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We study field theories with A/ extended nonlinearly realized supersymmetries, describing the couplings
of models that contain A/ Goldstini. We review all the known formulations of the A" = 1 Goldstino theories
and we generalize them to an arbitrary number A/ of nonlinearly realized supersymmetries. We explicitly
prove the equivalence of all these extended supersymmetry breaking models containing A Goldstini and
reformulate the theory with N supersymmetries in terms of standard N = 1 constrained superfields.
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I. INTRODUCTION

One of the first appearances of supersymmetry was to
describe the seemingly massless neutrino as a Goldstone
particle whose interactions were dictated by a nonlinear
symmetry acting as a fermionic shift [1]. In the meantime
supersymmetry was also formulated as a linear symmetry
that could address the gauge hierarchy problem. This fact
triggered a systematic use of supersymmetry in particle
physics and led to the supersymmetrization of the Standard
Model (see [2] for a review). In this framework nonlinearly
realized supersymmetry can serve as an organizing prin-
ciple for the description of low-energy effective theories,
because it encodes information of the underlying linearly
realized ones. As an example, it can be used to introduce
soft breaking terms in the Minimal Supersymmetric
Standard Model [3].

In most applications the global nonlinear supersymmetry
is exact and the fermionic Goldstone modes are massless.
A proposal conceptually closer to the original motivation
underlying the work of Volkov-Akulov, however, is to
study light fermions as pseudo-Goldstone modes of an
approximate supersymmetry. In this respect supersym-
metry remains nonlinearly realized and it does not neces-
sarily have an UV completion in terms of a linearly realized
representation. Strongly coupled sectors, in particular, can
have such pseudo-Goldstone modes. As an example, there
are models that describe quarks and leptons of the Standard
Model as remnants of some of these strongly coupled
sectors [4,5]. In this scenario, softly violated nonlinear
realizations of supersymmetry can be used as a tool for
studying the low-energy effective theory associated to some
strongly coupled sector.

Superspace is the natural framework for the formulation
of supersymmetric theories [6,7]. The development of a
superspace formalism for A/ extended nonlinearly realized
supersymmetries is therefore compelling. Geometric meth-
ods for studying this type of theory have been defined [8],
but a complete superspace setup has not been established
yet, though scattered results do exist [9—11]. Our work aims

2470-0010,/2016,/94(6)/065019(17)

065019-1

exactly to set the foundations for this program. The starting
point is the supersymmetry breaking sector. It contains A
Goldstini G;, with I = 1, ..., N, and the auxiliary field F
giving the supersymmetry breaking scale. Once the proper-
ties of this sector are established, additional matter and
gauge constrained superfields can be coupled to it [12—18].
Considering N > 4 supersymmetries, for example, some
component fields of the Goldstini supermultiplet are going
to have spin higher than one. Due to the nonlinear
realization, these fields are removed in terms of the A/
Goldstini, much in the same way as the sgoldstino is
removed from the spectrum in the A/ = 1 theory.

Our main result is the construction of the supersymmetry
breaking sector for a generic number N of supersymme-
tries, in the case they are all spontaneously broken and
within different superspace formulations. We study first the
system of N Goldstini in the Samuel-Wess formalism
[9,11] and we prove the equivalence between this formal-
ism and the geometric method [1,8]. We then present the N/
Goldstini model in the somewhat generalized formalism of
[12,13], identifying the generalization of Rocek’s con-
straints to V' supersymmetries. In a more modern approach,
we also reformulate the Lagrangian and interactions of A/
Goldstini in terms of constrained superfields [15,17]. This
can be done by considering a chiral superfield in A
superspace

DX =0,
and imposing the constraints
X(D'#)2N=2plx =0,
which imply also
X2 =0.
These constraints remove all component fields from the

spectrum except the Goldstini and the auxiliary field
acquiring the vacuum expectation value. We express finally
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our results in terms of A" = 1 constrained superfields. In
particular, we relate the discussion to the standard nilpotent
superfield methods and to the chiral superfields system
[16,17]
X?=0, XY, =0, XD?Y; =0,
where the A" =1 Goldstino is accommodated inside X,
while the other Goldstini are inside Y;. The couplings of
these superfields are dominated by the additional non-
linearly realized supersymmetries. We briefly present also
an alternative way to describe the theory, accommodating
the Goldstini inside the chiral superfields X and H}
such that
X2 — 0, Ea(Xﬁlﬁ) - 0

The possible applications of the formalism we developed
are numerous. Let us therefore sketch a few of them before
concluding this introductory section. One first direction
might be the study of theories where N supersymmetries
have been spontaneously broken at some high-energy scale
f and they become nonlinearly realized. In particular the
possible matter couplings can be investigated, as for
example in [3], and it would be interesting to understand
the restrictions on these couplings imposed by the low-
energy theory. In fact one could even go up to N =8
supersymmetries, since it is known that gravitino inter-
actions are dominated by the spin-1/2 part during high-
energy scatterings [14]. In these models one is assuming the
UV theory to have a linear realization of supersymmetry.
An alternative direction is to assume the UV theory is in
fact a strongly coupled sector and therefore the nonlinear
supersymmetry is not exact. The Goldstini are then massive
pseudo-Goldstone modes. This is an approach that has been
investigated in [4,5]. As a further application, the tech-
niques we developed in this work might be useful in the
study of partial breaking of supersymmetry [19,20] and to
understand its relation to dualities [21].

II. THE N =1 GOLDSTINO IN SUPERSPACE

In this section we review the original formulation of the
Volkov-Akulov model and we rephrase it in superspace,
using the Samuel-Wess formalism. An explicit proof of the
equivalence of these two models is given directly in
superspace. The Rocek and the Komargodski-Seiberg
constrained superfield models are then introduced and
related to the previous ones. This analysis has to be
considered as a warm-up for the following sections, where
we will promote our construction to extended supersym-
metry. In the calculations we adopt the conventions of [7].

The Volkov-Akulov model [1] is the prototype of a
spontaneously-broken minimal AV = 1 theory with only a
Goldstino. Given a Goldstino field 1%(x), its supersymmetry
transformation is nonlinearly realized and inhomogeneous,
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the constant term being proportional to the supersymmetry
parameter €

520 = fe — } (16" — 6" 7)), 27 (2.1)

The Goldstino can be used to define the invariant differential
form

dx" A, = dx™ |88 — fizamxaaz + fizwamz (2.2)
and to construct the Lagrangian
L =—f*detA,,* = —f2 —i(A6" 0,y — O,,A0" 1)
+0(f72). (2.3)

where f is the supersymmetry breaking scale with mass
dimension 2. This Lagrangian is invariant under supersym-
metry, because

SdetA = — }8,,1[(/10’"5 —eo"l)detA].  (2.4)

We are now going to rewrite the Volkov-Akulov model
in superspace. In our conventions the algebra of the N = 1
superspace derivatives is

{Da,ﬁﬁ} = —2ia;’;}8m, {Dy. Dy} = 0. (2.5)
A superfield representation for the Goldstino can be derived
by considering a spinor superfield A, satisfying the
constraints

DaAﬂ = f€ﬂa + %GZIPKpamAﬂ,

Dyhy = —%Apa’ Oy, (2.6)

m
pa

This is a representation similar to the one introduced by
Samuel-Wess in [9]. Actually, the two are related by a field
redefinition as we will see later. More details on the role of
these constraints in the theory of nonlinear realizations can
be found in [22,23]. By construction, the Goldstino is
accommodated in the lowest component of A,

(2.7)

and, due to the particular choice of the representation, its
supersymmetry transformation is given precisely by (2.1).
The superfield A, can be used to build the superspace
Lagrangian
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L=- %2 / d*ON>A?, (2.8)
which reduces to the Volkov-Akulov action (2.4) at the
component level. In fact the equivalence of these two
models can be proved directly in superspace, without
working explicitly with the component fields. Promote
first the Goldstino field A to a superfield A satisfying (2.6)
and define the superspace analogous of the matrix A¢, to be

i
P

The superspace Lagrangian density has then the form

—_ i _
Ay = 8= 25 On Ao N+ 5 A0, 1. (2.9)

L = —f*detA,"|. (2.10)
To prove the equivalence between (2.8) and (2.10) notice
that, due to the particular form of A, up to boundary terms

/ d*ON2A? = / d*OA2A? det A,

1 _ _
= — D?D?*(A2A*det A%)|,

" (2.11)

because terms in det A% containing either A or A are
annihilated by A>A” and only the constant term has an
effective role in the computation. Acting then with the
covariant derivatives inside the parenthesis, the A super-
fields are removed and, from the properties

i .
D, detAj, = ?Gm(GZ}A” det A%),

D’ det AY, = }am (6PN, detAL),  (2.12)

the equivalence between the two Lagrangians follows up to
total derivatives

/ d*xd*ON* A = f* / d*xdetAs|.  (2.13)

From the Samuel-Wess superfield A we can define a new
chiral superfield

1 — _
® = ———D*(A*A?). 2.14
D) (2.14)
In the representation (2.6) it has the form
® = fAN(f? - i, A" A — 2?0, A6, ).
(2.15)

This superfield ® contains all the supersymmetry breaking
information and satisfies the constraints
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P2 =0,

OD*P = —4fD, (2.16)
which are exactly the constraints introduced in [12]. We can
understand their role by assuming that ¢ is an uncon-
strained chiral superfield. By imposing the first constraint
in (2.16), the scalar component, namely the sgoldstino, is
removed from the spectrum, while by imposing the second
the supersymmetry breaking scale is fixed. These con-
straints in fact reduce the number of independent compo-
nent fields in the superfield and provide them as functions
of the Goldstino.

The Goldstino inside the ® superfield is defined as the
component D,®| and, since

D{I(I)| :2)“{1+”'9 (217)

it is related to the field A, via a field redefinition. For this
reason the supersymmetric Lagrangian of the constrained ®
system,

L= —f/ d*00, (2.18)
does not reduce directly to the Volkov-Akulov Lagrangian,
as the Samuel-Wess Lagrangian does, because the
Goldstini have to be mapped into each other. However,
the proper field redefinition can be found by inverting the
relation (2.17) between the two Goldstini. Let us mention in
passing that supersymmetry breaking from complex linear
superfields has been studied in [24,25] and the relation to
the N = 1 Goldstino superfields discussed here was also
established.

At this point a comment on the role of Samuel-Wess
representations in our discussion is in order. We showed
that the particular Samuel-Wess representation (2.6) repro-
duces exactly the Volkov-Akulov model, either working in
components or directly in superspace. In fact there exists a
second representation within the Samuel-Wess formulation

Dal—'ﬁ = f€ﬂa,

— 2i
D(Ztr/} = - ? F/)G;ndamrﬂ, (2 19)

which appeared in [9]. In superfield notation the super-
symmetric Lagrangian is still the same as the one in (2.8),

1 _
L=—— [ d*orT>. (2.20)
f2
To move from one representation to the other, set
D,D*(A*A?
F(x - —2fa_¥_2> (221)
D?>D?*(A\’A?)
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and, using this relation, the equivalence between the two
Lagrangians can be proved directly, because
212 = A%A% (2.22)
The approaches of [9,12], although being related by a
field redefinition and thus being not exactly equivalent,
have a common property: they describe a superfield
containing only the Goldstino and the supersymmetry
breaking scale. Fixing the supersymmetry breaking scale
may be too restrictive for many purposes and therefore a
less constrained approach has been developed. To construct
a superfield where the sgoldstino is removed from the
spectrum, but the auxiliary field F is still there, the second
condition in (2.16) can be relaxed. Indeed, by imposing
only

X?=0% XD, X =0, (2.23)

where the biconditional statement holds if F acquires a
nonvanishing vacuum expectation value, we have

G2

— 1 V260G + 6°F,
2F+\f +

X (2.24)

where X is a chiral superfield with Goldstino component
G,. This direction was followed in [15], where the
decoupling of the sgoldstino was explored. In [17]
the superfield X was conjectured to be the IR limit of
the superfield violating the supercurrent conservation
equation in a supersymmetry-breaking setup.1 The minimal
Lagrangian for X is

L= / d*OXX + (f / d29X+c.c.>. (2.25)

The standard procedure to recover the Volkov-Akulov
model from (2.25) consists in extracting the component
fields, integrating out the auxiliary field F, and performing
a field redefinition between the Goldstini. We present
here a different procedure, relating the formalism of
Komargodski-Seiberg to that of Samuel-Wess directly in
superspace. Define the superfield

D

X
_ : 2 __
F,=-2f ;5 with X=0.

(2.26)

This is a Samuel-Wess superfield satisfying the represen-
tation (2.19). Using (2.26), the Komargodski-Seiberg
Lagrangian (2.25) can be written as

'See [26] for further discussions on the IR limit.
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1 - -
L=/ / d*0r°T*(D’XD’X +4fD*X + 4fD°X).

(2.27)

Once the superspace integration is performed and up to
boundary terms, this Lagrangian is equal to

L = (FF + fF + fF) det A% |, (2.28)
where we defined the superfield
F= _%ﬂ (D - ic"Ad,)*(D + iAc"0,)*(XT?). (2.29)
Integrating out F| gives
Fl =-f (2.30)

and, after substituting it back into the Lagrangian, (2.28)
reduces exactly to (2.10). This concludes the equivalence
between the models (2.10) and (2.25). Notice that to relate the
two formulations, the integration of a complex scalar is
expected, because the Komargodski-Seiberg model contains
also the auxiliary field F in the Lagrangian. More details on
this proof can be found in Appendix B, where the origin of
the scalar superfield [ is explained. We should mention here
that a similar method was used in [27,28] to prove the
equivalence between various formulations and later in [29]
the same equivalence was studied in component form.

We conclude that all known realizations of the N = 1
Goldstino model are equivalent and we proved it in super-
space, therefore making the procedure more transparent.

III. THE A =2 GOLDSTINI IN SUPERSPACE

In this section we promote the Samuel-Wess formalism
to ' = 2 superspace and we use it to find the appropriate
constrained superfield approach.2 The first part of the
analysis is similar to [11], but it is worked out in a different
representation. Once the minimal set of constraints is
determined, the theory is reformulated in A" = 1 language
and the complete expression for the Lagrangian in the X, Y
system is given for the first time. Some of the demon-
strations of this section are omitted, because we are going to
prove the analogous results directly for general \.

A. N =2 superspace

The algebra satisfied by the N = 2 superspace deriva-
tives without central charges is

%For a different formulation of the theory of N = 2 Goldstini,
see [30].
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{D(Dﬁ&} = {Davb(}} - _21.6"1 ms

aa
{DavDﬂ} = {Da’bﬂ} = {owﬁ}

= {Da,DB} =0, (3.1)
where D, generates the second supersymmetry.

The first step consists in determining the (minimal) set of
constraints needed to remove from the spectrum all the
undesired component fields. To this purpose we exploit the
Samuel-Wess formalism, following the procedure outlined
in the previous section for the N” = 1 theory. When super-
symmetry is completely broken, we need two Goldstini

and therefore we define two spinor superfield A, and /~\a
satisfying the constraints

i m AP ) i m
DaA/; = f€/,’a + ?O'ai)ApamAﬁ, DaAﬂ = —?O'pdApamA/},

i

DAy = fes —|—£o{2-jb Ouhy.  Dyhy = —?aﬂ"ii/&’)am]\ﬁ
(3.2)

and

DAy = ]i;ag;j"’ Oudy.  DyAy = Ji;a;;)/\/’am]\,,,

Dyhy = —;ag;,[\ﬂam/\,,, DyAy = — } o A0, Ay

(3.3)

The superfields A, and A, are the Samuel-Wess Goldstino
superfields for the broken supersymmetries. The only inde-
pendent component fields they have are the Goldstini,
defined as

Aa|9:é:0 = /1(17 Aa|9:(§:0 = A’(l‘ (34)
Their supersymmetry transformations are nonlinearly

realized

5l = fEu — } (A6"E — €6"7)Dph
i~ =
——(Ao™e — €6™A)0,, Ay,
7 ( )
5he = fE, — } (16" — 6" 1) Dl

- } (A6"E — €6 2) D, (3.5)

where ¢,, €, are the N' =2 supersymmetry parameters.
As discussed more carefully in the general A section, the
supersymmetric and U(2)g-invariant Lagrangian can be
written as
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1 . )
L= % / d*0d* 0N AP A A (3.6)
and, after projecting to components, we find
L =—f?—i(A6"0,,A — 0,,Ac"A)
— (36" Dh — Dpde™l) + O(f2). (3.7

We develop now the constrained superfield approach in
N = 2 superspace. Define first a chiral superfield ®

1 =2

o= —— DD (NRA°L),
16f

(3.8)

containing the supersymmetry breaking information.
We are going to use it to derive the appropriate set of
constraints to remove all the undesired component fields.
This superfield can be expressed in the form

& = fSNAY(f? = i9,A0" A — i, A0 A + O(f2))
(3.9)

and by construction one can verify that

The Goldstini can be found in the component fields

1 .- ~
_ZDzDa(I)b:():o — 210[ + e
1~
_Z Da®|9=é:0:2/1a+"'7
(3.11)
where dots stand for terms with more fermions. By direct
inspection we find that & satisfies the following set of
constraints:
P> =0,
®D, P = ®D,P = 0,
®D,Dy® = ®D,D;® = ®D,Dy® = 0,

®D,D;D,® = ®D,DyD,® = 0, (3.12)
together with the property
ID2D*D = 16D, (3.13)

implying again the fact that the highest component of
the superfield contains the supersymmetry-breaking scale.
The N = 2 Goldstini Lagrangian for ® can be written as
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L= —f/Jzecﬂécb. (3.14)

By imposing the constraints (3.12) to a generic N = 2
chiral superfield, we remove all of its components except
the Goldstini and the auxiliary field containing the super-
symmetry breaking scale. The important point is that only
the last constraint in (3.12) is really essential. We demon-
strate this statement in the general A section, solving the
constraint explicitly in superspace and verifying that
the unique solution contains only A Goldstini and the
correct auxiliary field. Consider therefore a A = 2 chiral
superfield X,

DyX = DX = 0. (3.15)
Imposing the constraint
XD,D;D,X = XD,DyD,X =0 (3.16)

and solving it in superspace we obtain the unique solution

1G*G?

In this formula the N' = 2 superfield F is defined such that

1
F= f|e:é:o 1<

=2
16 *D X|9:é:0

(3.18)

is the complex scalar auxiliary field, while the superfields
G, Ga are defined such that

1

Ga = Ga|9:é:0 = _4—\/§D2Da')(|9:é:0,
- | R
9o = Ga|9:é:0 = _mDZDaXb:é:o’ (319)

are the Goldstini. From the explicit form of the solution
(3.17) and from the properties (3.18), (3.19) one can see
that all component fields in X are effectively solved in
terms of the auxiliary scalar F and of the two Goldstini
Ya> Ga-

To have a more direct understanding of what is going on,
we can introduce chiral coordinates

Y = X" + i06™0 + "0 (3.20)
and expand X as
2~2 ~2 a ~2 2~a 70 AP0
=99 TG 5 T, TT 5 90T 90
4F°  \2F? 2F V2F? F
2 ~ ~ ~ ~
+ 30+ V20,0 + V20,5 + FEP. (3.21)
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The Lagrangian for the supersymmetry breaking sector is
now

L= / d*0d*0X X + (f / d26d2éX+c.c.) (3.22)

and to get the explicit Goldstini action, after projecting to
components, one has to solve the equation of motion for the
auxiliary field F via an iterative procedure giving

Fefto (323)

and then replace the solution back into (3.22).

B. NV =1 superspace

We are now in the process of formulating the previous
results in VY = 1 language, which is the most useful one for
practical applications. In doing so, we will show that we
have various ways of describing the interactions of the
Goldstini, depending on the realization of the second
Goldstino as the fermion of a chiral or tensor multiplet,
or as the upper component of a vector multiplet. This could
be useful if one wants to understand the (possible) ultra-
violet completions in terms of hyper, vector, or tensor
multiplets. Expand first X" as

X =S(y,0) +V20/Wy(y,0) + X (y.60),  (3.24)
where S, W,, and X are N' = 1 chiral superfields
DS =0, D,W, =0, DX = 0. (3.25)

The first supersymmetry acts on these superfields as
usual,

5,0 = €D, 0 + €, DO, (3.26)
and one can derive from here the supersymmetry trans-
formations of the component fields. The second supersym-

metry acts by transforming the A" = 1 superfields into each
other

5,8 = V2w,
5,W, = V2ic" &%, S + V2E,X,

aa

5,X = V2ie,6m 9, W,,. (3.27)

In particular the auxiliary field acquiring a nonvanishing
vacuum expectation value is now expressed as

1

F=-1DX| (3.28)

and, from the supersymmetry transformations
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1
519(1 = —51D(1X| = \/56(1F+ -

V2

- 1 -
0204 = _ZézDZWa| = \/EeaF e (329)

one can understand that the Goldstini are accommodated
inside the superfields X and W,.

Inserting the explicit expression (3.24) in (3.12), we find
a large number of constraints for the N' = 1 superfields

SP=W?=X?=0,
SD/}X — O,
W{ID/}X - O,

WeD?W,, = 28SD*X. (3.30)
As we have already argued, however, the minimal number
of constraints has to be very small, just one for the
superfield X living in the full N" = 2 superspace; in fact
only the following N' = 1 constraints can be thought as
fundamental:

X (D*W)?

"o Mo

D*W.
Ta, X2 :O
DX

(3.31)

From the first of these constraints, in particular, it is
manifest that § is entirely removed and expressed in terms
of W, and X, containing in turn the Goldstini and the
auxiliary field F.

We can now write the Lagrangian (3.22) in the N =1
constrained superfield language, replacing S with its
expression in terms of W, and X. The result is the low-
energy theory of an A/ = 2 spontaneously broken super-
symmetry generalizing the Volkov-Akulov model

- [ (il (2200

2 (D*X)?

+f</ d29X+c.c.>.

Notice that, on top of the manifest A" = 1 supersymmetry,
(3.32) has a second supersymmetry given by

ao

2 .
+i0,, W™, Wﬂ)

(3.32)

. mzan (X (D*W)? .
5 W, = \Ezame O (5 (D°X)? + V26X,

8, X = \V2ie, oM, W,, (3.33)
and since the superfields W, and X are constrained, this
second supersymmetry is nonlinearly realized. In compo-
nent form the Lagrangian (3.32) reduces to

PHYSICAL REVIEW D 94, 065019 (2016)

L =FF + fF + fF +i0,,¢°"g" + i0,,5"c". 3"

+ higher-order fermion terms. (3.34)

As a final step one can integrate out F and replace its

expression into (3.34), obtaining a theory for the A = 2
supersymmetry breaking with only Goldstini.

An alternative way to describe this theory is by defining

the spinor superfield

D*W;
Hy = —=". 3.35
5% (3.35)
This is a chiral superfield,
5/-}Hd =0, (3.36)
satisfying the property
EB(XE,) =0. (3.37)

Since H is chiral, it is known [17] that the constraint (3.37)
removes its higher components leaving the lowest one,
namely the Goldstino of the second supersymmetry, uncon-
strained. The low-energy theory of an A/ = 2 spontane-
ously broken supersymmetry can be expressed in this X,

H, system as
XH?
()
2

- /d“H(XY—
—l—f(/a’ZQX—l-c.c.).

In fact there exists another way to describe this model.
The Lagrangian (3.32) describes a theory with two chiral
N =1 constrained superfields where all the components
have been removed except the Goldstini and the auxiliary
field breaking supersymmetry. This type of theories have
been analyzed in terms of orthogonal nilpotent superfields

2

+id,, (Xﬁa)agg(YHd)>

(3.38)

X? = XY =0, X,Y chiral (Y3 =0). (3.39)
Since all these theories have the same physical content,
however, there must be a way to rewrite (3.34) in terms of
the N = 1 constrained superfield X and Y. In the presence
of an A/ = 1 supersymmetry-breaking constrained chiral

superfield X satisfying

X?=0% XD, X=0 (3.40)
we define therefore a chiral superfield Y,
D,Y =0, (3.41)

and we remove its scalar and auxiliary field components
imposing the constraints
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XY =0,
XD*Y = 0. (3.42)
These constraints can be solved to obtain
D*XD,Y D?Y
Y=-2—" "X,
DX DX
—16X0*Y + 8iD,X0D,Y
pry = “1OXOV HBIDXOTDLY 5 45
DX

where the notation 0, = o7 9, has been used. From (3.43)
it can be understood that the lowest component of the Y
, and the auxiliary field D*Y| are
removed from the spectrum and expressed in terms of the
fermion D,Y|. The chiral superfield ¥ contains therefore
only one fermion. Since the superfield W, also contains only
one fermion, it should be possible to use it to build a
superfield having exactly the properties of Y. The expression

D’XD,D’'W,

1
Y= ——DW, +V2——2_
D*X

V2

satisfying (3.42) when W, satisfies the second constraint in
(3.31), is the desired one.

To rewrite the Lagrangian (3.32) in the X, Y system we
have first to invert (3.44), in order to express W, in terms of
the chiral constrained superfield Y,

. (3.44)

DYDIX . (DyX

DyY s

16v/2iX 9,

pix T 1OV2X e O <D2X>
DY D°X

— 128V2X s

Drx Dan DyX
D>’XD*X °\D>X) D*X "\D*X)"

(3.45)

2f

We can then replace (3.45) in (3.32) to obtain the
Lagrangian

L= / d*O(XX + YY[1 + A] + S9%5)

+ +c.c. |, .
d20x 3.46
where
D, X87 /’XD X@yD/’X
A=-64 |D2X|4 (3.47)
and
DX
)
S=Y 5+ g DD (o DXo DY) (3.48)
(e"’ 1 ‘sz‘z )(p_ 1 [D2X]2 )
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This is the complete expression of the N' = 2 supersym-
metry-breaking Lagrangian in the language of orthogonal
nilpotent superfields.

IV. N/ GOLDSTINI

In this section we generalize our results to an arbitrary
number A of supersymmetries. The logical thread is the
same as in the previous section, but the steps are justified
with more care. General expressions for the component
fields and for the Lagrangian are given and a way to
organize the high number of removed fields is depicted.
Some technical and rather long calculations are reported in
detail in the Appendixes.

A. N superspace

The algebra satisfied by the N superspace derivatives
without central charges is

{Da’ DJ('I} = —21.550;”&(9"1,

{DL.D}} =0, (4.1)

where the indices I, J run from 1 to N labeling the
supersymmetries. In particular lower indices refer to the
fundamental of U(N'),, while upper indices refer to
the antifundamental. Since there are now A broken
supersymmetries, the theory contains N~ Goldstini and
therefore we define N spinor superfields A, satisfying the
constraints

DéAj/i = fe/}a5] + fUm A9 g

E[&Ajﬁ - A 8 AJﬂ (42)

f /)a

The superfields A,, are the Samuel-Wess Goldstino super-
fields for the broken supersymmetries. The only indepen-
dent component fields are the Goldstini, defined as

A[(1‘9’=0 = j'Iar' (43)
Their supersymmetry transformations are
g = fere — % N (Wo"e — 0" F )i (4.4)
7

where €;, are the N supersymmetry parameters. The
supersymmetric and U(N\)z-invariant Lagrangian can be
written in several equivalent ways
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2

C
. _fo[\/_z/d“NQdet(A,lAlz.--AIN)

« det(A R K'Y
1 —— R

— o [ PO (R R
1

= _f4/\/—2

1
- f4N_2

/ d*NOAN AN

x (4.5)

/ d*VO(A AIALAT Y

where C)y is a normalization chosen in such a way that the
first line in (4.5) reduces to the second one. The power of A/
in the last line is fixed by the requirement of having a
minimal effective theory with only Goldstini and whose
component expansion starts with a constant term, in order
to recover the positive constant breaking supersymmetry.
Indeed, the Lagrangian (4.5) includes kinetic terms, the
vacuum energy and higher-order corrections essential for
the nonlinear realization. For simplicity in what follows we
use directly the more compact expression

1
- f‘W -2

L= / d*N AN AV (4.6)

and, after projecting to components, we find

L=—f*=) i(40"0,,0 = 0,dyo" ) + O(f2). (4.7)

1

We develop now the constrained superfield approach in
N superspace. Define first the chiral superfield ®

1 _ _
_ 2N (AN AN
containing the supersymmetry-breaking information. We
are going to use it to derive the appropriate set of
constraints to remove all the undesired component fields.’
This superfield can be expressed in the form

BN (4 SR )4 SRR ) 4,
(4.9)

where (...) contains terms with derivatives of the A
superfields, and by construction one can verify that

*We use the notation (¥,)*" = U2V = W23, 12, to indi-
cate the product of N squared spinor superfields. The dummy
index / is not summed and, to avoid confusion, if sums occur they
are going to be explicitly written. In some formulas, the notation 1
is actually used to stress the fact that the index is fixed.
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Dya® = 0. (4.10)

The Goldstini can be found in the component fields

1
ey (DD gy = 2+ (411)

O

where dots stand for terms with more fermions. By direct
inspection of formula (4.9) we find that ® satisfies the
following set of constraints:

P2 =0,
dDLD =0,
®DLD]D = 0,

SDLDIDED =0,

oD YN2pld =0, (4.12)
together with the property
(DN = (—4)N £, (4.13)

implying again the fact that the highest component of the
superfield contains the supersymmetry-breaking scale. The
Lagrangian for ® can be written as

L=-f / d*N oo, (4.14)

The important constraint in (4.12) is only the last one.

The reader can find the demonstration in Appendix A,

where the constraint is explicitly solved in superspace.
Consider therefore a chiral superfield

DX = 0. (4.15)
Imposing the constraint
X(D*YN2plx =0 (4.16)

and solving it in superspace, we obtain the unique solution

X = (I)N (G?Gla)(GgGer) (G;(/GNa)

E fZN’ -1

(e

In this formula the generic N superfield F is defined
such that

(4.17)

1
F= 7|9’:0 = 7(D1)2NX|9':0’

= (4.18)
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is the complex scalar auxiliary field, while the superfields
G, are defined such that

1
VA

Gia = Gialg—o = (D/#12N=2plx o0

(4.19)

are the Goldstini. Notice that, as a consequence of (4.17), X
satisfies the nilpotency constraint

X2=0 (4.20)
and as proven in Appendix A, it contains only the Goldstini

and the auxiliary field. The Lagrangian giving the super-
symmetry-breaking sector is now

L :/d4N6XX+ <f/d2N9X+c.c.) (4.21)

and F has to be integrated out to find a theory including
only the Goldstini.

In Appendix B the Lagrangian (4.21) is proven to be
equivalent to the other Lagrangians for N Goldstini
constructed with different methods. This demonstrates that
our results cover effectively all known formalisms.

B. N =1 superspace

We are now in the process of formulating the previous
results in AV = 1 language, which is the most useful one for
practical applications. As a first step we explicitly break the
U(N), covariance by splitting the set of superspace
derivatives as

D! - {D,,D.}, (4.22)
where i takes values from 1 to N — 1.
The superfield X of the NV =1 X, Y system is*
1 ;
X=——(DHN2x, such that X2 =0, (4.23
e ) (423)

and it contains the auxiliary field F and the Goldstino of the
first supersymmetry, i.e., in our conventions, the one related
to the first superspace derivative in (4.22)

*Since we omit the 6-projections in the definition of X, strictly
speaking this object lives in the full A/ superspace. The same
observation applies also to W, in (4.25). We nevertheless keep
refer to them as AV = 1 superfields, because this is the role they
have been introduced for. The X, Y, appearing in (4.31) and
thereafter are, in any case, properly projected A = 1 superfields.
We are confident that at this stage of the discussion the reader is
going to avoid any type of confusion, even with this little abuse of
notation.
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1
D(1X|91:0‘

Ga = G(t|9’:0 = 75 (424)

The other Goldstini occupy the highest components of the
N =1 superfields

1 L ,
W, = —=————(D#)2N-4pi x| 4.25
S ) (425)
satisfying the constraints
D*W;
Wi, =X—57. (4.26)
DX

In particular in the N' = 1 language they are described by
the superfields

1
Gia = - 7D2Wia'

; (4.27)

The expression of the solution (4.17) in terms of the
Goldstini and of the auxiliary field is

N-1 2 2
_ osesvpllinn (D W)
X = IR

(4.28)
The lower components of X are constrained N = 1
superfields and, similarly to the S of the ' = 2 case, they
are removed from the spectrum in terms of X and W,,. In
particular, they organize in representations of the group
U(N — 1), acting as a flavor symmetry after the breaking
UN)g > U1)g xUWN =1). (4.29)
To deal with all the possible components of X in the general
N case we proceed as follows. The generic component can
have a number p of fermionic indices, 0 < p < 2N/, and
some of them can be contracted in pairs. An efficient way to
handle them consists in distinguishing between the indices
in the set M| = {iy, ..., i} }, which are all different, and the
ones in M, = {ji, ..., j;}, which are equal two by two. In
this picture therefore we spilt p = k 4/ and we construct
the general expression

iiyseslpsijasJi
(S(k+l) )

Qe X1 s
k+1 . . , . . .
~ (L Dg\Dg,...Dg D} D ...Dj Xy
\/§ Hayoo Lo lp Uy ...Lp 0'=0-
(4.30)

We conclude this section writing down the Lagrangian of
the general N theory in the three N =1 constrained
superfield systems we have been discussing in the work,
namely the X, W system, the X, Y system, and the X, H
system. The A/ = 1 Lagrangian in terms of the superfields
X and W,, is of the form
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L= / d49<XX+zZa Wio gaw"l>

—|—f</d29X+c.c.)+-'-,

where dots stand for higher-order terms, containing the S
components, which are essential for the nonlinear realiza-
tion of the A/ supersymmetries. Mimicking the discussion
of the A/ = 2 theory, we can define the Y; superfields such
that

(4.31)

XYi — 0,
XD*Y; =0, (4.32)

where X? = 0 is always understood. These superfields Y;
contain only fermions, which are going to be the Goldstini
of the broken supersymmetries. Using the expression

XD DrY; D’X DX
D°Y,D°X DPX\ D’X DX
— 128V2X .. ity S et
v D’X D?°X *° (sz> D*X " <D2X)
(4.33)

we can rewrite the Lagrangian (4.31) in terms of the
superfields X and Y;. The lower superfields S,y now take
the form

iyiysee sl 1fase -1
(§ )
(p) a1y, P1fos P

_ 022N
=2 2epp, €, X

(DY Z)(D, Y, 2.
f'2./\f —2—k—1
X (DaYi¢MZG)w_2_2k_Zv

(D, Y, Z5)

(4.34)

where p = k+ 1, M = M, + M, and Z/, is an expression
containing only X

DX
p _ .

7h = &0 + 8ieV ” % 8ﬁﬁ (D2X)

D°X DX\ D’X DX

~oien D (2 D (2). s

ao'(';
D*X
This proves in fact that the only independent superfields are
X and the Y;, while all the other superfields are given in
terms of them as a consequence of Eq. (4.34). The
expression of the Lagrangian in the X, Y; system is
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L= /d“H(XY +) VY A])

+f</ d29X+ C.C.> + ﬁHOv (436)

where A is defined as in (3.47) and Ly stands for higher-
order terms, making the theory invariant under the non-
linearly realized additional supersymmetries.

Let us give a rather compact expression for the
Lagrangian, which can be useful in practical calculations.
With a bit of reordering the complete theory can be recast
into the form

N-1N-1
L= /d“@ Ly +f(/ d20X+c.c.>, (4.37)

N-1 N-1

w- ¥ ¥

iy =1 ji>j1g> > ja=1

(_l')kz—l(sil ..... Tgsfsee s jl)al ----- i Papas- B

aald] aakak (62)/\/— k__

X (g )L'l],...,flk, /}2/34 ..... /3[

iaeesdi 1]l

(4.38)

and where S is defined with the fermionic indices in the
opposite order

(S(k‘%l)

Uiyl 120 s Jl)(ll(lz ~~~~~ BB B
= L e D'k le 1 Dll Dszjl 1 D./l Xl
\/z L BT B
(4.39)

With this formula one can effectively extract the contri-
bution of the desired derivative order without necessarily
compute the whole Lagrangian. As a check, in the N = 2

2 :
case where Lg % vanishes, we have

L= /d“@ )+f</d2ex+c.c.>

= / d*0(SO*S — iW?0,, W + XX)

+f</ d*0X + c.c.)

and it matches exactly with (3.32).
Finally, an alternative way to express the theory is in
terms of the chiral superfields X and the Hé satisfying

(4.40)
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TABLE L.
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The N = 1 chiral superfields content of a minimal A/ Goldstini theory. The shorthand notation S(”) indicates all the

possible components (4.30) with p fermionic indices contracted in all the possible ways.

SUSY N=1 N =2 N =4 Generic N
Goldstini superfields X X, W X, Wi, Wy, Wy X, Wi, Wy, oo, War_y
Goldstini superfields X X, H X, H', H?, H X,H',H?, ..., HN-!
Goldstini superfields X X, Y X, Y, Y, Y, X, Y1,Y, .. Y
Eliminated superfields S SO s 5@ §O) s geN-4)
Residual flavor group u(l) u@®) UWN-1)
X2 =0, In this way one has a dynamical scheme exploiting
— supersymmetry to produce (almost) massless fermions.
Dy(XH,5) = 0. (4.41) Supersymmelry to produce (almost)

The Lagrangian is always given by formula (4.37), but
now

Si' sevslf 120001
(k+Dayay,....ar.pr1fa....Pr

_ 2N =2—k—175-5N+3k+31
= (_4) 2 . eﬂlﬂz"'eﬂt—lﬁlx

S Hila] ﬁizaz .. 'ﬁikak (ﬁiséM)ZN_z_Zk_l' (442)
The various possibilities for describing the N Goldstini in
an A = 1 constrained superfields setup are summarized in
Table 1.

V. DISCUSSION

In this work we studied spontaneous supersymmetry
breaking in four dimensions, involving a generic number
N of supersymmetries. We focused on the supersymmetry-
breaking sector of the theory and we identified its structure
in all known formulations, proving explicitly their equiv-
alence. Our results are presented in the superspace setup,
which is the preferred framework to study supersymmetric
theories. In particular, we identified the properties of the
Goldstino superfields among the various formulations and
the constraints they satisfy. Thanks to the aforementioned
equivalence, one may use our results either in the language
of N supersymmetries, or in the standard language of
N = 1 supersymmetry, depending on the application one is
interested in and knowing directly the relation to the other
formulations.

Our results lead the way to describe low-energy theories
with N spontaneously broken supersymmetries, in the
setup of constrained superfields. In this language, one can
have various components of the matter sector that are going
to be removed from the spectrum by imposing appropriate
constraints of the form described in [18]. Within the same
setup one can also study properties of theories where the
Goldstini originate from some underlying strong dynamics.
The N nonlinear realizations will be then violated by
possible couplings to the Higgs field via the Yukawa
couplings. Considering e.g. the Standard Model, the
pseudo-Goldstini can be interpreted as its matter content.

Ignoring the gauge and Higgs sectors, from our results
one can read the restrictions imposed on the various
interactions between the quarks and leptons. For example
it can be seen directly that terms of the form [ d°0Y? are not
allowed. The obvious next step is the analysis of the
couplings of this sector to vector fields. Following the
approach presented here, one could try either coupling
the \/-Goldstini sector to standard gauge multiplets (up to
N =4) or to constrained multiplets whose surviving
degrees of freedom are gauge fields. Both avenues require
substantial work that goes beyond the scope of the
present paper.

Nonlinear realizations of supersymmetric theories have
been recently revisited in several different contexts and we
believe our work will offer new directions for further
developments. It would be indeed interesting to perform
a systematic study for general A/ broken supersymmetries
within supergravity, building on the work of [31-38]. This
might also help with finding new interesting scenarios for
inflationary cosmology, providing new models with non-
linear realizations of supersymmetry along the lines of
[39-44]. Finally, while one might suspect that ultraviolet
completions within string theory may exist only for special
values of N, it would be interesting to understand which
string compactifications may give rise to such nonlinear
realizations [45-49].
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APPENDIX A: SOLUTION AND CONSISTENCY
OF THE CONSTRAINT FOR
N GOLDSTINI

In this appendix we explicitly derive the solution (4.17)
from the constraint (4.16). We show then that the solution is
chiral and that it contains only the Goldstini and the
auxiliary field which breaks supersymmetry.
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To derive the solution (4.17) notice first that the
Goldstini Gy, satisfy the property

D1Gy = V2Fey0). (A1)

Using (4.19), the constraint (4.16) can be expressed in the
more compact form

XG,, = 0. (A2)

Consider now a particular fixed index J.” Dividing (A2) by
F, acting with D’* and using the property (Al) we
have

. (XG; e D’*G;
D’= <—ff“> = waf + X t=0 (A3)
and thus
D*XG;,
SN T (&)
Acting again with the same D’# we get
Dj/;'X _ DJ[}DJ(IXG]a _ DJaXDJﬁG]a
2V2F
p
1 G~ 1 -
=-—— (D)X= +-DPx A5
and therefore
. (D72 xGe
DX = V. L (A6)
Inserting (A6) in (A4), we get
Ja J\2 L TeN
X:DJ /'\.’Gja:_(D )*XG9Gy, (A7)
2V2F 8F? ’
i.e.
(D)X (Gy)?
X =1 = 5 ch . (A8)

This expression in particular shows that X" is proportional
to any squared Goldstino. Consider now two fixed indices
J#+ K (if J =K the expression vanishes trivially)

°In the following every hatted index is not summed.
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-1 x(Gy)?
Y= F 2F
o —%(1;’92%(2?2_ (A9)

Inserting the second expression into the first we have

-1 (D7) [-1(DF)2X] (G;)? (Gy)?

Y="F F 2F 2F

(A10)

and, by repeating the trick N times, we obtain
using (4.18)

(=MD x (6P
FN 2FW
NN (G
—\2) FN-r
which is our result (4.17).

As a first consistency check we prove that our solution
(4.17) is chiral, namely that

X:

(Al1)

NN (G )2N
K I _
We first notice that
DEF = —V2id,,Gy. (A13)

Since the action of the covariant derivatives D on the
Goldstini is

1
VA
« [(DJ;éi;&i()zN—4 (4i3ﬂ6-,Dk/}DéfékX)
= 200,4(D") N2 A5,

aJla —

(A14)

where we distinguished the contribution from the / = K
and the I # K case, we need also the expressions

A 32
(D/HYN-2x = _2(_4)/\/—2% (A15)
and
S —-4)N-1G;,Gy
DéDg(DJ;éI;éK)M/—étX — _()2—}_16!1(/3. (A16)

We have now all the ingredients to calculate
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a

2 fZN—l ]:2./\/—1

DX [(l)N (GI)ZN:| _ ZLN {_Li}(G#ﬂﬂv—zG?bgG}a N =GP
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i

1 [2v3i & Worran (CiGitka
o ()

V2i Wy ((Gr) . (G)™ )
W(G#k) Gkaaé,< - >+\@(2N— 1) o aﬂé,GK}
CV2iN - 1) (G 0,6 V2i i (GJ)ZNaﬂaGfg
T AN-L 2N 1 PaTK T SN-T F2N-1
»oF L Sy T
2i(N =1 2i (GG
= N D) (G0 — i O
2N—lf2/\/ pa K 2/\/—1}“2/\/—1 F
—0. (A17)
[
This proves that the solution (4.17) is chiral. (D7#NN2DL (G )Y
We show finally that the solution (4.17) contains only na N Y,
Goldstini and the auxiliary field breaking supersymmetry. = (D7) 2(G ) (=26, D ZYG’ﬂ)
We verify first (4.18), namely = V2(2V1 2F) VG, (A22)

1
F=——= (DN

= (A18)

The action of (D))*V on (G,)*V is

(D)X (G2 = (D226 PN 2 DI (2G5 D) Gy, )
= (D)2 (G PN 2 (<207 G5 D) Gy,
= (DN (G P2 (22F))

= (2N 2F), (A19)

where dots mean we have repeated the same steps N times.
We can now calculate

e (=

L (V1 NN TN

=F. (A20)
We verify then (4.19), namely
1
Gy = —=————— (D/#2N2DL ¥, A21
= 5 (P (A21)

Using the previous result, the action of (D/#)*V=2D! on
(G is

We can now calculate

1
VA

_ W (D)2 K%)N (fGIT)zﬂ

1 Ny 1
= T _aN-T (5) T V2=V 2F)NTGy,

(DJ;EI)2N—2D£X

(A23)

APPENDIX B: EQUIVALENCE OF THE
GOLDSTINI MODELS IN N/
SUPERSPACE

In this appendix we explicit show the equivalence among
all the known models of Goldstini, working directly in N/
superspace. We start by presenting briefly how to general-
ize the Volkov-Akulov model in N superspace with the
Samuel-Wess formalism. This integrates our discussion
of Sec. IL

The Lagrangian (4.5) can also be obtained in a geomet-
rical way. Defining the superspace matrix

As = 5o — szZamA,aaK’ n fiz S A9, A, (BI)
Ji 1

where A, satisfy (4.2), one can construct the invariant
Lagrangian
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The equivalence between (4.5) and (B2) can be proved in
the following way. Due to the particular form of AY, we
have

/ dNONN NN = / dNOANN AN det AG
1 _
_ IN2N (T \ 2N
X (AZNKZ/\/ det Af’ln)|91=0‘

(B3)

Acting then with the covariant derivatives inside the
parenthesis the A superfields are removed. In fact for
generic numbers p, g of spinor superfields

Ta i ~n
DDl (Ag, gy Ay o MAGRY . Ay detAs,

AP;Agy) det A, + 245, A

1al\p g det A,

_ nia| L
= D'@ ‘?A paz/)aa(Ap.q

(B4)

+ M AyD,! det AG A, , |

where hatted indices are fixed, i.e. not summed, AM =

Ap o ...A,p,,ng; ...A and where we used the property

aq

DL detA% = %aa (0% A7 det AS,). (B5)
Integrating by parts and up to total derivatives, (B4)
reduces to

Dle(2A; A

1l g det AG)

[+ a a a a
~ (? Mgt 0,(A%A, ) det A% + 2 A, , det AL,

+ }aa (04, A17 det A;@)A“}AM>

— —2f(2A,, det AL,). (B6)

Using this result and specializing to the correct number of
fermions and derivatives, one can prove that

/ d*xd*NOANN AN = N / d*xdetA%|y_o.  (B7)

We know that, in addition to the Samuel-Wess superfield
we have been using so far, one can define a second
representation
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Dérjﬂ = feﬂa5§’

— 2i
Dylyp = _7F/I)021damrlﬂv (B8)

the relation between the two representations being estab-
lished via

( DJ¢1)2N -2 Dg, DNV ( ANV KZN )

Pla = =21 DN DAV (ANRWY) (B9)
The Samuel-Wess Lagrangian for this model is
_ AN gT2N TN
E—f4N_2/d or-vr (B10)
and it is equivalent to (B2) because
N2V — A2VAV, (B11)
For later convenience, notice that we also have
f Gla
r,=-—=—. B12

We have just proven that the extended Volkov-Akulov
model is equivalent to the Samuel-Wess formulation,
independently from its representation. We know that this
last formulation, say the Lagrangian (4.5), is equivalent to
the extended Rocek’s Lagrangian (4.14), as a consequence
of (4.8). There remains to demonstrate therefore the
equivalence between the Volkov-Akulov model and the
Komargodski-Seiberg realization (4.21). To this purpose
we introduce a new set of superspace derivatives

i

I, = DI, - GZ&KMB,,,
f
My, =Dy + }A?sz‘lan’ (B13)
realizing the algebra
I, ) =0,
{H{x,ﬁ”;} =0. (B14)

From these derivatives we can now build projection
operators turning a linear realization into a standard non-
linear one. For a generic superfield U in fact we have

- }ag&K"’aﬂ (MNTV D),

D (IPVTIVU) = — % Aot 0, (IENTIV D),

ao

DLITPNTI?VU)
(B15)

implying also
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Dl [det A4 (TTVTTIPV D))
_ %aa [0, A7 det A, (ITPVTV V)],
Dj[det A, (TPMNTIPV D))

—_— % 0,[A%6", det AS(ITPVTIV D)), (B16)

for bosonic U.
Using (B12), the Lagrangian (4.21) can be written as

1 — — —
L jTN/d‘WHFWFW(]—'}" +fF+fF). (BI7)

As a consequence of (B11) and of the property
ANV F = N2V, (B18)

where
1 — _

F=—— - IPVIPPV (AT?Y), B19
ey V@), (B19)

(B17) can be written as
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LZJ%N/d‘WHAZNKZN([FF—l—f[F-&-fF)detAfn- (B20)

Integrating now over superspace one finds

L = (FF + fF + fF) det A% |y, (B21)
giving the following equations of motion for the complex
scalar F|y_:

Flo—o = = (B22)
Substituting this expression back in the Lagrangian, (B21)
reduces to (B2).

We conclude by observing that the Lagrangian (B21)
contains the Goldstini 4;, inside det A%, _,, but also a
nondynamical complex scalar field F|y_, transforming as
a standard realization of the nonlinear supersymmetry.
The presence of such nondynamical complex scalar degree
of freedom in the theory (4.21) is expected, since we know
that in the linear realizations, in addition to the Goldstini
component fields g;,, there is an auxiliary component field
F, which eventually is integrated out.
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