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An exact correspondence between a black hole and an accelerating mirror is demonstrated. It is shown
that for a massless minimally coupled scalar field, the same Bogolubov coefficients connecting the “in” and
“out” states occur for a (1þ 1)-dimensional flat spacetime with a particular perfectly reflecting accelerating
boundary trajectory and a (1þ 1)-dimensional curved spacetime in which a null shell collapses to form a
black hole. Generalization of the latter to the (3þ 1)-dimensional case is discussed. The spectral dynamics
is computed in both (1þ 1)-dimensional spacetimes along with the energy flux in the spacetime with a
mirror. It is shown that the approach to equilibrium is monotonic, asymmetric in terms of the rate, and there
is a specific time which characterizes the system when it is the most out of equilibrium.
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I. INTRODUCTION

The connection between the particle production which
occurs at late times after a black hole forms from collapse
[1] and the late-time particle production from a mirror in
flat space that accelerates without bound, asymptotically
approaching a null geodesic, was established by Davies and
Fulling [2,3]. An interesting question is whether there are
mirror trajectories for which their entire history of particle
creation, from initial nonthermal phase to late-time thermal
emission, corresponds to the entire history of particle
creation from a spacetime in which a black hole forms
from collapse. We have found a specific example in (1þ 1)
dimensions where there is such an exact correspondence.
The model for gravitational collapse that we consider

consists of a collapsing shell with a null trajectory. The
spacetime inside the shell is flat, while the geometry
outside the shell is the usual Schwarzschild geometry.
This model was considered in [4] where the exact
Bogolubov coefficients connecting the “in” and “out”
vacuum states were computed for a massless minimally
coupled scalar field. The trajectory for the mirror is a
simple modification of one that was discovered in Ref. [5].
The mirror, which is in flat space, begins at past timelike
infinity, i−, and accelerates in a monotonic fashion,
asymptotically approaching v ¼ vH with v≡ tþ r.
One of the advantages of our model is that the

Bogolubov coefficients between the “in” and “out” states

can be computed analytically. It is the equivalence between
these coefficients in the black hole and accelerating mirror
cases that establishes the exact connection. Interestingly, in
the mirror case, there are so far a limited number of specific
trajectories for which the Bogolubov coefficients have been
computed analytically [3,6–9]. In most of these cases, as in
the present case, the actual amount of particle production
must be computed numerically.
In [10–12], we pointed out this mirror–black hole

connection and briefly explored the time dependence of
the particle production and the time dependence of the
stress-energy tensor in the accelerating mirror case. Here
we give the details of the computations of the Bogolubov
coefficients in both the black hole and accelerating mirror
cases. For the black hole, we add a discussion of the
computation in (3þ 1) dimensions. We also give a sig-
nificantly more detailed description of the time dependence
of the particle production process, which includes an
estimate, consistent with the uncertainty relation, of the
time evolution of the spectrum of the produced particles.
The time dependence of the particle production process was
investigated for other mirror trajectories in [8].
In Sec. II, we compute the Bogolubov coefficients for

our mirror trajectory and for the case of a null shell that
collapses to form a black hole in (1þ 1) and (3þ 1)
dimensions. In the latter case, we ignore the effective
potential in the mode equation. In Sec. III, the time
dependence of the particle production process and the
frequency spectrum of the produced particles are inves-
tigated. Section IV contains a brief discussion of the
time dependence of the stress energy of the quantum field
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in the accelerating mirror case. Our results are summarized
in Sec. V. Throughout, we use units such that ℏ ¼
c ¼ G ¼ kB ¼ 1, and our conventions are those of
Ref. [13].

II. BOGOLUBOV COEFFICIENTS

In this section, we compute the particle production that
occurs for a massless minimally coupled scalar field in
three different situations: a (1þ 1)-dimensional flat space-
time with an accelerating mirror moving along a particular
trajectory, a (1þ 1)-dimensional spacetime in which a
null shell collapses to form a black hole, and a (3þ 1)-
dimensional spherically symmetric spacetime in which a
null shell collapses to form a black hole. We begin with the
simplest case which is the accelerating mirror.

A. (1þ 1)-dimensional flat spacetime with a mirror

The line element for flat space in (1þ 1) dimensions is
simply

ds2 ¼ −dt2 þ dr2 ¼ −dudv; ð2:1Þ

where alternative, null coordinates are

u ¼ t − r; v ¼ tþ r: ð2:2Þ

We denote the trajectory of the mirror by r ¼ zðtÞ (see
Fig. 1). Note that we shall only be concerned with the part
of the spacetime that is to the right of the mirror.
The wave equation for the massless minimally coupled

scalar field is

□ϕ ¼ 0: ð2:3Þ

The field can be expanded in terms of complete sets of
mode functions, each of which satisfies the equation

∂u∂vf ¼ 0: ð2:4Þ

The general solution is

f ¼ aðuÞ þ bðvÞ; ð2:5Þ

for arbitrary functions a and b.
The modes are normalized using the scalar product

ðϕ1;ϕ2Þ ¼ −i
Z
Σ
dΣ

ffiffiffiffiffiffiffiffi
jgΣj

p
naϕ1∂

↔

aϕ
�
2;

¼ −i
Z
Σ
dΣ

ffiffiffiffiffiffiffiffi
jgΣj

p
na½ϕ1∂aϕ

�
2 − ð∂aϕ1Þϕ�

2�; ð2:6Þ

with Σ a Cauchy surface and na the unit normal to that
surface. One Cauchy surface we shall use is ℐ−

R. In this
case, the scalar product is

ðϕ1;ϕ2Þ ¼ −i
Z

∞

−∞
dvϕ1∂

↔

vϕ
�
2: ð2:7Þ

The other consists of the union of ℐþ
R with ℐþ

L;>, the part
ofℐþ

L that is to the right of the mirror. The scalar product is
then

ðϕ1;ϕ2Þ ¼ −i
Z

∞

−∞
duϕ1∂

↔

uϕ
�
2 − i

Z
∞

vH

dvϕ1∂
↔

vϕ
�
2: ð2:8Þ

The “in” modes are normalized on ℐ−
R and form a

complete set for the region to the right of the mirror. The
other set of modes of interest are those which are normal-
ized on ℐþ

R and which vanish on ℐþ
L;>. We label these as

“out” modes. Another set of modes, labeled “left” modes,
end on ℐþ

L;>. Taken together the “out” modes and “left”
modes form a complete set. All modes in either set that
impinge upon the mirror must vanish at its surface. The
“in” and “out” modes thus have the forms

finω ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p ½e−iωv − e−iωpðuÞ�; ð2:9aÞ

foutω ¼ 1ffiffiffiffiffiffiffiffiffi
4πω

p ½e−iωhðvÞθðvH − vÞ − e−iωu�; ð2:9bÞ

where the ray tracing functions pðuÞ and hðvÞ are defined
so that at the location of the mirror pðuÞ ¼ v and hðvÞ ¼ u.
See Ref. [8] for details.1

To find the number of particles produced, we first expand
the field in terms of both sets of modes:

ϕ ¼
Z

∞

0

dω½ainωfinω þ ain†ω fin�ω �; ð2:10aÞ

¼
Z

∞

0

dω½aoutω foutω þ aout†ω fout�ω þ aleftω fleftω þ aleft†ω fleft�ω �:

ð2:10bÞ

We also write

foutω ¼
Z

∞

0

dω0½αωω0finω0 þ βωω0fin�ω0 �: ð2:11Þ

Then using the fact that the modes are orthonormal with
respect to the scalar product, one finds that

αωω0 ¼ ðfoutω ; finω0 Þ; ð2:12aÞ

βωω0 ¼ −ðfoutω ; fin�ω0 Þ; ð2:12bÞ

1Note that in [8] the function we call hðvÞ is denoted by fðvÞ.
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aoutω ¼ ðϕ; foutω Þ ¼
Z

∞

0

dω0½ainω0α�ωω0 − ain†ω0 β�ωω0 �: ð2:12cÞ

Then, if the field is in the “in” state, the average number of
particles found at ℐþ with frequency ω is

hinjNout
ω jini ¼

Z
∞

0

dω0jβωω0 j2: ð2:13Þ

We now introduce a specific mirror trajectory that begins
at past timelike infinity, i−, and is asymptotic to the ray
v ¼ vH. A Penrose diagram for it is given in Fig. 1. The
trajectory, which is a slight modification of what was called
the Omex trajectory in Ref. [5], is

zðtÞ ¼ vH − t −
Wð2e2κðvH−tÞÞ

2κ
; ð2:14Þ

with κ and vH constants, and with W the Lambert W (or
product log) function, which has the properties

z ¼ WðzÞeWðzÞ ¼ WðzezÞ: ð2:15Þ

Then, writing

v ¼ vmðtÞ ¼ tþ zðtÞ; ð2:16Þ

with vmðtÞ being the value of v for the mirror’s location at
time t, we find

~tmðvÞ ¼ v −
1

2κ
log½κðvH − vÞ�; ð2:17Þ

with ~tmðvÞ the time when the mirror intersects the null ray
labeled by v. This equation can easily be verified by
substituting (2.14) into (2.16) and using (2.17) along with
the second relation in (2.15). Then since hðvÞ ¼ u at the
surface of the mirror,

hðvÞ ¼ ~tmðvÞ − z½~tmðvÞ� ¼ v −
1

κ
log½κðvH − vÞ�: ð2:18Þ

The relation pðuÞ ¼ v which is valid at the surface of the
mirror is the inverse of the relation hðvÞ ¼ u. We find that

pðuÞ ¼ vH −
1

κ
Wðe−κðu−vHÞÞ: ð2:19Þ

This can be verified by computing hðpðuÞÞ and using the
first relation in (2.15). Combining the equations pðuÞ ¼
vm ¼ tmðuÞ þ z½tmðuÞ� and tmðuÞ ¼ uþ z½tmðuÞ�, one
finds

tmðuÞ ¼
1

2

�
vH þ u −

1

κ
Wðe−κðu−vHÞÞ

�
: ð2:20Þ

Here tmðuÞ is the time when the mirror intersects the null
ray labeled by u.
To evaluate the formulas for the Bogolubov coefficients

in (2.12a) and (2.12b), we choose the surfaceℐ−
R for which

the general form of the scalar product is given in (2.7).
Combining these equations along with (2.9b) and (2.18)
and noting that u ¼ −∞ onℐ−

R, we find after some algebra
that

αωω0 ¼ 1

4π

Z
vH

−∞
dve−iðω−ω0Þv½κðvH − vÞ�iω=κ

×

� ffiffiffiffiffi
ω0

ω

r
þ

ffiffiffiffiffi
ω

ω0

r �
1þ 1

κðvH − vÞ
��

; ð2:21aÞ

βωω0 ¼ 1

4π

Z
vH

−∞
dve−iðωþω0Þv½κðvH − vÞ�iω=κ

×

� ffiffiffiffiffi
ω0

ω

r
−

ffiffiffiffiffi
ω

ω0

r �
1þ 1

κðvH − vÞ
��

: ð2:21bÞ

Changing the integration variable to x ¼ vH − v allows for
the evaluation of the integrals in terms of gamma functions.
After more algebra, we find

αωω0 ¼ −
e−iðω−ω0ÞvH

2πκ

ffiffiffiffiffiffiffiffi
ωω0p

ω − ω0

�
−
i
κ
ðω − ω0Þ

�
−iω=κ

Γ
�
iω
κ

�
;

ð2:22aÞ

βωω0 ¼ −
e−iðωþω0ÞvH

2πκ

ffiffiffiffiffiffiffiffi
ωω0p

ωþ ω0

�
−
i
κ
ðωþ ω0Þ

�
−iω=κ

Γ
�
iω
κ

�
:

ð2:22bÞ

FIG. 1. Penrose diagram for a flat (1þ 1)-dimensional space-
time containing an accelerating mirror with the trajectory (2.14)
in the case that κ ¼ 1 and vH ¼ 0. The trajectory is timelike,
begins at i−, and asymptotically approaches v ¼ vH ¼ 0.
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B. (1þ 1)-dimensional spacetime with a
collapsing null shell

For a (1þ 1)-dimensional spacetime with a collapsing
null shell, the line element inside the shell is still given by
(2.1), while outside the shell it is

ds2 ¼ −
�
1 −

2M
r

�
dt2s þ

�
1 −

2M
r

�
−1
dr2: ð2:23Þ

The Penrose diagram is given in Fig. 2. We define the usual
radial null coordinates inside the shell to be those in
Eq. (2.2). Outside both the shell and the horizon, the
corresponding coordinates are

us ≡ ts − r�; ð2:24aÞ

v≡ ts þ r�; ð2:24bÞ

r� ≡ rþ 2M log

�
r − 2M
2M

�
: ð2:24cÞ

Following [4,14], we match the coordinate systems
along the part of the trajectory of the shell which is outside
the horizon in such a way that both v and r are continuous
across the surface and v ¼ v0 on the surface. This is why
we have no subscripts for these two coordinates. The
coordinates t and u are not continuous across the surface.
To find the relation between us and u, we note that at the
surface and outside the event horizon,

r ¼ 1

2
ðv0 − uÞ; ð2:25aÞ

r� ¼
1

2
ðv0 − usÞ ¼ rþ 2M log

�
r − 2M
2M

�
: ð2:25bÞ

Substituting (2.25a) into the right-hand side of (2.25b) and
solving for us gives

us ¼ u − 4M log

�
vH − u
4M

�
; ð2:26Þ

with

vH ≡ v0 − 4M: ð2:27Þ

Note that the event horizon (us ¼ ∞) is at u ¼ vH.
We next show that it is possible to invert (2.26) using the

LambertW function. First it is easy to show that (2.26) can
be written in the form

exp

�
vH − us
4M

�
¼

�
vH − u
4M

�
exp

�
vH − u
4M

�
: ð2:28Þ

Then computing the Lambert W function of both sides of
the equation and using the second relation in (2.15), we find
that

u ¼ vH − 4MW

�
exp

�
vH − us
4M

��
: ð2:29Þ

The field ϕ and its mode functions f are solutions to
Eq. (2.3). In the flat space region below the null shell, the
general solution is (2.5). In the Schwarzschild region above
the shell, Eq. (2.3) takes the form

∂us∂vf ¼ 0: ð2:30Þ

The general solution is

f ¼ cðusÞ þ dðvÞ; ð2:31Þ

with c and d being arbitrary functions. Thus, in the flat
space region, solutions can be any function of u or any
function of v, while in the Schwarzschild region they can be
any function of us or any function of v. Given the relations
(2.26) and (2.29), it is clear that any solution in the
Schwarzschild region is also a solution in the flat region
and vice versa. Once again, the modes are normalized using
the scalar product (2.6). There is a complete set of “in”
modes that are normalized on ℐ− and are given by the
expressions

finω;R ¼ e−iωvffiffiffiffiffiffiffiffiffi
4πω

p ; ð2:32aÞ

finω;L ¼ e−iωuffiffiffiffiffiffiffiffiffi
4πω

p : ð2:32bÞ

A different complete set of modes consists of subsets that
have three different late-time behaviors. Some of the modes

FIG. 2. Penrose diagram for a two-dimensional black hole that
forms from the collapse of a null shell along the trajectory v ¼ v0.
The Cauchy surface used to compute the Bogolubov coefficients
is the dotted (blue) surface formed from ℐþ

L , part of ℐ
−
R, and the

v ¼ v0 null ray. Note that the horizon is the future light cone of
the point (uin ¼ vH ≡ v0 − 4M, v ¼ v0).

GOOD, ANDERSON, and EVANS PHYSICAL REVIEW D 94, 065010 (2016)

065010-4



end onℐþ
L , others go through the future horizon and end up

at the singularity, and the rest end on ℐþ
R . As with the

accelerating mirror, we are interested in those that end
up on ℐþ

R , which we label as “out” modes and which are
given by

foutω ¼ e−iωusffiffiffiffiffiffiffiffiffi
4πω

p : ð2:33Þ

The other modes we label with the superscripts “left”
and “sing.”
As in the accelerating mirror case (2.13), the average

number of particles found at ℐþ
R for a given value of ω if

the field is in the “in” state is

hinjNout
ω jini ¼ hinjaout†ω aoutω jini: ð2:34Þ

The expansions of ϕ in terms of these complete sets of
modes are

ϕ ¼
Z

∞

0

dω½ainω;Rfinω;R þ ain†ω;Rf
in�
ω;R þ ainω;Lf

in
ω;L þ ain†ω;Lf

in�
ω;L�;

ð2:35aÞ

¼
Z

∞

0

dω½aoutω foutω þ aout†ω fout�ω þ aleftω fleftω þ aleft†ω fleft�ω

þ asingω fsingω þ asing†ω fsing�ω �: ð2:35bÞ

In this case, the scalar product ðfinω0;R; f
out
ω Þ ¼ 0, because the

“out” modes vanish on ℐ−
R. Hence,

aoutω ¼ ðϕ; foutω Þ ¼
Z

∞

0

dω0½ainω0;Lðfinω0;L; f
out
ω Þ

þ ain†ω0;Lðfin�ω0;L; f
out
ω Þ�: ð2:36Þ

If we write

foutω ¼
Z

∞

0

dω0½αωω0finω0;L þ βωω0fin�ω0;L�; ð2:37Þ

then

aoutω ¼
Z

∞

0

dω0½ainω0;Lα
�
ωω0 − ain†ω0;Lβ

�
ωω0 �; ð2:38Þ

and the Bogolubov coefficients can be obtained
from

αωω0 ¼ ðfoutω ; finω0;LÞ; ð2:39aÞ

βωω0 ¼ −ðfoutω ; fin�ω0;LÞ; ð2:39bÞ

while once again the average number of particles is

hinjNout
ω jini ¼

Z
∞

0

dω0jβωω0 j2: ð2:40Þ

The Cauchy surface we use to compute the Bogolubov
coefficients is shown as dotted (and blue) in Fig. 2. It
consists of v ¼ v0 plus the part of ℐ−

R with v > v0 and all
of ℐþ

L . However, the modes foutω;R are nonzero only on the
part of the Cauchy surface with v ¼ v0 that is outside the
event horizon (us < ∞, u < vH). Using (2.32b), (2.33),
(2.39a), and (2.39b), one finds

αωω0 ¼ 1

4π

Z
vH

−∞
due−iðω−ω0Þu½κðvH − uÞ�iω=κ

×
� ffiffiffiffiffi

ω0

ω

r
þ

ffiffiffiffiffi
ω

ω0

r �
1þ 1

κðvH − uÞ
��

; ð2:41aÞ

βωω0 ¼ 1

4π

Z
vH

−∞
due−iðωþω0Þu½κðvH − uÞ�iω=κ

×

� ffiffiffiffiffi
ω0

ω

r
−

ffiffiffiffiffi
ω

ω0

r �
1þ 1

κðvH − uÞ
��

; ð2:41bÞ

where κ ¼ 1=ð4MÞ is the surface gravity of the black hole.
These equations are identical to Eqs. (2.21) for the mirror
trajectory considered in Sec. II A if we make the sub-
stitution u → v and identify the acceleration parameter, κ,
in the mirror case, with the surface gravity κ in the black
hole case. Thus, the values for αωω0 and βωω0 are identical
with those in (2.22), and we have found an exact corre-
spondence between the particle production which occurs in
(1þ 1) dimensions for a mirror with trajectory (2.14) and a
black hole that forms from the collapse of a null shell along
the surface v ¼ v0.

C. (3þ 1)-dimensional spacetime with
a collapsing null shell

For a (3þ 1)-dimensional spacetime with a collapsing
null shell, the line element inside the shell is that of flat
space,

ds2 ¼ −dt2 þ dr2 þ r2dΩ2; ð2:42Þ

and outside the shell is the Schwarzschild metric:

ds2¼−
�
1−

2M
r

�
dt2sþ

�
1−

2M
r

�
−1
dr2þr2dΩ2: ð2:43Þ

The Penrose diagram is given in Fig. 3.
The radial null coordinates have the same definitions as

in the (1þ 1)-dimensional case with those inside the shell
given by (2.2) and those outside the shell given by (2.24).
The matching of the coordinates across the shell is also the
same as in the (1þ 1)-dimensional case with the results
given by (2.26) and (2.29).

MIRROR REFLECTIONS OF A BLACK HOLE PHYSICAL REVIEW D 94, 065010 (2016)

065010-5



The massless minimally coupled scalar field satisfies
Eq. (2.3). The field can be expanded in terms of complete
sets of modes where the mode functions are written in the
general form:

f ¼ Ylmðθ;ϕÞffiffiffiffiffiffiffiffiffi
4πω

p ψðt; rÞ
r

: ð2:44Þ

Inside the shell, we have the flat-space radial wave
equation,

−
∂2ψ

∂t2 þ ∂2ψ

∂r2 − VeffðrÞψ ¼ 0; ð2:45Þ

while outside the shell, we have the scalar Regge-Wheeler
equation

−
∂2ψ

∂t2s þ ∂2ψ

∂r2� − VeffðrÞψ ¼ 0: ð2:46Þ

The effective potential is

Veff ¼
�
1 −

2M
r

��
2M
r3

þ lðlþ 1Þ
r2

�
; ð2:47Þ

which can be seen to work in both cases if inside the shell
we set M ¼ 0.
Themodes are normalized using the full three-dimensional

version of the scalar product, Eq. (2.6). In the cases we
consider, the Cauchy surface consists of either a single null
hypersurface or a union of null hypersurfaces, and the
integrals are of the forms

Z
du

Z
dΩr2∂↔u;

Z
dv

Z
dΩr2∂↔v: ð2:48Þ

We consider two complete sets of mode functions. Those
for the “in” state are normalized on past null infinity, ℐ−,
and vanish at r ¼ 0 inside the shell. Thus, inside the shell,
they are the same as the mode functions in flat space in the
Minkowski vacuum. On ℐ−, they are

ψ in
ωl ¼ e−iωv; ð2:49Þ

with 0 ≤ ω < ∞. They are, of course, more complicated
away from ℐ−, although there are analytic solutions for
them inside the shell. The simplest solution inside the shell
is for the mode with l ¼ 0:

ψ in
ω0 ¼ e−iωv − e−iωu: ð2:50Þ

The other complete set of solutions we will consider is a
union of two subsets. One subset, of most interest, is
normalized on future null infinity, ℐþ. We label them as
“out” modes. On ℐþ, they are

ψout
ωl ¼ e−iωus ; ð2:51Þ

where again 0 ≤ ω < ∞. These modes vanish at the future
horizon Hþ. The other set consists of modes which vanish
at ℐþ and are nonzero on Hþ. We give them the label Hþ
and will not be concerned with their normalization here. It
is easy to show using the scalar product and a Cauchy
surface for the region outside the horizon, which consists of
Hþ and ℐþ, that these two sets of modes are orthogonal.
The expansions for ϕ in terms of the two complete sets of

modes are

ϕ ¼
Z

∞

0

dω
X
l;m

½ainωlmfinωlm þ ain†ωlmf
in�
ωlm�; ð2:52aÞ

ϕ ¼
Z

∞

0

dω
X
l;m

½aoutωlmf
out
ωlm þ aout†ωlmf

out�
ωlm þ aH

þ
ωlmf

Hþ
ωlm

þ aH
þ†

ωlmf
Hþ�
ωlm�: ð2:52bÞ

In this case, the goal is to determine the average number of
particles in the “out” state, as a function of ω, l, and m, if
the field is in the “in” state. This is given by

hinjNout
ωlmjini ¼ hinjaout†ωlma

out
ωlmjini: ð2:53Þ

Using the orthonormality of the mode functions, we find
from (2.52) that

FIG. 3. Penrose diagram for a (3þ 1)-dimensional black hole
that forms from the collapse of a null shell along the trajectory
v ¼ v0. The horizon, Hþ, is the dotted (red) curve. The Cauchy
surface used to compute the Bogolubov coefficients is the short-
dashed (blue) curve.
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aoutωlm ¼ ðϕ; foutωlmÞ ¼
X
l0;m0

Z
∞

0

dω0½ainω0l0m0 ðfinω0l0m0 ; foutωlmÞ

þ ain†ω0l0m0 ðfin�ω0l0m0 ; foutωlmÞ�: ð2:54Þ

If we take the transformation between sets of mode
functions to be

foutωlm ¼
X
l0m0

Z
∞

0

dω0½αωlmω0l0m0finω0l0m0 þ βωlmω0l0m0fin�ω0l0m0 �;

ð2:55Þ

then the operators are connected by

aoutωlm ¼
X
l0;m0

Z
∞

0

dω0½ainω0l0m0α�ωlmω0l0m0 − ain†ω0l0m0β�ωlmω0l0m0 �;

ð2:56Þ

and the expectation value will be

hinjNout
ωlmjini ¼

X
l0;m0

Z
∞

0

dω0jβωlmω0l0m0 j2; ð2:57Þ

with the Bogolubov coefficients found via

αωlmω0l0m0 ¼ ðfoutωlm; f
in
ω0l0m0 Þ; ð2:58aÞ

βωlmω0l0m0 ¼ −ðfoutωlm; f
in�
ω0l0m0 Þ: ð2:58bÞ

On any hypersurface where integrals of the form (2.48) are
to be computed, the following orthonormality conditions
are useful:

Z
dΩYlmðθ;ϕÞY�

l0m0 ðθ;ϕÞ ¼ δl;l0δm;m0 ;
Z

dΩYlmðθ;ϕÞYl0m0 ðθ;ϕÞ ¼ ð−1Þmδl;l0δm;−m0 : ð2:59Þ

It is then possible to show that the Bogolubov coefficients
are partially diagonal in the sense that

αωlmω0l0m0 ∝ δl;l0δm;m0

βωlmω0l0m0 ∝ ð−1Þmδl;l0δm;−m0 ; ð2:60Þ

and that the average number of particles is

hinjNout
ωlmjini ¼

Z
∞

0

dω0jβωlmω0lð−mÞj2: ð2:61Þ

To compute the Bogolubov coefficients using
Eqs. (2.58), it is necessary to choose a Cauchy surface
for the spacetime. The choice we make is driven by the fact

that we have exact solutions for the mode functions finωlm in
the region inside the shell and also everywhere onℐ− since
that is where these modes are normalized. To get their form
in the region outside the shell, it would be necessary either
to use a Bogolubov transformation or to solve the partial
differential equation (2.46) numerically. The mode func-
tions foutωlm are normalized on ℐþ so we have analytic
expressions for them there. They can be computed in the
region outside the null shell by separating the functions
ψωl into

ψωlðt; rÞ ¼ e−iωtχωlðrÞ; ð2:62Þ

and numerically solving the resulting radial equation for
χωl, which is

d2χωl
dr2�

þ ðω2 − VeffÞχωl ¼ 0: ð2:63Þ

However, to extend these solutions to the region inside the
null shell to make contact with finωlm requires either using a
Bogolubov transformation such as Eq. (2.55) or solving the
partial differential equation (2.45) numerically. Here we use
a Bogolubov transformation and choose the Cauchy surface
shown in Fig. 3, which consists of the null surface v ¼ v0
along with the portion of ℐ− with v0 < v < ∞.
In a subsequent paper, we intend to numerically solve the

mode equation (2.63) when the effective potential is
included. In this paper, however, we set Veff ¼ 0 and
ignore potential barrier effects in order to see what other
effects (3þ 1) dimensions has. Accordingly, inside the
shell, the “in” modes are given by Eq. (2.50) for all values
of l and m. Similarly, outside the shell the “out” modes are
given by

ψout
ωl ¼ e−iωus ; ð2:64Þ

which are taken to vanish as us → −∞ along ℐ− for
v > v0. Thus,

αωlmω0l0m0 ¼ −i
δl;l0δm;m0

4π
ffiffiffiffiffiffiffiffi
ωω0p

Z
vH

−∞
due−iωus ∂↔uðeiω0v0 − eiω

0uÞ;

ð2:65aÞ

βωlmω0l0m0 ¼ ið−1Þm δl;l0δm;−m0

4π
ffiffiffiffiffiffiffiffi
ωω0p

×
Z

vH

−∞
due−iωus ∂↔uðe−iω0v0 − e−iω

0uÞ: ð2:65bÞ

Note that the terms in the integrands with factors of e�iω0v0

are total derivatives and can be integrated trivially. Because
e�iωus effectively vanishes at us ¼ �∞, these terms vanish
also. The result is that
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αωlmω0l0m0 ¼ −
δl;l0δm;m0

4π

Z
vH

−∞
due−iðω−ω0Þu½κðvH − uÞ�iω=κ

� ffiffiffiffiffi
ω0

ω

r
þ

ffiffiffiffiffi
ω

ω0

r �
1þ 1

κðvH − uÞ
��

; ð2:66aÞ

βωlmω0l0m0 ¼ ð−1Þmþ1δl;l0δm;−m0

4π

Z
vH

−∞
due−iðωþω0Þu½κðvH − uÞ�iω=κ

� ffiffiffiffiffi
ω0

ω

r
−

ffiffiffiffiffi
ω

ω0

r �
1þ 1

κðvH − uÞ
��

: ð2:66bÞ

The expression for αωlmω0l0m0 differs from the
(1þ 1)-dimensional case in (2.41a) by the factor of
−δl;l0δm;m0 , and the expression for βωlmω0l0m0 differs from
the (1þ 1)-dimensional case in (2.41b) by the factor of
ð−1Þmþ1δl;l0δm;−m0 .
As mentioned in the Introduction, Massar and Parentani

[4] have computed the Bogolubov coefficients for the case
of a null shell collapsing to form a black hole. Their
computation was for the s-wave sector in the (3þ 1)-
dimensional case when the effective potential is ignored.
Thus it was the same as the case done in this subsection. By
restricting to the s-wave sector, they effectively considered
the (1þ 1)-dimensional case as well. However, because
they began with the (3þ 1)-dimensional case, their mode
functions vanish at r ¼ 0 inside the shell. In our separate
(1þ 1)-dimensional model, we make no such assumption
and instead have modes arising from ℐ−

L. Despite that
difference, both models yield the same amount of particle
production. (Note that there is a missing normalization
factor of 8M in Eq. (10) of [4].)

III. TIME- AND FREQUENCY-RESOLVED
SPECTRA

To investigate the time dependence of the particle
production rate, we construct localized wave packets of
a form originally used by Hawking [1] and which were
used by us in Ref. [8] to examine a set of accelerating
mirror models. When this constructive process is applied to
mode functions of definite frequency, the resulting packets
form a complete orthonormal set that subdivides (and
provides a degree of localization) within both the time
and frequency domains. Following [14], a given mode
packet is defined as

foutjn ≡ 1ffiffiffi
ϵ

p
Z ðjþ1Þϵ

jϵ
dω e2πiωn=ϵfoutω : ð3:1Þ

A packet with index j covers the range of frequencies
jϵ ≤ ω ≤ ðjþ 1Þϵ. Since the definite frequency “out”
modes approach ℐþ

R with the behavior foutω ∼ e−iωus, a
packet with index n covers the approximate time range
ð2πn − πÞ=ϵ≲ us ≲ ð2πnþ πÞ=ϵ. We can write

βjn;ω0 ≡ −ðfoutjn ; f
in�
ω0 Þ: ð3:2Þ

Using Eq. (3.1) and interchanging the order of integration
gives

βjn;ω0 ¼ 1ffiffiffi
ϵ

p
Z ðjþ1Þϵ

jϵ
dωe2πiωn=ϵβωω0 : ð3:3Þ

Then the quantity

hinjNout
jn jini≡

Z
∞

0

dω0jβjn;ω0 j2 ð3:4Þ

can be thought of as giving the average number of particles
detected by a particle detector that was sensitive to the
frequency range jϵ ≤ ω ≤ ðjþ 1Þϵ and was turned on
during the time period ð2πn − πÞ=ϵ≲ us ≲ ð2πnþ πÞ=ϵ.
Note that the value of hNjni is the same for both the mirror
and the (1þ 1)-dimensional spacetime with a collapsing
null shell since the values of βωω0 are the same in
those cases.
A similar expression works for the (3þ 1)-dimensional

spacetime with a collapsing null shell for given values of l
and m. If, as in the previous section, we neglect Veff , then
the value of β for given ω and ω0 is the same for all l andm.
Thus summing over l andm results in an infinite number of
particles for each value of j and n. If the mode equation is
solved by including Veff , then the number of particles for
each value of j and n will be finite [14] (a case we will
discuss elsewhere).
If Eq. (2.22b) is substituted into Eq. (3.3), then in the

late-time, large-n limit, one can see that the dominant
contribution to the integral comes from values of ω0 for
which the arguments of the oscillating exponentials cancel
or nearly cancel and which, therefore, satisfy the condition
ω0 ≫ ω. In this limit,

jβωω0 j2 ∼ 1

2πκω0
1

e2πω=κ − 1
; ð3:5Þ

and one sees that there is a thermal distribution of particles
with temperature T ¼ κ=2π. Thus, the radiation will
asymptotically approach a thermal distribution at the black
hole temperature. Such a late-time thermal distribution was
found for black hole radiation in [1] and for mirrors with a
particular class of asymptotically null trajectories in [3].
To compare the exact results with a thermal spectrum, it

is useful to write the thermal spectrum in terms of packets.
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This has been done in [8] for a mirror trajectory studied by
Carlitz and Willey [6] in which the particle production is
always in a thermal distribution. The trajectory is [8]

zðtÞ ¼ −t −
1

κ
Wðe−2κtÞ; ð3:6Þ

and the relevant Bogolubov coefficient is

βωω0 ¼ 1

4π
ffiffiffiffiffiffiffiffi
ωω0p

�
−
2ω

κ
e−πω=2κ

�
ω0

κ

�
−iω=κ

Γ
�
iω
κ

��
: ð3:7Þ

Substituting Eq. (3.7) into Eq. (3.3) and then into Eq. (3.4)
yields

hNjni¼
1

ϵ

Z ðjþ1Þϵ

jϵ

dω

e2πω=κ−1
¼ κ

2πϵ
log

�
e
2πðjþ1Þϵ

κ −1
e
2πjϵ
κ −1

�
−1: ð3:8Þ

Note that the packets depend on the frequency parameters ϵ
and j but not the time parameter n, as would be expected if
the particles are always produced in a constant-temperature
thermal distribution. Note also that the infrared divergence
in Eq. (3.7) results in a divergence in the j ¼ 0 bin in
Eq. (3.8). Since all real particle detectors have infrared
cutoffs, for simplicity we simply ignore the j ¼ 0 bin
when making comparisons with our results for the
trajectory (2.14).
An interesting balance in time and frequency resolution

occurs for

ϵ ¼ κ

2π
log

�
1þ ffiffiffi

5
p

2

�
¼ Tcsch−1ð2Þ: ð3:9Þ

With this packet width, one can show, using Eq. (3.8), that a
thermal distribution has2

X∞
j¼1

hNji ¼ hNj¼1i þ
X∞
j¼2

hNji ¼ 1þ 1 ¼ 2: ð3:10Þ

It is possible, for both the particle production from a
mirror following the Carlitz-Willey trajectory (3.6) and that
from a mirror following our accelerating mirror trajectory
(2.14), to scale out the dependence of hNjni on κ by
working with the following dimensionless quantities:

x≡ ω

κ
; ð3:11aÞ

ϵ≡ ϵ

κ
; ð3:11bÞ

vH ≡ κvH: ð3:11cÞ

Using Eq. (2.22b), we find for the trajectory (2.14) that

hNjni ¼
1

4π2ϵ

Z
∞

0

dx0
Z ðjþ1Þϵ

jϵ
dx1

×
Z ðjþ1Þϵ

jϵ
dx2eið2πn=ϵ−vHÞðx1−x2Þe−πðx1þx2Þ=2

× x0
ffiffiffiffiffiffiffiffiffi
x1x2

p ðx1 þ x0Þ−ix1−1ðx2 þ x0Þix2−1
× Γðix1ÞΓð−ix2Þ: ð3:12Þ

For the other mirror trajectories studied in [8], which
were all inertial at late times, it was found that choosing a
small enough value for ϵ and, thus, a small enough range
for each value of j in terms of ω gives fine-grained
frequency resolution but coarse-grained time resolution.
Similarly, choosing a large enough value of ϵ results in a
fine-grained time resolution but coarse-grained fre-
quency resolution. It is not possible, of course, to get
arbitrary fine-grained simultaneous time and frequency
resolution. However, for the asymptotically inertial
trajectories studied in [8] attempts to obtain any signifi-
cant degree of simultaneous time and frequency reso-
lution were not successful. As shown below, for the
asymptotically null trajectory (2.14) we have had some
success in locating an optimal compromise in time and
frequency resolution.
We begin by illustrating the time dependence of the

particle production rate by choosing the relatively large
number ϵ ¼ 1. Because any realistic particle detector will
have an infrared frequency cutoff, we shall impose one by
only considering bins with j ≥ 1. For this value of ϵ and for
the Bogolubov coefficient (2.22b), we find that most of the
particles are in the bin with j ¼ 1. The time evolution of the
average number of particles detected in this bin is given in
Fig. 4 for the case vH ¼ 0. It can be seen from this figure
that the particle production rate monotonically increases to
its thermal value.

FIG. 4. Average number of particles produced in the j ¼ 1
frequency bin as a function of the time parameter n for ϵ̄ ¼ 1. The
open boxes correspond to the thermal distribution (3.8).

2The argument of the logarithm is of course the golden ratio.
Its significance here is simply that it results in the sum (3.10).

MIRROR REFLECTIONS OF A BLACK HOLE PHYSICAL REVIEW D 94, 065010 (2016)

065010-9



What can also be seen from Fig. 4 is the very small value
that hNjnihas. Thismeans that the actual amount of particle
production that one would expect in a specific instance
would be very low. This is related to the fact that, even at
late times, the flux of radiation due to black hole evapo-
ration is very sparse [15]. Similar results were found for the
asymptotically inertial mirror trajectories in [8].
To investigate the frequency spectrum, we can make use

of the specific packet width in Eq. (3.9), which is small
enough to provide some frequency resolution. First,
however, in Fig. 5 we show the time dependence of the
particle number for the j ¼ 1 bin. It is clear that the time
resolution is not as good as for the case ϵ ¼ 1 in Fig. 4.
The frequency resolution is shown for three different
times in Fig. 6. It is seen that we have reasonably fine-
grained frequency resolution for the time parameters
n ¼ −1, 0, 1, while the amount of particle production
in a given time interval is larger in a low-frequency bin
than a high-frequency bin.
The increase in particle production is monotonic with no

significant feature in the particle spectrum and production
rate near the time of black hole formation in contrast to the
initial burst of particles seen for the mirror trajectory in [9].
The approach to a thermal distribution is expected since the
mirror trajectory is asymptotically null and, in the collaps-
ing null shell case, the backreaction of the black hole
radiation on the spacetime geometry is ignored. In contrast,
for the asymptotically inertial trajectories studied in [8,9],
one finds a peak in the amount of particle production
followed by a steady decline.

IV. STRESS-ENERGY TENSOR

Here we compute the stress-energy tensor for the accel-
eratingmirror spacetime.Thegeneral formof the energy flux
for any mirror trajectory as a function of time u is [2]

FðuÞ≡ hTuui ¼
1

24π

�
3

2

p002

p02 −
p000

p0

�
; ð4:1Þ

FIG. 5. Average number of particles produced in the j ¼ 1
frequency bin as a function of the time parameter n for the packet
width in Eq. (3.9). The open boxes correspond to the thermal
distribution (3.8).

FIG. 6. Plotted are the frequency spectra for the average
number of particles produced with the packet width in
Eq. (3.9). From top to bottom, the plots are for the values of
the time parameter n ¼ −1, 0, 1. The open boxes correspond to
the thermal distribution (3.8).
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where the primes are derivatives with respect to u.3 The
energy flux for the trajectory (2.14) is

FðuÞ ¼ κ2

48π

½4Wðe−κðu−vHÞÞ þ 1�
½Wðe−κðu−vHÞÞ þ 1�4 : ð4:2Þ

It is shown in Fig. 7. Note that, unlike the case of mirror
trajectories which are asymptotically inertial, there is no
negative energy flux in this case. In the late-time limit, the
flux approaches the thermal value

F ¼ κ2

48π
; ð4:3Þ

which is the value at all times for the case of a mirror
following the Carlitz-Willey trajectory (3.6).
An interesting question is whether there is some way to

characterize the nonthermal epoch beyond the observation
that the approach to a thermal state is monotonic for
both the particle production and the stress-energy tensor.
One way to do so is to look at how quickly a given
quantity changes. The rate, F0ðuÞ, at which the energy flux
changes is

F0ðuÞ ¼ κ3

4π

½Wðe−κðu−vHÞÞ�2
½Wðe−κðu−vHÞÞ þ 1�6 : ð4:4Þ

The particular time, umax, at which the rate F0ðuÞ reaches its
maximum value, is important because that is the time at
which the system is furthest away from both its late-time
thermal emission and its early-time zero emission. It is

κðumax − vHÞ ¼ ln 2 −
1

2
≈ 0.19: ð4:5Þ

It is interesting to note that this is the same time at which
jz00ðuÞj and jp00ðuÞj reach their maximum values. This time
is also comparable to the time at which the change in the
particle production rate is a maximum. This can be seen
from Fig. 4 to be at n ≈ 0, which corresponds to u ≈ 0.
Recall that the time corresponding to n is approximately
u ¼ 2πn=ϵ. For u > umax, the rate of change of the flux
falls off rapidly so there is an asymmetry in the growth of
the flux. This can be seen from the fact that, at u ¼ umax,
the flux is 16=27 ≈ 60% of its asymptotic value. This
asymmetry is also reflected in the particle creation rate,
lending support to the notion that, in this case, the particles
carry the energy [16].

V. CONCLUSIONS

We have displayed an exact correspondence between the
particle production in (1þ 1) dimensions that occurs for a
mirror in flat space with the trajectory (2.14) and the
particle production that occurs when a black hole forms
from gravitational collapse of a null shell. There is also a
correspondence in the case of a null shell collapsing to form
a black hole in (3þ 1) dimensions if the effective potential
in the mode equation is ignored.
We have used wave packets of the form (3.1) to

investigate the time dependence of the particle production
rate in the (1þ 1)-dimensional cases. We found that the
particle production rate increases monotonically with time.
We have also computed the stress-energy tensor hTabi for
the scalar field in the case of the accelerating mirror. The
rate of change of the particle production mimics the rate of
change of energy production in time. With a relativity slow
increase and fast decrease, the rate of change of energy-
particle flux peaks at a maximum time that corresponds to
the most nonthermal, out-of-equilibrium time of the sys-
tem. The fact that the rate loss is greater than the rate gain
points to an asymmetry in the approach to equilibrium. The
energy flux is approximately 60% of its maximum equi-
librium value at the time when the system is the most out of
equilibrium.
The monotonic increase in particle production under-

scores the relatively calm approach to equilibrium. There
are no characteristic imprints to identify the energy flux in
the particle emission. However, the peak nonthermal time
can be identified and the rate of change of energy flux is
mirrored in the rate of change of particle production: clear
signatures of the particle-energy coupling during the non-
equilibrium phase.
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