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There are five maximally supersymmetric backgrounds in four-dimensional off-shellN ¼ 1 supergravity,
two of which are well known: Minkowski superspace M4j4 and anti–de Sitter superspace AdS4j4. The three
remaining supermanifolds support spacetimes of different topology, which are R × S3, AdS3 ×R, and a
supersymmetric plane wave isometric to the Nappi-Witten group. As is well known, the Minkowski and
anti–de Sitter superspaces are solutions of the Poincaré and anti–de Sitter supergravity theories, respectively.
Here we demonstrate that the other three superspaces are solutions of pure R2 supergravity. We also present a
new (probably the simplest) derivation of the maximally supersymmetric backgrounds of off-shell N ¼ 1

supergravity.
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I. INTRODUCTION

There exist only five maximally supersymmetric back-
grounds in off-shell N ¼ 1 supergravity in four dimen-
sions. As purely bosonic backgrounds, the complete list
was given by Festuccia and Seiberg [1]. Their results were
rederived in [2] using the superspace formalism developed
in the mid-1990s [3] (see [4] for a review). As curved
N ¼ 1 superspaces, all these backgrounds were described
in [5]. The algebraic aspects of these backgrounds have
recently been studied in [6].
We now list all maximally supersymmetric backgrounds

of N ¼ 1 supergravity following [5].1 The simplest and
most well known is Minkowski superspace M4j4 [7,8]. It is
characterized by the algebra of covariant derivatives

fDα; D̄_βg ¼ −2iDα _β; ð1:1aÞ

fDα;Dβg ¼ 0; fD̄ _α; D̄_βg ¼ 0; ð1:1bÞ

½Da;DB� ¼ 0: ð1:1cÞ

The second oldest background is anti–de Sitter (AdS)
superspace AdS4j4 [9–11]. It is characterized by the algebra
of covariant derivatives

fDα; D̄_βg ¼ −2iDα _β; ð1:2aÞ

fDα;Dβg ¼ −4R̄Mαβ; fD̄ _α; D̄_βg ¼ 4RM̄ _α _β; ð1:2bÞ

½Da;Dβ� ¼ −
i
2
R̄ðσaÞβ_γD̄_γ; ½Da; D̄_β� ¼

i
2
RðσaÞγ _βDγ;

ð1:2cÞ

½Da;Db� ¼ −jRj2Mab; ð1:2dÞ

with R ¼ const. The Riemann tensor of AdS4 may be
deduced from (1.2d) to be

Rabcd ¼ −jRj2ðηacηbd − ηadηbcÞ: ð1:3Þ

The three remaining superspaces are characterized by
formally identical anticommutation relations [5]

fDα;Dβg ¼ 0; fD̄ _α; D̄_βg ¼ 0; fDα; D̄_βg ¼ −2iDα _β;

ð1:4aÞ

½Dα;Dβ _β� ¼ iεαβGγ
_βDγ; ½D̄ _α;Dβ _β� ¼ −iε _α _βGβ

_γD̄_γ;

ð1:4bÞ

½Dα _α;Dβ _β� ¼ −iε _α _βGβ
_γDα_γ þ iεαβGγ

_βDγ _α; ð1:4cÞ

where Gb is covariantly constant,

DAGb ¼ 0: ð1:4dÞ

The difference between these superspaces is encoded in the
Lorentzian type of Ga. Since G2 ¼ GaGa is constant, the

geometry (1.4) describes three different superspaces, M4j4
T ,

M4j4
S , and M4j4

N , which correspond to the choices G2 < 0,
G2 > 0, and G2 ¼ 0, respectively. The Lorentzian

*sergei.kuzenko@uwa.edu.au
1In all cases, the superspace covariant derivatives DA ¼

ðDa;Dα; D̄ _αÞ have the form DA ¼ EA
M∂M þ 1

2
ΩA

bcMbc, where
Mbc is the Lorentz generator. In the case of Minkowski
superspace, one can choose the Lorentz connection ΩA

bc to
vanish, and the inverse vielbein EA

M to have the Akulov-Volkov
form [7].
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manifolds, which are the bosonic bodies of the superspaces

M4j4
T ,M4j4

S , andM4j4
N , areR × S3, AdS3 ×R, and a pp-wave

spacetime,2 respectively. The Riemann curvature tensor of
these spacetimes is

Rabcd ¼
1

4
fGcðGaηbd −GbηadÞ −GdðGaηbc − GbηacÞ

− G2ðηacηbd − ηadηbcÞg: ð1:5Þ

The superspaceM4j4
T is the universal covering ofM4j4 ¼

SUð2j1Þ. The bosonic body of M4j4 is Uð2Þ ¼ ðS1 × S3Þ=
Z2. The isometry group of M4j4 is SUð2j1Þ × Uð2Þ. One
can think of M4j4

T as a supersymmetric extension of
Einstein’s static universe. N ¼ 1 supersymmetric field
theories on R × S3 were studied in the mid-1980s by

Sen [13]. The superspace M4j4
S is the universal covering

of fM4j4 ¼ SUð1; 1j1Þ. The bosonic body of fM4j4 is

Uð1; 1Þ ¼ ðAdS3 × S1Þ=Z2. The isometry group of fM4j4

is SUð1; 1j1Þ × Uð2Þ.
The superspace (1.2) is a maximally supersymmetric

solution of anti–de Sitter supergravity described by the
action (see, e.g., [3] for a review)

SSUGRA ¼ −
3

κ2

Z
d4xd2θd2θ̄Eþ

�
μ

κ2

Z
d4xd2θE þ c:c:

�
;

ð1:6Þ

where κ is the gravitational coupling constant and μ a
cosmological parameter. The integration measures E and E
in (1.6) correspond to the full superspace and its chiral
subspace, respectively. The equations of motion corre-
sponding to (1.6) are

Ga ¼ 0; R ¼ μ; ð1:7Þ

see [3] for a pedagogical derivation. Setting μ ¼ 0 in (1.6)
gives the action for N ¼ 1 Poincaré supergravity [14].
Minkowski superspace (1.1) is a maximally supersymmet-
ric solution of this theory.
In this paper, we are going to show that the superspaces

(1.4) are maximally supersymmetric solutions of scale
invariant supergravity3

S ¼ α

Z
d4xd2θd2θ̄ERR̄þ

�
β

Z
d4xd2θER3 þ c:c:

�

¼
Z

d4xd2θd2θ̄EfαRR̄þ ðβR2 þ β̄R̄2Þg; ð1:8Þ

with α and β a real and a complex dimensionless parameter,
respectively. This higher-derivative supergravity model has
recently been studied4 in [15] (see also [16,17].) Along with
the supergravity action, both terms in (1.8) have also been
discussed in the framework of supersymmetric models for
inflation; see [18,19] and references therein.
Higher-derivative supergravity actions of the type (1.8)

have a long history. The α term in (1.8) is generated as a
one-loop quantum correction in N ¼ 1 supersymmetric
field theories coupled to supergravity [20–22]. The com-
ponent structure of this term was described in [23].
Although the β term in (1.8) breaks the Uð1Þ R-symmetry,
adding such a contribution to the α term is completely
natural, keeping in mind that a massless covariantly chiral
scalar superfield Φ, D̄ _αΦ ¼ 0 is described in supergravity
by an action

Smatter ¼
Z

d4xd2θd2θ̄E

�
ΦΦ̄þ 1

2
ξðΦ2 þ Φ̄2Þ

�
; ð1:9Þ

with ξ a dimensionless parameter. The choice ξ ¼ 0
corresponds to the conformal scalar multiplet model which
is dual to the improved tensor multiplet [24]. Another
natural choice is ξ ¼ 1 and corresponds to a nonconformal
scalar multiplet which is dual to the free tensor multiplet
model [25].
This paper is organized as follows. In Sec. II we briefly

discuss the various superspace formulations for N ¼ 1
conformal supergravity, and present a new derivation of
the maximally supersymmetric backgrounds of off-shell
N ¼ 1 supergravity. In Sec. III we prove that the curved
superspaces described by (1.4) are solutions of the scale
invariant supergravity model (1.8). Some concluding com-
ments are given in Sec. IV.

II. A NEW DERIVATION OF THE MAXIMALLY
SUPERSYMMETRIC BACKGROUNDS IN

OFF-SHELL N = 1 SUPERGRAVITY

Every off-shell formulation for N ¼ 1 supergravity can
be described using the superspace geometry pioneered by
Howe [26] 35 years ago and soon after reviewed and further
developed in [27]. This curved superspace geometry is
based on the structure group SLð2;CÞ × Uð1Þ, and nowa-
days it is often referred to as Uð1Þ superspace. The algebra
of supergravity covariant derivatives is as follows:

fDα; D̄ _αg ¼ −2iDα _α; ð2:1aÞ

2The latter spacetime was shown in [6] to be isometric to the
Nappi-Witten group NW4 [12].

3This action is invariant under transformations (2.6) with the
parameter σ being real and constant.

4Action (1.8) can be rewritten in a manifestly super-Weyl
invariant form, as in [15], by introducing a chiral compensator ϕ,
D̄ _αϕ ¼ 0, and replacing R with the super-Weyl invariant chiral
scalar R ¼ − 1

4
ϕ−2ðD̄2 − 4RÞϕ̄ and the full superspace measure

E with Eϕϕ̄. Such a superconformal reformulation is sometimes
useful, in particular for the component reduction; however it does
not offer new insights into the analysis in this paper.
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fDα;Dβg ¼ −4R̄Mαβ; fD̄ _α; D̄ _βg ¼ 4RM̄ _α _β; ð2:1bÞ

½Dα;Dβ _β� ¼ iεαβðR̄D̄_β þGγ
_βDγ − ðDγGδ

_βÞMγδ

þ 2W̄ _β
_γ _δM̄ _γ _δÞ þ iðD̄_βR̄ÞMαβ

−
i
3
εαβX̄ _γM̄ _γ _β þ

i
2
εαβX̄ _βJ: ð2:1cÞ

Here the Uð1Þ generator J is normalized by

½J;Dα� ¼ −Dα; ½J; D̄ _α� ¼ D̄ _α: ð2:2Þ

The torsion superfields R, Gα _α, Wαβγ , and Xα obey the
Bianchi identities:

D̄ _αR ¼ 0; D̄ _αXα ¼ 0; D̄ _αWαβγ ¼ 0; ð2:3aÞ

Xα ¼ DαR − D̄ _αGα _α; DαXα ¼ D̄ _αX̄ _α: ð2:3bÞ

The reason why the superspace geometry defined by (2.1)
is adequate to describe N ¼ 1 conformal supergravity is
the fact that the algebra (2.1) does not change under a
super-Weyl transformation

D0
α ¼ e

1
2
L

�
Dα þ 2ðDβLÞMβα þ

3

2
ðDαLÞJ

�
ð2:4Þ

accompanied by induced transformations of the torsion
superfields. The parameter L in (2.4) is a real unconstrained
superfield.
Before turning to the derivation of the maximally

supersymmetric backgrounds of supergravity, it is worth
commenting on other superspace approaches to describe
N ¼ 1 conformal supergravity. The Uð1Þ superspace of
[26] is a gauge fixed version of 4D N ¼ 1 conformal
superspace [28], in which the entire superconformal alge-
bra SUð2; 2j1Þ is gauged in superspace [see also [29] for a
review of the relationship between the Uð1Þ and conformal
superspaces]. When studying supersymmetric backgrounds
of supergravity, it suffices to work with Uð1Þ superspace,
and therefore we do not use conformal superspace in
this paper.
The superspace geometry developed by Grimm et al.

[30] is obtained from (2.1) by setting

Xα ¼ 0: ð2:5Þ

Under this condition, the Uð1Þ connection can be gauged
away and the structure group reduces to SLð2;CÞ.
Requirement (2.5) can always be achieved by applying a
specially chosen super-Weyl transformation (2.4). If such a
super-Weyl gauge is chosen, one stays with a residual
super-Weyl plus Uð1Þ gauge freedom given by [31]

D0
α ¼ eσ̄−σ=2ðDα þ ðDβσÞMαβÞ; D̄ _ασ ¼ 0: ð2:6Þ

As is well known (see, e.g., [27] for a review), the
different off-shell formulations for N ¼ 1 supergravity are
obtained by coupling conformal supergravity [described,
e.g., using Uð1Þ superspace] to a compensator. The latter is
a chiral scalar in the case of the old minimal formulation
[14,32], a real linear superfield for the new minimal
formulation [33], and a complex linear superfield for the
nonminimal formulation [34,35]. Our analysis of maxi-
mally supersymmetric backgrounds of supergravity does
not require fixing any specific compensator.
We now recall an important theorem concerning the

maximally supersymmetric backgrounds [4,36]. For any
(off-shell) supergravity theory in D dimensions, all max-
imally supersymmetric spacetimes correspond to those
supergravity backgrounds which are characterized by the
following properties: (i) all Grassmann-odd components of
the superspace torsion and curvature tensors vanish, and
(ii) all Grassmann-even components of the torsion and
curvature tensors are annihilated by the spinor derivatives.
In the case of 4D N ¼ 1 supergravity, this theorem means
the following:

Xα ¼ 0; ð2:7aÞ

Wαβγ ¼ 0; ð2:7bÞ

DαR ¼ 0 → DAR ¼ 0; ð2:7cÞ

DαGβ _β ¼ D̄ _αGβ _β ¼ 0 → DAGβ _β ¼ 0: ð2:7dÞ

Equation (2.7d) has an integrability condition that follows
from (2.1b). It is

0 ¼ fD̄ _α; D̄_βgGγ _γ ¼ 4RM̄ _α _βGγ _γ ¼ 2Rðε_γ _αGγ _β þ ε_γ _βGγ _αÞ;
ð2:8Þ

and therefore

RGα _α ¼ 0: ð2:9Þ

Equation (2.7a) tells us that all maximally supersymmetric
backgrounds are realized in terms of the Grimm-Wess-
Zumino superspace geometry [30].
Relation (2.9) (actually its θ-independent part) was

given in [1] without derivation. Let us also show that
(2.9) is a simple consequence of the general analysis
given in Sec. 6.4 of [3]. Consider a background superspace

ðM4j4;DÞ. A supervector field ξ ¼ ξBEB ¼ ξbEb þ
ξβEβ þ ξ̄_βĒ

_β on ðM4j4;DÞ is called Killing if
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δKDA ¼ ½K;DA� ¼ 0;

K ≔ ξBðzÞDB þ 1

2
KbcðzÞMbc þ iτðzÞJ; ð2:10Þ

for some Lorentz (Kbc) and R-symmetry (τ) parameters. All
parameters ξβ, Kbc, τ are determined in terms of ξb.
Let ξ ¼ ξAEA be a conformal Killing supervector field of

ðM4j4;DÞ. As demonstrated in Sec. 6.4 of [3], its explicit
form is

ξA ¼ ðξa; ξα; ξ̄ _αÞ ¼
�
ξa;−

i
8
D̄_βξ

_βα;−
i
8
Dβξβ _α

�
; ð2:11Þ

where the vector component ξα _α is real and obeys the
equation [3]

DðαξβÞ _β ¼ 0; ð2:12Þ

which implies

ðD2 þ 2R̄Þξα _α ¼ 0: ð2:13Þ

In accordance with (2.7d), Gα _α is covariantly constant, and
hence it is a solution of (2.12). Then (2.13) reduces to (2.9).

III. MAXIMALLY SUPERSYMMETRIC
SOLUTIONS OF PURE R2 SUPERGRAVITY

We now prove that the curved superspaces described
by (1.4) are solutions5 of the scale invariant supergravity
model (1.8). For this we will use the background-field
method for N ¼ 1 supergravity as developed by Grisaru
and Siegel [38] and further elaborated in [3].
We denote infinitesimal increments of the supergravity

prepotentials by Ha and σ, where Ha is real unconstrained
and σ is covariantly chiral, D̄ _ασ ¼ 0. The variations of
various supergravity functionals under such an infinitesi-
mal change in the prepotentials was computed in Sec. 5.6 of
[3] (see also [21]). The results we need here are

δ

Z
d4xd2θd2θ̄ERR̄

¼ −
1

4

Z
d4xd2θd2θ̄EfσD2Rþ σ̄D̄2R̄g

þ 1

2

Z
d4xd2θd2θ̄EHα _α

�
2RR̄Gα _α

−
1

6
ðD2Rþ D̄2R̄Þ þ i

6
Dα _αðD̄2R̄ −D2RÞ

þ 2

3
RD
↔

α _αR̄þ 1

3
ðDαRÞD̄ _αR̄

�
; ð3:1aÞ

δ

Z
d4xd2θd2θ̄ER2

¼ 3

Z
d4xd2θd2θ̄Eðσ − σ̄ÞR2

þ
Z

d4xd2θd2θ̄EHα _αfGα _α − iDα _αgR2: ð3:1bÞ

It is seen that both variations (3.1a) and (3.1b) vanish for
the backgrounds (1.4). If the parameter β in (1.8) is
nonzero, β ≠ 0, the anti–de Sitter superspace (1.2) is not
a solution of the equations of motion for (1.8).
In accordancewith (2.7b), all maximally supersymmetric

backgrounds of N ¼ 1 supergravity are conformally flat.6

Therefore all of them are solutions of the equations of
motion forN ¼ 1 conformal supergravity described by the
chiral action [40,41]

ICSG ¼
Z

d4xd2θEWαβγWαβγ þ c:c:

The scale invariant supergravity action (1.8) corresponds
to the old minimal formulation for N ¼ 1 supergravity.
Within the new minimal formulation for N ¼ 1 super-
gravity, the construction of pure R2 supergravity has new
features [15,42]. In particular, the gauge field, which is
associated with the Uð1Þ factor of the structure group
SLð2;CÞ × Uð1Þ, propagates. The specific feature of this
supergravity formulation is that its conformal compensatorG
is a real linear superfield, ðD̄2 − 4RÞG ¼ ðD2 − 4R̄ÞG ¼ 0,
with the super-Weyl transformation law G0 ¼ e2LG under
(2.4). In Uð1Þ superspace, any dynamical system is
described by a super-Weyl invariant action involving, in
general, the compensator. Pure R2 supergravity is described
by the super-Weyl invariant action

S ¼ γ

Z
d4xd2θEXαXα þ c:c:;

Xα ¼ Xα þ
3

4
ðD̄2 − 4RÞDα lnG; ð3:2Þ

for some coupling constant γ. Here Xα transforms as
a primary superfield7 under the super-Weyl transformations,
X0

α ¼ e
3
2
LXα. The super-Weyl invariance allows us to choose

one of the two gauge conditions: either (i) Xα ¼ 0, or
(ii) G ¼ 1. Choosing the latter (which implies R ¼ R̄ ¼ 0)
reduces the chiral integrand in (3.2) to XαXα. It is then clear
that setting Xα ¼ 0 solves the supergravity equations. As
was explained in Sec. II, the Uð1Þ connection is flat,
Eq. (2.7a), for all maximally supersymmetric backgrounds

5For other solutions of R2 supergravity, see, e.g., [37].

6This is not true for some maximally supersymmetric back-
grounds of N ¼ 2 supergravity [39].

7This follows from the super-Weyl transformation of Xα given,
e.g., in [27].
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of N ¼ 1 supergravity. We conclude that the backgrounds
(1.4) are maximally supersymmetric solutions of pure R2

supergravity within the new minimal formulation.

IV. CONCLUDING COMMENTS

It is instructive to compare the maximally supersym-
metric backgrounds (1.2) and (1.4) with their counterparts
for three-dimensional N ¼ 2 supergravity.
In three dimensions, the maximally supersymmetric

backgrounds of off-shell N ¼ 2 supergravity were classi-
fied in [43], and also reviewed and elaborated in [4].
The three-dimensional analogue of (1.2) is the (1,1) AdS
superspace [44]. The three-dimensional analogues of the
backgrounds (1.4) are given by the following algebra of
covariant derivatives DA ¼ ðDa;Dα; D̄αÞ:

fDα;Dβg ¼ 0; fD̄α; D̄βg ¼ 0; ð4:1aÞ

fDα; D̄βg ¼ −2iðγcÞαβðDc − 2SMc − iCcJÞ
þ 4εαβðCcMc − iSJÞ; ð4:1bÞ

½Da;Dβ� ¼ iεabcðγbÞβγCcDγ þ ðγaÞβγSDγ; ð4:1cÞ

½Da; D̄β� ¼ −iεabcðγbÞβγCcD̄γ þ ðγaÞβγSD̄γ; ð4:1dÞ

½Da;Db� ¼ 4εabcðCcCd þ δcdS2ÞMd: ð4:1eÞ

Here Mc denotes the Lorentz generator (defined in [43])
and the Uð1Þ generator J is defined similarly to (2.2). The
scalar S and vector Gb components of the torsion tensor are
constrained by

DAS ¼ 0; DαCb ¼ 0 ⇒ DaCb ¼ 2εabcCcS; ð4:2Þ

and hence CbCb ¼ const. We point out that the solution
with Ca ¼ 0 corresponds to the (2,0) AdS superspace [44].
However, here we are interested in the case Cb ≠ 0. When
both S and Cb are nonvanishing, the above curved super-
space is a maximally supersymmetric solution of topologi-
cally massive type II supergravity [4]. In the case S ¼ 0
and Cb ≠ 0, the above superspace is a solution of three-
dimensional R2 supergravity [45].
One of the most interesting properties of the maximally

supersymmetric backgrounds (1.4) is that they allow for the
Maxwell-Goldstone multiplet models which describe par-
tial N ¼ 2 → N ¼ 1 supersymmetry breaking [5] and
reduce to the Bagger-Galperin model [46] in the flat limit,
Ga → 0.
The N ¼ 2 analogue of the scale invariant supergravity

(1.8) was given in [47]. It is of interest to see which rigid
N ¼ 2 maximally supersymmetric backgrounds [39] are
solutions of this theory.
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