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We study the loosely bound Skyrme model with the addition of two different pion mass terms; this is the
most general potential of polynomial form up to second order in the trace of the Skyrme field. The two pion
mass terms are called the standard pion mass term and the modified pion mass term. We find that the
binding energies are not reduced by the introduction of the modified pion mass, but it is analogous to the
standard pion mass term with a decrease in the value of the mass parameter of the loosely bound potential
(for large values of the latter parameter). We find by increasing the overall pion mass that we can reduce the
classical binding energy of the 4-Skyrmion to the 2.7% level and the total binding energy including the
contribution from spin-isospin quantization is reduced to the 5.8% level.
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I. INTRODUCTION

The Skyrme model was made as an effective theory of
pions that could describe baryons in terms of its soliton—
the Skyrmion [1,2]. It was, however, not taken too serious
as a model until Witten pointed out that the Skyrmion
should be identified with the baryon in large-Nc quantum
chromodynamics [3,4]. Although the single and charge-
two Skyrmions were studied in the literature in the
following years, little progress was made on finding
Skyrmions with higher baryon numbers (three and above)
until the idea of using rational maps was introduced [5,6].
The Skyrmion solutions were then soon found and their
symmetries identified for baryon numbers up to and
including B ¼ 22 [7]. These Skyrmions are well described
by rational maps and look like fullerenes and thus they are
hollow, almost spherical shells of baryon charge B with
2B − 2 holes in them. This approach seemed to be on the
right track as it is a convenient and precise way of finding
Skyrmion solutions with higher baryon numbers. For the
single Skyrmion the pion mass term has little qualitative
effect; naively, it seems that it just decreases the size
slightly and increases the energy a little [8], nothing that
refitting the parameters cannot compensate. For the
Skyrmions of higher baryon numbers, however, it turned
out that the pion mass has a drastic effect; the fullerene-type
hollow shells are only the preferred minima of the energy
when the pion mass is turned off or very small [9–11]. In
fact, for a pion mass of the order of its experimentally
measured value, the Skyrmions prefer to order themselves
as cubes in a crystal—akin towards the alpha-particle
model of nuclei [12]. However, the Skyrmions are much
more complex than just point particles with interactions and

thus should not be directly compared to the alpha-par-
ticle model.
All these steps of progress towards finding Skyrmion

solutions of higher baryon numbers brought us to this point
and, in principle, Skyrmion solutions of any baryon number
can now be constructed. The Skyrme model as was used up
to this point is made of three terms, the kinetic term, the
Skyrme term, and the linear pion mass term (linear in the
chiral Lagrangian fieldU).We shall henceforth call this pion
mass term the standard pion mass term. However, a
notorious problem has been tagging along so far, namely,
the binding energies of the Skyrmions with higher baryon
numbers are much too large; they are about 1 order of
magnitude larger than the experimentally observed values.
This problem motivated several directions of improving the
standard Skyrme model. One attempt at mending the
problem of the large binding energies was the idea of
starting from a higher-dimensional self-dual theory, per-
forming dimensional reduction, and then identifying the
Skyrme model as the leading order Lagrangian; the binding
energy in this construction would go to zero if infinitely
many mesons were to be integrated in [13,14]. Another
direction is based on the discovery of a subsector where the
model has a Bogomol’nyi bound that can actually be
saturated [15,16], unlike that of the standard Skyrme model
[17]. This model is constructed by squaring the baryon
charge current and adding a potential and is by now called
the BPS-Skyrmemodel. One peculiarity of thismodel is that
it does not contain a kinetic term and not the Skyrme term
either. A strength of this model is that it models a perfect
fluid, which is a welcomed feature in the light of nuclear
matter and neutron stars [18–21]. In a realistic model of
nuclei, however, one would expect the presence of at least
the kinetic term in themodel. Turning on the kinetic term and
the Skyrme term with order-one coefficients, however,
renders the model very similar to the standard Skyrme
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model and the binding energies are again too large. One idea
is then that the kinetic term and the Skyrme term are rather
small compared to theBPS-Skyrme term [22]. This turns out
to be a rather difficult technical problem; what happens here
is thatwhen only theBPS term is present in the theory (plus a
potential), then the Skyrmions can take any shape. However,
with the kinetic term and the Skyrme term turned on, the
Skyrmions like to take their usual shapes of platonic solids;
however, if the coefficient of the latter two terms is very
small, then the solutions can afford very large derivatives.
This fact is quite a problem for most codes for Skyrmion
calculations [23]. The third direction of reducing the binding
energies in the Skyrme-like models is to take the standard
Skyrme model and add to it a holomorphic (quartic)
potential, which is based on an energy bound that, however,
can only be saturated for the single Skyrmion [23,24]. This
model was called the lightly bound Skyrme model in
Ref. [23]. Although the lightly bound Skyrme model, i.e.,
the Skyrme model with the holomorphic potential, is able to
reduce the binding energies of the multi-Skyrmions, long
before reaching experimentally observed values, the sym-
metries of the Skyrmions completely change and the
platonic symmetries are lost [25]. This leads to severe
problems of retaining the earlier successes of the Skyrme
model; in particular, if the cubic shape of the 4-Skyrmion is
lost, then the identification of the Hoyle state and the ratio of
slopes of the ground state and Hoyle state rotational bands
[26] should be reconsidered entirely. A related problemwith
the lightly bound Skyrmemodel is that the binding energy of
the B ¼ 5 Skyrmion is higher than that of the B ¼ 4
Skyrmion and hence nuclear clustering [27] into n alpha
particles for nucleon number A ¼ 4n is no longer possible.
In Ref. [25] we have chosen to keep the cubic symmetry of
the 4-Skyrmion to retain the clustering of the nuclei which,
in our opinion, is a strength of the Skyrme-type models. Not
only trying to keep the symmetries and hence the successes
of the Skyrme model, a better potential than that of the
lightly bound Skyrme model was found in Ref. [25]; we call
the Skyrme model with this quadratic potential the loosely
boundSkyrmemodel. The loosely boundSkyrmemodel can
reach lower binding energies than the lightly bound model
before the symmetries change fromplatonic to face-centered
cubic (FCC) symmetries.1

As pointed out several times in the literature, the pion
mass can be made from infinitely many different terms, see,
e.g., [25,28–31]. In Ref. [25] a class of potentials giving
rise to a pion mass term was contemplated

V0n ¼
1

n
m2

0nð1 − σnÞ; ð1Þ

where σ ¼ Tr½U�=2 andU is the Skyrme field related to the
pions as U ¼ σ12 þ iπaτa. For each n, the above potential
gives a normalized mass term for the pions. Only the sum of
these terms is measured. The loosely bound potential, on
the other hand, belongs to a class of potentials that does not
contribute to the pion mass

Vn ¼
1

n
m2

nð1 − σÞn; n ≥ 2: ð2Þ

The loosely bound potential corresponds to n ¼ 2 and the
lightly bound potential corresponds to n ¼ 4. Notice that
the two classes of potentials coincide for n ¼ 1.
Although the pion decay constant and the pion mass are

both experimentally known quantities, a modern point of
view in the Skyrme model is to consider them as renor-
malized (effective) constants, that should be renormalized
in the baryon medium and not in the pion vacuum (i.e., at
zero chemical potential and zero temperature). Therefore
the pion decay constant is often taken to be around half of
its measured value.2 In this spirit, we will in this paper also
allow for some slush in the pion mass and consider values
too small and too large, in order to study the effects on
the model.
In this paper, we will take the loosely bound Skyrme

model, which is the Skyrme model with the potential V2 as
well as the two first terms contributing to the pion mass,
i.e., V01 ¼ V1 and V02. This is the most general potential of
polynomial form up to second order in σ. Let us first
contemplate what effect we could expect from switching
the standard pion mass term, V1, with the modified pion
mass term V02 [33,34]. Since the Skyrmion of charge B
needs to wrap a 3-cycle on the target space B times, it will
necessarily pass the antipodal point to the vacuum
(σ ¼ −1) B times. When the Skyrme field is near this
antipodal point the standard pion mass term has its maximal
contribution to the energy, whereas the modified pion mass
term has none. Since the binding energy is a comparison
between the 1-Skyrmion and the B-Skyrmion, we can
easily see that increasing the energy more for the B-
Skyrmions than for the 1-Skyrmion lowers the relative
binding energy of the B-Skyrmion. Therefore, one would
naively conclude that the standard pion mass term is
preferred over the modified one.
This paper is thus a complete scan of the parameter space

of the most general potential of the polynomial form up to
second order in σ. We find in agreement with the above
contemplation of the modified pion mass that it increases
the binding energy of the B-Skyrmions. However, although

1Let us clarify that we use the term FCC in this paper to refer to
the Skyrmions that split up into separate B ¼ 1 clumps of baryon
charge situated at the vertices of a cubic lattice [23]. Obviously,
for finite-sized Skyrmions it then only corresponds to a part cut
out from the lattice. In particular, for the 4-Skyrmion that we will
study in this paper, the symmetry turns from cubic to tetrahedral;
we will nevertheless call the tetrahedral state FCC.

2Ref. [32] also argues that the mass of the delta resonance and
nucleon mass can only be fitted in the standard Skyrme model if
the pion mass is taken to be larger than its measure value.
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the increase in binding energy is considerable when the
loosely bound potential is turned off, it becomes smaller
and almost insignificant when the coefficient of the loosely
bound potential is turned to its maximal value, i.e., just
before the cubic symmetry of the 4-Skyrmion is lost. This is
related to the fact that in this region of parameter space,
switching from the linear or standard pion mass term to the
modified pion mass term merely results in a lower value of
the mass parameter of the loosely bound potential. This can
thus be compensated by increasing the value of the latter
mass parameter. We study the effects of the complete
parameter space on the classical binding energy, the total
binding energy which takes into account the quantum
contribution from the spin and isospin of the nucleon,
the pion decay constant, the mass spectrum, and finally the
charge radius of the proton. We are able to reduce
the classical binding energy to about the 2.7% level and
the total binding energy to about the 5.8% level. The
conclusion is that the modified pion mass term is not
advantageous, but an increase in the value of the pion mass
allows for a larger value of the mass parameter of the
loosely bound potential, which in turn lowers the binding
energy further.
The paper is organized as follows. In Sec. II we present

the loosely bound Skyrme model with the two different
pion mass terms, i.e., the most general potential up to
second order in σ, set the notation, and define the
observables that we will study on the entire parameter
space of the model. Section III explains the numerical
methods used and Sec. IV presents the results. Finally
Sec. V concludes with a discussion and the Appendix
shows figures of numerical Skyrmion solutions at the
boundary between the cubic and FCC symmetry regions
in the parameter space.

II. THE MODEL AND OBSERVABLES

The model under study is the Skyrme model and the
Lagrangian density in physical units reads

L ¼ f2π
4
L2 þ

1

e2
L4 −

~m2
πf2π

4m2
π
V; ð3Þ

where the kinetic (Dirichlet) term and Skyrme term is
given by

L2 ¼
1

4
TrðLμLμÞ; L4 ¼

1

32
Trð½Lμ; Lν�½Lμ; Lν�Þ; ð4Þ

and Lμ ≡U†∂μU. fπ is the pion decay constant with units
of energy (MeV), e > 0 is a real-valued dimensionless
constant, ~mπ is the pion mass in MeV, and, finally, mπ is a
dimensionless pion mass parameter. The indices μ, ν ¼ 0,
1, 2, 3 are spacetime indices and U is the Skyrme field
which, in terms of the pions, reads

U ¼ 12σ þ iτaπa; ð5Þ

with U†U ¼ 12 being the nonlinear sigma model con-
straint, which is equivalent to σ2 þ πaπa ¼ 1 and τa are the
Pauli matrices.
It will prove convenient to do a rescaling of the energy

and length scales and only work with dimensionless
parameters. In particular, we will make a rescaling such
that ~xi ¼ μxi, where both ~xi and μ have units of length
(MeV−1), and similarly for the energy ~E ¼ λE, where ~E and
λ have units of energy (MeV). In particular, we get

L ¼ c2L2 þ c4L4 − V; ð6Þ

where c2 > 0 and c4 > 0 are positive-definite real con-
stants and

λ ¼ fπ
2e

ffiffiffiffiffiffiffiffiffi
c2c4

p ; μ ¼
ffiffiffiffiffi
c2
c4

r
2

efπ
; ð7Þ

whereas the pion mass in physical units (MeV) is given by

~mπ ¼
ffiffiffiffiffi
c4

p
2c2

efπmπ: ð8Þ

This relation assumes that the potential will have a pion
mass normalized to mπ in dimensionless units.
The main focus of this paper is to study the most general

potential of polynomial form up to second order in Tr½U�:

V ¼ V1 þ V02 þ V2; ð9Þ

and the potentials are defined as

V1 ≡m2
1ð1 − σÞ;

V02 ≡ 1

2
m2

02ð1 − σ2Þ;

V2 ≡ 1

2
m2

2ð1 − σÞ2; ð10Þ

where the mass parameters m1, m02, m2 are all real and

σ ¼ 1

2
Tr½U�: ð11Þ

Note that there are only 2 free parameters to second order
because the constant is irrelevant for the equations of
motion. However, the above basis is convenient because all
mass parameters are real valued. We will nevertheless
change to a simpler basis shortly.
The Lagrangian density (6) without a potential turned on

enjoys SUð2Þ × SUð2Þ symmetry. This symmetry is explic-
itly broken down to a diagonal SU(2) by the potential (9).
This SU(2) corresponds to isospin and we will keep it
unbroken in this paper.
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The target space of the Skyrme model—due to the
mentioned symmetry breaking—is given byM≃ SUð2Þ≃
S3. The map U—the Skyrme field—is thus a map from
space, i.e., R3∪f∞g≃ S3 to the target space M and is
characterized by the third homotopy group

π3ðMÞ ¼ Z∋B; ð12Þ

which admits solitons called Skyrmions and the integer B is
called the baryon number, which in turn, can be calculated
from the baryon charge density

B0 ¼ −
1

12
ϵijkTr½Li; Lj; Lk�; ð13Þ

by integrating over space

B ¼ 1

2π2

Z
d3xB0: ð14Þ

The pion mass (squared) in the model is given by

m2
π ¼ −

∂V
∂σ

����
σ¼1

; ð15Þ

and as explained in Ref. [25], the potentials V1 and V02

belong to the class of potentials giving rise to a pion mass in
the vacuum σ ¼ 1, whereas V2 gives no contribution to the
pion mass. In particular, calculating the pion mass from the
potential (9), we get

m2
π ¼ m2

1 þm2
02; ð16Þ

and so we can parametrize the two mass parameters giving
a pion mass contribution as

m2
1 ¼ αm2

π; m2
02 ¼ ð1 − αÞm2

π; ð17Þ

where the real parameter α ∈ ½0; 1� takes on a value in the
interval from zero to one; α ¼ 1 corresponds to the tradi-
tional pion mass, whereas α ¼ 0 yields the modified pion
mass [33,34] and any value in between is a linear
interpolation between the two.
We will now switch to a simpler basis for the potential

V ¼ αm2
πð1 − σÞ þ 1

2
ð1 − αÞm2

πð1 − σ2Þ þ 1

2
m2

2ð1 − σÞ2

¼ m2
πð1 − σÞ þ 1

2
½m2

2 − ð1 − αÞm2
π�ð1 − σÞ2; ð18Þ

where we have absorbed the modified pion mass term into
the loosely bound potential in the second line. If we set
α ¼ 1 then the potential is equal to a subset of that analyzed
in Ref. [25]. However, when α < 1 the coefficient of

ð1 − σÞ2 (the loosely bound potential term) is no longer
positive semidefinite; i.e., the mass parameter is no longer
only real valued. We will now define the parameter

m2
2 ≡m2

2 − ð1 − αÞm2
π; ð19Þ

which takes values in the range ½−m2
π;∞Þ and the potential

is then simply

V ¼ m2
πð1 − σÞ þ 1

2
m2

2ð1 − σÞ2: ð20Þ

It is easy to confirm that σ ¼ 1 is always a (local) vacuum.
The lower bound on m2

2 comes from the condition that
σ ¼ −1 should not become the global vacuum; the value of
m2

2 where the two vacua σ ¼ �1 become degenerate is
exactly m2

2 ¼ −m2
π. There is no upper bound on m2

2;
however, when the parameter becomes too large, the
platonic symmetries of the multi-Skyrmions are lost; in
particular, the 4-Skyrmion loses its cubic symmetry [25].
Now we can see from Eq. (19) that when α ¼ 1,

m2 ¼ m2 as expected and when α < 1, the modified pion
mass term is turned on, corresponding to a decrease in the
effective value of the mass parameter m2. In order to cover
the complete parameter space, however, we need to con-
sider also the negative range of m2

2, corresponding to the
case where m2

2 < ð1 − αÞm2
π , which is possible only when

the modified pion mass is turned on. When m2 ≫ mπ , we
can thus expect that the modified pion mass does not
provide any advantage at all, since it merely reduces the
effective value of m2 and from Ref. [25] we know that the
largest possible value of m2 provides the lowest possible
binding energies in that range. The negative range of
m2

2 ∈ ½−m2
π; 0Þ is, however, until now unexplored.

Now we should make a choice concerning the
(dimensionless) units, i.e., fixing c2 and c4. The standard
Skyrme units correspond to c2 ¼ c4 ¼ 2 for which the
energy and length are given in units of fπ=ð4eÞ and
2=ðefπÞ, respectively; see Ref. [35]. Here we will apply
the same convention for units as used in Ref. [25], namely,

c2 ¼
1

4
; c4 ¼ 1; ð21Þ

and hence energies and lengths according to Eq. (7) will be
given in units of fπ=e and 1=ðefπÞ, respectively. The
pion mass in physical units (8) with the normalization
convention (21) thus reads

~mπ ¼ 2efπmπ: ð22Þ

Because of the different normalization of the potential (9)
[and of the Lagrangian density (6)] by a factor of 2, the pion
mass m ¼ 1, used in Ref. [12], corresponds to mπ ¼ 1=4
and ~mπ ¼ efπ=2 in our units and normalization.

SVEN BJARKE GUDNASON and MUNETO NITTA PHYSICAL REVIEW D 94, 065018 (2016)

065018-4



Let us define the observables that we want to compare
with data for nuclei. The first, and the one of prime interest
in this paper, is the classical binding energy

ΔB ≡ BE1 − EB; ð23Þ
where EB is the total energy of the Skyrmion with baryon
number B. It will, however, prove convenient to use the
relative classical binding energy instead

δB ≡ ΔB

BE1

¼ 1 −
EB

BE1

; ð24Þ

as the physical units drop out and we can use any units we
like, in particular, our Skyrme units, i.e., Skyrme units in
our normalization. Before we can compare honestly with
the experiment, we should take into account the quantum
contribution to the ground state of spin and isospin
quantization, yielding

δtotB ≡ 1 −
EB þ ϵB

BðE1 þ ϵ1Þ
; ð25Þ

where ϵB is the quantum contribution to the ground state
of the baryon represented by the Skyrmion of baryon
number B. Note, in particular, that the quantum contribu-
tion to the Skyrmion of baryon number B decreases the
binding energy, whereas the quantum contribution to the
1-Skyrmion increases the binding energy. As well known
the quantum contribution to the 1-Skyrmion happens to be
larger than those to the higher B-Skyrmions and therefore
the spin-isospin quantization has the effect of increasing the
already too large binding energies of the Skyrmions. The
reason why the quantum contribution to the 1-Skyrmion is
larger than to the other ones is simply that the 1-Skyrmion
is the smallest one and hence it has the smallest moment of
inertia. Since the quantum contribution to the energy of the
Skyrmion is inversely proportional to the moment of inertia
the above mentioned effect on the binding energy follows.
In this paper, for practical reasons of flops economy

and because of the fact that the ground state of the 4He is a
spin-0, isospin-0 state, we will focus on the B ¼ 1 and
B ¼ 4 sectors of the model; for other baryon numbers in a
subset of the model (the α ¼ 1 sector), see Ref. [25]. In
particular, the latter fact implies that there is no quantum
contribution to theB ¼ 4 Skyrmion [36] and hence the total
relative binding energy simplifies to

δtot4 ≡ 1 −
E4

4ðE1 þ ϵ1Þ
: ð26Þ

Since we only need to calculate the ground state energy
contribution from spin-isospin quantization of the single
Skyrmion, the calculation is considerably simpler and we
follow Ref. [37]. Let U → AUA−1, with A ¼ AðtÞ being an
SU(2) matrix which rotates the isospin ofU. This gives rise
to the kinetic energy

T ¼ 1

2
aiUijaj ¼ ΛTrð∂0A∂0A−1Þ; ð27Þ

for the single (B ¼ 1) Skyrmion

U ¼ cos fðrÞ þ ix̂iτi sin fðrÞ; ð28Þ

where ai ≡ −iTrðτiA−1 _AÞ, x̂i is the spatial unit vector, and
Uij ¼ Λδij, with

Λ≡ 8π

3

Z
drr2 sin2 f

�
c2 þ c4f2r þ

c4
r2

sin2 f

�
; ð29Þ

where fr ≡ ∂rf. Hence we get the kinetic energy from
canonical quantization

T ¼ 1

8Λ
lðlþ 2Þ ¼ 1

2Λ
JðJ þ 1Þ: ð30Þ

In particular, for the spin-1=2 ground state of the proton or
neutron, we get

T1=2 ¼
1

2Λ
3

4
; ð31Þ

where J ¼ l=2 is the spin quantum number. Reinstating
physical units and using our normalization (21), we get for
the total mass

~E1 þ ~ϵ1 ¼
fπ
e
E1 þ

e3fπ
2Λ

3

4
: ð32Þ

When calculating the relative binding energy, the factor of
fπ=e will drop out, and hence we need only calculate

E1 þ ϵ1 ¼
e
fπ

ð ~E1 þ ~ϵ1Þ ¼ E1 þ
e4

2Λ
3

4
: ð33Þ

We will also calculate the mass of the delta resonance.
Since it is merely the spin-3=2 state of the baryon in our
model, we can estimate the mass by

~mΔ ¼ ~E1 þ 5~ϵ1: ð34Þ

In order to add the quantum contribution to the energy of
the 1-Skyrmion to its classical contribution, we need to fit
the mass and size of a selected Skyrmion to those of a
corresponding nucleus. A large part of the literature used
the proton and delta resonance as the two input parameters
to fit fπ and e [37]; this fit suffers from the problem that the
binding energies for the Skyrmions are about an order of
magnitude too large compared with those of nuclei. Later a
different fit was made using 6Li [38]; the purpose here is to
better match the energies of multi-Skyrmions with higher
B. Other fits in the literature use 12C [26] or 4He [25]. For
concreteness and simplicity, we will again use 4He as in
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Ref. [25]; this is convenient because we can use the
different 4-Skyrmions to do the calibration; in fact, we
will—in this paper—recalibrate each point in the parameter
space of the model such that the 4-Skyrmion fits the mass
and size of 4He. This will, in turn, give an accurate estimate
of the effect on the quantum contribution of the different
parts of the parameter space.
Another observable that we will calculate on the

Skyrmion solutions is the size of the nuclei. Since we
fit the size of the 4-Skyrmion, we will use that of the
1-Skyrmion as a check. We choose to define the squared
radius in terms of the baryon charge density, i.e.,

r2B ¼ 1

2π2B

Z
d3xr2B0; ð35Þ

where B0 is the baryon charge density given in Eq. (13).
Hence, the size can be estimated as rB ∼

ffiffiffiffiffi
r2B

p
.

We are now ready to perform numerical calculations on
the full parameter space of the most general potential of the
polynomial form up to second order in σ.

III. NUMERICAL CALCULATIONS

We will follow the approach used in Ref. [25] and use a
finite difference method in conjunction with the relaxation
method for the partial differential equations. Our grid sizes
are typically 1013 and we use a fourth-order stencil.
In order to save computational costs, we use the hedge-

hog ansatz (28) for calculating the 1-Skyrmions and solve
the ordinary differential equation

c2

�
frr þ

2

r
fr −

sin 2f
r2

�

þ c4

�
2sin2ðfÞfrr

r2
þ sinð2fÞf2r

r2
−
sin 2fsin2f

r4

�

¼ m2
1 sin f þ 1

2
m2

02 sin 2f þm2
2ð1 − cos fÞ sin f; ð36Þ

to very high accuracy level, better than the 10−6 level.
Therefore, in order to compare the B ¼ 4 solutions to the
B ¼ 1 solutions—for the purpose of calculating the relative
binding energy—we need to obtain the energy for the
4-Skyrmion very precisely. We will again utilize the trick
used in Ref. [25]; namely, we relax the numerical solution
down to the 10−3 level, locally (we denote this time τ0), and
from then on, we make an exponential fit to the energy as
function of relaxation (imaginary) time. We continue the
cooling process until the exponential fit is precise enough
and the imaginary time where we stop the calculation is τ2.
τ1 is defined as the midpoint: τ1 ¼ ðτ0 þ τ2Þ=2. After the fit
has been calculated, we take the τ → ∞ limit of the energy
function and the result is

EB ≃ B
Bnumerical

×
EB;numericalðτ0ÞEB;numericalðτ2Þ − E2

B;numericalðτ1Þ
EB;numericalðτ0Þ − 2EB;numericalðτ1Þ þ EB;numericalðτ2Þ

:

ð37Þ
Note that we also use another trick of compensating the
total energy by a factor of B=Bnumerical as both the energy
and the baryon charge is underestimated in the numerical
calculation. We have checked in Ref. [25] that this
reproduces the energy for the B ¼ 1 sector within an
accuracy of about 2.7 × 10−4 or better.
As another check on the precision of the Skyrmion

solutions, we calculate the baryon charge numerically and
find that all the solutions yield B ¼ 4 to a precision of about
1.7 × 10−3 or better. Therefore in summary our results
should be trustable down to about the per mille level.
For each data point in the parameter space, we refit the

length and energy scales to the 4He nucleus, thus determin-
ing fπ and e. After the physical units are fitted we calculate
all the observables presented in the last section.
We are now ready to present the results in the next

section.

IV. RESULTS

A. Classical binding energies

We start by presenting the classical binding energies,
defined in Eq. (24), in Fig. 1 for various values of mπ as
functions of m2

2. The four curves correspond to
mπ ¼ 0.125, 0.25, 0.375, 0.5. The value mπ ¼ 0.25 cor-
responds to the choice m ¼ 1 in Refs. [12,36]. The blue
dots in this figure and in the remainder of the paper
correspond to Skyrmion solutions with cubic symmetry,
whereas the red-dashed dots correspond to the Skyrmion
breaking up into individual and weakly bound B ¼ 1
clumps, situated in an FCC lattice [23]; see the Appendix.
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FIG. 1. Classical binding energy δ4 as function of m2
2; four

series of points are shown corresponding to mπ ¼ 0.125, 0.25,
0.375, 0.5.
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We clearly see that increasing the pion mass mπ, allows
for larger values of m2

2 and eventually for lower classical
binding energies. We note, however, that mπ ¼ 0.125 has
a smaller binding energy than mπ ¼ 0.25 (corresponding
to m ¼ 1 in Refs. [12,36]) before the symmetries change
from cubic to FCC. Nevertheless, larger values of the
pion mass parameter decrease the binding energies; in
particular, the classical binding energy is smaller for
mπ ¼ 0.375 and mπ ¼ 0.5 than for mπ ¼ 0.125. The
largest value of m2

2 possible for cubic symmetry is
reached for mπ ¼ 0.5 and it also yields the smallest
classical binding energy of about 2.7% for the 4-
Skyrmion.
We can also see from Fig. 1 that the slope of the curves at

large m2
2 is much smaller than for small values; hence, the

difference between the standard (linear) pion mass and the
modified pion mass becomes much less pronounced
(recall that it corresponds merely to a negative shift in
the value of m2

2).

B. Calibration

Now we will perform a calibration to the 4He nucleus for
each Skyrmion solution in the parameter space. In particu-
lar, as mentioned in Sec. II, we fit the mass and the size of
the 4-Skyrmion to those of 4He; this determines fπ and e.
Figures 2 and 3 show the pion decay constant and the
(dimensionless) Skyrme term parameter e.
We can see from Fig. 2 that for m2 ¼ 0, the modified

pion mass term—corresponding to negative values ofm2
2—

increases the pion decay constant (which is good). The
experimentally observed value is around 184 MeV (not
shown in the figure) in the normalization used in the
Skyrme model [37]. However, turning on m2, which
corresponds to positive values of m2

2 (and decreases the
binding energy), reduces the value of fπ to about a third of
its experimentally measured value. We observed that larger

values of the pion mass directly translate into smaller
values of the pion decay constant, fπ .
Since the value of the Skyrme term coefficient e is, to the

best of our knowledge, not known experimentally, there is
no preferred value; it is simply the result of the fit of length
and energy units. Let us, however, remark that the blue
points move downwards (decreasing e) for increasing m2

2

(except for the largest values of the mπ ¼ 0.375 series
before the symmetry changes from cubic to FCC), whereas
when the symmetry switches to FCC the red-dashed points
are moving upwards (increasing e) for increasing m2

2 (but
possibly saturating at a plateau). Let us also remark that the
smaller e is, the smaller the contribution from spin-isospin
quantization to the 1-Skyrmion is. This means that in order
to get the smallest possible total binding energy, we need an
as small as possible value of e. For this, the large values of
the pion mass mπ are advantageous.
Let us also remark that the curves of the binding energies

shown in Fig. 1 are far smoother than those shown in Fig. 3;
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FIG. 2. Calibration of the pion decay constant, fπ , as function
of m2

2; four series of points are shown corresponding to
mπ ¼ 0.125, 0.25, 0.375, 0.5.
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FIG. 3. Calibration of the Skyrme term coefficient, e, as
function of m2

2; four series of points are shown corresponding
to mπ ¼ 0.125, 0.25, 0.375, 0.5.
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FIG. 4. Pion mass in physical unit, ~mπ , as function of m2
2; four

series of points are shown corresponding to mπ ¼ 0.125, 0.25,
0.375, 0.5.
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this is due to the highly precise calculations for the
energies, whereas the sizes have been estimated without
taking any limits of large relaxation times. This can be seen
as small jumps in the curves of e in Fig. 3. The error is,
however, still smaller than or about the per mille level.

C. Mass spectrum

We now turn to the mass spectrum. Since the mass and
size of the 4-Skyrmion has been fitted to that of 4He, fπ and
e are fixed. The masses in physical units of the pion, the
nucleon and the delta resonance can thus readily be
calculated and they are presented in Figs. 4–6, respectively.
Let us start with the pion mass of Fig. 4. We can see that

if we want to minimize the classical relative binding energy
by maximizing m2, then the experimentally preferred value
of mπ is between 0.25 and 0.375, i.e., between the second
and the third series in Fig. 4. However, as already
mentioned, since the pion decay constant is almost a factor
of 3 off of its experimental value and the fact that we choose

to interpret fπ and mπ as renormalized constants in the
baryon medium, not in the pion vacuum, then we may
contemplate allowing for some slush also in the value
of mπ .
Looking now at Fig. 5, interestingly, we can see that for

the largest possible value ofm2, the nucleon mass is closest
to the experimentally observed value for all of the pion
mass values. The pion mass mπ ¼ 0.5 gives slightly better,
but nearly the same value as for mπ ¼ 0.125 and for mπ ¼
0.25 the worst fit to the measured nucleon mass is found, in
the limit of the largest possible value ofm2

2 before the cubic
symmetry is lost. For all points in the parameter space, we
can conclude that the loosely bound Skyrme model over-
estimates the nucleon mass.
The final mass we calculate in this paper is the mass of

the delta resonance. We can see from Fig. 6 that for the
largest possible values of m2

2, for each series, the model
estimate is the farthest away from the measured mass of the
delta resonance. For all points in the parameter space, we
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FIG. 5. Nucleon mass in physical unit, ~mN , as function of m2
2;

four series of points are shown corresponding to mπ ¼ 0.125,
0.25, 0.375, 0.5.
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FIG. 6. Mass of the Δ resonance in physical unit, ~mΔ, as
function of m2

2; four series of points are shown corresponding to
mπ ¼ 0.125, 0.25, 0.375, 0.5.
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FIG. 7. Charge radius of the proton in physical unit, ~r1, as
function of m2

2; four series of points are shown corresponding to
mπ ¼ 0.125, 0.25, 0.375, 0.5.
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FIG. 8. Total binding energy, δtot4 , as function ofm2
2; four series

of points are shown corresponding to mπ ¼ 0.125, 0.25,
0.375, 0.5.
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can conclude that the loosely bound Skyrme model under-
estimates the mass of the delta resonance.

D. Proton charge radius

Wewill now turn to the proton charge radius and use it as
a rough estimate of the size of the nucleon. Figure 7 shows
the square root of the squared radius averaged using the
baryon charge density3 of the 1-Skyrmion; see Eq. (35).
We can observe from the figure that all the proton charge

radii in the entire parameter space are overestimated. This is
because we fit the length scale to the size of 4He and the 4-
Skyrmion in general is too small; the addition of the loosely
bound potential, m2 > 0, in turn exacerbates this tendency
and decreases the 4-Skyrmion even more. With this choice
of fitting, this problem shows up as the charge radius for the
proton being too large. We can, interestingly, observe that if
the loosely bound potential is turned off (m2 ¼ 0), then the
modified pion mass improves the value of the charge radius

(corresponding to negative values ofm2
2). This is, however,

in the part of the parameter space where the classical
relative binding energies for the 4-Skyrmion are the largest
and, hence, most at odds with experimental data.
Another effect that we can observe from Fig. 7 is that

before the threshold for cubic symmetry is reached, i.e., the
boundary between when the symmetry of the 4-Skyrmion
is cubic or FCC, then the charge radius increases (except for
mπ ¼ 0.375). However, once the symmetry has changed to
FCC, the size of the 4-Skyrmion increases quite a lot and
this in turn has the effect of reducing the charge radius of
the proton (because we fit the length scale to the size of the
4-Skyrmion); in fact, for increasing m2

2, the red-dashed
points move downwards in the figure.

E. Total binding energies

The final comparison with experiment is again the
relative binding energy, but now we will take the quantum
contribution due to spin-isospin quantization into account.
The total relative binding energy is defined in Eq. (26).
Figure 8 shows the total relative binding energy and Fig. 9
displays the breakdown of the classical contribution (the
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FIG. 9. Breakdown of the total binding energy, δtot4 , as function of m2
2; four series of points are shown corresponding to mπ ¼ 0.125,

0.25, 0.375, 0.5, corresponding to (a),(b),(c),(d), respectively. The bottom of the arrows corresponds to the classical contribution,
whereas the arrow head includes the quantum correction.

3Reference [39] argues that the baryon charge density is a
natural definition for calculating the size of a soliton; in particular
in Skyrme-type models.
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bottom of the arrows) and the quantum contribution (the
length of the arrows).
As was the case for the classical relative binding energy,

so is the case for the total relative binding energy; the
loosely bound potential decreases the binding energy. We
can see that the lowest binding energy is reached for
mπ ¼ 0.5, but the next-to-best value is for mπ ¼ 0.125; the
dependence of the total binding energy on the pion mass
parameter is not linear and indeed quite nontrivial.
From Fig. 9 we can see that the quantum contribution

increases slightly when the loosely bound potential is
turned on, i.e. when m2

2 is large.

V. DISCUSSION AND CONCLUSION

In this paper we have found that the modified pion mass
increases the binding energy of the B-Skyrmions as one
would expect. We also found that the cubic symmetry is
kept for slightly larger values of the coefficient of the
loosely bound potential when the modified pion mass term
is used, compared to when the standard pion mass term is
used. This is because a given value of the modified pion
mass term corresponds to the same standard pion mass
albeit with a reduce value of the loosely bound mass
parameterm2

2 ¼ m2
2 −m2

π. We found—as pointed out many
places in the literature—that the model prefers quite large
values of the pion mass; this allows us to use a larger
coefficient of the loosely bound potential and hence reduce
the binding energy further. We are able to reduce the
classical binding energy to about the 2.7% level and the
total binding energy to about the 5.8% level. This corre-
sponds, however, to a rather large pion mass at 190 MeV, a
rather small pion decay constant at 56 MeV, a nucleon mass
at 990 MeV, the mass of the delta resonance at 1118 MeV,
and finally a charge radius of the proton at 0.97 fm.
This systematic study has only lowered the relative binding

energy by about 0.6% with respect to that found in Ref. [25].
However, in this spirit of systematically surveying the
parameter space of the Skyrme model, there are plenty of
directions to look for improvements. One next step is to
consider the BPS-Skyrme term; however, as wementioned in
the Introduction, its introduction to the model with a large
coefficient has proven notoriously difficult at the technical
level of numerical calculations. Naturally one can extend this
systematic study to the complete potential of third order in σ.
Other effects that we would like to include in the future is
the breaking of the isospin symmetry and the Coulomb
potential—which should bemost significant for larger nuclei.

ACKNOWLEDGMENTS

S. B. G. thanks the Recruitment Program of High-end
Foreign Experts for support. The work of M. N. is supported
in part by a Grant-in-Aid for Scientific Research on
Innovative Areas “Topological Materials Science”
(KAKENHI Grant No. 15H05855) and “Nuclear Matter in

Neutron Stars Investigated byExperiments andAstronomical
Observations” (KAKENHI Grant No. 15H00841) from the
Ministry of Education, Culture, Sports, Science (MEXT) of
Japan. The work of M. N. is also supported in part by the
Japan Society for the Promotion of Science (JSPS) Grant-in-
Aid for Scientific Research (KAKENHI Grant
No. 16H03984) and by the MEXT-Supported Program for
the Strategic Research Foundation at Private Universities
“Topological Science” (Grant No. S1511006).

APPENDIX: THE CUBIC TO FCC TRANSITION

In this appendix we show figures of the Skyrmions
around the region in parameter space where the Skyrmion
changes symmetry from cubic (platonic) symmetry to FCC
symmetry. The Skyrmion thus changes from being com-
posed of eight half-Skyrmions situated at the corners of a
cube to being composed by four spheres sitting on the
vertices of a tetrahedron.
Figures 10–13 show series of Skyrmion solutions

near the boundary of the mentioned phase transition for
mπ ¼ 0.125, 0.25, 0.375 and 0.5, respectively. The loosely

FIG. 10. The columns show mπ ¼ 0.125 Skyrmion solutions
with m2 ¼ 0.7, 0.8, 0.9 and the rows correspond to α from 0 to 1
in steps of 0.2 from top to bottom.
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bound potential parameterm2 is increased from left to right
in each figure and α is varied vertically.
It is interesting to note that the Skyrmions are slightly

more strongly bound and less aloof for α ¼ 0 (modified

pion mass) than for α ¼ 1 (standard pion mass).
Consistently with findings in the text, we see that the
larger mπ is, the larger values of m2 are possible before the
phase transition takes place.

FIG. 11. The columns show mπ ¼ 0.25 Skyrmion solutions
with m2 ¼ 0.7, 0.8, 0.9 and the rows correspond to α from 0 to 1
in steps of 0.2 from top to bottom.

FIG. 12. The columns show mπ ¼ 0.375 Skyrmion solutions
with m2 ¼ 0.9, 1, 1.1 and the rows correspond to α from 0 to 1 in
steps of 0.2 from top to bottom.
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