper, we have studied the simplest loop correc-
tions for the mass dimension one fermionic dark matter
with the Yukawa interaction. The Lorentz violation gen-
erated by the fermionic loop correction to the scalar
propagator is nonzero and the fermionic self-energy is
Lorentz-invariant. At one-loop, we find that the optical
theorem is violated unless mΛ ≥ 1

2
mϕ.

Identifying the scalar boson to be the Higgs boson, the
mass dimension one fermion must then be at least
62.5 GeV. The constraint on the bosonic and fermionic
masses seems unnatural. Nevertheless, working within the
standard framework of quantum field theory, this is an
inevitable consequence that the theory has to confront.
Unitarity violation may be a reason why the theory is
inconsistent. But in our opinion, we should keep an open
mind and exhaust all possibilities. At the same time, it is
important to remind ourselves that there are no reasons why
the masses cannot satisfy the required inequality.
One the most important results we have found is that if

such fermions existed and interact with the Higgs boson via
the Yukawa interaction, the Higgs propagator cannot be
Lorentz-invariant. Instead, it is dependent on the frame of
reference in which it is being computed. Therefore, any
variations to the physical processes involving the Higgs
propagator could indicate indirect evidence for the exist-
ence of mass dimension one fermions.
Furthermore, the asymmetry in the Higgs mass in

relation to the angles η − ϕ is a striking signature given
by the current model for search in the nowadays accel-
erators. This is closely linked to the precision of the
detectors to measure the transverse energy Et in the angular
plan. Future studies in this line can constrain the coupling
constant in this model.
Finally, we should mention that a possible resolution to

the unitarity problem has been proposed [47]. The reso-
lution is based on the observation that the dual space of the
spinors and the field adjoint of the theory are different from
their Dirac counterpart. Their introduction ensured the
locality of the fermionic fields and positivity of the free
Hamiltonian. Given that they play such an important role, it
was proposed that instead of using the Hermitian con-
jugation to compute the transition probability, one should
use a new conjugation for processes involving mass
dimension one fermions. Upon adopting the new
conjugation, the fermionic propagator becomes the
Klein-Gordon propagator. As a result, the fermionic loop
correction is Lorentz-invariant and the optical theorem is
satisfied. While this result is desirable, it should be noted
that it is a departure from the standard quantum field theory
and further investigation is needed to determine its math-
ematical consistency.
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APPENDIX: USEFUL IDENTITIES

The mass dimension one fermionic field operator and its
adjoint are given by

ΛðxÞ ¼ ð2πÞ−3=2
Z

d3pffiffiffiffiffiffiffiffiffiffiffiffi
2mEp

p
×
X
α

½e−ip·xξðp; αÞ þ eip·xζðp; αÞb†ðp; αÞ�; ðA1Þ

¬
ΛðxÞ ¼ ð2πÞ−3=2

Z
d3pffiffiffiffiffiffiffiffiffiffiffiffi
2mEp

p
×
X
α

½eip·x ¬ξðp;αÞaðp; αÞ þ e−ip·x
¬
ζðp; αÞbðp; αÞ�:

ðA2Þ

The spinors ξðp; αÞ and ζðp; αÞ are eigenspinors of the
charge conjugation operator

Cξðp; αÞ ¼ ξðp; αÞ; Cζðp; αÞ ¼ −ζðp; αÞ ðA3Þ
where

C ¼
�

O −iΘ
iΘ O

�
K; Θ ¼

�
0 −1
1 0

�
ðA4Þ

with K being the complex-conjugation operator. The dual
spinors is defined as

¬
ξðp; αÞ ¼ ξ̄ðp; αÞΞðpÞ; ¬

ζðp; αÞ ¼ ζ̄ðp; αÞΞðpÞ:
ðA5Þ

where

ΞðpÞ ¼ 1

m

X
α

½ξðp; αÞξ̄ðp; αÞ − ζðp; αÞζ̄ðp; αÞ�: ðA6Þ

The spin-sums needed to compute the ϕ →
¬
ΛΛ decay rate

are X
α

ξðp; αÞξ̄ðp; αÞ ¼ p½I þ GðϕÞ�; ðA7Þ

X
α

ζðp;αÞζ̄ðp; αÞ ¼ p½I − GðϕÞ�: ðA8Þ
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