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We study field theories withN extended nonlinearly realized supersymmetries, describing the couplings
of models that containN Goldstini. We review all the known formulations of theN ¼ 1Goldstino theories
and we generalize them to an arbitrary number N of nonlinearly realized supersymmetries. We explicitly
prove the equivalence of all these extended supersymmetry breaking models containing N Goldstini and
reformulate the theory with N supersymmetries in terms of standard N ¼ 1 constrained superfields.
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I. INTRODUCTION

One of the first appearances of supersymmetry was to
describe the seemingly massless neutrino as a Goldstone
particle whose interactions were dictated by a nonlinear
symmetry acting as a fermionic shift [1]. In the meantime
supersymmetry was also formulated as a linear symmetry
that could address the gauge hierarchy problem. This fact
triggered a systematic use of supersymmetry in particle
physics and led to the supersymmetrization of the Standard
Model (see [2] for a review). In this framework nonlinearly
realized supersymmetry can serve as an organizing prin-
ciple for the description of low-energy effective theories,
because it encodes information of the underlying linearly
realized ones. As an example, it can be used to introduce
soft breaking terms in the Minimal Supersymmetric
Standard Model [3].
In most applications the global nonlinear supersymmetry

is exact and the fermionic Goldstone modes are massless.
A proposal conceptually closer to the original motivation
underlying the work of Volkov-Akulov, however, is to
study light fermions as pseudo-Goldstone modes of an
approximate supersymmetry. In this respect supersym-
metry remains nonlinearly realized and it does not neces-
sarily have an UV completion in terms of a linearly realized
representation. Strongly coupled sectors, in particular, can
have such pseudo-Goldstone modes. As an example, there
are models that describe quarks and leptons of the Standard
Model as remnants of some of these strongly coupled
sectors [4,5]. In this scenario, softly violated nonlinear
realizations of supersymmetry can be used as a tool for
studying the low-energy effective theory associated to some
strongly coupled sector.
Superspace is the natural framework for the formulation

of supersymmetric theories [6,7]. The development of a
superspace formalism for N extended nonlinearly realized
supersymmetries is therefore compelling. Geometric meth-
ods for studying this type of theory have been defined [8],
but a complete superspace setup has not been established
yet, though scattered results do exist [9–11]. Our work aims

exactly to set the foundations for this program. The starting
point is the supersymmetry breaking sector. It contains N
Goldstini GI , with I ¼ 1;…;N , and the auxiliary field F
giving the supersymmetry breaking scale. Once the proper-
ties of this sector are established, additional matter and
gauge constrained superfields can be coupled to it [12–18].
Considering N > 4 supersymmetries, for example, some
component fields of the Goldstini supermultiplet are going
to have spin higher than one. Due to the nonlinear
realization, these fields are removed in terms of the N
Goldstini, much in the same way as the sgoldstino is
removed from the spectrum in the N ¼ 1 theory.
Our main result is the construction of the supersymmetry

breaking sector for a generic number N of supersymme-
tries, in the case they are all spontaneously broken and
within different superspace formulations. We study first the
system of N Goldstini in the Samuel-Wess formalism
[9,11] and we prove the equivalence between this formal-
ism and the geometric method [1,8]. We then present theN
Goldstini model in the somewhat generalized formalism of
[12,13], identifying the generalization of Rocek’s con-
straints toN supersymmetries. In a more modern approach,
we also reformulate the Lagrangian and interactions of N
Goldstini in terms of constrained superfields [15,17]. This
can be done by considering a chiral superfield in N
superspace

D _αJX ¼ 0;

and imposing the constraints

XðDI≠JÞ2N−2DJ
αX ¼ 0;

which imply also

X2 ¼ 0:

These constraints remove all component fields from the
spectrum except the Goldstini and the auxiliary field
acquiring the vacuum expectation value. We express finally
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our results in terms of N ¼ 1 constrained superfields. In
particular, we relate the discussion to the standard nilpotent
superfield methods and to the chiral superfields system
[16,17]

X2 ¼ 0; XYi ¼ 0; XD2Yi ¼ 0;

where the N ¼ 1 Goldstino is accommodated inside X,
while the other Goldstini are inside Yi. The couplings of
these superfields are dominated by the additional non-
linearly realized supersymmetries. We briefly present also
an alternative way to describe the theory, accommodating
the Goldstini inside the chiral superfields X and Hi

_α
such that

X2 ¼ 0; D _αðXHiβÞ ¼ 0:

The possible applications of the formalism we developed
are numerous. Let us therefore sketch a few of them before
concluding this introductory section. One first direction
might be the study of theories where N supersymmetries
have been spontaneously broken at some high-energy scale
f and they become nonlinearly realized. In particular the
possible matter couplings can be investigated, as for
example in [3], and it would be interesting to understand
the restrictions on these couplings imposed by the low-
energy theory. In fact one could even go up to N ¼ 8
supersymmetries, since it is known that gravitino inter-
actions are dominated by the spin-1=2 part during high-
energy scatterings [14]. In these models one is assuming the
UV theory to have a linear realization of supersymmetry.
An alternative direction is to assume the UV theory is in
fact a strongly coupled sector and therefore the nonlinear
supersymmetry is not exact. The Goldstini are then massive
pseudo-Goldstone modes. This is an approach that has been
investigated in [4,5]. As a further application, the tech-
niques we developed in this work might be useful in the
study of partial breaking of supersymmetry [19,20] and to
understand its relation to dualities [21].

II. THE N = 1 GOLDSTINO IN SUPERSPACE

In this section we review the original formulation of the
Volkov-Akulov model and we rephrase it in superspace,
using the Samuel-Wess formalism. An explicit proof of the
equivalence of these two models is given directly in
superspace. The Rocek and the Komargodski-Seiberg
constrained superfield models are then introduced and
related to the previous ones. This analysis has to be
considered as a warm-up for the following sections, where
we will promote our construction to extended supersym-
metry. In the calculations we adopt the conventions of [7].
The Volkov-Akulov model [1] is the prototype of a

spontaneously-broken minimal N ¼ 1 theory with only a
Goldstino. Given a Goldstino field λαðxÞ, its supersymmetry
transformation is nonlinearly realized and inhomogeneous,

the constant term being proportional to the supersymmetry
parameter ϵα

δλα ¼ fϵα −
i
f
ðλσmϵ − ϵσmλÞ∂mλ

α: ð2:1Þ

The Goldstino can be used to define the invariant differential
form

dxmAm
a ¼ dxm

�
δam −

i
f2

∂mλσ
aλþ i

f2
λσa∂mλ

�
ð2:2Þ

and to construct the Lagrangian

L ¼ −f2 detAm
a ¼ −f2 − iðλσm∂mλ − ∂mλσ

mλÞ
þOðf−2Þ; ð2:3Þ

where f is the supersymmetry breaking scale with mass
dimension 2. This Lagrangian is invariant under supersym-
metry, because

δ detA ¼ −
i
f
∂m½ðλσmϵ − ϵσmλÞ detA�: ð2:4Þ

We are now going to rewrite the Volkov-Akulov model
in superspace. In our conventions the algebra of theN ¼ 1
superspace derivatives is

fDα; D_βg ¼ −2iσm
α _β
∂m; fDα; Dβg ¼ 0: ð2:5Þ

A superfield representation for the Goldstino can be derived
by considering a spinor superfield Λα satisfying the
constraints

DαΛβ ¼ fϵβα þ
i
f
σmα_ρΛ

_ρ∂mΛβ;

D _αΛβ ¼ −
i
f
Λρσmρ _α∂mΛβ: ð2:6Þ

This is a representation similar to the one introduced by
Samuel-Wess in [9]. Actually, the two are related by a field
redefinition as we will see later. More details on the role of
these constraints in the theory of nonlinear realizations can
be found in [22,23]. By construction, the Goldstino is
accommodated in the lowest component of Λα

Λαj ¼ λα ð2:7Þ

and, due to the particular choice of the representation, its
supersymmetry transformation is given precisely by (2.1).
The superfield Λα can be used to build the superspace
Lagrangian
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L ¼ −
1

f2

Z
d4θΛ2Λ2; ð2:8Þ

which reduces to the Volkov-Akulov action (2.4) at the
component level. In fact the equivalence of these two
models can be proved directly in superspace, without
working explicitly with the component fields. Promote
first the Goldstino field λ to a superfield Λ satisfying (2.6)
and define the superspace analogous of the matrix Aa

m to be

Aa
m ¼ δam −

i
f2

∂mΛσaΛþ i
f2

Λσa∂mΛ: ð2:9Þ

The superspace Lagrangian density has then the form

L ¼ −f2 detAm
aj: ð2:10Þ

To prove the equivalence between (2.8) and (2.10) notice
that, due to the particular form ofAa

m, up to boundary terms

Z
d4θΛ2Λ2 ¼

Z
d4θΛ2Λ2 detAa

m

¼ 1

16
D2D2ðΛ2Λ2 detAa

mÞj; ð2:11Þ

because terms in detAa
m containing either Λ or Λ are

annihilated by Λ2Λ2 and only the constant term has an
effective role in the computation. Acting then with the
covariant derivatives inside the parenthesis, the Λ super-
fields are removed and, from the properties

Dρ detAa
m ¼ i

f
∂mðσmρ_ρΛ_ρ detAa

mÞ;

D_ρ detAa
m ¼ i

f
∂mðσm_ρρΛρ detAa

mÞ; ð2:12Þ

the equivalence between the two Lagrangians follows up to
total derivatives

Z
d4xd4θΛ2Λ2 ¼ f4

Z
d4x detAa

mj: ð2:13Þ

From the Samuel-Wess superfield Λ we can define a new
chiral superfield

Φ ¼ −
1

4f3
D2ðΛ2Λ2Þ: ð2:14Þ

In the representation (2.6) it has the form

Φ ¼ f−3Λ2ðf2 − i∂mΛσmΛ − f−2Λ2∂mΛσmn∂nΛÞ:
ð2:15Þ

This superfield Φ contains all the supersymmetry breaking
information and satisfies the constraints

Φ2 ¼ 0;

ΦD2Φ ¼ −4fΦ; ð2:16Þ

which are exactly the constraints introduced in [12]. We can
understand their role by assuming that Φ is an uncon-
strained chiral superfield. By imposing the first constraint
in (2.16), the scalar component, namely the sgoldstino, is
removed from the spectrum, while by imposing the second
the supersymmetry breaking scale is fixed. These con-
straints in fact reduce the number of independent compo-
nent fields in the superfield and provide them as functions
of the Goldstino.
The Goldstino inside the Φ superfield is defined as the

component DαΦj and, since

DαΦj ¼ 2λα þ � � � ; ð2:17Þ

it is related to the field λα via a field redefinition. For this
reason the supersymmetric Lagrangian of the constrainedΦ
system,

L ¼ −f
Z

d2θΦ; ð2:18Þ

does not reduce directly to the Volkov-Akulov Lagrangian,
as the Samuel-Wess Lagrangian does, because the
Goldstini have to be mapped into each other. However,
the proper field redefinition can be found by inverting the
relation (2.17) between the two Goldstini. Let us mention in
passing that supersymmetry breaking from complex linear
superfields has been studied in [24,25] and the relation to
the N ¼ 1 Goldstino superfields discussed here was also
established.
At this point a comment on the role of Samuel-Wess

representations in our discussion is in order. We showed
that the particular Samuel-Wess representation (2.6) repro-
duces exactly the Volkov-Akulov model, either working in
components or directly in superspace. In fact there exists a
second representation within the Samuel-Wess formulation

DαΓβ ¼ fϵβα;

D _αΓβ ¼ −
2i
f
Γρσmρ _α∂mΓβ; ð2:19Þ

which appeared in [9]. In superfield notation the super-
symmetric Lagrangian is still the same as the one in (2.8),

L ¼ −
1

f2

Z
d4θΓ2Γ2: ð2:20Þ

To move from one representation to the other, set

Γα ¼ −2f
DαD2ðΛ2Λ2Þ
D2D2ðΛ2Λ2Þ ð2:21Þ
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and, using this relation, the equivalence between the two
Lagrangians can be proved directly, because

Γ2Γ2 ¼ Λ2Λ2: ð2:22Þ

The approaches of [9,12], although being related by a
field redefinition and thus being not exactly equivalent,
have a common property: they describe a superfield
containing only the Goldstino and the supersymmetry
breaking scale. Fixing the supersymmetry breaking scale
may be too restrictive for many purposes and therefore a
less constrained approach has been developed. To construct
a superfield where the sgoldstino is removed from the
spectrum, but the auxiliary field F is still there, the second
condition in (2.16) can be relaxed. Indeed, by imposing
only

X2 ¼ 0 ⇔ XDαX ¼ 0; ð2:23Þ

where the biconditional statement holds if F acquires a
nonvanishing vacuum expectation value, we have

X ¼ G2

2F
þ

ffiffiffi
2

p
θGþ θ2F; ð2:24Þ

where X is a chiral superfield with Goldstino component
Gα. This direction was followed in [15], where the
decoupling of the sgoldstino was explored. In [17]
the superfield X was conjectured to be the IR limit of
the superfield violating the supercurrent conservation
equation in a supersymmetry-breaking setup.1 The minimal
Lagrangian for X is

L ¼
Z

d4θXX þ
�
f
Z

d2θX þ c:c:

�
: ð2:25Þ

The standard procedure to recover the Volkov-Akulov
model from (2.25) consists in extracting the component
fields, integrating out the auxiliary field F, and performing
a field redefinition between the Goldstini. We present
here a different procedure, relating the formalism of
Komargodski-Seiberg to that of Samuel-Wess directly in
superspace. Define the superfield

Γα ¼ −2f
DαX
D2X

with X2 ¼ 0: ð2:26Þ

This is a Samuel-Wess superfield satisfying the represen-
tation (2.19). Using (2.26), the Komargodski-Seiberg
Lagrangian (2.25) can be written as

L ¼ 1

16f4

Z
d4θΓ2Γ2ðD2XD2X þ 4fD2X þ 4fD2XÞ:

ð2:27Þ

Once the superspace integration is performed and up to
boundary terms, this Lagrangian is equal to

L ¼ ðFF þ fF þ fFÞ detAa
mj; ð2:28Þ

where we defined the superfield

F ¼ −
1

16f2
ðD − iσnΛ∂nÞ2ðDþ iΛσn∂nÞ2ðXΓ2Þ: ð2:29Þ

Integrating out F j gives

F j ¼ −f ð2:30Þ

and, after substituting it back into the Lagrangian, (2.28)
reduces exactly to (2.10). This concludes the equivalence
between themodels (2.10) and (2.25).Notice that to relate the
two formulations, the integration of a complex scalar is
expected, because the Komargodski-Seiberg model contains
also the auxiliary field F in the Lagrangian. More details on
this proof can be found in Appendix B, where the origin of
the scalar superfield F is explained. We should mention here
that a similar method was used in [27,28] to prove the
equivalence between various formulations and later in [29]
the same equivalence was studied in component form.
We conclude that all known realizations of the N ¼ 1

Goldstino model are equivalent and we proved it in super-
space, therefore making the procedure more transparent.

III. THE N = 2 GOLDSTINI IN SUPERSPACE

In this section we promote the Samuel-Wess formalism
to N ¼ 2 superspace and we use it to find the appropriate
constrained superfield approach.2 The first part of the
analysis is similar to [11], but it is worked out in a different
representation. Once the minimal set of constraints is
determined, the theory is reformulated in N ¼ 1 language
and the complete expression for the Lagrangian in the X, Y
system is given for the first time. Some of the demon-
strations of this section are omitted, because we are going to
prove the analogous results directly for general N .

A. N = 2 superspace

The algebra satisfied by the N ¼ 2 superspace deriva-
tives without central charges is

1See [26] for further discussions on the IR limit.

2For a different formulation of the theory of N ¼ 2 Goldstini,
see [30].
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fDα; D _αg ¼ f ~Dα; ~D _αg ¼ −2iσmα _α∂m;

fDα; Dβg ¼ f ~Dα; ~Dβg ¼ fDα; ~Dβg
¼ fDα; ~D_βg ¼ 0; ð3:1Þ

where ~Dα generates the second supersymmetry.
The first step consists in determining the (minimal) set of

constraints needed to remove from the spectrum all the
undesired component fields. To this purpose we exploit the
Samuel-Wess formalism, following the procedure outlined
in the previous section for the N ¼ 1 theory. When super-
symmetry is completely broken, we need two Goldstini
and therefore we define two spinor superfield Λα and ~Λα

satisfying the constraints

DαΛβ ¼ fϵβα þ
i
f
σmα_ρΛ

_ρ∂mΛβ; D _αΛβ ¼ −
i
f
σmρ _αΛ

ρ∂mΛβ;

~Dα
~Λβ ¼ fϵβα þ

i
f
σmα_ρ

~Λ
_ρ∂m

~Λβ; ~D _α
~Λβ ¼ −

i
f
σmρ _α

~Λρ∂m
~Λβ

ð3:2Þ

and

~DαΛβ ¼
i
f
σmα_ρ

~Λ
_ρ∂mΛβ; Dα

~Λβ ¼
i
f
σmα_ρΛ

_ρ∂m
~Λβ;

~D _αΛβ ¼ −
i
f
σmρ _α

~Λρ∂mΛβ; D _α
~Λβ ¼ −

i
f
σmρ _αΛ

ρ∂m
~Λβ:

ð3:3Þ

The superfields Λα and ~Λα are the Samuel-Wess Goldstino
superfields for the broken supersymmetries. The only inde-
pendent component fields they have are the Goldstini,
defined as

Λαjθ¼~θ¼0 ¼ λα; ~Λαjθ¼~θ¼0 ¼ ~λα: ð3:4Þ

Their supersymmetry transformations are nonlinearly
realized

δλα ¼ fϵα −
i
f
ðλσmϵ − ϵσmλÞ∂mλα

−
i
f
ð~λσm ~ϵ − ~ϵσm ~λÞ∂mλα;

δ~λα ¼ f~ϵα −
i
f
ð~λσm ~ϵ − ~ϵσm ~λÞ∂m

~λα

−
i
f
ðλσmϵ − ϵσmλÞ∂m

~λα; ð3:5Þ

where ϵα, ~ϵα are the N ¼ 2 supersymmetry parameters.
As discussed more carefully in the general N section, the
supersymmetric and Uð2ÞR-invariant Lagrangian can be
written as

L ¼ −
1

f6

Z
d4θd4 ~θΛ2 ~Λ2Λ2 ~Λ

2 ð3:6Þ

and, after projecting to components, we find

L ¼ −f2 − iðλσm∂mλ − ∂mλσ
mλÞ

− ið~λσm∂m
~λ − ∂m

~λσm ~λÞ þOðf−2Þ: ð3:7Þ

We develop now the constrained superfield approach in
N ¼ 2 superspace. Define first a chiral superfield Φ

Φ ¼ 1

16f7
D2 ~D

2ðΛ2Λ2 ~Λ2 ~Λ
2Þ; ð3:8Þ

containing the supersymmetry breaking information.
We are going to use it to derive the appropriate set of
constraints to remove all the undesired component fields.
This superfield can be expressed in the form

Φ ¼ f−5Λ2 ~Λ2ðf2 − i∂aΛσaΛ − i∂a
~Λσa ~ΛþOðf−2ÞÞ

ð3:9Þ

and by construction one can verify that

D _αΦ ¼ ~D _αΦ ¼ 0: ð3:10Þ

The Goldstini can be found in the component fields

−
1

4
D2 ~DαΦjθ¼~θ¼0 ¼ 2~λα þ � � � ;

−
1

4
~D2DαΦjθ¼~θ¼0 ¼ 2λα þ � � � ;

ð3:11Þ

where dots stand for terms with more fermions. By direct
inspection we find that Φ satisfies the following set of
constraints:

Φ2 ¼ 0;

ΦDαΦ ¼ Φ ~DαΦ ¼ 0;

Φ ~DαDβΦ ¼ Φ ~Dα
~DβΦ ¼ ΦDαDβΦ ¼ 0;

Φ ~DαDβ
~DγΦ ¼ Φ ~DαDβDγΦ ¼ 0; ð3:12Þ

together with the property

ΦD2 ~D2Φ ¼ 16fΦ; ð3:13Þ

implying again the fact that the highest component of
the superfield contains the supersymmetry-breaking scale.
The N ¼ 2 Goldstini Lagrangian for Φ can be written as
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L ¼ −f
Z

d2θd2 ~θΦ: ð3:14Þ

By imposing the constraints (3.12) to a generic N ¼ 2
chiral superfield, we remove all of its components except
the Goldstini and the auxiliary field containing the super-
symmetry breaking scale. The important point is that only
the last constraint in (3.12) is really essential. We demon-
strate this statement in the general N section, solving the
constraint explicitly in superspace and verifying that
the unique solution contains only N Goldstini and the
correct auxiliary field. Consider therefore a N ¼ 2 chiral
superfield X ,

D _αX ¼ ~D _αX ¼ 0: ð3:15Þ

Imposing the constraint

X ~DαDβ
~DγX ¼ X ~DαDβDγX ¼ 0 ð3:16Þ

and solving it in superspace we obtain the unique solution

X ¼ 1

4

G2 ~G2

F 3
: ð3:17Þ

In this formula theN ¼ 2 superfield F is defined such that

F ¼ F jθ¼~θ¼0 ¼
1

16
D2 ~D2X jθ¼~θ¼0 ð3:18Þ

is the complex scalar auxiliary field, while the superfields
Gα, ~Gα are defined such that

gα ¼ ~Gαjθ¼~θ¼0 ¼ −
1

4
ffiffiffi
2

p D2 ~DαX jθ¼~θ¼0;

~gα ¼ Gαjθ¼~θ¼0 ¼ −
1

4
ffiffiffi
2

p ~D2DαX jθ¼~θ¼0; ð3:19Þ

are the Goldstini. From the explicit form of the solution
(3.17) and from the properties (3.18), (3.19) one can see
that all component fields in X are effectively solved in
terms of the auxiliary scalar F and of the two Goldstini
gα, ~gα.
To have a more direct understanding of what is going on,

we can introduce chiral coordinates

ym ¼ xm þ iθσmθ þ i~θσm ~θ ð3:20Þ

and expand X as

X ¼ g2 ~g2

4F3
þ ~g2gαffiffiffi

2
p

F2
θα þ

~g2

2F
θ2 þ g2 ~gαffiffiffi

2
p

F2
~θα þ 2

~gα ~θαgβθβ
F

þ g2

2F
~θ2 þ

ffiffiffi
2

p
gα ~θαθ2 þ

ffiffiffi
2

p
gαθα ~θ

2 þ Fθ2 ~θ2: ð3:21Þ

The Lagrangian for the supersymmetry breaking sector is
now

L ¼
Z

d4θd4 ~θXX þ
�
f
Z

d2θd2 ~θX þ c:c:

�
ð3:22Þ

and to get the explicit Goldstini action, after projecting to
components, one has to solve the equation of motion for the
auxiliary field F via an iterative procedure giving

F ¼ −f þ � � � ð3:23Þ

and then replace the solution back into (3.22).

B. N = 1 superspace

We are now in the process of formulating the previous
results inN ¼ 1 language, which is the most useful one for
practical applications. In doing so, we will show that we
have various ways of describing the interactions of the
Goldstini, depending on the realization of the second
Goldstino as the fermion of a chiral or tensor multiplet,
or as the upper component of a vector multiplet. This could
be useful if one wants to understand the (possible) ultra-
violet completions in terms of hyper, vector, or tensor
multiplets. Expand first X as

X ¼ Sðy; θÞ þ
ffiffiffi
2

p
~θβWβðy; θÞ þ ~θ2Xðy; θÞ; ð3:24Þ

where S, Wα, and X are N ¼ 1 chiral superfields

D _αS ¼ 0; D _αWα ¼ 0; D _αX ¼ 0: ð3:25Þ

The first supersymmetry acts on these superfields as
usual,

δ1O ¼ ϵαDαOþ ϵ _αD _αO; ð3:26Þ

and one can derive from here the supersymmetry trans-
formations of the component fields. The second supersym-
metry acts by transforming theN ¼ 1 superfields into each
other

δ2S ¼
ffiffiffi
2

p
~ϵαWα;

δ2Wα ¼
ffiffiffi
2

p
iσmα _α ~ϵ

_α∂mSþ
ffiffiffi
2

p
~ϵαX;

δ2X ¼
ffiffiffi
2

p
i~ϵ _ασm _αα∂mWα: ð3:27Þ

In particular the auxiliary field acquiring a nonvanishing
vacuum expectation value is now expressed as

F ¼ −
1

4
D2Xj ð3:28Þ

and, from the supersymmetry transformations
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δ1gα ¼
1ffiffiffi
2

p δ1DαXj ¼
ffiffiffi
2

p
ϵαF þ � � � ;

δ2 ~gα ¼ −
1

4
δ2D2Wαj ¼

ffiffiffi
2

p
~ϵαF þ � � � ; ð3:29Þ

one can understand that the Goldstini are accommodated
inside the superfields X and Wα.
Inserting the explicit expression (3.24) in (3.12), we find

a large number of constraints for the N ¼ 1 superfields

S2 ¼ W2 ¼ X2 ¼ 0;

SDβX ¼ 0;

WαDβX ¼ 0;

WαD2Wα ¼ 2SD2X: ð3:30Þ

As we have already argued, however, the minimal number
of constraints has to be very small, just one for the
superfield X living in the full N ¼ 2 superspace; in fact
only the following N ¼ 1 constraints can be thought as
fundamental:

S ¼ X
2

ðD2WÞ2
ðD2XÞ2 ; Wα ¼ X

D2Wα

D2X
; X2 ¼ 0:

ð3:31Þ

From the first of these constraints, in particular, it is
manifest that S is entirely removed and expressed in terms
of Wα and X, containing in turn the Goldstini and the
auxiliary field F.
We can now write the Lagrangian (3.22) in the N ¼ 1

constrained superfield language, replacing S with its
expression in terms of Wα and X. The result is the low-
energy theory of an N ¼ 2 spontaneously broken super-
symmetry generalizing the Volkov-Akulov model

L ¼
Z

d4θ

�
XX−

����∂m

�
X
2

ðD2WÞ2
ðD2XÞ2

�����
2

þ i∂mWασmα _αW
_α

�

þ f

�Z
d2θX þ c:c:

�
: ð3:32Þ

Notice that, on top of the manifest N ¼ 1 supersymmetry,
(3.32) has a second supersymmetry given by

δ2Wα ¼
ffiffiffi
2

p
iσmα _α ~ϵ

_α∂m

�
X
2

ðD2WÞ2
ðD2XÞ2

�
þ

ffiffiffi
2

p
~ϵαX;

δ2X ¼
ffiffiffi
2

p
i~ϵ _ασm _αα∂mWα; ð3:33Þ

and since the superfields Wα and X are constrained, this
second supersymmetry is nonlinearly realized. In compo-
nent form the Lagrangian (3.32) reduces to

L ¼ FF þ fF þ fF þ i∂mgασmα _αg
_α þ i∂m ~gασmα _α ~g

_α

þ higher-order fermion terms: ð3:34Þ

As a final step one can integrate out F and replace its
expression into (3.34), obtaining a theory for the N ¼ 2
supersymmetry breaking with only Goldstini.
An alternative way to describe this theory is by defining

the spinor superfield

H _α ¼
D2W _α

D2X
: ð3:35Þ

This is a chiral superfield,

D_βH _α ¼ 0; ð3:36Þ

satisfying the property

D_βðXHαÞ ¼ 0: ð3:37Þ

SinceH _α is chiral, it is known [17] that the constraint (3.37)
removes its higher components leaving the lowest one,
namely the Goldstino of the second supersymmetry, uncon-
strained. The low-energy theory of an N ¼ 2 spontane-
ously broken supersymmetry can be expressed in this X,
H _α system as

L ¼
Z

d4θ

�
XX−

����∂m

�
XH2

2

�����
2

þ i∂mðXHαÞσmα _αðXH _αÞ
�

þ f

�Z
d2θX þ c:c:

�
: ð3:38Þ

In fact there exists another way to describe this model.
The Lagrangian (3.32) describes a theory with two chiral
N ¼ 1 constrained superfields where all the components
have been removed except the Goldstini and the auxiliary
field breaking supersymmetry. This type of theories have
been analyzed in terms of orthogonal nilpotent superfields

X2 ¼ XY ¼ 0; X; Y chiral ðY3 ¼ 0Þ: ð3:39Þ

Since all these theories have the same physical content,
however, there must be a way to rewrite (3.34) in terms of
the N ¼ 1 constrained superfield X and Y. In the presence
of an N ¼ 1 supersymmetry-breaking constrained chiral
superfield X satisfying

X2 ¼ 0 ⇔ XDαX ¼ 0 ð3:40Þ
we define therefore a chiral superfield Y,

D _αY ¼ 0; ð3:41Þ
and we remove its scalar and auxiliary field components
imposing the constraints

INTERACTIONS OF N GOLDSTINI IN … PHYSICAL REVIEW D 94, 065019 (2016)

065019-7



XY ¼ 0;

XD2Y ¼ 0: ð3:42Þ

These constraints can be solved to obtain

Y ¼ −2
DαXDαY
D2X

− X
D2Y
D2X

;

D2Y ¼ −16X∂2Y þ 8iD _αX∂α _αDαY

D2X
; ð3:43Þ

where the notation ∂α _α ≡ σmα _α∂m has been used. From (3.43)
it can be understood that the lowest component of the Y
superfield, namely Yj, and the auxiliary field D2Yj are
removed from the spectrum and expressed in terms of the
fermion DαYj. The chiral superfield Y contains therefore
only one fermion. Since the superfieldWα also contains only
one fermion, it should be possible to use it to build a
superfield having exactly the properties of Y. The expression

Y ¼ −
1ffiffiffi
2

p DαWα þ
ffiffiffi
2

p D_ρXD_ρDρWρ

D2X
; ð3:44Þ

satisfying (3.42) whenWα satisfies the second constraint in
(3.31), is the desired one.
To rewrite the Lagrangian (3.32) in the X, Y system we

have first to invert (3.44), in order to expressWα in terms of
the chiral constrained superfield Y,

Wβ ¼ 2
ffiffiffi
2

p XDβY

D2X
þ 16

ffiffiffi
2

p
iX

DρY
D2X

D_ρX

D2X
∂ρ_ρ

�
DβX

D2X

�

− 128
ffiffiffi
2

p
X
DσY
D2X

D_σX

D2X
∂σ _σ

�
DρX
D2X

�
D_ρX

D2X
∂ρ_ρ

�
DβX

D2X

�
:

ð3:45Þ

We can then replace (3.45) in (3.32) to obtain the
Lagrangian

L ¼
Z

d4θðXX þ YY½1þA� þ S∂2SÞ

þ f

�Z
d2θX þ c:c:

�
; ð3:46Þ

where

A ¼ −64
D_γX∂ _γ

ρD_ρXDγX∂γ
_ρD

ρX

jD2Xj4 ð3:47Þ

and

S ¼ Y2
D2X�

δρϵ þ 8i D_ρX∂ _ρ
ϵDρX

jD2Xj2
	�

δϵρ − 8i D_γX∂ _γϵDρX
jD2Xj2

	 : ð3:48Þ

This is the complete expression of the N ¼ 2 supersym-
metry-breaking Lagrangian in the language of orthogonal
nilpotent superfields.

IV. N GOLDSTINI

In this section we generalize our results to an arbitrary
number N of supersymmetries. The logical thread is the
same as in the previous section, but the steps are justified
with more care. General expressions for the component
fields and for the Lagrangian are given and a way to
organize the high number of removed fields is depicted.
Some technical and rather long calculations are reported in
detail in the Appendixes.

A. N superspace

The algebra satisfied by the N superspace derivatives
without central charges is

fDI
α; DJ _αg ¼ −2iδIJσmα _α∂m;

fDI
α; DJ

βg ¼ 0; ð4:1Þ

where the indices I, J run from 1 to N labeling the
supersymmetries. In particular lower indices refer to the
fundamental of UðN ÞR, while upper indices refer to
the antifundamental. Since there are now N broken
supersymmetries, the theory contains N Goldstini and
therefore we define N spinor superfields ΛIα satisfying the
constraints

DI
αΛJβ ¼ fϵβαδIJ þ

i
f
σmα_ρΛ

I _ρ∂mΛJβ;

DI _αΛJβ ¼ −
i
f
σmρ _αΛ

ρ
I∂mΛJβ: ð4:2Þ

The superfields ΛIα are the Samuel-Wess Goldstino super-
fields for the broken supersymmetries. The only indepen-
dent component fields are the Goldstini, defined as

ΛIαjθI¼0 ¼ λIα: ð4:3Þ

Their supersymmetry transformations are

δλIα ¼ fϵIα −
i
f

X
J

ðλJσmϵJ − ϵJσ
mλJÞ∂mλIα; ð4:4Þ

where ϵIα are the N supersymmetry parameters. The
supersymmetric and UðN ÞR-invariant Lagrangian can be
written in several equivalent ways
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L ¼ −
C2
N

f4N−2

Z
d4N θ detðΛI1ΛI2…ΛIN Þ

× detðΛJ1ΛJ2…ΛJN Þ

¼ −
1

f4N−2

Z
d4N θðΛ2

1Λ
2
2…Λ2

N ÞðΛ2
1Λ

2
2…Λ2

N Þ

≡ −
1

f4N−2

Z
d4N θΛ2NΛ2N

∝ −
1

f4N−2

Z
d4N θðΛIαΛα

JΛ
I
_αΛ

J _αÞN ð4:5Þ

where CN is a normalization chosen in such a way that the
first line in (4.5) reduces to the second one. The power ofN
in the last line is fixed by the requirement of having a
minimal effective theory with only Goldstini and whose
component expansion starts with a constant term, in order
to recover the positive constant breaking supersymmetry.
Indeed, the Lagrangian (4.5) includes kinetic terms, the
vacuum energy and higher-order corrections essential for
the nonlinear realization. For simplicity in what follows we
use directly the more compact expression

L ¼ −
1

f4N−2

Z
d4N θΛ2NΛ2N ð4:6Þ

and, after projecting to components, we find

L ¼ −f2 −
X
I

iðλIσm∂mλ
I − ∂mλIσ

mλIÞ þOðf−2Þ: ð4:7Þ

We develop now the constrained superfield approach in
N superspace. Define first the chiral superfield Φ

Φ ¼ 1

ð−4ÞN f4N−1D
2N ðΛ2NΛ2N Þ ð4:8Þ

containing the supersymmetry-breaking information. We
are going to use it to derive the appropriate set of
constraints to remove all the undesired component fields.3

This superfield can be expressed in the form

Φ¼ f−ð2Nþ1ÞΛ2N

�
f2þ

X
I

ΛIð…Þþ
X
I;J

ΛIΛJð…Þþ �� �
�
;

ð4:9Þ

where ð…Þ contains terms with derivatives of the Λ
superfields, and by construction one can verify that

DI _αΦ ¼ 0: ð4:10Þ

The Goldstini can be found in the component fields

1

ð−4ÞN−1 ðDI≠JÞ2N−2DJ
αΦjθI¼0 ¼ 2λJα þ � � � ; ð4:11Þ

where dots stand for terms with more fermions. By direct
inspection of formula (4.9) we find that Φ satisfies the
following set of constraints:

Φ2 ¼ 0;

ΦDI
αΦ ¼ 0;

ΦDI
αDJ

βΦ ¼ 0;

ΦDI
αDJ

βD
K
γ Φ ¼ 0;

� � �
ΦðDI≠JÞ2N−2DJ

αΦ ¼ 0; ð4:12Þ

together with the property

ΦðDIÞ2NΦ ¼ ð−4ÞN fΦ; ð4:13Þ

implying again the fact that the highest component of the
superfield contains the supersymmetry-breaking scale. The
Lagrangian for Φ can be written as

L ¼ −f
Z

d2N θΦ: ð4:14Þ

The important constraint in (4.12) is only the last one.
The reader can find the demonstration in Appendix A,
where the constraint is explicitly solved in superspace.
Consider therefore a chiral superfield

DI _αX ¼ 0: ð4:15Þ

Imposing the constraint

XðDI≠JÞ2N−2DJ
αX ¼ 0 ð4:16Þ

and solving it in superspace, we obtain the unique solution

X ¼
�
1

2

�
N ðGα

1G1αÞðGα
2G2αÞ…ðGα

NGN αÞ
F 2N−1

≡
�
1

2

�
N ðGIÞ2N
F 2N−1 : ð4:17Þ

In this formula the generic N superfield F is defined
such that

F ¼ F jθI¼0 ¼
1

ð−4ÞN ðDIÞ2NX jθI¼0; ð4:18Þ

3We use the notation ðΨIÞ2N ≡Ψ2N ¼ Ψ2
1Ψ

2
2…Ψ2

N to indi-
cate the product of N squared spinor superfields. The dummy
index I is not summed and, to avoid confusion, if sums occur they
are going to be explicitly written. In some formulas, the notation Î
is actually used to stress the fact that the index is fixed.
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is the complex scalar auxiliary field, while the superfields
GIα are defined such that

gIα ¼ GIαjθI¼0 ¼
1ffiffiffi

2
p ð−4ÞN−1

ðDJ≠IÞ2N−2DI
αX jθI¼0;

ð4:19Þ

are the Goldstini. Notice that, as a consequence of (4.17),X
satisfies the nilpotency constraint

X2 ¼ 0 ð4:20Þ

and as proven in Appendix A, it contains only the Goldstini
and the auxiliary field. The Lagrangian giving the super-
symmetry-breaking sector is now

L ¼
Z

d4N θXX þ
�
f
Z

d2N θX þ c:c:
�

ð4:21Þ

and F has to be integrated out to find a theory including
only the Goldstini.
In Appendix B the Lagrangian (4.21) is proven to be

equivalent to the other Lagrangians for N Goldstini
constructed with different methods. This demonstrates that
our results cover effectively all known formalisms.

B. N = 1 superspace

We are now in the process of formulating the previous
results inN ¼ 1 language, which is the most useful one for
practical applications. As a first step we explicitly break the
UðN ÞR covariance by splitting the set of superspace
derivatives as

DI
α → fDα; Di

αg; ð4:22Þ

where i takes values from 1 to N − 1.
The superfield X of the N ¼ 1 X, Y system is4

X ¼ 1

ð−4ÞN−1 ðDiÞ2N−2X ; such that X2 ¼ 0; ð4:23Þ

and it contains the auxiliary field F and the Goldstino of the
first supersymmetry, i.e., in our conventions, the one related
to the first superspace derivative in (4.22)

gα ¼ GαjθI¼0 ¼
1ffiffiffi
2

p DαXjθI¼0: ð4:24Þ

The other Goldstini occupy the highest components of the
N ¼ 1 superfields

Wiα ¼
1ffiffiffi

2
p ð−4ÞN−2

ðDj≠iÞ2N−4Di
αX ; ð4:25Þ

satisfying the constraints

Wiα ¼ X
D2Wiα

D2X
: ð4:26Þ

In particular in the N ¼ 1 language they are described by
the superfields

Giα ¼ −
1

4
D2Wiα: ð4:27Þ

The expression of the solution (4.17) in terms of the
Goldstini and of the auxiliary field is

X ¼ 25−5NX

QN−1
i¼1 ðD2WiαÞ2
F 2N−2 : ð4:28Þ

The lower components of X are constrained N ¼ 1

superfields and, similarly to the S of the N ¼ 2 case, they
are removed from the spectrum in terms of X and Wiα. In
particular, they organize in representations of the group
UðN − 1Þ, acting as a flavor symmetry after the breaking

UðN ÞR → Uð1ÞR × UðN − 1Þ: ð4:29Þ
To deal with all the possible components ofX in the general
N case we proceed as follows. The generic component can
have a number p of fermionic indices, 0 ≤ p ≤ 2N , and
some of them can be contracted in pairs. An efficient way to
handle them consists in distinguishing between the indices
in the set M1 ¼ fi1;…; ikg, which are all different, and the
ones in M2 ¼ fj1;…; jlg, which are equal two by two. In
this picture therefore we spilt p ¼ kþ l and we construct
the general expression

ðSi1i2;…;ik;j1j2;…;jl
ðkþlÞ Þ

α1α2;…;αk;β1β2;…;βl

¼
�

1ffiffiffi
2

p
�

kþl
Di1

α1D
i2
α2…Dik

αkD
j1
β1
Dj2

β2
…Djl

βl
X jθI¼0:

ð4:30Þ

We conclude this section writing down the Lagrangian of
the general N theory in the three N ¼ 1 constrained
superfield systems we have been discussing in the work,
namely the X, W system, the X, Y system, and the X, H
system. The N ¼ 1 Lagrangian in terms of the superfields
X and Wiα is of the form

4Since we omit the θ-projections in the definition of X, strictly
speaking this object lives in the full N superspace. The same
observation applies also to Wiα in (4.25). We nevertheless keep
refer to them as N ¼ 1 superfields, because this is the role they
have been introduced for. The X, Yi appearing in (4.31) and
thereafter are, in any case, properly projected N ¼ 1 superfields.
We are confident that at this stage of the discussion the reader is
going to avoid any type of confusion, even with this little abuse of
notation.
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L ¼
Z

d4θ

�
XX þ i

X
i

∂mWα
i σ

m
α _αW

i _α

�

þ f

�Z
d2θX þ c:c:

�
þ � � � ; ð4:31Þ

where dots stand for higher-order terms, containing the S
components, which are essential for the nonlinear realiza-
tion of the N supersymmetries. Mimicking the discussion
of the N ¼ 2 theory, we can define the Yi superfields such
that

XYi ¼ 0;

XD2Yi ¼ 0; ð4:32Þ

where X2 ¼ 0 is always understood. These superfields Yi
contain only fermions, which are going to be the Goldstini
of the broken supersymmetries. Using the expression

Wiβ ¼ 2
ffiffiffi
2

p XDβYi

D2X
þ 16

ffiffiffi
2

p
iX

DρYi

D2X
D_ρX

D2X
∂ρ_ρ

�
DβX

D2X

�

− 128
ffiffiffi
2

p
X
DσYi

D2X
D _σX

D2X
∂σ _σ

�
DρX
D2X

�
D_ρX

D2X
∂ρ_ρ

�
DβX

D2X

�
;

ð4:33Þ

we can rewrite the Lagrangian (4.31) in terms of the
superfields X and Yi. The lower superfields SðpÞ now take
the form

ðSi1i2;…;ik;j1j2;…;jl
ðpÞ Þα1α2;…;αk;β1β2;…;βl

¼ 22−2Nþ3k
2
−lϵβ1β2…ϵβl−1βlX

×
ðDρ1Yi1Z

ρ1
α1ÞðDρ2Yi2Z

ρ2
α2Þ…ðDρkYikZ

ρk
αkÞ

F 2N−2−k−l

× ðDσYi∉MZσÞ2N−2−2k−l; ð4:34Þ

where p ¼ kþ l, M ¼ M1 þM2 and Zρ
α is an expression

containing only X

Zρ
α ¼ δρα þ 8iϵβρ

D _βX

D2X
∂β _β

�
DαX
D2X

�

− 64ϵσρ
D _σX

D2X
∂σ _σ

�
DβX
D2X

�
D _βX

D2X
∂β _β

�
DαX
D2X

�
: ð4:35Þ

This proves in fact that the only independent superfields are
X and the Yi, while all the other superfields are given in
terms of them as a consequence of Eq. (4.34). The
expression of the Lagrangian in the X, Yi system is

L ¼
Z

d4θ

�
XX þ

X
i

YiYi½1þA�
�

þ f

�Z
d2θX þ c:c:

�
þ LHO; ð4:36Þ

where A is defined as in (3.47) and LHO stands for higher-
order terms, making the theory invariant under the non-
linearly realized additional supersymmetries.
Let us give a rather compact expression for the

Lagrangian, which can be useful in practical calculations.
With a bit of reordering the complete theory can be recast
into the form

L ¼
Z

d4θ
XN−1

l¼0

XN−1

k¼0

LðN Þ
k;l þ f

�Z
d2θX þ c:c:

�
; ð4:37Þ

with

LðN Þ
k;l ¼

XN−1

i1;…;ik¼1

XN−1

jl>jl−2>���>j2¼1

ð−iÞk2−lðSi1;…;ik;j1;…;jlÞα1;…;αk;β2β4;…;βl
β2β4;…;βl

∂α1 _α1…∂αk _αkð∂2ÞN−1−k−l
2

× ðSi1;…;ik;j1;…;jlÞ _α1;…; _αk; _β2 _β4;…; _βl
_β2 _β4;…; _βl

ð4:38Þ

and where S is defined with the fermionic indices in the
opposite order

ðSðkþlÞ
i1i2;…;ik;j1j2;…;jl

Þ _α1 _α2;…; _αk; _β1 _β2;…; _βl

¼
�

1ffiffiffi
2

p
�

kþl
Dik

_αk
Dik−1

_αk−1
…Di1

_α1
Djl

_βl
Djl−1

_βl−1
…Dj1

_β1
X j:

ð4:39Þ

With this formula one can effectively extract the contri-
bution of the desired derivative order without necessarily
compute the whole Lagrangian. As a check, in the N ¼ 2

case where Lð2Þ
1;2 vanishes, we have

L ¼
Z

d4θðLð2Þ
0;0 þ Lð2Þ

1;0 þ Lð2Þ
0;2Þ þ f

�Z
d2θX þ c:c:

�

¼
Z

d4θðS∂2S − iWα∂α _αW _α þ XXÞ

þ f

�Z
d2θX þ c:c:

�
ð4:40Þ

and it matches exactly with (3.32).
Finally, an alternative way to express the theory is in

terms of the chiral superfields X and the Hi
_α satisfying
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X2 ¼ 0;

D _αðXHiβÞ ¼ 0: ð4:41Þ

The Lagrangian is always given by formula (4.37), but
now

Si1i2;…;ik;j1j2;…;jl
ðkþlÞα1α2;…;αk;β1β2;…;βl

¼ ð−4Þ2N−2−k−l25−5Nþ3kþ5
2
lϵβ1β2…ϵβl−1βlX

×Hi1α1Hi2α2…HikαkðHi∉MÞ2N−2−2k−l: ð4:42Þ

The various possibilities for describing the N Goldstini in
an N ¼ 1 constrained superfields setup are summarized in
Table 1.

V. DISCUSSION

In this work we studied spontaneous supersymmetry
breaking in four dimensions, involving a generic number
N of supersymmetries. We focused on the supersymmetry-
breaking sector of the theory and we identified its structure
in all known formulations, proving explicitly their equiv-
alence. Our results are presented in the superspace setup,
which is the preferred framework to study supersymmetric
theories. In particular, we identified the properties of the
Goldstino superfields among the various formulations and
the constraints they satisfy. Thanks to the aforementioned
equivalence, one may use our results either in the language
of N supersymmetries, or in the standard language of
N ¼ 1 supersymmetry, depending on the application one is
interested in and knowing directly the relation to the other
formulations.
Our results lead the way to describe low-energy theories

with N spontaneously broken supersymmetries, in the
setup of constrained superfields. In this language, one can
have various components of the matter sector that are going
to be removed from the spectrum by imposing appropriate
constraints of the form described in [18]. Within the same
setup one can also study properties of theories where the
Goldstini originate from some underlying strong dynamics.
The N nonlinear realizations will be then violated by
possible couplings to the Higgs field via the Yukawa
couplings. Considering e.g. the Standard Model, the
pseudo-Goldstini can be interpreted as its matter content.

In this way one has a dynamical scheme exploiting
supersymmetry to produce (almost) massless fermions.
Ignoring the gauge and Higgs sectors, from our results
one can read the restrictions imposed on the various
interactions between the quarks and leptons. For example
it can be seen directly that terms of the form

R
d2θY2 are not

allowed. The obvious next step is the analysis of the
couplings of this sector to vector fields. Following the
approach presented here, one could try either coupling
the N -Goldstini sector to standard gauge multiplets (up to
N ¼ 4) or to constrained multiplets whose surviving
degrees of freedom are gauge fields. Both avenues require
substantial work that goes beyond the scope of the
present paper.
Nonlinear realizations of supersymmetric theories have

been recently revisited in several different contexts and we
believe our work will offer new directions for further
developments. It would be indeed interesting to perform
a systematic study for general N broken supersymmetries
within supergravity, building on the work of [31–38]. This
might also help with finding new interesting scenarios for
inflationary cosmology, providing new models with non-
linear realizations of supersymmetry along the lines of
[39–44]. Finally, while one might suspect that ultraviolet
completions within string theory may exist only for special
values of N , it would be interesting to understand which
string compactifications may give rise to such nonlinear
realizations [45–49].
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APPENDIX A: SOLUTION AND CONSISTENCY
OF THE CONSTRAINT FOR

N GOLDSTINI

In this appendix we explicitly derive the solution (4.17)
from the constraint (4.16). We show then that the solution is
chiral and that it contains only the Goldstini and the
auxiliary field which breaks supersymmetry.

TABLE I. The N ¼ 1 chiral superfields content of a minimal N Goldstini theory. The shorthand notation SðpÞ indicates all the
possible components (4.30) with p fermionic indices contracted in all the possible ways.

SUSY N ¼ 1 N ¼ 2 N ¼ 4 Generic N

Goldstini superfields X X, W X, W1, W2, W3 X;W1; W2;…; WN−1
Goldstini superfields X X, H X, H1, H2, H3 X;H1; H2;…; HN−1

Goldstini superfields X X, Y X, Y1, Y2, Y3 X; Y1; Y2;…; YN−1
Eliminated superfields Sð0Þ Sð0Þ, Sð1Þ, Sð2Þ Sð0Þ; Sð1Þ;…; Sð2N−4Þ
Residual flavor group U(1) U(3) UðN − 1Þ
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To derive the solution (4.17) notice first that the
Goldstini GIα satisfy the property

DI
βGJα ¼

ffiffiffi
2

p
Fϵαβδ

I
J: ðA1Þ

Using (4.19), the constraint (4.16) can be expressed in the
more compact form

XGJα ¼ 0: ðA2Þ

Consider now a particular fixed index Ĵ.5 Dividing (A2) by
F , acting with DĴα and using the property (A1) we
have

DĴα

�
XGĴα

F

�
¼ DĴαX

GĴα

F
þ X

DĴαGĴα

F
¼ 0 ðA3Þ

and thus

X ¼ DĴαXGĴα

2
ffiffiffi
2

p
F

: ðA4Þ

Acting again with the same DĴβ we get

DĴβX ¼ DĴβDĴαXGĴα −DĴαXDĴβGĴα

2
ffiffiffi
2

p
F

¼ −
1

4
ðDĴÞ2X Gβ

Ĵffiffiffi
2

p
F

þ 1

2
DĴβX ðA5Þ

and therefore

DĴαX ¼ −
ðDĴÞ2XGα

Ĵ

2
ffiffiffi
2

p
F

: ðA6Þ

Inserting (A6) in (A4), we get

X ¼ DĴαXGĴα

2
ffiffiffi
2

p
F

¼ −
ðDĴÞ2XGα

Ĵ
GĴα

8F 2
; ðA7Þ

i.e.

X ¼ − 1
4
ðDĴÞ2X
F

ðGĴÞ2
2F

: ðA8Þ

This expression in particular shows that X is proportional
to any squared Goldstino. Consider now two fixed indices
Ĵ ≠ K̂ (if Ĵ ¼ K̂ the expression vanishes trivially)

X ¼ − 1
4
ðDĴÞ2X
F

ðGĴÞ2
2F

;

X ¼ − 1
4
ðDK̂Þ2X
F

ðGK̂Þ2
2F

: ðA9Þ

Inserting the second expression into the first we have

X ¼ ½− 1
4
ðDĴÞ2�
F

½− 1
4
ðDK̂Þ2X �
F

ðGK̂Þ2
2F

ðGĴÞ2
2F

ðA10Þ

and, by repeating the trick N times, we obtain
using (4.18)

X ¼ ð− 1
4
ÞN ðDIÞ2NX

FN

ðGIÞ2N
ð2F ÞN

¼
�
1

2

�
N ðGIÞ2N
F 2N−1 ; ðA11Þ

which is our result (4.17).
As a first consistency check we prove that our solution

(4.17) is chiral, namely that

DK
_α

��
1

2

�
N ðGIÞ2N
F 2N−1

�
¼ 0: ðA12Þ

We first notice that

DK
_αF ¼ −

ffiffiffi
2

p
i∂β _αG

β
K: ðA13Þ

Since the action of the covariant derivatives D on the
Goldstini is

DK
_αGIα ¼

1ffiffiffi
2

p ð−4ÞN−1

× ½ðDJ≠Î≠K̂Þ2N−4ð4i∂β _αDK̂βDI≠K̂
α XÞ

− 2i∂α _αðDJ≠ÎÞ2N−2XδÎ
K̂
�; ðA14Þ

where we distinguished the contribution from the I ¼ K
and the I ≠ K case, we need also the expressions

ðDJ≠ÎÞ2N−2X ¼ −2ð−4ÞN−2 ðGÎÞ2
F

ðA15Þ

and

DÎ
αDK̂

β ðDJ≠Î≠K̂Þ2N−4X ¼ −
ð−4ÞN−1GÎαGK̂β

2F
: ðA16Þ

We have now all the ingredients to calculate5In the following every hatted index is not summed.
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DK
_α

��
1

2

�
N ðGIÞ2N
F 2N−1

�
¼ 1

2N

�
−

2

F 2N−1

XN
Î¼1

ðGJ≠ÎÞ2N−2Gα
Î
DK

_αGÎα −
ð2N − 1ÞðGIÞ2N

F 2N
DK

_αF
�

¼ 1

2N

�
2

ffiffiffi
2

p
i

F 2N−1

XN
Î¼1

ðGJ≠ÎÞ2N−2Gα
Î
∂β _α

�
Gβ

K̂
GÎ≠K̂α

F

�

þ
ffiffiffi
2

p
i

F 2N−1 ðGJ≠K̂Þ2N−2Gα
K̂
∂α _α

�ðGK̂Þ2
F

�
þ

ffiffiffi
2

p
ið2N − 1Þ ðGIÞ2N

F 2N
∂β _αG

β
K

�

¼
ffiffiffi
2

p
iðN − 1Þ

2N−1F 2N
ðGIÞ2N ∂β _αG

β
K −

ffiffiffi
2

p
i

2N−1F 2N−1

XN
Î¼1;Î≠K̂

ðGJÞ2N ∂β _αG
β
K̂

F

¼
ffiffiffi
2

p
iðN − 1Þ

2N−1F 2N
ðGIÞ2N ∂β _αG

β
K −

ffiffiffi
2

p
i

2N−1F 2N−1

ðGIÞ2N ∂β _αG
β
K

F
ðN − 1Þ

¼ 0: ðA17Þ

This proves that the solution (4.17) is chiral.
We show finally that the solution (4.17) contains only

Goldstini and the auxiliary field breaking supersymmetry.
We verify first (4.18), namely

F ¼ 1

ð−4ÞN ðDIÞ2NX : ðA18Þ

The action of ðDIÞ2N on ðGIÞ2N is

ðDIÞ2N ðGIÞ2N ¼ðDI≠ĴÞ2N−2ðGI≠ĴÞ2N−2DĴβð−2Gα
Ĵ
DĴ

βGĴαÞ
¼ ðDI≠ĴÞ2N−2ðGI≠ĴÞ2N−2ð−2DĴβGα

Ĵ
DĴ

βGĴαÞ
¼ ðDI≠ĴÞ2N−2ðGI≠ĴÞ2N−2ð−2ð2F Þ2Þ
¼ �� �
¼ ð−2ÞN ð2F Þ2N ; ðA19Þ

where dots mean we have repeated the same stepsN times.
We can now calculate

1

ð−4ÞN ðDIÞ2NX ¼ 1

ð−4ÞN ðDIÞ2N
��

1

2

�
N ðGIÞ2N
F 2N−1

�

¼ 1

ð−4ÞN
�
1

2

�
N 1

F 2N−1 ð−2ÞN 4NF 2N

¼ F : ðA20Þ

We verify then (4.19), namely

GIα ¼
1ffiffiffi

2
p ð−4ÞN−1

ðDJ≠IÞ2N−2DI
αX : ðA21Þ

Using the previous result, the action of ðDJ≠IÞ2N−2DI
α on

ðGIÞ2N is

ðDJ≠IÞ2N−2DI
αðGKÞ2N

¼ ðDJ≠IÞ2N−2ðGJ≠IÞ2N−2ð−2Gβ
ID

I
αGIβÞ

¼
ffiffiffi
2

p
ð−2ÞN−1ð2F Þ2N−1GIα: ðA22Þ

We can now calculate

1ffiffiffi
2

p ð−4ÞN−1
ðDJ≠IÞ2N−2DI

αX

¼ 1ffiffiffi
2

p ð−4ÞN−1
ðDJ≠IÞ2N−2DI

α

��
1

2

�
N ðGIÞ2N
F 2N−1

�

¼ 1ffiffiffi
2

p ð−4ÞN−1

�
1

2

�
N 1

F 2N−1

ffiffiffi
2

p
ð−2ÞN−1ð2F Þ2N−1GIα

¼ GIα: ðA23Þ

APPENDIX B: EQUIVALENCE OF THE
GOLDSTINI MODELS IN N

SUPERSPACE

In this appendix we explicit show the equivalence among
all the known models of Goldstini, working directly in N
superspace. We start by presenting briefly how to general-
ize the Volkov-Akulov model in N superspace with the
Samuel-Wess formalism. This integrates our discussion
of Sec. II.
The Lagrangian (4.5) can also be obtained in a geomet-

rical way. Defining the superspace matrix

Aa
m ¼ δam −

i
f2

X
I

∂mΛIσ
aΛI þ i

f2
X
I

ΛIσ
a∂mΛ

I; ðB1Þ

where ΛIα satisfy (4.2), one can construct the invariant
Lagrangian
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L ¼ −f2 detAa
mjθI¼0: ðB2Þ

The equivalence between (4.5) and (B2) can be proved in
the following way. Due to the particular form of Aa

m we
have

Z
d4N θΛ2NΛ2N ¼

Z
d4N θΛ2NΛ2N detAa

m

¼ 1

ð−4Þ2N ðDIÞ2N ðDJÞ2N

× ðΛ2NΛ2N detAa
mÞjθI¼0: ðB3Þ

Acting then with the covariant derivatives inside the
parenthesis the Λ superfields are removed. In fact for
generic numbers p, q of spinor superfields

DÎαDÎ
αðΛI1α1…ΛIpαpΛ

β
Î
ΛÎβΛ

J1
_α1
…Λ

Jq
_αq
detAa

mÞ

¼DÎα

�
i
f
ΛÎ _ρσaα_ρ∂aðΛp;qΛβ

ÎΛÎβÞdetAa
m þ 2ΛÎαΛp;q detAa

m

þΛβ
Î
ΛÎβDα

Î detAa
mΛp;q

�
; ðB4Þ

where hatted indices are fixed, i.e. not summed, Λp;q ¼
ΛI1α1…ΛIpαpΛ

J1
_α1
…Λ

Jq
_αq

and where we used the property

DÎ
α detAa

m ¼ i
f
∂aðσaα_ρΛÎ _ρ detAa

mÞ: ðB5Þ

Integrating by parts and up to total derivatives, (B4)
reduces to

DÎαð2ΛÎαΛp;q detAa
mÞ

¼ −2
�
i
f
ΛÎ _ρσaα_ρ∂aðΛα

ÎΛp;qÞ detAa
m þ 2fΛp;q detAa

m

þ i
f
∂aðσaα_ρΛÎ _ρ detAa

mÞΛα
ÎΛp;q

�

¼ −2fð2Λp;q detAa
mÞ: ðB6Þ

Using this result and specializing to the correct number of
fermions and derivatives, one can prove that

Z
d4xd4N θΛ2NΛ2N ¼ f4N

Z
d4x detAa

mjθI¼0: ðB7Þ

We know that, in addition to the Samuel-Wess superfield
we have been using so far, one can define a second
representation

DI
αΓJβ ¼ fϵβαδIJ;

DI _αΓJβ ¼ −
2i
f
Γρ
Iσ

m
ρ _α∂mΓJβ; ðB8Þ

the relation between the two representations being estab-
lished via

ΓIα ¼ −2f
ðDJ≠IÞ2N−2DI

αD2N ðΛ2NΛ2N Þ
D2ND2N ðΛ2NΛ2N Þ : ðB9Þ

The Samuel-Wess Lagrangian for this model is

L ¼ −
1

f4N−2

Z
d4N θΓ2NΓ2N ðB10Þ

and it is equivalent to (B2) because

Γ2NΓ2N ¼ Λ2NΛ2N : ðB11Þ

For later convenience, notice that we also have

ΓIα ¼
fffiffiffi
2

p GIα

F
: ðB12Þ

We have just proven that the extended Volkov-Akulov
model is equivalent to the Samuel-Wess formulation,
independently from its representation. We know that this
last formulation, say the Lagrangian (4.5), is equivalent to
the extended Rocek’s Lagrangian (4.14), as a consequence
of (4.8). There remains to demonstrate therefore the
equivalence between the Volkov-Akulov model and the
Komargodski-Seiberg realization (4.21). To this purpose
we introduce a new set of superspace derivatives

ΠI
α ¼ DI

α −
i
f
σnα _αΛ

I _α∂n;

ΠI _α ¼ DI _α þ
i
f
Λα
I σ

n
α _α∂n; ðB13Þ

realizing the algebra

fΠI
α;ΠJ

βg ¼ 0;

fΠI
α;ΠJ _βg ¼ 0: ðB14Þ

From these derivatives we can now build projection
operators turning a linear realization into a standard non-
linear one. For a generic superfield U in fact we have

DI
αðΠ2NΠ2NUÞ ¼ i

f
σnα _αΛ

I _α∂nðΠ2NΠ2NUÞ;

DI _αðΠ2NΠ2NUÞ ¼ −
i
f
Λα
I σ

n
α _α∂nðΠ2NΠ2NUÞ; ðB15Þ

implying also
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DI
α½detAa

mðΠ2NΠ2NUÞ�

¼ i
f
∂a½σaα_ρΛI _ρ detAa

mðΠ2NΠ2NUÞ�;

DI _α½detAa
mðΠ2NΠ2NUÞ�

¼ −
i
f
∂a½Λα

I σ
n
α _α detA

a
mðΠ2NΠ2NUÞ�; ðB16Þ

for bosonic U.
Using (B12), the Lagrangian (4.21) can be written as

L ¼ 1

f4N

Z
d4N θΓ2NΓ2N ðFF þ fF þ fF Þ: ðB17Þ

As a consequence of (B11) and of the property

Λ2NΛ2NF ¼ Λ2NΛ2N F ; ðB18Þ

where

F ¼ 1

ð16f2ÞN Π2NΠ2N ðXΓ2N Þ; ðB19Þ

(B17) can be written as

L¼ 1

f4N

Z
d4N θΛ2NΛ2N ðFF þfF þfFÞdetAa

m: ðB20Þ

Integrating now over superspace one finds

L ¼ ðFF þ fF þ fFÞ detAa
mjθI¼0; ðB21Þ

giving the following equations of motion for the complex
scalar F jθI¼0:

F jθI¼0 ¼ −f: ðB22Þ

Substituting this expression back in the Lagrangian, (B21)
reduces to (B2).
We conclude by observing that the Lagrangian (B21)

contains the Goldstini λIα inside detAa
mjθI¼0, but also a

nondynamical complex scalar field F jθI¼0, transforming as
a standard realization of the nonlinear supersymmetry.
The presence of such nondynamical complex scalar degree
of freedom in the theory (4.21) is expected, since we know
that in the linear realizations, in addition to the Goldstini
component fields gIα, there is an auxiliary component field
F, which eventually is integrated out.
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