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We argue that extra dimensions with a properly chosen compactification scheme could be a natural
source for emergent gauge symmetries. Actually, some proposed vector field potential terms or polynomial
vector field constraints introduced in five-dimensional Abelian and non-Abelian gauge theory are shown to
smoothly lead to spontaneous violation of an underlying 5D spacetime symmetry and generate pseudo-
Goldstone vector modes as conventional 4D gauge boson candidates. As a special signature, there appear,
apart from conventional gauge couplings, some properly suppressed direct multiphoton (multiboson, in
general) interactions in emergent QED and Yang-Mills theories whose observation could shed light on their
high-dimensional nature. Moreover, in emergent Yang-Mills theories an internal symmetry G also occurs
spontaneously broken to its diagonal subgroups once 5D Lorentz violation happens. This breaking
originates from the extra vector field components playing a role of some adjoint scalar field multiplet in the
4D spacetime. So, one naturally has the Higgs effect without a specially introduced scalar field multiplet.
Remarkably, when being applied to grand unified theories (GUTs) this results in a fact that the emergent
GUTs generically appear broken down to the Standard Model just at the 5D Lorentz violation scale M.
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I. INTRODUCTION AND OVERVIEW

Significant progress in understanding the spontaneously
broken internal symmetries with accompanying massless
scalar Goldstone modes [1] allows one to think that
spacetime symmetries, and first of all Lorentz invariance,
could also be spontaneously broken so as to generate
massless vector and tensor Goldstone modes associated
with photons, gravitons and other gauge fields. This has
attracted considerable interest over the past fifty years in
many different contexts which could be basically classified
as the composite models [2–5], constraint-based models [6]
and potential-based models [7] (for some later develop-
ments see [8–16]). We give below some short formulation
of them to make clearer the aims of the present paper.

A. Composite models

Composite models are based on the four-Fermi (or
multi-Fermi in general) interaction where the photon and
other gauge fields may appear as a fermion-antifermion
pair composite state in complete analogy with massless
composite scalar fields (identified with pions) in the
original Nambu-Jona-Lazinio model [1]. This old idea is
better expressed nowadays in terms of effective field theory
where the standard QED Lagrangian is readily obtained
through the corresponding loop radiative effects due to N
fermion species involved [9,10]. One could think, however,
that composite models contain too many prerequisites and
complications related to the large number of basic fermion
species involved, their proper arrangement, nonrenormaliz-
ability of the fundamental multi-Fermi Lagrangian, insta-
bility under radiative corrections, and so on indefinitely.

This approach contains in fact a cumbersome invisible
sector which induces the effective emergent theory.
A natural question then arises whether one could directly
work in the effective vector field theory instead thus having
spontaneous Lorentz invariance violation (SLIV) from the
outset.

B. Potential-based models

Actually, one could start with a conventional QED-type
Lagrangian extended by an arbitrary vector field potential
energy terms which explicitly break gauge invariance. For a
minimal potential containing bilinear and quartic vector
field terms one comes to the Lagrangian

LV ¼ LQED −
λ

4
ðAμAμ − n2M2Þ2; ð1Þ

where the mass parameter n2M2 stands for the proposed
SLIV scale, while nμ is a properly oriented unit Lorentz
vector, n2 ¼ nμnμ ¼ �1. This partially gauge invariant
model being sometimes referred to as the “bumblebee”
model [7] (see also [11] and references therein) means in
fact that the vector field Aμ develops a constant background
value

hAμi ¼ nμM ð2Þ
and Lorentz symmetry SOð1; 3Þ breaks down at the
proposed SLIV scale M to SOð3Þ or SOð1; 2Þ depending
on whether nμ is timelike (n2 ¼ þ1) or spacelike
(n2 ¼ −1). Expanding the vector field around this vacuum
configuration,

PHYSICAL REVIEW D 94, 065013 (2016)

2470-0010=2016=94(6)=065013(14) 065013-1 © 2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevD.94.065013
http://dx.doi.org/10.1103/PhysRevD.94.065013
http://dx.doi.org/10.1103/PhysRevD.94.065013
http://dx.doi.org/10.1103/PhysRevD.94.065013


AμðxÞ ¼ aμðxÞ þ nμðM þHÞ; nμaμ ¼ 0; ð3Þ

one finds that the aμ field components, which are orthogo-
nal to the Lorentz violating direction nμ, describe a
massless vector Nambu-Goldstone boson, while the H
field corresponds to a massive Higgs mode away from the
potential minimum. Due to the presence of this mode the
model may in principle lead to some physical Lorentz
violation in terms of the properly deformed dispersion
relations for photon and matter fields involved that appear
from the corresponding radiative corrections to their kinetic
terms [9]. However, as was argued in [17], a bumblebee-
like model appears generally unstable,1 its Hamiltonian is
not bounded from below beyond the constrained phase
space determined by the nonlinear condition

AμAμ ¼ n2M2: ð4Þ
With this condition imposed, the massive Higgs mode
never appears, the Hamiltonian is positive, and the model is
physically equivalent to the nonlinear constraint-based
QED, which now we briefly consider.

C. Constraint-based models

This class of models starts directly with the nonlinearly
realized Lorentz symmetry for underlying vector field (or
vector field multiplet) through the “length-fixing” con-
straint (4) implemented into conventional gauge invariant
theories, both Abelian and non-Abelian ones. This con-
straint in itself was first studied in the QED framework by
Nambu quite a long time ago [6], and in a general context
(including loop corrections [19], massive QED framework
[20], non-Abelian [21–23] and supersymmetric [24] exten-
sions) in the past decade. The constraint-based models
show that, in contrast to the spontaneous violation of
internal symmetries, spontaneous Lorentz violation pro-
ducing vector Goldstone bosons seems not to necessarily
imply physical breakdown of Lorentz invariance. Rather,
when appearing in a gauge theory framework, this may
eventually result in a noncovariant gauge choice in an
otherwise gauge invariant and Lorentz invariant theory.
Rather than impose by postulate, the constraint (4) may

be implemented into the standard QED Lagrangian LQED
through the invariant Lagrange multiplier term

L ¼ LQED −
λ

2
ðAμAμ − n2M2Þ; n2 ¼ nμnμ ¼ �1; ð5Þ

provided that initial values for all fields (and their
momenta) involved are chosen so as to restrict the phase
space to values with a vanishing multiplier function λðxÞ,
λ ¼ 0. Actually, due to an automatic conservation of the

matter current in QED an initial value λ ¼ 0 will then
remain for all time so that the Lagrange multiplier field λ
never enters in the physical equations of motions for what
follows.2 It is worth noting that, though the Lagrange
multiplier term formally breaks gauge invariance in the
Lagrangian (5), this breaking is in fact reduced to the
nonlinear gauge choice (4). On the other hand, since gauge
invariance is no longer generically assumed, it seems that
the vector field constraint (4) might be implemented into
the general vector field theory (1) rather than the gauge
invariant QED in (5). The point is, however, that both
theories are equivalent once the constraint (4) holds.
Indeed, due to a simple structure of vector field polynomial
in (1), they lead to practically the same equations of motion
in both cases.
The constraint (4) is in fact very similar to the constraint

appearing in the nonlinear σ-model for pions [25]. It means,
in essence, that the vector field Aμ develops some constant
background value, hAμðxÞi ¼ nμM, and has a special
“Higgsless” expansion around vacuum configuration

Aμ ¼ aμ þ nμ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − n2a2

p
; nμaμ ¼ 0ða2 ≡ aμaμÞ ð6Þ

so that Lorentz symmetry formally breaks down, depending
on a particular, timelike or spacelike, nature of SLIV
mentioned above. The point is, however, that in sharp
contrast to the nonlinear σ-model for pions, the nonlinear
QED theory ensures that all the physical Lorentz violating
effects strictly cancel out among themselves (as was
explicitly shown both in the tree [6] and one-loop [19]
approximations), due to the starting gauge invariance
involved. The noncovariant gauge choice for vector
Goldstone bosons shown in (6) appears as the only
response of the theory to SLIV.
So to conclude, although it may sound somewhat

counterintuitive, one may separate these two aspects:
generation of vector Goldstone bosons and physical
Lorentz violation. When such a spontaneous violation
occurs in the gauge invariant vector field system, this field
system generates massless Goldstone modes paying for that
just gauge degrees of freedom and leaving the physical
ones untouched. As to an observational evidence in favor of
emergent theories the only way for SLIV to cause physical
Lorentz violation would appear only if gauge invariance
in these theories were really broken rather than merely
constrained by some gauge condition. Such a violation of
gauge invariance could provide the potential-based model

1Apart from the instability, the potential-based models were
shown [18] to be obstructed from having a consistent ultraviolet
completion, whereas the most of viable effective theories possess
such a completion.

2Interestingly, this solution with the Lagrange multiplier field
λðxÞ being vanished can technically be realized by introducing in
the Lagrangian (5) an additional Lagrange multiplier term of the
type ξλ2, where ξðxÞ is a new multiplier field. One can now easily
confirm that a variation of the modified Lagrangian Lþ ξλ2 with
respect to the ξ field leads to the condition λ ¼ 0, whereas a
variation with respect to the basic multiplier field λ preserves the
vector field constraint (4).
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considered above or some extension of the constraint-based
model with high-dimension operators induced by gravity
at very small distances [26]. However, in any case, if we
are primarily interested in the vector Goldstone generation
rather than physical Lorentz violation, it seems more
relevant to work in the framework of the constraint-based
models rather than in the largely contradictory potential-
based ones. We will follow this strategy for the rest of
the paper.

D. Models with extra spacetime dimensions

Now, after this brief sketch of valuable SLIV models
one can see that all of them only suggest a noncovariant
description of vector Goldstone bosons where one
vector field spacetime component Aμ ðμ ¼ 0; 1; 2; 3Þ is
“Higgs-ified” (3) or constrained (6). It is rather clear
that the only way to produce the vector Goldstone
bosons in the fully Lorentz covariant way, both in the
potential-based and the constraint-based models, would be
to enlarge the existing Minkowski spacetime to higher
dimensions. Particularly, the spontaneous breakdown of the
“five-dimensional Lorentz symmetry” to the ordinary one,
SOð1; 4Þ → SOð1; 3Þ, could generate a conventional four-
dimensional vector Goldstone vector field Aμ ðμ¼ 0;1;2;3Þ
that was first argued quite a long ago [8,27,28], though has
not been yet worked out in significant detail. Remarkably,
the requirement for a fully covariant description of vector
Goldstone fields may have, as we will see later, far going
consequences for emergent gauge theories. Actually, in
contrast to the above-mentioned 4Dmodels with the hidden
SLIV, now due to the proposed compactification scheme to
physical four dimensions, the starting 5D gauge invariance
in these theories appears broken. This does not allow
to gauge away from them some possible observational
evidence in favor of their emergent nature.
One could try to implement the high-dimensional SLIV

program into the brane models [29] with our physical
world assumed to be located on a three-dimensional brane
embedded in the high-dimensional bulk. However, a
serious problem for such theories seems to be how to
achieve the localization of emergent gauge fields on the
flat brane associated with our world [30]. In this con-
nection, a more attractive possibility seems to be related to
a class of extra-dimensional models known as universal
extra dimensions (UED) [31–33]. In them the Standard
Model fields (or, at least, some essential part of them) are
free to propagate through all of the dimensions of space,
rather than being confined to our physical spacetime as
they typically are in the brane models. Naturally, the UED
models look more similar to the original Kaluza-Klein
(KK) proposal than somewhat more sophisticated brane
model scenarios [29,34]. Phenomenologically, the UED
models with the KK parity involved considerably relaxes
the constraints from electroweak precision data, allowing
for much lower scales of compactification MKK ¼ 1=R

(even up to a few TeV order scale). Another important
aspect related to them appears in its ability to provide a
natural candidate for the dark matter in the universe. In
particular, the lightest KK state can be stable and
produced in the early universe with an abundance similar
to that of the measured dark matter density. One more
attractive feature seems to be that the UEDs, as was
mentioned above, could also be a natural source for vector
Goldstone bosons associated with photons and other
gauge fields, particularly if one proceeds in the five-
dimensional UED framework.

E. The present paper

We argue that extra dimensions with a properly chosen
compactification scheme could be a natural source for
emergent gauge symmetries. We start with a simple QED
type theory with the SLIV in five-dimensional (5D)
spacetime. This 5D SLIV could appear due to some
vector field constraint being a high-dimensional analog
of the constraint considered above (4), as is argued in
Sec. II. This lead to the spontaneous violation of the 5D
Lorentz symmetry at some high scale M that proposedly
goes along with a compactification of the 5D spacetime
down to physical four dimensions at the comparable scale
MKK. This is in fact the symmetrical orbifold compacti-
fication S1=Z2 under which all spacetime components of
the 5D vector field Aμ̄ (μ̄ ¼ 0; 1; 2; 3; 5) are taken to be
even. The important point is that such a compactification,
which breaks the starting 5D gauge invariance to a
conventional 4D gauge invariance for the vector field
ground modes A0

μ ðμ ¼ 0; 1; 2; 3Þ may significantly con-
tribute into the physical processes involved. As a special
signature, there appear, apart from conventional gauge
couplings, some properly suppressed direct multiphoton
(multiboson, in general) interactions in emergent QED
and Yang-Mills theories. This means that they actually
possess only a partial gauge invariance whose observation
could shed light on their high-dimensional nature. In
Sec. III we turn to the Yang-Mills theories where not only
spacetime symmetry but also internal symmetry appears
spontaneously broken once the 5D SLIV happens.
Remarkably, this breaking looks like the breaking that
is usually induced by an appropriate adjoint scalar field
multiplet incorporated into the vector field theory. Now
this breaking originates from extra vector field compo-
nents. Therefore, one may have a somewhat generic Higgs
effect in the 5D SLIV theory which breaks the starting
internal symmetry to its diagonal subgroups that we
discuss in detail in Sec. IV. The most successful imple-
mentation of this phenomena may appear in grand unified
theories considered ab initio in the five-dimensional
spacetime. As a result, these theories have to be naturally
broken down to the Standard Model at the 5D Lorentz
violation scale M. Finally in Sec. V we conclude.
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II. EMERGENT QED STEMMING
FROM 5D SPACETIME

For the reader’s convenience, we will separate further
discussion into the particular steps that are needed for a
final formulation of the emergent QED theory in four
dimensions.

A. Five-dimensional QED with vector field constraints

We start considering an Abelian Uð1Þ vector field theory
in the 5D Minkowski spacetime with an action

S ¼
Z

L5Dd4xdy; ð7Þ

where xμ are conventional 4D coordinates and y describes
an extra dimension (which we refer to as the fifth
coordinate). The Lagrangian L5D is a conventional QED
Lagrangian which according to our philosophy also
includes some covariant constraint put on five-dimensional
vector field Aμ̄. This may be implemented, as in the above
4D spacetime case (5), through an appropriate invariant
Lagrange multiplier term so that the Lagrangian L5D
without matter looks as

L5D ¼ −
1

4
Fμ̄ ν̄Fμ̄ ν̄ −

λ

2
ðAμ̄Aμ̄ − n2M2

5Þ; n2 ¼ nμ̄nμ̄ ¼ �1;

ð8Þ

where μ̄; ν̄ are 5D indices, while μ, ν are 4D indices
(μ̄; ν̄ ¼ μ; ν; 5 ¼ 0; 1; 2; 3; 5). The λðx; yÞ is the Lagrange
multiplier function, while the mass parameter M5 stands for
the mass scale where the 5D Lorentz invariance is proposed
to appear spontaneously broken along the vacuum direction
given now by a properly oriented 5D unit vector nμ̄ which
describes both of the 5D Lorentz violation cases (timelike
n2 ¼ 1 or spacelike n2 ¼ −1) just by analogy with the
known 4D constraints (4) discussed above. To see more
detail one has to come to conventional four dimensions.
Some lessons which can be retrieved from this tour may
appear rather interesting for the 5D SLIV.
Assuming that the extra dimension is compactified

as a circle of a radius of R, so that y≡ Rθ, where θ is
an angular coordinate −π ≤ θ ≤ π, we put the periodicity
condition on the starting 5D vector gauge fields taken,
Aμ̄ðx; θÞ ¼ Aμ̄ðx; θ þ 2πÞ. This allows for a Fourier expan-
sion as

Aμ̄ðx; θÞ ¼
1ffiffiffiffiffiffiffiffiffi
2πR

p A0
μ̄ðxÞ

þ
X∞
s¼1

1ffiffiffiffiffiffi
πR

p ½As
μ̄ðxÞ cosðsθÞ þ Âs

μ̄ðxÞ sinðsθÞ�;

ð9Þ

where the first term in square brackets describes the modes
being even under reflection of the fifth coordinate
(θ → −θ), while the second one describes the modes which
are odd under that reflection. Upon putting Aμ̄ðx; θÞ into the
action (7) and integration over the extra dimension one gets
for kinetic terms of the 4D vector field components

L4D;kin ¼
X
s¼0

�
−
1

4
Fs
μνFs;μν þ 1

2

�
∂μAs

5 −
s
R
Âs
μ

�
2
�

þ ðA ↔ ÂÞ; ð10Þ
where taking the fifth-coordinate derivative we have used,
as prescribed above, ∂=∂y ¼ ð1=RÞ∂=∂θ. One can see that
the terms within round brackets mix even and odd modes.
These combinations due to the starting gauge invariance of
the 5D theory

Aμ̄ → Aμ̄ þ ∂ μ̄αðx; θÞ ð11Þ
provide the mass term arrangement for KK towers. Indeed,
with a general parametrization (9) taken for gauge param-
eter α one has from (11) for even KK modes

As
μ → As

μ þ ∂μα
sðxÞ; As

5 → As
5 −

s
R
α̂sðxÞ ð12Þ

and similarly for odd modes. Now, using this gauge
freedom to diagonalize the mixed terms in L5D;kin by
proper fixing the gauges

αs ¼ −ðR=sÞÂs
5; α̂s ¼ −ðR=sÞAs

5 ð13Þ

one finally gets

L4D;kin ¼
X
s¼0

�
−
1

4
Fs
μνFs;μν þ 1

2

�
s
R

�
2

As
μAs;μ þ 1

2
ð∂μA0

5Þ2
�

þ ðA ↔ ÂÞ: ð14Þ

Hence, the only massless vector field is given by the zero
mode A0

μ, while all KK modes acquire a mass by absorbing
the scalars As

5. This resembles the Higgs mechanism with
As
5 playing the role of the Goldstone bosons associated to

the spontaneous 5D spacetime isometry breaking [35].
Remarkably, upon the gauge fixing arrangement (13) made
for nonzero KK modes there still remains the Uð1Þ gauge
symmetry in the effective 4D theory with a massless gauge
field A0

μ. Apart from that, the massless scalar A0
5 is also

survived. However, this extra degree of freedom appearing
at zero level can be projected out from the theory if the
starting vector field component A5ðx; θÞ is chosen to be odd
under the reflection θ → −θ mentioned above.

B. Looking for a natural compactification

An adequate compactification certainly is a point of our
special interest in connection to the 5D SLIV. As is well
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known, the necessity of producing chiral fermions in four
dimensions requires, on general grounds, to consider the
orbifold compactification S1=Z2 rather than a simple
compactification on a circle. This orbifold compactification
consists in fact of projecting a circular extra dimension onto
a line with two fixed points, θ ¼ 0 and θ ¼ π (or y ¼ 0 and
y ¼ πR for the y coordinate). It removes the unwanted
fermionic degrees of freedom, allowing for an existence of
chiral fermions [31–33]. Actually, one has to start with two
5D Dirac fermion fields to get independent left-handed and
right-handed chiral modes in four dimensions: one field Ψ1

which has the quantum numbers of the left-handed spinor,
and one field Ψ2 with the quantum numbers of the right-
handed spinor.3 To exclude the additional degrees of
freedom one formulates the theory on an orbifold so that
Ψ1 is required to be odd under the θ → −θ orbifold
symmetry, while Ψ2 is even,

Ψ1ðx;θÞ¼−γ5Ψ1ðx;−θÞ; Ψ2ðx;θÞ¼ γ5Ψ2ðx;−θÞ: ð15Þ

In these fermion fields initially having a general form (9)
only remain the parts

Ψ1;2ðx; θÞ

¼ 1ffiffiffiffiffiffi
πR

p Ψ0
L1;R2ðxÞ

þ
X
s¼1

ffiffiffiffiffiffi
2

πR

r
½Ψs

L1;R2ðxÞ cosðsθÞ þ Ψ̂s
R1;L2ðxÞ sinðsθÞ�;

ð16Þ
respectively.4 As a result, their higher KK modes are four-
dimensional vectorlike fermions, while the zero modes are
chiral ones being properly determined by the chirality
projectors ð1 ∓ γ5Þ=2. As usual, their gauge couplings are
in fact related separately to each of these fermions, whereas
in the Yukawa coupling they “work” together.5

At this point one must specify how all other fields
transform under the proposed orbifold projection.
Specifically for vector fields, one usually requires the
“asymmetrical” compactification [31–33] according to
which the ordinary four components of the 5D vector field
Aμ̄ðx; θÞ are even under the orbifold transformation,
whereas its fifth component is odd. This allows in the
gauge invariant theory context to completely remove this
component from the theory excluding its zero mode A0

5 by
orbifold projection and gauging away the higher ones As

5,
as was discussed above. Thus, only massless ground modes
A0
μ, as the Standard Model gauge field candidates, and

massive vector KK towers As
μ (s ¼ 1; 2;…) are left in

the theory. However, as one can readily see, such a
procedure differently treating the vector field components
explicitly breaks the starting 5D Lorentz invariance that is
hardly acceptable if one tries to break it spontaneously.
Thus, we propose, in direct contrast to a common practice,
the “symmetrical” compactification in which all the
5D vector field components are even under the orbifold
transformation

Aμ̄ðx;−θÞ ¼ Aμ̄ðx; θÞ; μ̄ ¼ 0; 1; 2; 3; 5: ð17Þ

This, as we see below, may naturally conserve the
5D symmetrical form of all possible nonderivative terms
in the starting Lagrangian (8) including the proposed vector
field constraint terms that induce the SLIV. Interestingly,
such a “partially increased” Lorentz invariance signifi-
cantly reduces an effective gauge symmetry appearing for
vector field components after compactification. Indeed,
for the vector field kinetic terms one has now (when all
the orbifold-asymmetrical vector field components vanish,
Âs
μ̄ ¼ 0)

L4D;kin ¼
X
s¼0

�
−
1

4
Fs
μνFs;μν þ 1

2
ð∂μAs

5Þ2 þ
1

2

�
s
R
As
μ

�
2
�

ð18Þ

and gauge symmetry (12) for KK states, both massive
vectors As

μ (s ¼ 1; 2;…) and massless scalars As
5

(s ¼ 0; 1; 2;…), does not work any longer. Only standard
gauge invariance formassless ground vectormodesA0

μ holds

A0
μ → A0

μ þ ∂μα
0ðxÞ ð19Þ

which looks as if the 5D gauge function α in (11) would
not depend on the fifth coordinate and, therefore, only
its ground component α0 was nonzero. These states are
completely decoupled from each other. Whereas zero
vector field modes being protected by the above gauge
invariance are left massless, the massless scalars become
eventually massive through all the radiative corrections

3Speaking about quantum numbers we have in mind the
Standard Model extension of our present QED framework.

4The normalization of the fermion field here and all other fields
everywhere below is now chosen in accordancewith an assumption
that the range for the angle variable θ be from 0 to π.

5Note that generally after integrating over the fifth coordinate
the sum over KK number s of the vector and matter fields in
kinetic or interaction terms in the corresponding effective
4D Lagrangian must be zero since this is just conservation of
the fifth dimension momentum. This conservation law, being in
essence the translational invariance along the extra dimension,
appears as an internal symmetry in the 4D KK decomposition,
with internal charges, s. Although the introduction of orbifold
compactifications breaks the above-mentioned symmetry related
to conservation of the fifth dimension momentum, a subgroup
of the KK number conservation known as KK parity still remains.
In our 5D case compactified on an S1=Z2 orbifold, the KK parity
is the Z2 symmetry and can be simply written as P ¼ ð−1Þs
where s denotes the sth KK mode. Thus, only modes with odd
KK number are charged.
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involved. Thus, they seem not to produce serious difficulties
for the model, as could happen if the extended gauge
symmetry (12) providing their masslessness remained.
Note also that, though the starting stress-tensor Fμ̄ ν̄ does
not look invariant under the symmetrical orbifold trans-
formation (17) the final Lagrangian L4D;kin appearing upon
the compactification really does.6

C. Spacetime symmetry breaking phase

Let us now turn to the Lagrange multiplier term in
the starting Lagrangian (8) which is proposed to cause
spontaneous 5D Lorentz violation. Taking also the multi-
plier function to be, as all other fields but fermions,
symmetrical under orbifold transformation,

λðx; θÞ ¼ 1ffiffiffiffiffiffi
πR

p
�
λ0ðxÞ þ

ffiffiffi
2

p X
s¼1

λsðxÞ cosðsθÞ
�

ð20Þ

and varying the action with respect to all KK components,
λ0 and λs, one has after integration over the angle θ

A0
μ̄A

0μ̄ þ
X
s¼1

As
μ̄A

sμ̄ ¼ n2M2;

ffiffiffi
2

p
A0
μ̄A

sμ̄ þ
X
s0¼1

As−s0
μ̄ As0μ̄ ¼ 0 ðs ¼ 1; 2;…Þ; ð21Þ

respectively.7 The evident relation was also used between
4D and 5D mass scales, M2 ¼ ðπRÞM2

5. The first
constraint in (21) resembles the 4D constraint discussed
above (4), while the others are new. Actually we have
one constraint for each vector field mode, A0

μ̄ and As
μ̄

(s ¼ 1; 2;…). One can see that, though the symmetrical
orbifold compactification (17) taken above for vector field
breaks the 5D Lorentz invariance in the Lagrangian (18),
it perfectly conserves the 5D invariant form of the
constraints (21). They lead in turn to spontaneous viola-
tion of 5D Lorentz symmetry and production of massless
4D vector bosons as the corresponding Goldstone modes
which, due to the lesser symmetry of the total Lagrangian,
are in essence the pseudo-Goldstone modes (see below).
In contrast, a conventional asymmetrical orbifold com-
pactification for starting 5D vector field Aμ̄ðx; θÞ would
explicitly break the Lagrangian 5D form invariance of

these constraints8 and make such an implementation
impossible.
Applying the same constraints, as they are given in (21),

to a possible VEV (vacuum expectation value) of the 5D
vector field Aμ̄ðx; θÞ expanded in a Fourier cosine series in
(9) one could conclude that this VEV may only develop on
its ground mode rather than the higher KK ones in order
not to be dependent on the extra dimension coordinate.
Thus, the starting 5D Lorentz symmetry will break due to
the VEV developed solely on the zero modes A0

μ̄. As to the
particular spacetime component μ̄ on which this VEV may
develop, we propose that just the spacelike 5D SLIV case
(n2 ¼ −1) is realized in the present model. Particularly, this
symmetry will indeed be spontaneously broken to ordinary
Lorentz invariance

SOð1; 4Þ → SOð1; 3Þ ð22Þ

at a scale M

hAμ̄i ¼ nμ̄M; n2 ¼ −1 ð23Þ

with the vacuum direction given now by the “unit” vector
nμ̄ with the only nonzero component nμ̄ ¼ gμ̄5 just along
the extra dimension. One can write again, as in the 4D case
mentioned above (6), the ground vector field expansion
around vacuum configuration stemming from the upper
constraint in (21)

A0
μ̄ ¼ aμ̄ þ nμ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ a2 þ ðAsÞ2

q
; ð24Þ

where summation over all repeated indices is taken

a2 ≡ aμ̄aμ̄; ðAsÞ2 ≡X
s¼1

As
μ̄A

μ̄s; ð25Þ

and also the orthogonality condition for the emergent
pseudo-Goldstone modes aμ̄,

nμ̄aμ̄ ¼ 0; ð26Þ

is supposed. Meanwhile, the effective Higgs field in the
model is given by

H ¼ nμ̄A0
μ̄ ¼ A0

5 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 þ a2 þ ðAsÞ2

q
: ð27Þ

Note, as mentioned above, that, while the constraints (21)
are formally 5D Lorentz invariant, the vector field kinetic
terms in the 4D Lagrangian (18) and also all interaction
terms involved possess only ordinary 4D Lorentz

6Notably, though the derivative along the extra dimension is
not invariant under orbifold reflection (∂5 → −∂5), it is actually
replaced by ∂5 → −is=R in the Fourier decomposition of the
stress-tensor Fμ̄ ν̄ and then is modulo squared in the kinetic terms
so that the Lagrangian (18) appears perfectly invariant.

7Note that, for convenience and to emphasize the KK mode
number conservation5, we formally included in the sums here and
everywhere below the 4D KK modes AS

μ with possible negative
numbers S as well, though for the symmetrical orbifold com-
pactification taken one has AS

μ ¼ AjSj
μ for every value of S.

8In this case the first terms in the constraints (21) containing
zero modes would have only 4D invariant form, being just ðA0

μÞ2
and

ffiffiffi
2

p
A0
μAs

μ, respectively.
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invariance once the compactification occurs. This means
that all the 4D modes aμ appeared in the above expansion
(24) are in fact pseudo-Goldstone bosons (PGB) related to
the accidental symmetry breaking (22) of the constraints
(21), rather than true Goldstone vector modes. Remarkably,
in contrast to the familiar scalar PGB case [25], these
vector PGBs remain strictly massless being protected by
gauge invariance (19) surviving after our symmetrical
orbifold compactification for massless ground vector
mode A0

μ which coincides with the PGB state aμ in the
expansion (24).

D. Emergent QED: Some immediate consequences

Finally, one can see that the QED theory emerging from
the 5D spacetime has a quite simple form, though it
contains some extra interaction terms. Indeed, separating
ground modes and heavy KK modes in the 4D Lagrangian
(18) and putting the expansion (24) one eventually comes
to the emergent QED theory in four dimensions (matter
terms are omitted)

Lemða;AsÞ ¼−
1

4
fμνfμνþ

1

2
ð∂μHÞ2

þ
X
s¼1

�
−
1

4
Fs
μνFs;μνþ1

2
ð∂μAs

5Þ2þ
1

2

�
s
R
As
μ

�
2
�
;

ð28Þ

where we have introduced the stress tensor for PGB modes,
fμν ¼ ∂μaν − ∂νaμ, and the “kinetic” term for effective
Higgs field H (27). The latter, when properly expanded,
gives all possible multiboson couplings

1

2
ð∂μHÞ2 ¼

1

2

ðaρ∂μaρ þ
P

s¼1A
s
ρ̄∂μAs;ρ̄Þ2

M2 þ a2 þ ðAsÞ2

¼ 1

2M2

�
aρ∂μaρ þ

X
s¼1

As
ρ̄∂μAs;ρ̄

�
2

×

�
1þ

X∞
n¼1

�
−
a2 þ ðAsÞ2

M2

�
n
�

ð29Þ

in addition to conventional QED interactions. Thus, starting
from the order of Oð1=M2Þ there appear some direct
photon-photon scattering couplings and also coupling
photons with heavy KK modes in the emergent QED
which, therefore, possess only a partial gauge invariance.
In contrast to the known 4D Nambu model [6], where the
direct photon-photon scattering amplitudes are always
canceled by accompanying longitudinal photon exchange
terms, in the 5D model they appear alone and consequently
are survived. Therefore, their observation could shed light
on the emergent nature of QED stemming from 5D
spacetime. Interestingly, due to the orbifold symmetry
taken for vector fields and fermions (17), (15) the matter
fields (both fermions and scalars) when being introduced

into the 5D QED do not produce any new “emergent”
couplings for their ground modes. So, only vector fields,
photons and heavy KK modes acquire some extra direct
multiboson interactions (29) when the effective Higgs field
H related to the 5D Lorentz violation is properly expanded
in the basic Lagrangian (28).
Another crucial prediction of the emergent QED is an

existence of the unabsorbed fifth-direction nonzero modes
As
5 (s ¼ 1; 2;…) being massless at the tree level. Due to KK

parity5 they can be only produced by pairs from an ordinary
matter being properly suppressed by the 5D Lorentz
violation scale M [as in the photon-photon scattering
processes given above in (29)] or by the compactification
mass MKK ∼ 1=R (when such a process is caused by the
heavy KK mode exchange). On the other hand, any heavy
KK state will now rapidly decay into the As

5 mode plus
ordinary matter that seems to invalidate the dark matter
scenario related to extra dimension [33]. However, these As

5

modes being no more protected by gauge invariance could
in principle acquire large masses through radiative correc-
tions so that the lightest KK state may appear rather stable
to provide the measured dark matter density.

III. EMERGENT YANG-MILLS THEORY

We now consider Yang-Mills theory in the five-
dimensional Minkowski spacetime with the vector field
Lagrangian

L5D ¼ −
1

4
TrjFμ̄ ν̄j2 þ λ½TrðAμ̄Aμ̄Þ − n2M2

5�;
Fμ̄ ν̄ ¼ ∂ μ̄Aν̄ − ∂ ν̄Aμ̄ þ ig5½Aμ̄;Aν̄� ðμ̄; ν̄ ¼ μ; ν; 5Þ:

ð30Þ

This non-Abelian internal symmetry case is supposed to be
given by a general local group G with generators ti

(½ti; tj� ¼ ifijktk and TrðtitjÞ ¼ δij where fijk are structure
constants and i; j; k ¼ 0; 1;…; N − 1). The corresponding
5D vector fields which transform according to its adjoint
representation are given in the proper matrix form
Aμ̄ ¼ Ai

μ̄t
i, while the possible matter fields (fermions,

for definiteness) could be presented in the fundamental
representation column ψ r (r ¼ 0; 1;…; d − 1) of G.
According to our philosophy, the starting theory, as in
the above Abelian case, also contains some covariant
constraint put on 5D vector field Aμ̄ that causes at the
scale M5 a spontaneous violation of the 5D Lorentz
invariance involved. This is arranged through the
Lagrange multiplier term in the Lagrangian (30) with the
multiplier function λðx; yÞ depending in general on all five
coordinates. The vacuum direction is given now by a
properly oriented unit rectangular matrix ni

μ̄ which
describes in general both of the 5D Lorentz violation cases
(timelike or spacelike)
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nμ̄ ¼ ni
μ̄t

i; n2 ¼ nμ̄nμ̄ ¼ �1: ð31Þ
Decomposing all fields in the Lagrangian (30) in a

Fourier cosine series along the fifth coordinate one has

Aμ̄ðx; θÞ ¼
1ffiffiffiffiffiffi
πR

p
�
A0

μ̄ðxÞ þ
ffiffiffi
2

p X∞
s¼1

As
μ̄ðxÞ cosðsθÞ

�
;

λðx; θÞ ¼ 1ffiffiffiffiffiffi
πR

p
�
λ0ðxÞ þ

ffiffiffi
2

p X∞
s¼1

λsðxÞ cosðsθÞ
�
; ð32Þ

where it was again proposed that they all five vector field
components Aμ̄, as well as the multiplier function λ, are
even under orbifold transformation

Aμ̄ðx;−θÞ ¼ Aμ̄ðx; θÞ; λðx;−θÞ ¼ λðx; θÞ: ð33Þ
Then integrating the action over the angle θ and varying the
resulting 4D Lagrangian L4D with respect to the zero and
higher KK modes, λ0 and λs of the multiplier function
λðx; θÞ one obtains all possible constraints put on the
properly normalized vector field 4D modes7

TrðA0
μ̄A

0μ̄Þ þ
X
s¼1

TrðAs
μ̄A

sμ̄Þ ¼ n2M2;

ffiffiffi
2

p
TrðA0

μ̄A
sμ̄Þ þ

X
s0¼1

TrðAs−s0
μ̄ As0μ̄Þ ¼ 0 ðs ¼ 1; 2;…Þ;

ð34Þ
where the evident relation was also used between 4D and
5D mass scales, M2 ¼ ðπRÞM2

5. Eventually, we have one
constraint for each vector field mode, A0

μ̄ and As
μ̄

(s ¼ 1; 2;…), while the final 4D Lagrangian (with the
Lagrange multiplier term omitted) may be written as

L4D ¼ −
1

4

X
s¼0

TrðjF̄s
μυj2 − 2jF̄s

μ5j2Þ

þ
X
s¼1

O½ðA0Þ2ðAsÞ2; ðA0AsÞðAsÞ2; ðAsÞ2ðAsÞ2�;

ð35Þ
where we truncated the vector field covariant derivatives
ignoring in the stress tensors F̄s

μυ and F̄s
μ5 the commutator

terms for nonzero KK modes (appearing in the Lagrangian
in the indicated orders) that are unessential for the further
analysis. One can see that, though the symmetrical orbifold
compactification (33) taken above for vector field multiplet
Aμ̄ breaks the 5D Lorentz invariance in the Lagrangian
(35), it perfectly conserves the 5D invariant form of the
constraints (34). They lead in turn to spontaneous violation
of 5D Lorentz symmetry and production of massless 4D
vector bosons as the corresponding pseudo-Goldstone
modes related to the total symmetry breaking.
Let us consider this 5D SLIV phenomenon in more

detail. Applying the same constraints (34) to possible VEV

of the 5D vector field multiplet Aμ̄ðx; θÞ expanded in a
Fourier series in (32) one could conclude that, as in the
above Abelian case, this VEV may only develop on its
ground mode rather than the higher KK ones in order not to
be dependent on the extra dimension coordinate. Thus, the
starting 5D Lorentz symmetry breaks due to the VEV
developed solely on the zero modesA0

μ̄. As to the particular
spacetime component μ̄ on which this VEV may develop,
we propose in what follows the spacelike 5D SLIV
(n2 ¼ −1) in the theory, thus taking the case n2 ¼ −1 in
(31). However, there is one special point in the non-Abelian
theory framework (with an internal symmetry group G
introduced) that has been studied before in a conventional
4D spacetime [21–23]. Namely, although we only propose
the SOð1; 4Þ ×G invariance of the Lagrangian (35), the
vector field constraint (34) (or, equally, some possible
polynomial potential terms which could be included into
the starting Lagrangian L5D) possesses in fact much higher
accidental global symmetry SOðN; 4NÞ determined by the
dimensionality N of the G group adjoint representation to
which the vector field multipletAμ̄ belongs. This symmetry
is indeed spontaneously broken

SOðN; 4NÞ → SOðN; 4N − 1Þ ð36Þ

at a scale M

hAi
μ̄i ¼ ni

μ̄M ð37Þ

with the vacuum direction given by the matrix ni
μ describ-

ing now the 5D spacelike SLIV case, n2 ¼ −1. Without
loss of generality, this matrix can be written in the
factorized “two-vector” form ni

μ̄ ¼ nμ̄Ii where nμ̄ is the
unit Lorentz vector which is oriented in 5D spacetime so as
to be parallel to the vacuum matrix ni

μ̄, while I
i is the unit

vector in the internal space (IiIi ¼ 1). This matrix ni
μ has

in fact only one nonzero element subject to the appropriate
SOðN; 4NÞ rotation. This is, specifically,

ni
μ̄ ¼ nμ̄Ii ¼ gμ̄5δii0 ; ð38Þ

provided that the vacuum expectation value (37) is devel-
oped along the i0 direction in the internal space and along
the μ̄ ¼ 5 direction, respectively, in the 5D Minkowski
spacetime.
One can readily see that, in response to this breaking (36)

the 5N − 1 massless modes according to a number of
broken generators are therefore produced. Actually, due
to the symmetry reduction in the post-compactification
Lagrangian (35) all these Goldstone modes aiμ̄ are in fact
pseudo-Goldstone bosons related to breaking of the acci-
dental SOðN; 4NÞ symmetry of the SLIV constraints (34).
They are excited along the directions being orthogonal to
the vacuum determined by the above unit vector ni

μ̄
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ni
μ̄a

i
μ̄ ¼ 0 ði ¼ i0; 1;…; N − 1Þ: ð39Þ

These PGBs include N four-component vector modes aiμ
which complete the adjoint vector field multiplet of the
internal symmetry group G. Again as in the Abelian case,
these vector PGBs, in sharp contrast to the familiar
scalar PGB case [25], remain strictly massless being
protected by the non-Abelian gauge invariance in the final
Lagrangian (35) where an actual symmetry SOð1; 3Þ ⊗ G
still remains.9 Apart from them, there are the N − 1

massless scalar modes ϕi ≡ ai5 (i ¼ 1;…; N − 1). In con-
trast to vector bosons, they are not protected by any gauge
symmetry and consequently will get masses through the
radiative corrections.
One can write again, as in the above Abelian case (24),

the ground vector field expansion around vacuum configu-
ration stemming from the upper constraint in (34)

A0i
μ̄ ¼ aiμ̄ þ ni

μ̄

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − n2a2 − n2ðAsÞ2

q
;

ða2 ≡ aiμ̄a
μ̄i; ðAsÞ2 ≡Asi

μ̄ A
μ̄siÞ; ð40Þ

where summation over all repeated indices is taken, and
also the orthogonality condition (39) for the emergent
pseudo-Goldstone aiμ̄ is supposed. Meanwhile, the effective
Higgs term in the expansion (40)

H ¼ A0i
μ̄ n

i
μ̄ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 − n2a2 − n2ðAsÞ2

q

¼ MþOða2=M; ðAsÞ2=MÞ ð41Þ

induces masses for some set of vector fields inside of the
multiplet aiμ. Putting the expansion (40) into the Lagrangian
(35) one eventually comes to the emergent 4D Yang-Mills
theory stemming from the 5D spacetime with all possible
vector field couplings involved. They are given for the
ground modes by the truncated stress tensors presented in
the Lagrangian (35)

F̄0
μυ ¼ ∂μaυ − ∂υaμ þ ig½aμ; aυ� ð42Þ

and

F̄0
μ5 ¼ ∂μðϕþ lHÞ þ igð½aμ;ϕ� þH½aμ; l�Þ ð43Þ

while for the higher modes (s ¼ 1; 2;…) by the truncated
tensors

F̄s
μυffiffiffi
2

p ¼ ∂μAs
ν − ∂υAs

μ þ igð½As
μ; aυ� þ ½aμ;As

υ�Þ ð44Þ

and

F̄s
μ5ffiffiffi
2

p ¼ ∂μAs
5 þ igð½As

μ;ϕ� þH½As
μ; l�Þ − i

s
R
As

μ; ð45Þ

where an effective 4D gauge coupling constant g ¼
g5=

ffiffiffiffiffiffi
πR

p
has been introduced. Such a form of these tensors

readily follows upon an integration of the corresponding
action over the extra dimension where also the normali-
zation for ground and higher modes is properly taken into
account.
Note that the starting theory (30) without the Lagrange

multiplier term is invariant under the 5D non-Abelian
gauge transformations of the vector field multiplet

A0̄
μ ¼ Aμ̄ þ i½α;Aμ̄� þ ∂ μ̄α; ð46Þ

where the gauge parameter α ¼ αiti is also proposed to
have a symmetrical cosine expansion as the vector field
components Aμ̄. After compactification for a particular s
component (s ¼ 0; 1;…) it turns to

δAs
μ ¼ i

X
s0¼0

½αs0 ;As−s0
μ � þ ∂μα

s;

δAs
5 ¼ i

X
s0¼0

½αs0 ;As−s0
5 � ð47Þ

showing that in the “rotation” part of each KK mode
(ground state or higher KK mode) contributes all other
states as well. Remarkably, for the symmetrical orbifold
compactification taken the fifth-direction modes As;i

5 are
only rotated under the internal symmetry group trans-
formations thus behaving themselves as the matter fields
rather than the gauge field components.10 This means that
they cannot be gauged away from the theory. Therefore,
as in the Abelian case, one has eventually, apart from the
massless ground modes A0;i

μ̄ ¼ aiμ̄ ¼ ðaiμ;ϕiÞ, the massive

vector KK modes As;i
μ and the massless “scalars” As;i

5

(s ¼ 1; 2;…). Moreover, the latter modes As;i
μ and As;i

5

break in essence the starting gauge invariance (47) down
to a conventional gauge invariance related solely to the
ground vector field modes in the 4D Lagrangian (35)

δAs
μ ¼ i½α0;As

μ� þ ∂μα
sδs0; δAs

5 ¼ i½α0;As
5� ð48Þ

while all other modes are only “rotated” by the internal
group symmetry generators. Actually, again as in the above
Abelian case, this looks as if the 5D gauge function α in
(46) would not depend on the fifth coordinate and, there-
fore, only its ground component α0 is nonzero. This
restricted gauge invariance makes it possible to uncover
some direct observational effects related to the 5D SLIV, in

9Actually, the internal symmetry group G eventually appears
spontaneously broken to its diagonal subgroups (see below).

10This will allow us later (Sec. IV) to treat its ground mode
multiplet A0;i

5 (i ¼ 0; 1;…; N − 1) as an independent adjoint
Higgs field multiplet in the theory considered.
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contrast to the completely hidden spontaneous Lorentz
violation appearing in a conventional 4D spacetime
[21–23].
These effects are essentially determined by the stress

tensors F̄0
μ5 and F̄s

μ5, (43) and (45), related to the fifth
direction. Again, as in the Abelian case, apart from
conventional gauge couplings presented in (42), one has
direct multiboson (multiphoton in particular) couplings
following from the kinetic term of the effective scalar H
in the Lagrangian (35)

1

2
ð∂μHÞ2 ¼ 1

2

ðaiρ∂μaρi þ
P

s¼1A
s
ρ̄i∂μAs;ρ̄iÞ2

M2 þ a2 þ ðAsÞ2 : ð49Þ

As a matter of fact, there appear an infinite number of the
properly suppressed direct vector boson-boson scattering
couplings and also couplings of these ground mode bosons
with heavy KK towers in the Lagrangian. Thus, the
emergent Yang-Mills theory, just as the emergent QED
considered above, actually possesses only a partial gauge
invariance whose observation could be of primary interest.
Likewise, an existence of the unabsorbed fifth-direction
nonzero modesAs;i

5 (s ¼ 1; 2;…) being massless at the tree
level appears as a somewhat unavoidable prediction of the
model. Again, due to KK parity they will be only produced
by pairs from an ordinary matter being properly suppressed
by the 5D Lorentz violation scaleM, as is shown in (49) for
their possible production in boson-boson scattering and
other processes. Also, any heavy KK state will now rapidly
decay into the As;i

5 modes plus ordinary matter. However,
all these massless fifth-direction states in the model, the
ground modes A0;i

5 ¼ ai5 and towers As;i
5 , being no more

protected by the restricted gauge invariance (48) could in
principle acquire quite large masses (see some details in
Sec. IV), thus escaping the direct observation.
All these predictions may be equally expected from both

Abelian and non-Abelian theory cases. However, there
is one point being particularly specific to the emergent
Yang-Mills theory. This is the generic Higgs mechanism
appearing in a non-Abelian theory which leads to an
automatic internal symmetry reduction when the 5D
symmetry spacetime symmetry spontaneously breaks down
to a conventional Lorentz invariance.

IV. INTERNAL SYMMETRY REDUCTION
IN FOUR DIMENSIONS

We have seen above that if the starting 5D theory
possesses some non-Abelian internal symmetry G this
symmetry, simultaneously with the underlying spacetime
symmetry, occurs spontaneously broken. As a result,
some pseudo-Goldstone vector bosons emerging during
symmetry breaking process (36) may acquire masses. This
breaking itself appears similar to the breaking which is
usually induced by an introduction into the theory of an

appropriate adjoint scalar field multiplet. Now such a
multiplet originates from extra vector field components.
Particularly, in the 5D theory the role of such a scalar field
multiplet plays the multiplet composed from the fifth
component ðA0

5Þi of the zero-mode vector field ðA0
μ̄Þi,

whose VEV is given by Eqs. (37) and (38) depending on
the direction i ¼ i0 in the internal space along which G
symmetry appears broken. They through their covariant
derivatives give masses to the 4D ground vector field
modes aiμ. Therefore, one may have the Higgs effect in the
5D SLIV theory without a specially introduced Higgs field.
Let us consider it in more detail. Rewriting the starting

field expansion (40) for particular components we receive

ðA0
μÞi ¼ aiμ;

ðA0
5Þi ¼ ϕi þ liH; li ¼ δii0 ; l ¼ liti ¼ ti0 ; ð50Þ

where for the emergent pseudo-Goldstone modes aiμ and ϕi

work the orthogonality conditions along an internal sym-
metry breaking direction

aiμli ¼ ϕili ¼ 0: ð51Þ

One can readily see that the covariant derivative (43) and
(45) in the Lagrangian L4D (35) generates some vector field
masses stemming from the first constant term in decom-
position of the effective Higgs field H in (41). Note that
these mass terms being proportional to the 5D Lorentz
breaking mass scale M cannot be gauged away since the
restricted 4D gauge invariance (48) is only left in the
Lagrangian L4D after compactification. Meanwhile, this
gauge invariance is spontaneously broken by itself, as
follows from the covariant derivative term (43). Using a
proper unitary gauge one can decouple the extra ϕ scalar
multiplet from the four-dimensional vector fields aiμ. As a
result, they are getting mass terms of the type

LmðaμÞ¼
1

2
g2M2Tr½aμ; l�2¼

1

2
g2M2aiμa

j
μTrf½ti0 ; ti� · ½ti0 ; tj�g

¼ 1

2
g2M2aiμðfi0fi0Þijajμ; ð52Þ

where the structure constants fi0ik in the above commuta-
tors are written in the matrix form fi0ik and matrix product
ðfi0fi0Þij always appears diagonal for any internal sym-
metry breaking direction i0. It can easily be seen that these
masses crucially depend on this direction so that all the
ground vector field modes related to the corresponding
broken generators of the internal symmetry groupG receive
the masses of the order of the 5D Lorentz scale M. The
masses vanish when there is a vanishing commutator
½ti0 ; ti� ¼ 0 in (52). This means that massless vector bosons
only occur when the index i belongs to appropriate
diagonal subgroups of the symmetry group G.
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Remarkably, the spontaneous breaking of internal sym-
metry also modifies the masses of KK towers involved, as
follows from the covariant derivative (45). Indeed, properly
writing out the commutators one comes to

F̄s;i
μ5 ¼ ∂μA

s;i
5 −gfijkAs;j

μ ðϕkþMlkÞ− i
s
R
As;i

μ ; lk ¼ δki0 :

ð53Þ

Unfortunately, in contrast to the previous case, we have no
conventional gauge invariance to separate scalar and vector
modes. Instead, one can redefine the scalar fields in such a
way to separate them in the momentum space11

As;i
5 → As;i

5 þigM
kμfi0ijAs;j

μ

k2
: ð54Þ

After their substitution into covariant derivative one has
diagonalized massless scalars As;i

5 and massive vector
towers As;i

μ with modified kinetic terms determined by
the scale M

jF̄s
μ5j2 ¼ðkμAs;i

5 Þ2þðgMÞ2
�
gμν−

kμkν

k2

�
As;i

μ ðfi0fi0ÞijAs;j
μ :

ð55Þ

So, collecting both types of mass terms for towers in (53)
one has

LmðAs
μÞ ¼

X
s¼1

As;i
μ

�
1

2

�
s
R

�
2

δij þ g2M2ðfi0fi0Þij
�
As;j

μ :

ð56Þ

We see that masses of towers for each number s are
significantly influenced by an internal symmetry breaking
along the direction determined by the generator
l ¼ liti ¼ ti0 . Particularly, all towers related to the corre-
sponding broken generators of the group G will receive the
large extra masses of the order of the 5D Lorentz scale M.
The most successful implementation of this phenomena

may appear in grand unified theories considered ab initio in
the five-dimensional spacetime. Once the 5D SLIV is
applied, along with the compactification to the physical
world, the adjoint “scalar field” multiplet composed from
the extra vector field components, ðA0

5Þi, will break the
grand unified theory (GUT) down to the Standard Model so

that all “nondiagonal” vector bosons [say, X- and Y-bosons
in the SUð5Þ theory] get large mass terms being of the order
of the scale M. Thus, the scale M of the 5D SLIV can be
identified with the grand unification scale MGUT when
emergent GUTs are considered. This is in sharp contrast to
the Abelian internal symmetry case, where the 5D SLIV
scale M is arbitrary and could even be of the order of a
few TeV.
The point is, however, that due to the high symmetry of

the constraints (34) one has in reality a vacuum degeneracy
when applying them to the internal symmetry breaking in
the GUTs. Indeed, the first constraint in (34) written for the
proposed spacelike SLIV (n2 ¼ −1) as

TrðA0
μ̄A

0μ̄Þ ¼ M2½1þOððAsÞ2=M2Þ�; ð57Þ

where we also ignored all the higher KK modes, explicitly
demonstrates such a degeneracy in the internal space.
Meanwhile, due to violation of the starting gauge invari-
ance (46) in the post-compactification stage, the radiative
corrections will induce in general all possible potential
terms in the Lagrangian L4D (35)

UðAÞ ¼ m2
A

2
TrðA0

μ̄A
0μ̄Þ þ λA

4
½TrðA0

μ̄A
0μ̄Þ�2

þ λ0A
4
TrðA0

μ̄A
0μ̄A0

ν̄A
0ν̄Þ; ð58Þ

where again the nonzero KKmodes were omitted and some
optional vector field mass parameter (m2

A) and coupling
constants (λA, λ0A) introduced (higher order terms are
ignored). Now, one can readily see that the first two terms
in the potential U only add some constants to the
Lagrangian because of the constraint (57), whereas the
third one in fact makes the lifting vacuum degeneracy in a
theory considered.
Let us turn again to the emergent SUð5Þ GUT case. For

the constraint (57) and radiative corrections ignored there
appears a twofold vacuum degeneracy in the theory: one
vacuum with SUð3Þ × SUð2Þ ×Uð1Þ symmetry (corre-
sponding to the Standard Model) and another one with
symmetry SUð4Þ ×Uð1Þ. Interestingly, this resembles the
vacuum degeneracy problem in supersymmetric GUTs
[37]. However, while there is no way to split this vacuum
degeneracy in the pure SUSY context, the situation is
radically changed in the emergent GUTs due to the
radiative corrections involved. Actually, one can readily
confirm that for the positive coupling constants λ0A in
the potential (58) the SUð3Þ × SUð2Þ × Uð1Þ vacuum is
definitely dominated in the emergent SUð5Þ theory.
Remarkably, the alternative SUð4Þ ×Uð1Þ vacuum may
only exist for the negative constants λ0A, thus in an
unstable theory case, that is principally unacceptable.
Although we do not calculate here the above radiatively
induced potential (58), it seems natural to propose that it

11Note that, though now one may not put a unitary gauge to get
rid of the massless scalar fields As;i

5 , these fields [particularly, the
Goldstone ones for i values determined by nonzero matrix
elements fi0ij in (54)] correspond in fact to the unphysical
particles in the sense that they could not appear as incoming or
outgoing lines in Feynman graphs. In a somewhat similar context
of the Standard Model formulated in the axial gauge this was first
argued in [36].
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may not destabilize the emergent SUð5Þ theory, so that
the coupling constant λ0A always appears positive. Thus,
as a result of the degeneracy lifting, just the Standard
Model vacuum is generically chosen once the 5D SLIV
occurs.
Due to radiative corrections, the X- and Y-bosons of

SUð5Þ, apart from the masses presented above in (52),
receive extra mass contributions (being proportional to
λ0AM

2) from the last term in the potential (58). Likewise,
all the diagonal fifth-direction ground modes A0;i

5 ¼ ai5
with the SUð3Þ × SUð2Þ assignment ð8;1Þþð1;3Þþð1;1Þ
receive the same order masses Oðλ0AM2Þ, while the non-
diagonal Goldstone ones with the assignment ð3;2Þþð3̄;2Þ
appear massless though nonobservable, as was mentioned
before11. Analogously, an inclusion into the radiatively
induced potential (58) the higher KK mode terms will
produce masses for still being massless fifth-direction
As;i

5 towers as well. So, eventually all the starting 5D
vector field modes, apart from the gauge bosons of
SUð3Þ × SUð2Þ ×Uð1Þ, acquire masses in the 4D emer-
gent SUð5Þ GUT being automatically broken to the
Standard Model.

V. CONCLUSION

We have argued that the spontaneously broken extra
dimensional spacetime symmetry could be a natural source
for emergent vector bosons associated with photons and
other gauge fields. Indeed, the only way to produce such
bosons in a fully Lorentz covariant way would be to enlarge
the existingMinkowski spacetime to higher dimensions. As
a matter of fact, all four-dimension models only suggest a
noncovariant description of vector Goldstone bosons where
one of vector field spacetime component Aμ ðμ ¼ 0; 1; 2; 3Þ
is inevitably Higgs-ified. Moreover, the spontaneous break-
down of Lorentz symmetry itself may appear hidden from
observation when considered in a gauge invariant theory
framework.
The essential point is that an extra dimensional

spacetime is eventually reduced to a conventional four
dimensions due to some compactification pattern proposed.
However, while the kinetic terms of the vector (and other)
fields will only possess a standard Lorentz symmetry after
compactification, their potential terms [or, equally, the
polynomial vector field constraints like (21) and (34)]
may still have the higher symmetrical form if the com-
pactification pattern is properly chosen. This consequently
induces the high-dimensional SLIV due to which massless
pseudo-Goldstone states are generated as gauge boson
candidates. So, an adequate choice of a compactification
mechanism is a crucial point when considering extra
dimensions as a possible source for a generation of
emergent gauge theories. However, while a simple com-
pactification on a circle conserves the starting spacetime
symmetry for vector field constraints like (21) and (34),

the orbifold compactification S1=Z2 introduced to have
chiral fermions in four dimensions may in general explic-
itly break this symmetry down to a conventional 4D
Lorentz invariance.
Actually, for a conventional asymmetrical orbifold com-

pactification when ordinary four components of Aμ̄ are
taken to be even under the orbifold transformation, whereas
its fifth component is odd, the 5D Lorentz symmetry is
turned out to be explicitly broken, though the 5D gauge
symmetry (12) still remains. Eventually, one has the
theory without extra vector field components, A0

5 and As
5

(s ¼ 1; 2;…) since the ground mode A0
5 vanishes, while

higher As
5 modes appear absorbed by the 4D massive KK

towers As
μ. Without extra vector field components, the

nonlinear constraints (21) and (34) will cause the VEV on
one of the ordinary components of the 4D vector field
ground mode A0

μ and A0
μ ðμ ¼ 0; 1; 2; 3Þ, respectively.

Thus, we come even in the 5D spacetime to the SLIV
picture appearing in the four-dimensional Nambu model
and its generalizations (which was intensively discussed
above in Sec. I). Due to the starting 5D gauge symmetry
which really remains after compactification, the SLIV
inducing constraints (21) and (34) will be simply converted
into the gauge fixing conditions so that such models have
no observational consequences unless this symmetry is
explicitly broken by some external sources.
In this connection, the 5D SLIV model developed

above is entirely based on the symmetrical orbifold
compactification S1=Z2 under which all spacetime com-
ponents of the 5D vector field Aμ̄ðx; θÞ are taken to be
even. Interestingly, such a “partially increased” Lorentz
invariance happens to significantly reduce an effective
gauge symmetry appearing for vector field components
after compactification. The starting gauge symmetry (12)
for KK states, both massive vectors As

μ (s ¼ 1; 2;…) and
massless scalars As

5 (s ¼ 0; 1; 2;…), does not work any
longer. Only standard gauge invariance (19) for massless
ground vector modes A0

μ holds. This allows to uncover a
number of possible observational evidences in favor of
emergent QED and Yang-Mills theories which cannot be
gauged away as in 4D SLIV theories. They include, apart
from conventional gauge couplings, the properly sup-
pressed direct multiphoton (multiboson, in general) inter-
actions. This means that emergent gauge theories actually
possess only a partial gauge invariance whose observation
could shed light on their high-dimensional nature.
Another crucial prediction is an existence of the unab-
sorbed fifth-direction nonzero modes As

5 (s ¼ 1; 2;…)
being massless at the tree level. Due to KK parity they
can be only produced by pairs from an ordinary matter
being properly suppressed by the 5D Lorentz violation
scale M or by the compactification mass MKK ∼ 1=R. On
the other hand, any heavy KK state will now rapidly decay
into the As

5 mode plus ordinary matter that seems to
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invalidate the dark matter scenario related to extra
dimension [33]. However, these As

5 modes being no more
protected by gauge invariance could in principle acquire
large masses through radiative corrections so that the
lightest KK state may appear rather stable to provide the
measured dark matter density.
All the above, while largely spoken relative to the

emergent QED, is equally applicable to both Abelian and
non-Abelian cases. However, there is one point being
particularly specific to Yang-Mills theory. In this case,
due to 5D SLIV, together with the spacetime symmetry
breaking, the non-Abelian internal symmetry group G
also occurs spontaneously broken. As a result, all non-
diagonal emergent vector bosons appearing during the
symmetry breaking process (36) may acquire masses.
This breaking originates from the extra vector field
components playing a role of some adjoint scalar field
multiplet in the 4D spacetime. Therefore, one may have
the generic Higgs effect in the 5D SLIV theory which
breaks the starting internal symmetry G to its diagonal

subgroups. When being applied to grand unified theories
this results in a fact that the emergent GUTs automati-
cally appear broken down to the Standard Model just at
the 5D Lorentz violation scale M. So, a spontaneous
breakdown of a high-dimensional spacetime symmetry to
a conventional Lorentz invariance may determine an
internal symmetry pattern at low energies, and also
control an admissible proton decay rate and, conse-
quently, an acceptable matter-antimatter asymmetry in
the early universe. We may return to this interesting
scenario elsewhere.
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